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Executive Summary 
 

The increasing penetration of PV systems in the distribution network creates new 

opportunities but also raises several issues for the grid operation. New challenges, arising from 

the variable nature of solar energy generation, must be tackled in order to keep a stable and 

balanced power grid.  

In this study, short term variability in power output due to changing intensity due to cloud 

cover is assessed for its impact on energy delivery. Studies on this subject conclude that while 

there may be local variability, there is a strong reduction in that variability when the aggregate 

of several PV systems is taken into account, rather than just one PV system.  The analysis 

shows that the aggregated effect of many geographically dispersed systems PV systems yields 

a smoothing effect that reduces the impact of local variability.  

Chapters two and three show the theoretical background of the smoothing effect. Three 

different variability methods are described: In the first one (representative blocks), the 

amplitude of the fluctuations was the main focus and information about the duration of the 

fluctuations was not considered. The second method (dispersion factor) focuses on the 

variability itself, but its data requisites were very demanding, which can be a hindrance. The 

third and final method (wavelet analysis) proved to be a good choice since it needs very 

limited data inputs and it is able to decompose the input irradiance signal into different 

timescales of fluctuations. By doing this, the variability reduction can be accessed and 

calculated separately for each timescale.  

In the following chapters, the models are demonstrated in case studies for different regions 

and with different time and space resolution and one of a distributed generation system in 

Hawaii, USA. 

The current report shows the general validity of the models and suggests a simple global 

model for modelling variability of PV fleets. Both need further validations at more sites and in 

more regions to detect the strengths and limitations of the models and the worldwide 

usability. 
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1. Introduction 
 The Earth receives 174 PW of incoming solar radiation at the upper atmosphere. 

Approximately 30% is reflected back to space while 20% is absorbed by clouds and 

atmosphere. As a result 50% of the solar energy reaches surface of the planet, which equals to 

2.7 Mio. EJ per year. This amount is about five times as much as all of the Earth’s total non-

renewable resources of coal, oil, natural gas and mined uranium combined (0.53 Mio. EJ) [2] 

and 5'000 times higher than the world 's total energy consumption in 2012. 

 This energy can be used for many purposes, one of them being the conversion into 

electricity. The most common way of doing this is using photovoltaics (PV). Recently, the PV 

industry has witnessed a strong decrease in PV module prices. This strong decrease in prices 

facilitates and encourages an increasing deployment of PV systems (Fig. 1.1). 

 

Figure 1.1: Evolution of regional PV installations [3]. 

 The high penetration of PV systems has consequences. One of the problems is the 

variability associated with PV energy generation. PV power output depends essentially on the 

irradiance incident on the panels, which can change very fast due to moving clouds. The 

network and all the other generation sources must be prepared to accommodate this 

variability. Variability prediction methods can prove a useful tool both in network planning and 

in future PV sites selection. 
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2. Characterization of variable PV generation 
 Solar photovoltaic (PV) systems power output depends essentially on the global 

irradiance to which they are subjected. Therefore, it is necessary to understand irradiance 

variability and its consequences. Changes in solar irradiance that affect PV systems occur in a 

wide range of timescales, from few milliseconds to several decades. Each of these changes will 

cause a different kind of impact on the power system (Table 2.1).  

Table 2.1: Potential power system impacts of solar irradiance variability 

Timescale of changes in solar irradiance Potential power system impact 

Seconds Power quality (e.g. voltage flicker) 

Minutes Regulation reserves 

Minutes to hours Load following 

Hours to days Unit commitment 

Months to years Missing storage and/or capacity 

 

The sun is a variable star at all observed timescales and at all wavelengths. However the sun’s 

variability of the time range between seconds and hours are by far lower than the one induced 

by clouds (Fig. 2.1).  

 

Figure 2.1: Global radiation measured at Oahu (see chapter 4.1.1 [4]) on March 30
th

, 2010 in one second time 

resolution. Until 13:30 effects of clouds are clearly visible (strong dips and ridges). After 13:30 the radiation is 

lowering slightly due to the sun’s trajectory, but is otherwise almost stable. 

Solar variations in millisecond ranges are only scarcely investigated but can be assumed as 

small for global radiation and PV production. The influence of the sun’s orbit is strong, but 

precisely predictable and therefore not handled here. Strong and regionally highly correlated 

gradients are induced by solar eclipses as seen in Europe in March 2015 [5]. Those are 

however seldom events − the next one in Central Europe with a noticeable effect will be in 

2048 − and can be calculated well in advance and are therefore also not covered in this report. 
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In this work we will focus on the time range from seconds to several hours and the variability 

induced by the movement of clouds.  

2.1.  Impact of solar variability on the power system 

 The high variability of solar irradiance is a source of new challenges to the distribution 

system operators (DSO) and transmission system operators (TSO) concerning planning and unit 

commitment. Existing conventional generators will need to adapt to PV generation profiles in 

order to counteract introduced variability, and more flexible power plants, particularly in 

response time, may have to be included in the available generation mix. Other solutions, like 

demand side management and energy storage, may also be considered. 

 Changes in solar irradiance over short timescales may introduce a flicker in voltage, 

which can be harmful for consumers’ equipment. Furthermore, if these changes have a large 

magnitude, generators responsible for mitigating that occurrence must be capable of changing 

their output quickly and with large magnitudes (large ramp rates), so proper load following can 

be carried out. Technical flexibility for conventional power generators are shown in Table 2.1. 

Table 2.2: Flexibility of conventional power generation technologies (Source: IEA, 2014 [6]) 

Technology Nuclear Hard coal Lignite 
Combined 

Cycle Gas 

Pumped 

Storage 

Start-up time “cold” 48h ~0.6 - 8h ~0.6-6h 1-4h ~0.1h 

Ramp rate 
0.3-

5%/min 

0.6-

8%/min 

~0.6-

6%/min 

~0.8-

15%/min 
>40%/min 

      

Minimal possible load 40-100% 20-60% 40-60% 15-50% 5-15% 

 

 Observations of point sensors show large changes in solar irradiance in just a few 

seconds. In [7], using six San Diego solar resource stations over a year, five 1-sec ramps up and 

17 1-sec ramps down with magnitudes greater than 50% were detected, with a maximum 

change of 60% over 1-sec. However, as we will analyze further, it is more appropriate to 

consider area variability over point variability. 

 High penetration of PV systems may also lead to an increase in operating reserves 

since the system must be prepared for any sudden loss of generation and unexpected load 

fluctuations. This scenario implies an obvious increase in system costs. When increasing 

(decreasing) PV generation does not coincide with increasing (decreasing) load, a substantially 

larger response of standby generators will be required. The critical situation corresponds to an 

increase in load with a simultaneous decrease in PV generation, which typically happens when 

the sun is setting (however the effects of the sun path can be forecasted very well). Controlling 

PV systems output and energy storage can also be considered as solutions to tackle these 

issues. 
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2.2. Geographic dispersion and “smoothing effect” 

 Solar variability impacts in PV generation are different if a set of geographically 

dispersed systems is considered, instead of a single system. Several studies have been done on 

this subject and they all come to the conclusion that there is a strong reduction in variability 

when the aggregate of several PV systems is taken into account, rather than just one PV 

system. That is called the “smoothing effect”. This effect is mainly induced by the typical scales 

of clouds (1 – 10 km) and cloud speed and the scale of low and high pressure systems 

(1000 km). 

 Variability reduction (VR) is defined as the ratio of variance in a time-varying quantity 

at one site to the variance of the average of all sites in a network. 

 VR =
𝜎𝜎Δ𝑡𝑡1𝜎𝜎Δ𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡 (2.1) 

 In 2008, Curtright and Apt [8] investigated real power output data with 10 minute 

resolution from three sites hundreds of kilometers apart: a 228.5 kW system in Prescott, 

Arizona, a 144 kW system in Scottsdale, Arizona, and a 121 kW system in Yuma, Arizona. 

Approximately one month of consecutive data (June 22 – July 27, 2006) was analyzed and VR 

values of 1.7 to 3.3 for 10-min steps of power output were found. In 2010, a similar study was 

carried out by Lave and Kleissl [9]. Analyzing a year (January 1 – December 31, 2008) of 

5 minute radiation data from four sites hundreds of kilometers apart in Colorado, VR values of 

2.4 to 4.1 were found. These studies, among others, confirm that the variability associated 

with a fleet of PV systems is significantly lower than the variability associated with a single PV 

system. 

 In the special case when the change in output between locations is uncorrelated, fleet 

capacity is equally distributed and the variance at each location is the same, Hoff and Perez 

(2010) showed that fleet output variability equals the output variability at a single location 

divided by the square root of the number of locations [10]: 

 σΔtFleet =
σΔt1√N

 (2.2) 

 A similar result was derived by Kato et al. (2011) [11] that relates variability to the 

square root of the number of systems when the locations are uncorrelated. The correlation 

coefficient decreases as the distance between sites increases and increases as the timescale of 

changes increases, as demonstrated by Mills and Wiser (2010) [12]. 

Table 2.3: Relation between correlation, distance between sites and timescale of changes. 

 Correlation 

Distance between sites ↗ ↘ 

Timescale of changes ↗ ↗ 
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 This means that changes in output in two different locations are more correlated if the 

distance between those locations becomes smaller. Thus, it is important to study methods 

that, in a project scenario, can help estimate the power output variability of a group of PV 

systems at a given location, whether it is a centrally located plant or a group of small 

distributed systems. Ignoring the smoothing effect when calculating energy storage 

requirements will result in overestimation of the reserves, and consequently in extra costs 

[13].  
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3. PV variability models 
 Increased use of PV systems has raised questions about potential impacts of variable 

generation, as explained in Chapter 2. Having in mind a future scenario with high penetration 

of PV systems, it is necessary to explore methods that quantify such variability in order to 

study new possible locations for PV systems as well as possible energy storage requirements. 

Since the most potentially harmful variations are those which occur within a short interval of 

time, due to its rapid change in net load, these methods must be able to estimate changes in 

power output in such timescales with high reliability, in order to establish guidelines that allow 

the mitigation of such problems. Also, the plant spatial distribution must be taken into account 

in order to simulate the regional smoothing effect. 

 This section gives an overview over existing methods for estimation of variability in PV 

systems, advantages and disadvantages, and a final decision on what methods are best suited 

for this activity’s needs. Those methods will be explained in more detail. 

3.1. Existing methods to describe variability 

3.1.1. Method 1: Representative Blocks 

 The first method presented here was developed by Kato et al. (2011) [11]. This method 

aims to estimate the standard deviation of total power output fluctuation of high penetration 

photovoltaic power generation system dispersed over a large area. 

 The proposed method assumes that the area to be studied consists of a number of 

subgroups and each subgroup consists of 𝑁𝑁 blocks, each with an installed PV capacity 𝑃𝑃𝑛𝑛, 

standard deviation of insolation fluctuation 𝜎𝜎𝑛𝑛 , and performance ratio 𝜂𝜂 . The distance 

between center points of two neighboring blocks is 𝑑𝑑. This is the most important value in the 

proposed method, because insolation patterns at two points must be considered as 

independent. Figure 3.1 summarizes this description. 
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Figure 3.1: Modeling of area by a number of subgroup consisting of 𝑵𝑵 blocks of 𝒅𝒅 x 𝒅𝒅. [11] 

 The probabilistic characteristic of insolation fluctuation is assumed to be the same for 

all 𝑁𝑁 blocks. Also, the PV capacity is assumed to be equally distributed. The performance ratio 

can be considered constant. As mentioned before, the fleet output variability calculated by this 

method is given by equation (2.2). 

3.1.2. Method 2: Dispersion Factor Method and ramp rate correlation 

 Method 2 was proposed by Hoff and Perez (2010) [10]. The objective of this method is 

to provide a general model that quantifies the short-term power output variability resulting 

from an ensemble of arbitrarily configured PV systems. The output variability is defined as a 

measure of the PV fleet’s power output changes over a selected sampling time interval and 

analysis period relative to PV fleet capacity: 

 𝜎𝜎Δ𝑡𝑡Fleet =
1𝐶𝐶Fleet

�𝑉𝑉𝑉𝑉𝑉𝑉 ��∆𝑷𝑷∆𝒕𝒕𝒏𝒏𝑁𝑁
𝑛𝑛=1 � (3.1) 

 

where 𝐶𝐶Fleet is the total installed peak power of the fleet and ∆𝑷𝑷∆𝒕𝒕𝒏𝒏  is a random variable that 

represents the time-series of changes in power at the nth PV installation using a sampling time 

interval of ∆𝑡𝑡 defined over an analysis period. ∆𝑷𝑷∆𝒕𝒕𝒏𝒏  corresponds also to the temporal ramp 

rate which can be used as general variability measure. It can also be adopted for time series of 

clear-sky index instead of PV production (see Eq. 3.16). 

 A Dispersion Factor (𝐷𝐷) is introduced representing the relationship between PV fleet 

configuration, cloud transit speed and a defined time interval: 
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 𝐷𝐷 =
𝐿𝐿𝑉𝑉Δ𝑡𝑡 (3.2) 

 

where 𝐿𝐿 is the length of the considered PV fleet in the direction of cloud motion and 𝑉𝑉 is the 

transit rate. The PV fleet considered in the study is a 1-dimensional set of 𝑁𝑁 identical, equally-

spaced, installations. The Dispersion Factor increases as the cloud speed decreases and/or as 

the distance between installations increases. 

 Figure 3.2 illustrates the Dispersion Factor for three cases: a fast, medium, and slow 

cloud transit speed across a PV fleet with 4 PV systems. The fast-moving cloud in the top 

section of the figure crosses the PV fleet in 2Δ𝑡𝑡, and thus 𝐷𝐷 equals 2. The medium transit 

speed requires 4Δ𝑡𝑡 for a cloud to cross the PV fleet, and therefore 𝐷𝐷 equals 4. The slow transit 

speed in the bottom would result in a Dispersion Factor of 8. 
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Figure 3.2: Dispersion Factor for a PV fleet with 4 PV systems using a 1-minute time interval when the cloud 

transit rate is fast, medium, or slow. [10] 

 The model establishes four different Dispersion Factor regions, each with a different 

expression for the output variability (ratio of the output variability for the PV fleet to output 

variability of the same PV fleet concentrated in one single location): 

Crowded region: The number of PV systems in the fleet is greater than the Dispersion 

Factor (N>D). As depicted in the top section of Figure 3.2, a cloud disturbance affects 

more than one PV system in one time interval. In this case, output variability may be 

expressed as: 

 𝜎𝜎∆𝑡𝑡𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡 =
𝜎𝜎𝐷𝐷∆𝑡𝑡𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝐹𝐹𝐷𝐷  (3.3) 
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Relating to a centralized PV plant, which can be considered a crowded region, this 

model suggests that output variability, in this case, is independent of the number of 

systems. 

Optimal point: The number of PV systems in the fleet equals the Dispersion Factor. In 

this case (middle section of Figure 3.2), a cloud disturbance will affect each system for 

exactly one time interval. For this case, equation (3.1) assumes the following solution: 

 𝜎𝜎∆𝑡𝑡𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡 =
𝜎𝜎𝑁𝑁∆𝑡𝑡𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝐹𝐹𝑁𝑁  (3.4) 

 

Limited region: The number of PV systems is smaller than the Dispersion Factor. 

Illustrated in the bottom section of Figure 3.2, a cloud disturbance will affect each 

system longer than one time interval. In this case, although equation (3.1) cannot be 

solved for a specific solution, it is possible to define an upper bound for the variability: 

 𝜎𝜎∆𝑡𝑡𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡 <
𝜎𝜎∆𝑡𝑡𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝐹𝐹√𝑁𝑁  (3.5) 

 

Spacious region: The number of PV systems is much smaller than the Dispersion 

Factor. In this situation, short-term fluctuations of each PV system are independent of 

each other. Solving equation (3.1) will lead us to equation (2.2). 

 

 Combining equations (2.2), (3.3), (3.4) and (3.5), the relative output variability for N PV 

systems leads to the following diagram: 
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Figure 3.3: Relative output variability as a function of the Dispersion Factor for a fleet of 𝑵𝑵 PV systems. [9] 

 This method suggests that there is an optimal point, as discussed before, where the 

output variability of the PV fleet equals 
1𝑁𝑁 times that of a single system using a time interval of 𝑁𝑁Δ𝑡𝑡, from equation (3.4). 

 Further work was undertaken by the same authors in [1], where a different approach is 

adopted. Taking equation (3.1) one can derive the following equation: 

 𝜎𝜎Δ𝑡𝑡Fleet =
1𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡���𝜎𝜎Δ𝑡𝑡𝑖𝑖 𝜎𝜎Δ𝑡𝑡𝑗𝑗 𝜌𝜌Δ𝑡𝑡𝑖𝑖,𝑗𝑗𝑁𝑁

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1  (3.6) 

from which one may conclude that the (normalized) output variation of the fleet is dependent 

on the output variation of each location and the correlation between them. Empirical data 

revealed that a model for the correlation between sites, based on equation (3.7) fitted well, as 

long as using location-specific parameters: 

 
𝜌𝜌 =

1

1 +
𝑑𝑑

(Δ𝑡𝑡)(𝐶𝐶𝐶𝐶1)

 
(3.7) 

 

where the term d refers to distance (km) and CS1 refers to cloud speed (km/h) in a specific site 

(distances in m and cloud speed in m/s are also viable). 
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Optionally another fitting equation presented by Perez (2014) [13] will be used in the following 

case studies: 

𝜌𝜌 = 𝑒𝑒 𝑑𝑑 ln (0.2)1.5 (∆𝑡𝑡)(𝐶𝐶𝐶𝐶2) (3.8) 

 

where CS2 refers to the cloud speed (km/h). 

3.1.3. Method 3 (Wavelet analysis) 

 Another method discussed here is the one developed by Lave et al. (2011) [15] [16]. 

This method proposes a Wavelet Variability Model (WVM) for simulating power plant output, 

given 1) measurements from a single irradiance point sensor, 2) knowledge of the power plant 

footprint (the location of each PV panel) and PV capacity, and 3) a correlation scaling 

coefficient, by determining the geographic smoothing that will occur over the area of the 

plant. The simulated system may be centrally located or distributed generation. 

 First, correlations between sites within the power system are determined using an 

equation based on the distance between sites (𝑑𝑑𝑚𝑚,𝑛𝑛), timescales (𝑡𝑡̅), and a correlation scaling 

coefficient (𝐴𝐴 value): 

 𝜌𝜌�𝑑𝑑𝑚𝑚,𝑛𝑛, 𝑡𝑡̅� = exp �− 1𝐴𝐴 𝑑𝑑𝑚𝑚,𝑛𝑛𝑡𝑡̅ � (3.9) 

 

 The 𝐴𝐴 value can be found using a small network of irradiance sensors (at least ~ 4-6 

sites) where the correlations, distances, and timescales are known and equation (3.6) may be 

solved for. The 𝐴𝐴 value varies day-by-day and by location due to changing cloud speed. Smaller 𝐴𝐴 values (1-3, typically observed at coastal sites with low, slow clouds) result in lower 

correlations between sites, while large 𝐴𝐴 values (> 4, typical of inland sites with high, fast-

moving clouds) mean higher correlations. 

 An alternative way of computing the 𝐴𝐴 value is proposed by the same authors in [17], 

in case a network of irradiance sensors is not available. The authors investigated the 

dependence of the 𝐴𝐴 value on cloud speed and cloud size by using a simple cloud simulator. 𝐴𝐴 

values were found to increase both with increasing wind speed and with increasing cloud size. 

However, it was found that the impact of cloud size was small, and that 𝐴𝐴 values were nearly 

linearly proportional to cloud speed. The following equation was found to adequately 

represent the 𝐴𝐴 value, based on cloud speed (𝑐𝑐𝑐𝑐) [m/s]: 

 𝐴𝐴 =  0.5 × 𝑐𝑐𝑐𝑐 (3.10) 

 

 From the correlations, VR, or the ratio of variability of a single point sensor to the 

variability of the entire PV plant, at each fluctuation timescale is found: 
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 VR(𝑡𝑡̅) =
𝑁𝑁2∑ ∑ 𝜌𝜌�𝑑𝑑𝑚𝑚,𝑛𝑛, 𝑡𝑡̅�𝑁𝑁𝑛𝑛=1𝑁𝑁𝑚𝑚=1  (3.11) 

 

where 𝑁𝑁 is the total number of sites. A single site is chosen to be an area over which 𝜌𝜌�𝑑𝑑𝑚𝑚,𝑛𝑛, 𝑡𝑡̅� ≈ 1 for the timescales of interest. For distributed plants, a single site is one rooftop 

PV system. For utility-scale plants, a single site is a small container of PV modules, as dictated 

by computational limitations. Defined this way, VR = 𝑁𝑁  for entirely independent sites 

(𝜌𝜌 = 0,𝑚𝑚 ≠ 𝑛𝑛), and VR = 1 for entirely dependent sites. 

 Wavelet decomposition is then used to separate the normalized input point sensor 

time-series by fluctuation timescale. By combining the wavelet modes at each timescale with 

the VR at each timescale, the normalized plant average irradiance is simulated. Simulated 

power output (in MW) is then obtained by using a clear-sky model for power output. 

 The time-series of fluctuations of actual power plant output and simulated power 

plant output are not expected to match perfectly, since only a single point sensor is used as 

input, but the statistics of the fluctuations are expected to agree. 

3.2.  Further temporal variability measures 

In the literature further measures of variability and stability can be found. In order to 

give a complete overview those are presented here. However they will not be used in the 

following case studies.  

Perez et al. [18] introduced a stability index for his global to diffuse model: 

 ρ = (|𝑘𝑘𝑡𝑡′ − 𝑘𝑘𝑡𝑡−1′ | + |𝑘𝑘𝑡𝑡′ − 𝑘𝑘𝑡𝑡+1′ |) 2⁄  (3.12) 

   

where k’
t is an air mass corrected clearness index: 

 𝑘𝑘𝑡𝑡′ = 𝑘𝑘𝑡𝑡 {1.031 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒[−1.4 (0.9 + 9.4 𝑚𝑚⁄ )⁄ ] + 0.1}⁄  
(3.13) 

 

 

and 𝑚𝑚 refers to the optical air mass (see 3.27) and kt to the clearness index (see 3.49). 

A similar variability index used Skartveit and Olseth [19] in their global to diffuse model: 

 ρ = {[(𝑘𝑘𝑡𝑡 − 𝑘𝑘𝑡𝑡−1)2 + (𝑘𝑘𝑡𝑡 − 𝑘𝑘𝑡𝑡+1)2] 2⁄ }0.5 (3.14) 

 

Stein et al. proposed [20] another Variability Index (VI): 

 𝑉𝑉𝑉𝑉 =
∑ �(𝐺𝐺𝐺𝐺𝑉𝑉𝑘𝑘 − 𝐺𝐺𝐺𝐺𝑉𝑉𝑘𝑘−1)2 + ∆𝑡𝑡2𝑛𝑛𝑘𝑘=2∑ ��𝐺𝐺𝐺𝐺𝑉𝑉𝑙𝑙𝑐𝑐,𝑘𝑘 − 𝐺𝐺𝐺𝐺𝑉𝑉𝑙𝑙𝑐𝑐,𝑘𝑘−1�2 + ∆𝑡𝑡2𝑛𝑛𝑘𝑘=2  (3.15) 
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3.3. Chosen models 

 The main focus of the first method is the magnitude of changes in global horizontal 

insolation, and not so much the timescale in which they occur, which is contrary to the 

purposes of the present study. For the method to produce realistic results different 

representative points over the area of interest must be selected and solar data must be 

available for those points. Otherwise, large values of the standard deviation would be 

overestimated and small values would be underestimated. 

 The Dispersion Factor method requires irradiance readings from all the systems in the 

PV fleet, i.e. many different locations, which is sometimes difficult or even impossible to 

obtain. In alternative we can use the local variability and correlation between sites, which can 

be a more practical approach if the number of sites isn’t too large. 

 The wavelet analysis has the advantage of being able to study the variability of a set of 

PV systems over any desirable timescale, provided that the irradiance data has proper 

resolution. Furthermore, it only needs solar irradiance data from a single sensor (this may 

change if correlation scaling factor 𝐴𝐴 is unknown; still only a small network of 4-6 sensors 

would be required), unlike the previous methods, significantly reducing the data requirements. 

 The three methods performed well in terms of model validation carried out by the 

authors, with no real distinction between them. However, for the reasons discussed above, the 

two selected methods to be studied in a deeper manner and tested with real data were the 

Dispersion Factor and the Wavelet Variability Model. The following sections will explore the 

method in greater detail, namely the required data inputs, the appropriate time resolution for 

the data collection and the explanation of the algorithm. 

3.3.1. Required data input 

 The Wavelet Variability Model will require the following data inputs: 

• Global Horizontal Irradiance (GHI) time-series from a single point sensor; 

• Altitude; 

• Latitude; 

• Longitude; 

• Day of year (DoY); 

• Local Standard Time Meridian (LSTM); 

• Local Time; 

• PV footprint; 

• PV capacity; 

• PV tilt; 

• PV azimuth; 

• Correlation scaling factor 𝐴𝐴. 
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3.3.2. Relevant time resolution of data collection 

 The fluctuations that will likely be more attenuated when going from a single PV 

system to a group of systems are those that occur in short timescales (seconds). For this 

reason, it is important that the available dataset has a high enough resolution, so those 

fluctuations can be taken into account by the method. 

 The ideal resolution would be one reading per second, as it would bring insight on 

most of the potential impacts the power systems is subjected to. However, this could be 

extremely demanding for data storage capacity. If this becomes a problem, it is necessary to 

find a reasonable value for the time resolution of data collection. Woyte et al. (2001) [21] 

conducted a study over three months, with data resolution of one reading per second, and 

concluded that only 1% to 2% of the fluctuations occur in timescales shorter than 5 seconds. 

Therefore, a dataset with one reading per 5 seconds would be less severe for data storage 

requirements while preserving great part of the information, being an appropriate choice for 

the time resolution of data collection. 

3.3.3. Algorithm explanation 

 The starting point of this algorithm is the global horizontal irradiance (GHI) time series 

of a single point sensor. To obtain a stationary signal, the irradiance time series is normalized 

so that output during clear-sky (cs) conditions is 1: 

 k𝑙𝑙(𝑡𝑡) =
GHI(𝑡𝑡)

GHIcs(𝑡𝑡) (3.16) 

 

where kc(𝑡𝑡) is the clear-sky index and GHIcs(𝑡𝑡) is the clear-sky model. By obtaining the clear-

sky index, we eliminate the changes caused by the natural course of the day (to correct the 

influence of the solar elevation angle). In this method, the authors assumed a statistically 

invariant irradiance field both spatially and in time over the day (i.e. stationary), and that 

correlations between sites are isotropic: they depend only on distance, not direction. The Solis 

model [22] was used as clear-sky model. 

 One of the parameters used in the Solis model is the solar elevation angle, thus solar 

geometry calculations are required first. To calculate the solar elevation angle, we will need 1) 

the declination angle, and 2) the hour angle. 

Declination angle 

 The declination of the sun (𝛿𝛿) is the angle between the equator and a line drawn from 

the center of the Earth to the center of the sun. This angle varies seasonally due to the tilt of 

the Earth on its axis of rotation and the rotation of the Earth around the sun. The declination 

angle (in degrees) is calculated using the following equations: 

 𝛿𝛿 = sin−1 0.3978 sin(𝑏𝑏1 − 1.4 + 0.0355 sin(𝑏𝑏1 − 0.0489)) (3.17) 
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 𝑏𝑏1 =
2𝜋𝜋

365.25
× 𝐷𝐷𝐷𝐷𝐷𝐷 (3.18) 

 

where 𝐷𝐷𝐷𝐷𝐷𝐷 is the day of year, with January 1st being day 1. 

Hour angle 

 The hour angle (𝜔𝜔) converts the Local Solar Time into the number of degrees which the 

sun moves across the sky. By definition, the hour angle is 0 ° at solar noon. The first thing we 

need to compute the hour angle is the equation of time (𝐸𝐸𝐷𝐷𝐸𝐸): 

 𝐸𝐸𝐷𝐷𝐸𝐸[h] = −0.128 sin(𝑏𝑏2 − 2.8)− 0.165 sin(2𝑏𝑏2 + 19.7) (3.19) 

 

 𝑏𝑏2 =
360

365.25
× 𝐷𝐷𝐷𝐷𝐷𝐷 (3.20) 

 

 The equation of time is an empirical equation that corrects for the eccentricity of the 

Earth’s orbit and the Earth’s axial tilt. The Local Solar Time (𝐿𝐿𝐶𝐶𝐸𝐸) can be found by using the 

following equations: 

 𝐿𝐿𝐶𝐶𝐸𝐸 = 𝐿𝐿𝐸𝐸 +
(𝑙𝑙𝐷𝐷𝑛𝑛𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙𝑑𝑑𝑒𝑒 − 𝐿𝐿𝐶𝐶𝐸𝐸𝐿𝐿)

15
+ 𝐸𝐸𝐷𝐷𝐸𝐸 (3.21) 

 

 𝐿𝐿𝐶𝐶𝐸𝐸𝐿𝐿 = 15 × Δ𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺 (3.22) 

 

where 𝐿𝐿𝐸𝐸 is the Local Time in hours, 𝐿𝐿𝐶𝐶𝐸𝐸𝐿𝐿 is the Local Standard Time Meridian in degrees and Δ𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺 is the difference of the Local Time from Greenwich Mean Time in hours. 

 Finally, the hour angle (in degrees) is given by equation (3.23): 

 𝜔𝜔 = 15 × (𝐿𝐿𝐶𝐶𝐸𝐸[h] − 12) (3.23) 

 

Elevation and azimuth angles 

 The elevation angle (ℎ𝑐𝑐) is the angular height of the sun in the sky measured from the 

horizontal. The elevation angle varies through the day. It also depends on the latitude of a 

particular location and the day of the year. The elevation angle can be found using the 

following formula: 

 ℎ𝑐𝑐 = sin−1(cos𝜙𝜙 cos𝛿𝛿 cos𝜔𝜔 + sin𝜙𝜙 sin𝛿𝛿) (3.24) 
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where 𝜙𝜙 is the latitude of the site. The solar azimuth angle (𝛼𝛼𝑐𝑐) – the horizontal angle between 

the vertical plane containing the center of the solar disc and the vertical plane running in a 

true north-south direction – is obtained from: 

 cos𝛼𝛼𝑐𝑐 =
sin𝜙𝜙 sinℎ − sin𝛿𝛿

cos𝜙𝜙 cosℎ𝑐𝑐  (3.25) 

 

 sin𝛼𝛼𝑐𝑐 =
cos𝛿𝛿 sin𝜔𝜔

cosℎ𝑐𝑐  (3.26) 

 

If sin𝛼𝛼𝑐𝑐 < 0 then 𝛼𝛼𝑐𝑐 = − cos−1(cos𝛼𝛼𝑐𝑐); if sin𝛼𝛼𝑐𝑐 > 0 then 𝛼𝛼𝑐𝑐 = cos−1(cos𝛼𝛼𝑐𝑐) 

Solis Model 

 Ineichen [22] proposed a simplified version of the Solis clear-sky model for horizontal 

global irradiance. The basis of the model is the Lambert-Beer relation, which expresses the 

normal beam irradiance reaching the ground (𝑉𝑉𝑛𝑛𝑛𝑛) as a function of extraterrestrial irradiance 

(𝑉𝑉0), the aerosol optical depth (𝜏𝜏) and the optical air mass (𝑚𝑚): 

 Inb = I0 ⋅ e(−m∙τ) (3.27) 

 Modifying expression (3.27), due to the non-linear nature of the exponential function, 

and subsequently adapting it to global horizontal irradiance (Mueller, 2004) [23], one obtains 

the following equation: 

 𝐺𝐺𝐺𝐺𝑉𝑉𝑙𝑙𝑐𝑐 = 𝑉𝑉0 ⋅ 𝑒𝑒�− 𝜏𝜏
singℎ� ⋅ sinℎ𝑐𝑐 (3.28) 

where ℎ𝑐𝑐 is the sun’s elevation angle and g is the fitting parameter obtained from RTM 

calculations at two different solar elevation angles. 

For areas with high values of aerosol content, it is necessary to use a modified 

extraterrestrial irradiance and expression (3.28) assumes the following form: 

 𝐺𝐺𝐺𝐺𝑉𝑉𝑙𝑙𝑐𝑐 = 𝑉𝑉′0 ⋅ 𝑒𝑒�− 𝜏𝜏g

singℎ� ⋅ sinℎ𝑐𝑐 (3.29) 

where 𝑉𝑉0′  is the enhanced extraterrestrial irradiance, 𝜏𝜏g the global optical depth, and g the 

fitting parameter obtained from RTM calculations. 

 𝑉𝑉0′ = 𝑉𝑉0 ⋅ [𝑉𝑉0,2 ⋅ τ7002 + 𝑉𝑉0,1 ⋅ τ700 + 𝑉𝑉0,0 + 0.071 ⋅ ln (
𝑝𝑝𝑝𝑝0)] (3.30) 

with 

 𝑉𝑉0,0 = 1.08 ⋅ 𝑤𝑤0.0051 (3.31) 
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 𝑉𝑉0,1 = 0.97 ⋅ 𝑤𝑤0.032 (3.32) 

 𝑉𝑉0,2 = 0.12 ⋅w0.56 (3.33) 

 𝑉𝑉0 = 1366 ⋅ �1 + 0.033 ⋅ cos � 2𝜋𝜋
365.25

⋅ 𝐷𝐷𝐷𝐷𝐷𝐷�� (3.34) 

and 𝑒𝑒 is the atmospheric pressure at the desired location, 𝑒𝑒0 the atmospheric pressure at sea 

level and 𝑤𝑤 the water vapor column. Index 700 refers to the wavelength at which the aerosol 

optical depth is taken, which is 700 nm, due to the broadband and monochromatic 

equivalence of the aerosol optical depth at this wavelength. 

Coefficients for equation (3.29) are the following: 

 τg = tg,1 ∗ τ700 + tg,0 + tg,p ∗ ln (
pp0)  (3.35) 

 𝑡𝑡𝑔𝑔,1 = 1.24 + 0.047 ∗ ln(𝑤𝑤) + 0.0061 ∗ 𝑙𝑙𝑛𝑛2(𝑤𝑤)  (3.36) 

 𝑡𝑡𝑔𝑔,0 = 0.27 + 0.043 ∗ ln(𝑤𝑤) + 0.0090 ∗ 𝑙𝑙𝑛𝑛2(𝑤𝑤)  (3.37) 

 tg,p = 0.0079 ∗ w + 0.1  (3.38) 

and 

 𝑙𝑙 = −0.0147 ∗ ln(𝑤𝑤)− 0.3079 ∗ 𝜏𝜏7002 + 0.2846 ∗ 𝜏𝜏700 + 0.3798  (3.39) 

 

 Values for the aerosol optical depth at 550 nm and water vapor column were taken 

from available public access datasets from NASA’s Giovanni data portal 

(http://disc.sci.gsfc.nasa.gov/giovanni) for the wavelet model and from http://www.gmes-

atmosphere.eu/ for the Dispersion Factor Model. Values for the Angstrom exponent (𝛼𝛼) were 

also obtained to convert optical depth (𝜏𝜏𝜆𝜆) to the relevant wavelength, using the following 

relation: 

 𝜏𝜏𝜆𝜆 = 𝜏𝜏𝜆𝜆0(
𝜆𝜆𝜆𝜆0)−𝛼𝛼 (3.40) 

 

 Atmospheric pressure was calculated with the following formula using the following 

relation: 

 
𝑒𝑒 = 𝑒𝑒0 ∗ (1− 𝐿𝐿 ∗ ℎ𝐸𝐸0 )

𝑔𝑔∗𝐺𝐺𝑅𝑅∗𝐿𝐿  
(3.41) 
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where 𝐸𝐸0 is the sea level temperature, g is the gravitational acceleration, L is temperature 

decrease rate, R is universal gas constant, M the molar mass of dry air and h is the sites 

altitude. 

Wavelet transform 

 The next step is the application of the wavelet transform to the clear-sky index kt(𝑡𝑡): 

 𝑤𝑤𝑡𝑡̅(𝑡𝑡) = � kt(𝑡𝑡′) 1√𝑡𝑡̅ 𝜓𝜓 �𝑡𝑡′ − 𝑡𝑡𝑡𝑡̅ � 𝑑𝑑𝑡𝑡′𝑡𝑡end𝑡𝑡start

 (3.42) 

 

where 𝑡𝑡̅ is the wavelet timescale (duration of fluctuations) and 𝑡𝑡start and 𝑡𝑡end are the beginning 

and the end of the GHI time-series. The Haar wavelet was chosen as a basis function (𝜓𝜓(𝐸𝐸)) 

due to its simplicity and similarity with the bi-modal steps in clear-sky index. The Haar wavelet 

is defined by: 

 𝜓𝜓(𝐸𝐸) = � 1, 0 ≤ 𝐸𝐸 < 1 2⁄−1, 1 2⁄ ≤ 𝐸𝐸 < 1

0, otherwise

 (3.43) 

 

 The wavelet modes are denoted by 𝑤𝑤𝑡𝑡̅(𝑡𝑡), where 𝑡𝑡̅ is increased by factors of 2, i.e. 𝑡𝑡̅ = 2𝑗𝑗. 
Correlations 

 The correlations between “sites” within the PV system (𝜌𝜌�𝑑𝑑𝑚𝑚,𝑛𝑛, 𝑡𝑡̅�), as proposed by 

Lave et al. [15], is given by: 

 𝜌𝜌�𝑑𝑑𝑚𝑚,𝑛𝑛, 𝑡𝑡̅� = exp �− 1𝐴𝐴 𝑑𝑑𝑚𝑚,𝑛𝑛𝑡𝑡̅ � (3.44) 

 

where 𝑑𝑑𝑚𝑚,𝑛𝑛 is the distance between sites 𝑚𝑚 and 𝑛𝑛, 𝑡𝑡̅ is the timescale of fluctuations and 𝐴𝐴 is 

the correlation scaling factor. The 𝐴𝐴 value can be found using a small network of 4-6 irradiance 

sensors where correlations and distances are known. Using these values, equation (3.44) may 

be solved for 𝐴𝐴. Another way of computing 𝐴𝐴 is using equation (3.10) and the wind speed (at 

cloud altitude). 

Variability reduction 

 The variability reduction (VR(𝑡𝑡̅)), for each timescale, is the ratio between the variance 

of the point sensor and the variance of the entire PV system, and is defined by: 

 VR(𝑡𝑡̅) =
𝑁𝑁2∑ ∑ 𝜌𝜌�𝑑𝑑𝑚𝑚,𝑛𝑛, 𝑡𝑡̅�𝑁𝑁𝑛𝑛=1𝑁𝑁𝑚𝑚=1  (3.45) 
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where 𝑁𝑁 is the total number of sites. Defined this way, VR = 𝑁𝑁 for entirely independent sites 

(𝜌𝜌 = 0,𝑚𝑚 ≠ 𝑛𝑛), and VR = 1 for entirely dependent sites. 

Simulated wavelet modes of PV system 

 The wavelet modes of the simulated PV system are obtained using VR(𝑡𝑡̅) and equation 

(3.46): 

 𝑤𝑤𝑡𝑡̅sim(𝑡𝑡) =
𝑤𝑤𝑡𝑡̅(𝑡𝑡)�VR(𝑡𝑡̅) (3.46) 

 

 Then, these wavelet modes can be compared to the wavelet modes of the actual 

power output of the PV system, to test the accuracy of the model. 

Wavelet modes of the actual power output of PV system 

 To obtain the wavelet modes of the actual power output of the PV system a clear-sky 

power output model is needed. This model (𝑃𝑃cs(𝑡𝑡)) is created by combining a plane of array 

irradiance clear-sky model (𝑃𝑃𝑃𝑃𝑉𝑉cs(𝑡𝑡)) with the system’s capacity (𝐶𝐶𝐶𝐶 ) and a constant 

conversion factor (𝐶𝐶): 

 𝑃𝑃cs(𝑡𝑡) = 𝑃𝑃𝑃𝑃𝑉𝑉cs(𝑡𝑡) × 𝐶𝐶𝐶𝐶 × 𝐶𝐶 (3.47) 

 

 The conversion factor is obtained by: 

 𝐶𝐶 =
𝐷𝐷𝐷𝐷

1000
 (3.48) 

 

where 𝐷𝐷𝐷𝐷 is a derate factor that accounts for temperature, wiring, MPP and inverter losses. 

The clear-sky power model chosen here is simple, but in applications of the Wavelet Variability 

Model it could easily be replaced by a more accurate user-defined model. The Page model [24] 

was used as the plane of array irradiance clear-sky model (in chapter 4.2). Since this model 

requires diffuse irradiance as input, diffuse fraction was estimated according to Ridley et al. 

[25]. 

Diffuse fraction model 

 This model allows us to estimate the diffuse radiation from measurements of global 

radiation. The diffuse fraction is defined as the ratio between diffuse radiation (𝑉𝑉diffuse) and 

global radiation (𝑉𝑉global): 
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 𝑑𝑑𝑡𝑡 =
𝑉𝑉diffuse𝑉𝑉global

 (3.49) 

 

 RIdley et al. have demonstrated a statistically rigorous method of constructing a closed 

form function model for the diffuse fraction. The equation for the generic model of diffuse 

fraction is: 

 𝑑𝑑𝑡𝑡 =
1

1 + e−5.38+6.63×𝑘𝑘𝑡𝑡+0.006×𝐿𝐿𝐶𝐶𝐺𝐺−0.007×ℎ𝑠𝑠+1.75×𝐾𝐾𝑡𝑡+1.31𝜓𝜓 
(3.50) 

 

where 𝑘𝑘𝑡𝑡 is the clearness index, i.e. the ratio between global radiation and extraterrestrial 

radiation: 

 𝑘𝑘𝑡𝑡 =
𝑉𝑉global𝑉𝑉0  (3.51) 

 

LST and hs are Local Solar Time and solar elevation angle, respectively, which have already 

been defined. 𝐾𝐾𝑡𝑡 is the daily clearness index: 

 𝐾𝐾𝑡𝑡 =
∑ 𝑉𝑉global𝑗𝑗24𝑗𝑗=1∑ 𝑉𝑉0𝑗𝑗24𝑗𝑗=1  (3.52) 

 

similar to 𝑘𝑘𝑡𝑡 but for hourly values. 

And 𝜓𝜓 which is given by the expression: 

 𝜓𝜓(𝑡𝑡) = �𝑘𝑘𝑡𝑡−1 + 𝑘𝑘𝑡𝑡+1
2

, 𝑐𝑐𝑙𝑙𝑛𝑛𝑉𝑉𝑙𝑙𝑐𝑐𝑒𝑒 < 𝑡𝑡 < 𝑐𝑐𝑙𝑙𝑛𝑛𝑐𝑐𝑒𝑒𝑡𝑡𝑘𝑘𝑡𝑡+1, 𝑐𝑐𝑙𝑙𝑛𝑛𝑉𝑉𝑙𝑙𝑐𝑐𝑒𝑒𝑘𝑘𝑡𝑡−1, sunset

 (3.53) 

 

 

Page model 

 The Page model provides the irradiance on inclined planes, using global and diffuse 

irradiance as inputs. If we use clear-sky global and diffuse irradiance as inputs, the result will 

be the clear-sky plane of array irradiance. Page model was selected due to its simplicity. 

Alternatively many other diffuse models like Perez et al. [26], which are more complex but 

show lower uncertainties, are available. 

 The plane of array irradiance (𝐺𝐺(𝛽𝛽,𝛼𝛼)) is divided into three components: beam 

(𝐵𝐵(𝛽𝛽,𝛼𝛼)), diffuse (𝐷𝐷(𝛽𝛽,𝛼𝛼)) and ground reflected (𝑅𝑅𝑔𝑔(𝛽𝛽,𝛼𝛼)). These components depend on the 
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orientation (𝛼𝛼) and tilt (𝛽𝛽) of the irradiated plane. The total irradiance on an inclined plane is 

the sum of the three components: 

 𝐺𝐺(𝛽𝛽,𝛼𝛼) = 𝐵𝐵(𝛽𝛽,𝛼𝛼) + 𝐷𝐷(𝛽𝛽,𝛼𝛼) + 𝑅𝑅𝑔𝑔(𝛽𝛽,𝛼𝛼) (3.54) 

 

 Before computing each of these components, it is necessary to calculate the solar 

incidence angle (𝜐𝜐(𝛽𝛽,𝛼𝛼)). This is the angle between the normal to the plane, on which the sun 

is shining, and the line from the surface passing through the center of the solar disc. The angle 

is given by: 

 𝜐𝜐(𝛽𝛽,𝛼𝛼) = cos−1(cosℎ𝑐𝑐 cos𝛼𝛼𝐹𝐹 sin𝛽𝛽 + sinℎ𝑐𝑐 cos𝛽𝛽) (3.55) 

 

 𝛼𝛼𝐹𝐹 = 𝛼𝛼𝑐𝑐 − 𝛼𝛼 (3.56) 

 

where ℎ𝑐𝑐 is the solar elevation angle, 𝛽𝛽 is the tilt of the inclined plane, 𝛼𝛼𝑐𝑐 is the solar azimuth 

angle and 𝛼𝛼 is the orientation of the inclined plane. The solar azimuth and the orientation of 

the plane are measured from due south in the northern hemisphere, clockwise from the true 

north. In the southern hemisphere, they are measured from due north, anticlockwise from 

true south. 

 The beam irradiance is given by: 

 𝐵𝐵(𝛽𝛽,𝛼𝛼) =
𝑉𝑉global(1− 𝑑𝑑𝑡𝑡)

sinℎ𝑐𝑐 cos𝜐𝜐(𝛽𝛽,𝛼𝛼) (3.57) 

 

 Before the computation of the diffuse component, a modulating function (𝐾𝐾𝑛𝑛) is first 

calculated as: 

 𝐾𝐾𝑛𝑛 =
𝑉𝑉global(1− 𝑑𝑑𝑡𝑡)𝜀𝜀 × 1366 × sinℎ𝑐𝑐 (3.58) 

 

 𝜀𝜀 = 1 + 0.03344 cos � 2𝜋𝜋
365.25

𝐷𝐷𝐷𝐷𝐷𝐷 − 0.048869� (3.59) 

 

where 𝜀𝜀 is the correction to mean solar distance on day 𝐷𝐷𝐷𝐷𝐷𝐷. 𝐾𝐾𝑛𝑛 expresses the horizontal 

beam irradiance as a ratio to the extraterrestrial horizontal irradiance, corrected to mean solar 

distance. A diffuse function 𝑓𝑓(𝛽𝛽) is then calculated (𝛽𝛽 must be expressed in radians): 

 𝑓𝑓(𝛽𝛽) = cos2(𝛽𝛽 2⁄ ) + 𝑘𝑘[sin𝛽𝛽 − 𝛽𝛽 cos𝛽𝛽 − 𝜋𝜋 sin2(𝛽𝛽 2⁄ )] (3.60) 
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where 𝑘𝑘 takes different values for northern Europe (𝑘𝑘𝑁𝑁), considered represented by Bracknell, 

and southern Europe (𝑘𝑘𝐶𝐶), considered represented by Geneva: 

 𝑘𝑘𝑁𝑁 = 0.00333− 0.4150𝐾𝐾𝑛𝑛 − 0.6987𝐾𝐾𝑛𝑛2 (3.61) 

 

 𝑘𝑘𝐶𝐶 = 0.00263− 0.7120𝐾𝐾𝑛𝑛 − 0.6883𝐾𝐾𝑛𝑛2 (3.62) 

 

 When ℎ > 5.7 degrees, 𝐷𝐷(𝛽𝛽,𝛼𝛼) is found using the following formula: 

 𝐷𝐷(𝛽𝛽,𝛼𝛼) = 𝑑𝑑𝑡𝑡𝑉𝑉global × �𝑓𝑓(𝛽𝛽)(1− 𝐾𝐾𝑛𝑛) + 𝐾𝐾𝑛𝑛 cos 𝜐𝜐(𝛽𝛽,𝛼𝛼)

sinℎ𝑐𝑐 � (3.63) 

 

 When the solar elevation angle is below 5.7 degrees, the formula used to calculate 𝐷𝐷(𝛽𝛽,𝛼𝛼) is the following: 

 
𝐷𝐷(𝛽𝛽,𝛼𝛼) = 𝑑𝑑𝑡𝑡𝑉𝑉global × cos2(𝛽𝛽 2⁄ ) [1 + 𝐾𝐾𝑛𝑛 sin3(𝛽𝛽 2⁄ )]

× [1 + 𝐾𝐾𝑛𝑛 cos2 𝜐𝜐(𝛽𝛽,𝛼𝛼) sin3(90− ℎ𝑐𝑐)] 
(3.64) 

 

 The ground reflected irradiance is given by: 

 𝑅𝑅𝑔𝑔(𝛽𝛽,𝛼𝛼) = 𝑉𝑉𝑔𝑔 × 𝜌𝜌𝑔𝑔 × 𝑉𝑉global (3.65) 

 

 𝑉𝑉𝑔𝑔 =
1− cos𝛽𝛽

2
 (3.66) 

 

where 𝑉𝑉𝑔𝑔 is the ground slope factor and 𝜌𝜌𝑔𝑔 is the ground albedo. 
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4. Case studies 

4.1.  Dispersion Factor Model and ramp rate correlation 

The Dispersion Factor Model (DFM) is demonstrated in six different regions (Table 4.1).  

Table 4.1: Six different regions used for the Dispersion Factor Model 

Region Parameter Period Sites Resolution Approx. area 

Oahu, Hawaii, USA Radiation 6 days 17 1 sec. 1.0 km2 

Canton of Bern, CH PV production 5 months 90 15 min. 10’000 km2 

Switzerland Radiation 1 month 115 1 hour 50’000 km2 

United Kingdom Radiation 12 months 18 1 hour 500’000 km2 

S. Great Planes, USA Radiation 2 months 12 1 min. 50’000 km2 

Japan Radiation 12 months 8 1 min. 500’000 km2 

 

We used both radiation and PV production data, assuming that the transformation 

between solar radiation and PV production is linear to a great extent (compared to the range 

of variability of the radiation). 

The objective of this case study is to show the regional values of temporal and spatial 

variability and the parameters of the DFM model and to obtain a global model for the 

smoothing effects of distributed PV installations  

The temporal variability has been studied additionally at 20 stations of the Baseline 

Surface Radiation Network (BSRN: http://www.bsrn.awi.de/).  

 

4.1.1. Distributed generation – Oahu, Hawaii 

The DFM was applied to a distributed system owned by the National Renewable 

Energy Laboratory (NREL), located in Oahu, Hawaii, USA. The system consists of a 17 global 

horizontal irradiance sensor grid (data available online [4]) spread across approximately 0.76 

km², with 1 reading per second.  
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Figure 4.1: Sensor grid in Oahu, Hawaii, USA. 

 We analyzed 6 randomly chosen days for all seasons from May 2010 till March 2011 

and time averages from 1 second to 3 minutes. Figure 4.2 shows the dependence of the 

correlation with distance between the locations for 1 second and 1 minute averages. 

 

Figure 4.2: Correlation coefficients vs. distance for Oahu. Left: 1 second resolution, right: 1 minute resolution. Red 

line shows eq. 3.7, blue line eq. 3.8 

The effect of time averaging is clearly visible. 1 second measurements show almost no 

correlation between two measurement sites, as the correlation is already low (<0.25) at less 

than 100 meters (the distances between the measurements locations are too big to evaluate 

this value). 1 minute averages show much higher correlation. The threshold for the correlation 

lower than 0.25 is reached at 265 m (exponential model). Table 4.2 gives an overview over all 

thresholds and model parameters. For NREL’s Oahu data the exponential model (Eq. 3.8) 

shows a better fit than using the hyperbolic model (Eq. 3.7). 
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Figure 4.3 shows the dependency of the threshold distance (spatial resolution) with a 

correlation of <0.25 on the time resolution. 

 

Figure 4.3: Distance with correlation < 0.25 vs. time resolution for Hawaii data (hyperbolic model). 

The relationship is quite linear, although a slight lowering of the gradient at higher 

time resolutions is visible. The gradient is quite low, induced by relative low cloud speed 

(approximately 5 km/h). At very small time resolutions (1 sec.) the distances are too high, as 

the measurement stations are not dense enough (the nearest distances are 89 m). 

4.1.2. Distributed generation – Canton of Bern 

The DFM was applied to a network of 90 PV installations within the Canton of Bern 

with a total of capacity of 8 MW. The source of the data is Energiepool Switzerland, which 

handles the production of the installations with a fed-in-tariff with more than 30 kVA within 

Switzerland. The data are available in 15 minute resolution.  
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Figure 4.4: 90 PV installations with > 30 kVA, Canton of Bern. 

 We analyzed the period from June till November 2013 and the time averages from 15 

to 90 minutes. In Figure 4.5 the spatial smoothing effect during three days is clearly visible  

 

Figure 4.5: Geographical smoothing effect shown for 15 minute PV production data for Bern (90 installations). 

Figure 4.6 show the dependence of correlation with distance between the locations for 15 

minutes and 60 minutes averages. 
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Figure 4.6: Correlation coefficients vs. distance for Bernese data. Left: 15 minute resolution, right: 1 hour 

resolution. Red line shows eq. 3.7, blue line eq. 3.8 

The effect of time averaging is also in this case clearly visible. The correlations for 15 

minute measurements are lower than 0.25 at 8 km. The threshold for one hour data for the 

correlation lower 0.25 is reached at 70 km (Table 4.2). For Energiepool Switzerlands’ data of 

Bern the hyperbolic model (Eq. 3.7) shows a better fit. 

Figure 4.7 shows the dependency of threshold distance with a correlation of <0.25 on 

the time resolution. 

 

Figure 4.7: Distance with correlation < 0.25 vs. time resolution for Bern (hyperbolic model). 

The relationship for Bern data is linear. The average cloud speed approximately  

20 km/h. 

 

4.1.3. Distributed generation – Switzerland 

The DFM was applied to a network of 115 global radiation measurements. The source 

of the data is the Swissmetnet of MeteoSwiss. The data is available in one hour resolution.  
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Figure 4.8: Global radiation network used for Switzerland. 

We analyzed the period of July 2013 and the time resolution from 60 till 240 minutes. 

Figure 4.9 show the dependence of correlation with distance between the locations for 60 

minutes and 120 minutes averages. 

 

Figure 4.9: Correlation coefficients vs. distance for Swiss data. Left: 1 hour resolution, right: 2 hours resolution. 

Red line shows eq. 3.7, blue line eq. 3.8 

The effect of time averaging is also in this case also visible – but less clear than for 

higher time resolutions. The correlations for one hour measurements are lower than 0.25 at 

52 km. The threshold for two hour data for the correlation lower 0.25 is reached at 75 km 

(Table 4.2). For Swiss data the eq. 3.7 and 3.8 show a similar fit. The correlations vary to a 

great extent, which may be caused by the climatic effects of the Alps (separating the climate 

and the drift of the clouds). 
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Figure 4.10 shows the dependency of threshold distance with a correlation of <0.25 on 

the time resolution. 

 

Figure 4.10: Distance with correlation < 0.25 vs. time resolution for Switzerland (hyperbolic model). 

The relationship is relatively linear. The values at 60 minutes are similar to the one in 

the Canton of Bern. The average cloud speed is approximately 15 km/h. 

7 

4.1.4. Distributed generation – UK 

The DFM was applied to a network of 18 global radiation measurements. The source of 

the data is UK metoffice – distributed over Ogimet (www.ogimet.com). The data is available in 

one hour resolution.  

31 

 

 

 

http://www.ogimet.com/


 

Figure 4.11: Global radiation network used for UK. 

We analyzed the period of January - December 2013 and the time resolution from 60 

till 240 minutes. Figure 4.12 show the dependence of correlation with distance between the 

locations for 60 minutes and 120 minutes averages. 

 

 

Figure 4.12: Correlation coefficients vs. distance for UK data. Left: 1 hour resolution, right: 2 hours resolution. Red 

line shows eq. 3.7, blue line eq. 3.8 

The effect of time averaging is also in this case also visible. The correlations for one 

hour measurements are lower than 0.25 at 71 km. The threshold for two hours data for the 

correlation lower 0.25 is reached at 185 km (Table 4.2). For UK metoffice data the hyperbolic 

model shows a better fit. 

Figure 4.13 shows the dependency of threshold distance with a correlation of <0.25 on 

the time resolution. 
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Figure 4.13: Distance with correlation < 0.25 vs. time resolution for UK data (hyperbolic model). 

The relationship is quite linear and highest among the six example regions. Also the 

distances are highest, which is induced by high wind speed over UK. The average cloud speed 

is approximately 30 km/h. 

4.1.5. Distributed generation – Southern Great Plaines, USA 

The DFM was applied to a network of 12 global radiation measurements. The source of 

the Southern Great Plains (SGP) data is ARM (http://www.arm.gov/sites/sgp). The data is 

available in one minute resolution.  

 

Figure 4.14: Global radiation network used for Southern Great Plaines (SGP), USA. 
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We analyzed the period of April and July 2011 and the time resolution from 2 minutes 

till 240 minutes. Figure 4.15 show the dependence of correlation with distance between the 

locations for 60 minutes and 120 minutes averages. 

 

Figure 4.15: Correlation coefficients vs. distance for SGP data. Left: 1 hour resolution, right: 2 hours resolution. 

Red line shows eq. 3.7, blue line eq. 3.8 

The effect of time averaging is also in this case also visible – but less clear than for 

higher time resolutions. The correlations for one hour measurements are lower than 0.25 at 

49 km (the nearest distance between two locations). The threshold for two hours data for the 

correlation lower 0.25 is reached at 115 km (Table 4.2). For SGP data the exponential and the 

hyperbolic model shows an equal fit. 

Figure 4.16 shows the dependency of threshold distance with a correlation of <0.25 on 

the time resolution. 

 

Figure 4.16: Distance with correlation < 0.25 vs. time resolution for SGP data (hyperbolic model). 

The relationship is quite linear and highest among the six example regions. Also the 

distances are highest, which is induced by high wind speed over SGP. The average cloud speed 

is approximately 50 km/h. 
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4.1.6. Distributed generation – Japan 

The DFM was applied to a network of 9 global radiation measurements. The source of 

the data is AIST. The data is available in one minute resolution.  

 

Figure 4.17: Global radiation network used for Japan. 

We analyzed the period of January - December 2013 and the time resolution from 1 

minute till 240 minutes. Figure 4.18 show the dependence of correlation with distance 

between the locations for 60 minutes and 120 minutes averages. 

 

Figure 4.18: Correlation coefficients vs. distance for Japanese data. Left: 1 hour resolution, right: 2 hours 

resolution. Red line shows eq. 3.7, blue line eq. 3.8 

The effect of time averaging is also in this case also visible. The correlations for one 

hour measurements are lower than 0.25 at 50 km. The threshold for two hours data for the 

correlation lower 0.25 is reached at 130 km (Table 4.2). For SGP data the exponential model 

shows a better fit. 
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Figure 4.19 shows the dependency of threshold distance with a correlation of <0.25 on 

the time resolution. 

 

 

 

 

Figure 4.19: Distance with correlation < 0.25 vs. time resolution for Japan (hyperbolic model). 

The relationship is quite linear and highest among the six example regions. Also the 

distances are highest, which is induced by high wind speed over SGP. The average cloud speed 

is approximately 38 km/h. 
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4.1.7. Overview of all six regions 

Table 4.2 hows the parameters for Equations 3.7 and 3.8 and the calculated thresholds 

of distances with correlations lower than 0.25 as well as the variability reduction (VR) and the 

dispersion factor (L). 

Table 4.2: Model coefficients of equations 3.7 and 3.8 and distances with correlation of < 0.25. Sdv. ∆kc= 

standard deviation of ramps. VR = variability reduction (average of all sites); D = dispersion factor. 

Location 

Time 

resolution 

Sdv. 

Δkc 

VR CS1  

Eq. 3.7 

 

[km/h] 

Distance 

Eq 3.7 

corr. < 0.25 

[km] 

CS2  

Eq. 3.8 

 

[km/h] 

Distance  

Eq. 3.8 

corr. < 0.25 

[km] 

D 

Oahu 1 sec. 0.019 3.9 10.3 0.086 123.5 0.086 350 

Oahu 15 sec. 0.099 2.7 4.1 0.086 18.3 0.099 59 

Oahu 30 sec. 0.124 2.1 4.5 0.111 14.9 0.160 27 

Oahu 1 min. 0.149 1.6 4.9 0.245 12.3 0.265 12 

Oahu 2 min. 0.171 1.3 4.1 0.410 8.7 0.376 7 

Oahu 3 min. 0.184 1.2 3.7 0.549 7.3 0.481 5 

Bern 15 min. 0.091 2.5 10.9 8.2 29.3 9.5 18 

Bern 30 min. 0.125 1.8 14.5 21.7 34.5 22.3 7 

Bern 60 min. 0.173 1.3 23.5 70.4 42.7 55.1 2 

Switzerland 1 hour 0.210 1.8 17.3 51.8 45.7 59.0 14 

Switzerland 2 hours 0.266 1.6 12.5 74.7 30.5 78.7 10 

Switzerland 3 hours 0.333 1.2 12.1 104 26.9 104 7 

UK 1 hour 0.209 1.3 23.7 71.0 72.7 97.2 15 

UK 2 hours 0.267 1.1 30.7 185 76.5 199 6 

UK 3 hours 0.296 1.0 31.9 288 72.1 280 4 

SGP 2 min. 0.115 2.7 - - - - 13 

SGP 1 hour 0.236 1.4 50.3 49.2 15.1 73.8 5 

SGP 2 hours 0.249 1.5 49.3 115 23.3 115 2 

SGP 3 hours 0.297 1.0 49.9 222 24.5 194 2 

Japan 1 min. 0.074 2.5 - - - - 25 

Japan 1 hour 0.246 1.4 16.7 52.8 13.0 52.8 30 

Japan 2 hours 0.288 1.2 47.7 132 38.1 132 5 

Japan 3 hours 0.308 1.2 43.1 177 54.6 177 4 

 

The Hawaii site shows high temporal variability with low wind speed. Switzerland and 

UK show lower variability, but higher wind speeds (especially UK). The variability reduction of 

the fleet (VR) is similar for most locations and is in the range of 1.0 – 3.9. The reduction gets 

clearly lower with longer averaging time periods. The standard deviations of the individual 

ramps show the following ranges (see also chapter 4.1.8): 

• for one minute data, the values are between 0.074 (Japan) and 0.149 (Hawaii)  

• for one hour data, the values are between 0.173 (Bern) and 0.246 (Japan) 

The overall results are in accordance with the ones presented in Perez and Hoff [1], 

where gradients of correlation distances over time resolution between 15 h/km (Hawaii) and 
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40 h/km (Southern Great Planes) have been found. As assumed in that paper gradients are 

linear to a great extent. A slight lowering of the gradients at higher time resolutions is visible at 

some regions. This effect may be induced by the clustering of clouds to frontal systems, which 

move at lower speeds. Additionally the gradients and the cloud speed are proportional to each 

other (Figure 4.20). A general factor of 1.4 has been found at the six locations. 

 

Figure 4.20: Gradients (of cloud speed 1 = c1 / hyperbolic model) vs. cloud speed 

The outliers for the cloud speed values for 1 second data at Hawaii (123.5 km/h for c2) 

are an example of inadequate space-time relation. The distances between the nearest 

locations (90 m) are too big for one second data. Additionally the time resolution of one 

minute or even one hour is too low for the Japan case which large distances. Based on Eq. 3.7, 

the possible range of cloud speed (12 – 44 km/h) and the correlation levels of 0.1 and 0.25 

adequate space-time relations based on the distance with correlation < 0.1 can be determined 

(Table 4.3). Two PV installations with a distance larger than the adequate distance are 

independent (to a great extent) and therefore the fleet variability follows Eq. 2.2. 

Table 4.3: Adequate time and space scales based on the distances with correlation < 0.1 – 0.25 and cloud speeds 

between 12 and 44 km/h. The found range is based on the values of the six analyzed regions.  

Time 

resolution 

Found range 

[corr. < 0.25] 

 

[km] 

Adequate 

distances 

averages 

[km] 

Adequate 

distance  

ranges 

[km] 

1 sec. - 0.05 0.01 – 0.11 

15 sec. 0.09 0.19 0.04 – 0.4 

1 min. 0.3 2.8 0.6 – 7 

2 min. 0.4 5.6 1 – 13 

5 min. 0.7 14 3 – 33 

15 min. 8 42 9 – 99 

30 min. 22 84 18 – 198 

1 hour 50 – 70 168 36 – 396 

2 hours 75 – 185 336 72 – 792 

3 hours 100 - 290 504 108 – 1188  
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To give some reading examples of this table: for one minute values locations are only 

slightly correlated anymore in a distance of more than 0.6 – 7 km. For example using data with 

a spatial resolution of 0.1 km, all locations will be highly correlated. Using data with a spatial 

resolution of 20 km for one minute time resolution the correlation will be almost zero. For 15 

minute data no correlation will be reached with spatial resolutions of 100 km or more and high 

correlations for resolutions of 5 km or lower.  

4.1.8. Global model for spatial smoothing 

In a last step we try to obtain a simple global model for spatial smoothing and PV fleet 

behavior. Equations 3.7 and 3.8 can be used to model these topics. Therefore two parameters 

– the standard deviation of the individual ramps and the cloud speed – have to be known 

globally.  

The temporal variability of 10 minute and 1 hour ramps have been analyzed at 20 

BSRN sites throughout the world. The best dependency could be obtained by classifying the 

values in three different main climate zones of Köppen-Geiger (Figure 4.21) [27].  

 

Figure 4.21: Climate zones definition of Köppen-Geiger with three main classes “equatorial” (blue), arid (red) and 

temperate (yellow-green-magenta) and the 20 analyzed BSRN sites (stars). 

Three groups have been determined: equatorial, arid and warm temperate zones (Regina lies 

in the snow zone, but has been classified in the warm temperature zone). 

Figure 4.22 shows the box plots of the found variability. One hour ramps are generally 

1.5 times higher than 10 minute ramps (scaled to the same time unit however 4 times less!). 
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The variability is highest in equatorial, mid in temperate zones (with a greater range) and 

lowest in arid zones (mainly desert locations). The values found at the 6 test regions are similar 

to the values calculated at the BSRN sites. The median values of the standard deviation of the 

1 hour ramps lie at 0.17 for arid areas, 0.25 for equatorial areas and 0.22 for temperate. The 

corresponding values of 10 minute values are 0.11, 0.17 and 0.13. 

Another possibility to model the variability worldwide would be to use dominant cloud 

type and link it to variability as Stein and Reno [28] did. However as cloud type information is 

not available worldwide (but only for USA) this option couldn’t be investigated within this case 

study. 

 

Figure 4.22: Box plots of standard deviation of and 1 hour (left) and 10 minute (right) relative ramps at 19 BSRN 

sites based on climate zones (Köppen-Geiger). 

The average cloud speed can be determined using the average wind speed at 700 hPa 

(approximately at 3 km altitude), which is the most important level for cloud transport 

(Kühnert, 2013 [29]). 

Figure 4.23 shows the average wind speed at 700 hPa based on NCEP [30] reanalysis 

data (average from 1948 – 2013). The cloud speed parameter varies worldwide between 5 and 

70 km/h, the average is at 24 km/h and the median 20 km/h. 10% quantile comes to 13 km/h 

and 90% quantile to 44 km/h. 
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Figure 4.23: Average wind speed of NCEP reanalysis (1948 - 2013) at 700 hPa in km/h. 

For the five test regions (Hawaii, Switzerland, UK, SGP and Japan) the cloud speed 

values (4, 14, 31, 19 and 42 km/h respectively) are similar to the reanalysis values (13, 19, 27, 

26 and 39 km/h). NCEP cloud speeds are slightly higher for Hawaii and Switzerland, where 

most presumably rough topography is the reason for lower wind speeds.  

Like this the two parameters can be determined, which allows to model the smoothing 

effects without detailed measurements. 

 

4.2. Wavelet Variability Model 

 To demonstrate the Wavelet Variability Model the distributed sensor system in Oahu, 

Hawaii, USA will be used (Figure 4.1: Sensor grid in Oahu, Hawaii, USA.). 

 The variability of the point sensor, the simulated power plant and the actual power 

plant will be compared based on the power content of each signal, at each timescale. The 

power of a wavelet mode 𝑤𝑤𝑡𝑡̅(𝑡𝑡) is defined as: 

 Ps(𝑡𝑡̅) =
1𝐸𝐸�|𝑤𝑤𝑡𝑡̅(𝑡𝑡)|2𝑑𝑑𝑡𝑡 (4.1) 

 

 Since the Ps describes the variability content rather than the time of occurrence, it 

allows measuring the accuracy of the WVM independent of geographic limitations. 

4.2.1. Distributed generation 

 The WVM was applied to a distributed system owned by the National Renewable 

Energy Laboratory (NREL), located in Oahu, Hawaii, USA (Figure 4.1). The system consists of a 

17 global horizontal irradiance sensor grid (data available online [4]) spread across 

approximately 0.76 km², with high resolution (1 reading per second). Temperature readings 

are also available. 
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 Since the system only comprises sensors, PV power production was simulated using a 

simple diode model. The following parameters (from Centrosolar S 220P54 Excellent) were 

used to perform the calculations: 

Table 4.4: Centrosolar S 220P54 Excellent module characteristics under standard test conditions. 

Rated output (W) 220 

Short-circuit current (A) 8.78 

Open-circuit voltage (V) 32.89 

Voltage (V) 27.26 

Current (A) 8.07 

NOCT (°C) 46 

Number of cells 54 

 

 In this case, since several irradiance sensors were available, the scaling factor 𝐴𝐴 was 

calculated based on the readings six of these sensors on the 23rd of August 2010, resulting in a 

value of 3.73. The derate factor of the entire system was calculated based on the average 

temperature of the period of analysis, the average irradiance of the period of analysis and the 

thermal coefficient of the panel’s power output (-0.45%/°C), resulting in a value of 0.91. The 

power content of each timescale of one point sensor, the WVM simulated power plant and the 

diode model simulated power plant is presented in Figure 4.24. 

 

Figure 4.24: Power content of the GHI point sensor (black), actual power output (red) and simulated power 

output (blue) on August 23, 2010. 

 In the figure, the black line corresponds to the power content of the fluctuations of the 

single GHI point sensor, while the red line corresponds to the power content of the 

fluctuations of the whole system power output using the diode model. The figure confirms 

that the fluctuations that occur at a shorter timescale are the ones that are more reduced due 
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to geographic smoothing. Fluctuations longer than 512 s (approximately 8.5 minutes) virtually 

do not benefit from the smoothing effect. The figure also shows that there is a good 

agreement between WVM simulated (blue line) and diode model output power content, thus 

validating the proposed method. 

Figure 4.25 shows the variability reduction at each timescale. In the same line of thought, the 

variability reduction of fluctuations at long timescales is nearly 1, which means that there is no 

reduction. The shortest timescales have a variability reduction of 17, which is the number of 

sensors (panels) considered in the analysis. 

 

Figure 4.25: Variability reduction at each timescale. 

5. Conclusions 
 The increasing penetration of PV systems in the distribution network raises several 

issues for the grid operation. New challenges must be tackled in order to keep a stable and 

balanced power grid. In this work, special emphasis was given to the variability associated with 

PV systems. 

 In chapter 2, the problems associated with PV variability were explained and it was 

shown that irradiance fluctuations of a single point can be very significant and fast. However, 

this issue can be minimized taking into account that the variability of a single PV system is 

highly reduced when, instead, a fleet of PV systems is considered. That is called the 

“smoothing effect”. 

 In chapter 3, mainly three different variability models were presented. In the first one 

(representative blocks), the amplitude of the fluctuations was the main focus and information 

about the duration of the fluctuations was not considered. The second method (dispersion 

factor) focuses on the variability itself, but its data requisites were very demanding, which can 

be a hindrance. The third and final method (wavelet analysis) proved to be a good choice since 

it needs very limited data inputs and it is able to decompose the input irradiance signal into 

different timescales of fluctuations. By doing this, the variability reduction can be accessed and 

calculated separately for each timescale. 
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 In chapter 4, seven case studies were presented: six for the Dispersion Factor Model 

(DFM) in different regions and with different time and space resolution and one of a 

distributed generation system in Hawaii, USA.  

The results for the DFM are in good accordance with the ones presented in Perez and 

Hoff [1]. The hyperbolic function fits better for most test cases. The variability of the ramps 

could be linked to climate zones. The found cloud speeds are also similar to climatological wind 

speed averages at 700 hPa based on reanalysis data. The two links allows to model time-space 

correlations also without measurements for every location in the world. 

In the wavelet model case study for Oahu the smoothing effect had a higher impact on 

fluctuations occurring in timescales lower than 512 seconds (approximately 8.5 minutes), with 

fluctuations above those timescales remaining practically the same. In the Hawaii site, 

comparing the power content of the power output of the system using a diode model and the 

wavelet method simulation, a very good agreement was observed. The wavelet method is able 

to predict with high reliability the variability reduction at each timescale.  

The current report shows the general validity of the models and suggests a simple global 

model for modelling variability of PV fleets. Both need further validations at more sites and in 

more regions to detect the strengths and limitations of the models and the worldwide 

usability. 
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Glossary 
 

Term Definition 

ARM Atmospheric Radiation Measurement (Climate Research Facility) 

BSRN 
Baseline Surface Radiation Network, global high quality solar radiation 

network 

CS Cloud speed 

DFM Dispersion Factor Model 

DSO Distribution system operators 

GHI (also G) 
Global Horizontal Irradiance, shortwave radiation (λ < 3 µm), received by a 

horizontal surface from the solid angle 2π 

kt clearness index 

ktcs clear-sky clearness index 

NREL National Renewable Energy Laboratory 

PV photovoltaic solar energy 

Ramp rate 

Difference between two consecutive global radiation or PV values normalized 

by the clear-sky radiation or the installed peak power corrected for the solar 

azimuth 

TSO Transmission system operator 

WVM Wavelet variability model 
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