



# National Survey Report of PV Power Applications in GERMANY 2016



# PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

Prepared by Georg Altenhöfer-Pflaum and Renate Horbelt Projektträger Jülich GmbH

#### Contact:

Projektträger Jülich Energiesystem: Erneuerbare Energien/Kraftwerkstechnik Photovoltaik (ESE1)

Forschungszentrum Jülich GmbH 52425 Jülich Germany

Dr. Georg Altenhöfer-Pflaum <u>g.altenhoefer-pflaum@fz-juelich.de</u> +49 2461 61 96366

Dr. Renate Horbelt <u>r.horbelt@fz-juelich.de</u> +49 2461 61 9874

Participation in IEA PVPS activities on behalf of the German Federal Ministry of Economic Affairs and Energy (BMWi)

|   | Forew  | /ord     |                                                                                   | 2  |
|---|--------|----------|-----------------------------------------------------------------------------------|----|
|   | Introc | luction  |                                                                                   | 3  |
| 1 | INSTA  | LLATION  | DATA                                                                              | 4  |
|   | 1.1    | Applic   | ations for Photovoltaics                                                          | 4  |
|   | 1.2    | Develo   | opment 2016                                                                       | 4  |
|   | 1.3    | Total p  | photovoltaic power installed                                                      | 4  |
| 2 | COMF   | PETITIVE | NESS OF PV ELECTRICITY                                                            | 8  |
|   | 2.1    | Modul    | e prices                                                                          | 8  |
|   | 2.2    | Systen   | n prices                                                                          | 8  |
|   | 2.3    | Financ   | ial Parameters and specific financing programs                                    | 9  |
|   |        | 2.3.1    | Residential systems                                                               | 9  |
|   | 2.4    | Additio  | onal Country information                                                          | 10 |
| 3 | POLIC  | y frame  | EWORK                                                                             | 11 |
|   | 3.1    | Direct   | support policies for PV installations                                             | 11 |
|   |        | 3.1.1    | New, existing or phased out measures in 2016                                      | 11 |
|   | 3.2    | Self-co  | onsumption measures                                                               | 14 |
|   | 3.3    | Tende    | rs, auctions & similar schemes                                                    | 15 |
|   | 3.4    | Financ   | ing and cost of support measures                                                  | 16 |
| 4 | HIGHI  | LIGHTS O | F R&D                                                                             | 17 |
|   | 4.1    | Highlig  | ghts of R&D                                                                       | 17 |
|   | 4.2    | Public b | udgets for market stimulation, demonstration / field test programmes and R&D      | 17 |
|   |        | 4.2.1    | Funding activities of the Federal Ministry for Economic Affairs and Energy (BMWi) | 17 |
|   |        | 4.2.2    | Funding Activities of the Federal Ministry of Education and Research (BMBF)       |    |
|   |        | 4.2.3    | "R&D for Photovoltaics" – a Joint Initiative of BMWi and BMBF                     |    |
| 5 | INDUS  | STRY     |                                                                                   |    |
|   | 5.1    | Produ    | ction of feedstocks, ingots and wafers (crystalline silicon industry)             | 20 |
|   | 5.2    | Produ    | ction of photovoltaic cells and modules (including TF and CPV)                    | 20 |
|   | 5.3    | Manuf    | acturers and suppliers of other components                                        | 22 |
| 6 | PV IN  | THE ECO  | NOMY                                                                              | 26 |
|   | 6.1    | Labou    | r places                                                                          | 26 |
|   | 6.2    | Busine   | ss value                                                                          | 27 |
| 7 | INTER  | EST FRO  | M ELECTRICITY STAKEHOLDERS                                                        | 28 |
|   | 7.1    | Struct   | ure of the electricity system                                                     | 28 |
|   | 7.2    | Intere   | st from electricity utility businesses                                            | 30 |
| 8 | REFE   | RENCES   |                                                                                   | 31 |

# TABLE OF CONTENTS

#### Foreword

The International Energy Agency (IEA), founded in November 1974, is an autonomous body within the framework of the Organisation for Economic Co-operation and Development (OECD) which carries out a comprehensive programme of energy co-operation among its member countries

The IEA Photovoltaic Power Systems Technology Collaboration Programme (IEA-PVPS) is one of the collaborative R & D agreements established within the IEA and, since 1993, its participants have been conducting a variety of joint projects in the applications of photovoltaic conversion of solar energy into electricity.

The participating countries and organisations can be found on the <u>www.iea-pvps.org</u> website.

The overall programme is headed by an Executive Committee composed of one representative from each participating country or organization, while the management of individual Tasks (research projects / activity areas) is the responsibility of Operating Agents. Information about the active and completed tasks can be found on the IEA-PVPS website <a href="https://www.iea-pvps.org">www.iea-pvps.org</a>

#### Introduction

The objective of Task 1 of the IEA Photovoltaic Power Systems Programme is to promote and facilitate the exchange and dissemination of information on the technical, economic, environmental and social aspects of PV power systems. Task 1 activities support the broader PVPS objectives: to contribute to cost reduction of PV power applications, to increase awareness of the potential and value of PV power systems, to foster the removal of both technical and non-technical barriers and to enhance technology co-operation. An important deliverable of Task 1 is the annual *"Trends in photovoltaic applications"* report. In parallel, National Survey Reports are produced annually by each Task 1 participant. This document is the country National Survey Report for the year 2015. Information from this document will be used as input to the annual Trends in photovoltaic applications report.

The PVPS website <u>www.iea-pvps.org</u> also plays an important role in disseminating information arising from the programme, including national information.

# **1 INSTALLATION DATA**

The PV power system market is defined as the market of all nationally installed (terrestrial) PV applications with a PV capacity of 40 W or more. A PV system consists of modules, inverters, batteries and all installation and control components for modules, inverters and batteries. Other applications such as small mobile devices are not considered in this report.

For the purposes of this report, PV installations are included in the 2016 statistics if the PV modules were installed and connected to the grid between 1 January and 31 December 2016, although commissioning may have taken place at a later date.

# **1.1** Applications for Photovoltaics

The vast part of German PV-installations is on-grid, the largest part are building attached systems. Ground mounted systems represent about one third of total installations.

This structure is a direct result of the Renewable Energy Sources Act (EEG 2014 [1]) being the main driving force of the PV market in Germany. It determines the procedure of grid access for renewable energies and guarantees favourable Feed-in-Tariffs (FiT) for them. The FiT depends on size and type (residential, ground mounted, building integrated, ...) of the system.

The low FiT for large ground mounted systems led to the fact that during the last years installation numbers decreased in this market sector. In 2015, the government started tenders for ground mounted systems to push this sector to a more market driven competition (see also Chapter 3.3).

# 1.2 Development 2016

A capacity of 1.476 MW PV power has been newly installed in Germany in 2016, staying well below the EEG target corridor of 2,4-2,6 GW (see Chapter 3). This results into a total installed PV capacity of 41,3 GW connected to the electricity grid. Subsequently, PV contributed 38,2 TWh (approx. 6,4 %) to the annual gross electricity consumption of 594,7 TWh [2]. The total amount of electricity generated by grid connected PV systems decreased slightly by 1,3 % in comparison to the previous year.

While the monthly installations scattered around 100 MW from January to October, the capacity of newly installed systems increased to 184 MW in November and 441 MW in December. This effect is triggered by the new EEG 2017 coming into force 01.01.2017: From 2017 on, all systems (also BAPV/BIPV) above 750 kWp need to go through tenders to take profit from public EEG funding. Thus, about 71 % (316 MW) of the systems installed in December 2016 were systems above 750 KWp.

# 1.3 Total photovoltaic power installed

Since the beginning of 2009 owners of new PV systems are legally obliged to register their systems at the German Federal Network Agency [3]. The data on newly registered systems is published monthly on the website www.bundesnetzagentur.de. Those publications can be regarded as raw data, changes can occur in the following months e.g. due to late registrations. Therefore, this report uses data published by another official source: the "Working Group on Renewable Energy Statistics" (AGEE-Stat) [2] working on behalf of the Federal Ministry of Economic Affairs and Energy (BMWi). This group supplies a wide variety of data for all renewable energies and PV in detail in their yearly report. Still, this data is partly preliminary, slight corrections of numbers can be expected during 1 or 2 years after first publication. Since 2009 AGEE-Stat employs data of the German Federal Network Agency.

Furthermore, the German Solar Association (BSW) supplies data emphasised on the market developments.

There are nearly no information about off-grid non domestic, grid connected centralized systems or stand-alone systems in Germany because the electricity supply is almost completely connected to

the public grid. Therefore, there is only marginal need for these systems (parking meters, remote relay transmitters,...) and regarding the total installed capacity of PV, these systems are negligible, estimated less than 1 ‰ compared to grid connected PV capacities and will not be mentioned in this report anymore.

|                |         |                            | MW        | MW installed     | AC |
|----------------|---------|----------------------------|-----------|------------------|----|
|                |         |                            | installed | in 2016          | or |
|                |         |                            | in 2016   |                  | DC |
| Grid-connected | BAPV    | Residential (<= 10kW)      | 1225      | 285 <sup>1</sup> | DC |
|                |         | Commercial (>10 to 250 kW) |           | 302 <sup>1</sup> | DC |
|                |         | Industrial (>250 kW)       |           | 695 <sup>1</sup> | DC |
|                |         |                            |           |                  |    |
|                | BIPV    | included in BAPV Data      |           |                  |    |
|                |         |                            |           |                  |    |
|                | Ground- |                            | 251       |                  | DC |
|                | mounted |                            |           |                  |    |
| Off-           | grid    |                            | 0         |                  | DC |
|                |         |                            |           |                  |    |
|                |         | Total                      | 1.476     |                  | DC |

 Table 1: PV power installed during calendar year 2016 [3] [2]

#### Table 2: Data collection process:

| Is the collection process done by an official body or a private company/Association? | official body                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Link to official statistics (if this exists)                                         | <u>www.bundesnetzagentur.de (</u> German<br>Federal Network Agency [3])<br><u>www.erneuerbare-energien.de (</u> "Working<br>Group on Renewable Energy Statistics"<br>AGEE-Stat [2])                                                       |
| Data collection Process                                                              | All grid connected PV systems have to be<br>registered to the Bundesnetzagentur. Due<br>to the official registration procedure by<br>German Federal Network Agency the<br>accuracy of these data can be assumed<br>better than $\pm 1$ %. |

<sup>&</sup>lt;sup>1</sup> Values are raw data from [3]. Cumulated, they exceed the total installations by approx. 5 %. Total installations are corrected values from [2], corrections are not available for the partial values.

# Table 3: PV power and the broader national energy market.

|                                                                                                   | 2016                           | 2015                         |
|---------------------------------------------------------------------------------------------------|--------------------------------|------------------------------|
| Total power generation capacities (all technologies)                                              | 205,7 GW<br>(31.03.2017) [3]   | 204,6 GW<br>(31.12.2015) [4] |
| Total power generation capacities<br>(renewables including hydropower)                            | 104,024 GW [2]                 | 97,9 GW [4]                  |
| Total electricity demand (=<br>consumption)                                                       | 594,7 TWh [2]<br>(preliminary) | 594,7 TWh [4]                |
| New power generation capacities<br>installed during the year (all<br>technologies)                | 6,5 GW [5]                     | 8,3 GW [4] <sup>2</sup>      |
| New power generation capacities<br>installed during the year<br>(renewables including hydropower) | 6,5 GW [5]                     | 7,6 GW [4]                   |
| Total PV electricity production                                                                   | 38,171 TWh [2]                 | 38,726 TWh [2]               |
| Total PV electricity production as a % of total electricity consumption                           | 6,4 % <sup>3</sup>             | 6,4 % <sup>3</sup>           |

# Table 4: Other information [4]

| Number of PV systems in<br>operation in your country (a split<br>per market segment is interesting) | 1,56 Mio (2015, preliminary) |
|-----------------------------------------------------------------------------------------------------|------------------------------|
| Capacity of decommissioned PV systems during the year in MW                                         | N/A                          |
| Total capacity connected to the<br>low voltage distribution grid in<br>MW                           | 23,4 GW (2015)               |
| Total capacity connected to the medium voltage distribution grid in MW                              | 13,6 GW (2015)               |
| Total capacity connected to the<br>high voltage transmission grid in<br>MW                          | 2,3 GW (2015)                |

 $<sup>^2</sup>$  Main contributions: Renewables (+7,6 GW), Hard coal (+2,5 GW), Nuclear power (-1,2 GW), Natural Gas (-0,5 GW)

<sup>&</sup>lt;sup>3</sup> Value was calculated based on the actual PV power production in 2016.

| Year | Cumulative installed<br>Power [GW] | Year | Cumulative installed<br>Power [GW] |
|------|------------------------------------|------|------------------------------------|
| 1990 | 0,002                              | 2008 | 6,1                                |
| 1995 | 0,018                              | 2009 | 10,6                               |
| 2000 | 0,114                              | 2010 | 17,9                               |
| 2001 | 0,176                              | 2011 | 25,4                               |
| 2002 | 0,296                              | 2012 | 33,0                               |
| 2003 | 0,435                              | 2013 | 36,3                               |
| 2004 | 1,1                                | 2014 | 38,2                               |
| 2005 | 2,1                                | 2015 | 39,8                               |
| 2006 | 2,9                                | 2016 | 41,3                               |
| 2007 | 4,2                                |      |                                    |

Table 5: History of cumulative installations 1990-2016 [2]



Federal Ministry for Economic Affairs and Energy

#### Development of electricity generation and installed capacity of photovoltaic plants in Germany



BMWi based on Working Group on Renewable Energy-Statistics (AGEE-Stat); as at February 2017; all figures provisional

Figure 1: Development of electricity generation and installed capacity [2]

# 2 COMPETITIVENESS OF PV ELECTRICITY

#### 2.1 Module prices

Table 6 shows the module prices (crystalline silicon) on the European spot market from 2010 to 2016. The prices represent the average prices of December of the corresponding year, averages were determined for different module origins (Germany, China, Japan/Korea, Southeast-Asia/Taiwan) resulting in price ranges (minimum to maximum) between 16 and 31 €cent. End-customer prices for an average turnkey PV system can be estimated a factor 2 to 3 higher [6].

The results of a survey with 100 installers are shown in Table 7. Looking at the different origins of the Modules, it is found that Chinese/Taiwanese modules are sold slightly cheaper in Germany than European/Japanese modules.

#### Table 6: Typical module prices for a number of years. European spot market prices [€/Wp]. [6]

| Year                                                    | 2010      | 2011      | 2012      | 2013      | 2014      | 2015      | 2016      |
|---------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Standard module<br>crystalline silicon<br>price(s) €/Wp | 1,55-1,77 | 0,81-1,12 | 0,54-0,84 | 0,52-0,70 | 0,45-0,62 | 0,47-0,64 | 0,41-0,57 |

# Table 7: Module prices for modules from different origins. 1<sup>st</sup> quarter 2016. Data collected by a survey with 100 installers. (Net prices without VAT) [7]

| Module price [€/Wp] |     | German | European | Japanese | Chinese/Taiwanese |
|---------------------|-----|--------|----------|----------|-------------------|
| Silicon             | min | 0,55   | 0,52     | 0,49     | 0,49              |
| monocristalline     | avg | 0,63   | 0,61     | 0,63     | 0,60              |
|                     | max | 0,80   | 0,72     | 0,90     | 0,78              |
| Silicon             | min | 0,50   | 0,53     | 0,49     | 0,47              |
| polycristalline     | avg | 0,57   | 0,56     | 0,60     | 0,55              |
|                     | max | 0,74   | 0,69     | 0,65     | 0,63              |

# 2.2 System prices

Table 8 gives an overview over system prices in different system categories. The prices must be understood as the typical range, individual prices can over- or underrun the given values. Table 9 displays the development of system prices in the past 10 years.

Investments in PV installations are getting attractive even without financial support by a Feed-in-Tariff. Since 2006, system prices have been reduced by 13 % in the yearly average and accordingly around 75 % in total. Nevertheless, the price changes during the last 2-3 years are almost negligible: A PV rooftop system in the range of 10 – 100 kW cost about 1 300 EUR/kW (average) in 2016 [8]. The Levelized Costs of Energy (LCOE) for such a PV system are around 0,13 EUR/kWh whereas the average electricity price for a private household is around 0,29 EUR/kWh [9]. Detailed data for 2016 is not yet available.

| Category/Size                                | Typical applications and brief details                                                                                                                                                                                       |     | Current prices<br>per €/kWp |  |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------|--|
| Crid connected Deafter up to                 | Small reaften systems, mostly for private use                                                                                                                                                                                | min | 1.250                       |  |
| 3 kW                                         | significant share of self-consumption.                                                                                                                                                                                       | avg | 1.688                       |  |
|                                              |                                                                                                                                                                                                                              | max | 2.200                       |  |
| Grid connected Poofton from                  | Poofton systems, mostly for private use, significant                                                                                                                                                                         | min | 1.150                       |  |
| 3 to 10 kW                                   | share of self-consumption.                                                                                                                                                                                                   |     | 1.456                       |  |
|                                              |                                                                                                                                                                                                                              | max | 1.750                       |  |
| Grid-connected Boofton from                  | Large roofton systems: agricultural or industrial                                                                                                                                                                            | min | 950                         |  |
| 10 to 100 kW                                 | buildings, predominantly for grid injection                                                                                                                                                                                  | avg | 1.227                       |  |
|                                              |                                                                                                                                                                                                                              | max | 1.500                       |  |
| Grid connected ~300 kW                       |                                                                                                                                                                                                                              | avg | 1.084                       |  |
| Grid connected Ground<br>mounted ~1000 kW    |                                                                                                                                                                                                                              | avg | 1.015                       |  |
| Grid-connected Ground-<br>mounted above 1 MW | Ground mounted systems can only be funded if they<br>go through a tendering procedure. The results of the<br>tenders lead to the conclusions, that system prices in<br>this category can reach values around $0,6 \notin Wp$ | avg | 600                         |  |

### Table 8: Turnkey Prices of Typical Applications, 1<sup>st</sup> quarter 2016 [7]

Table 9: National trends in system prices (current) for different applications – [€/kWp]

| Price/Wp                                  | 2006  | 2007  | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016 |
|-------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| Residential<br>PV systems<br>< 10 KW [10] | 4.906 | 4.458 | 4.359 | 3.255 | 2.842 | 2.147 | 1.751 | 1.698 | 1.640 | 1.456 | N/A  |
| Residential<br>10 kW-<br>100 kW [11]      | N/A   | 4.313 | 4.135 | 3.360 | 2.708 | 2.185 | 1.575 | 1.378 | 1.325 | 1.273 | N/A  |

#### 2.3 Financial Parameters and specific financing programs

#### 2.3.1 Residential systems

For financing renewable energy systems, the government-owned development bank KfW (Kreditanstalt für Wiederaufbau – Reconstruction Credit Institute) offers – under certain conditions – a loan interest rate of 1 %. The maximum credit amount is 50.000 €. In the private sector, several banks offer specific loans for PV-installations. The interest rates depend on the actual conditions but usually are higher than the KfW rate.

# 2.4 Additional Country information

# Table 10: Country information

| Retail Electricity Prices for an household (range) (2015)<br>[€ct/kWh] [9]          | 29,11                                                    |
|-------------------------------------------------------------------------------------|----------------------------------------------------------|
| Retail Electricity Prices for a commercial company<br>(range) [€ct/kWh] [9]         | 13,45 - 16,48<br>avg 14,20                               |
| Retail Electricity Prices for an industrial company<br>(range) (2015) [€ct/kWh] [9] | 4,32                                                     |
| Population (31.12.2015) [12]                                                        | 82.175.700                                               |
| Country size [km <sup>2</sup> ]                                                     | 357.375                                                  |
| Global solar irradiation (2016) [kWh/m <sup>2</sup> ] [13]                          | min 947                                                  |
|                                                                                     | avg 1.079                                                |
|                                                                                     | max 1.359                                                |
| Average PV yield (according to the current PV                                       | 942 (average 2016)                                       |
| development in the country) [kWh/kWp]                                               | 1.050 (expected average under best operation conditions) |
| Name and market share of major electric utilities                                   | RWE (32,2 %)                                             |
| (2015) [4]                                                                          | Vattenfall (21,4 %)                                      |
|                                                                                     | EnBW (12,6 %)                                            |
|                                                                                     | E.ON (9,9 %)                                             |

# **3 POLICY FRAMEWORK**

This chapter describes the support policies aiming directly or indirectly to drive the development of PV. Direct support policies have a direct influence on PV development by incentivizing, simplifying, or defining adequate policies. Indirect support policies change the regulatory environment in a way that can push PV development.

The "Energiewende", the transformation of the energy system is a core task for Germany's environmental and economic policy. The overall objective is an environmental friendly, reliable and economical feasible energy supply. The German Federal Government paved the way for this target when announcing the German Energy Concept in autumn 2010 [14]. Moreover, it was decided in 2011 to terminate the production of nuclear power until 2022. Therefore, the Federal Ministry for Economic Affairs and Energy (BMWi) defined an energy agenda comprising 10 key projects to approach this goal of the energy transition during the 18th legislative term (2013-2017). [15] The goals are to be reached firstly by efficient energy use and secondly by the use of renewable energies. The German Energy Concept states that renewable energies will contribute the major share to the energy mix of the future. The aim of the German Energy Concept is to reach 18 % of the total gross energy consumption in 2020 (in 2015, 14,8 % were reached [2]). Beyond that with respect to the electricity supply, the share for renewable energies shall reach 35 % in 2020, 40-45 % in 2025 and 80 % in 2050. With respect to the electricity supply, the share for renewable energies has reached approx. 31,7 % (2015: 31,5 %) [2] of the gross electricity consumption of Germany in 2016. This is already close to the first target for 2020 of the Energy Concept.

Photovoltaic reached a share of 6,4 % of gross electricity consumption and thus is a major part of this development driven by the Renewable Energy Sources Act (EEG 2014 [1]) on the one hand and a noticeable decrease of system prices on the other hand.

In order to streamline the German energy policies, the responsibility for all energy related activities are concentrated within the Federal Ministry for Economic Affairs and Energy (BMWi).

# **3.1** Direct support policies for PV installations

#### 3.1.1 New, existing or phased out measures in 2016

#### 3.1.1.1 Description of support measures excluding BIPV, and rural electrification

In terms of achieving expansion targets for renewable energies in the electricity sector, the Renewable Energy Sources Act EEG is the most effective funding instrument at the German government's disposal. It determines the procedure of grid access for renewable energies and guarantees favourable Feed-in-Tariffs (FiT) for them. Due to the successful but very fast increase in PV and wind energy generation, and in order to stimulate competition, additional amendments to the EEG have been introduced from August 1<sup>st</sup> 2014 on.

During the last and coming years, the funding changes stepwise from a classic FiT Model more and more to market driven models. In 2016 there were 3 different models active:

Classic FiT: System owners could choose this model for systems < 100 kWp on residential or non residential (lower FiT) Buildings, the FiT depends on the system size. All FiT-rates are guaranteed for an operation period of 20 years. It includes a monthly adapted degression rate of the FiT, which depends on the previously installed PV capacity (see Table 12). From 2017 on, the monthly degression rates will be slightly changed if installations in the last months are below a yearly average of 2,6 GW.</li>

- Market integration model: This model can be used for systems on residential or nonresidential (lower FiT) buildings up to 10 MWp. The electricity is sold on the market, a feed-in premium (calculated as the difference between average market price and corresponding FiT) is paid to the electricity producer on top.
- Tenders: For all systems not matching to the limitations of the FiT models (mainly ground mounted systems and systems > 10 MWp) there were three calls for tenders: see Chapter 3.3

This procedure of "breathing rates" tends to stimulate a yearly installation of 2,4 - 2,6 GW. No further reductions of the FiT was executed from October 2015 on and throughout 2016 since the installed capacity dropped well below this range in the corresponding assessment period (see Table 12).

The FiT system terminates at a total installed PV capacity of 52 GW, the government is obliged to present a new support system well before. Meanwhile, the EEG contains measures for the integration of PV systems into the grid management.

Since 2014, owners of a newly installed system > 10 kWp have to pay a reduced rate of 30 % of the EEG-surcharge (see also Chapter 3.4) for every self-consumed kWh. In 2017 the rate will increase to 40 %. Owners of systems below 10 kWp are not affected.

# Table 11: Overview: Feed in Tariffs for different system types [3]

| System type       | Systems on resi<br>protection walls | Systems on<br>non residential<br>buildings |          |       |
|-------------------|-------------------------------------|--------------------------------------------|----------|-------|
| System size [kWp] | < 10                                | 10 - 40                                    | 40 - 100 | < 100 |
| FiT 2016 [€ct]    | 12,31                               | 8,53                                       |          |       |

#### **Classic Feed in Tariff**

#### Market integration model

| System type       | Systems on residential rooftops and noise protection walls |         |            | Systems on<br>non residential<br>buildings |
|-------------------|------------------------------------------------------------|---------|------------|--------------------------------------------|
| System size [kWp] | < 10                                                       | 10 - 40 | 40 - 1.000 | < 10.000                                   |
| FiT 2016 [€ct]    | 12,70                                                      | 12,36   | 11,09      | 8,91                                       |

#### Tenders for ground mounted systems

|                                  | 1 <sup>st</sup> call | 2 <sup>nd</sup> call | 3 <sup>rd</sup> call |
|----------------------------------|----------------------|----------------------|----------------------|
| Contracted tariffs<br>2015 [€ct] | 8,48 - 9,42          | 8,49                 | 8,0                  |
| Contracted tariffs<br>2016 [€ct] | 6,94 - 7,68          | 6,80 - N/A           | 6,26 - 7,17          |

Table 12: Monthly degression of the feed-in Tariff. From 2017 on, the degression rates are slightly changed in order to better support the politically defined goals.

| Installations in the last 12<br>months<br>[GWp] | Monthly change of FiT<br>(2014- 2016)<br>[%] | Monthly change of FiT<br>(changes valid from 2017 on)<br>[%] |
|-------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|
| > 7,5                                           | -2,8                                         | -2,8                                                         |
| 6,5 - 7,5                                       | -2,5                                         | -2,5                                                         |
| 5,5 - 6,5                                       | -2,2                                         | -2,2                                                         |
| 4,5 - 5,5                                       | -1,8                                         | -1,8                                                         |
| 3,5 - 4,5                                       | -1,4                                         | -1,4                                                         |
| 2,6 - 3,5                                       | -1,0                                         | -1,0                                                         |
| 2,5 - 2,6                                       | -0,5                                         | -1,0                                                         |
| 2,4 - 2,5                                       | -0,5                                         | -0,5                                                         |
| 2,3 - 2,4                                       | -0,25                                        | -0,5                                                         |
| 2,1 - 2,3                                       | -0,25                                        | -0,25                                                        |
| 1,7 - 2,1                                       | -0,25                                        | 0                                                            |
| 1,5 - 1,7                                       | -0,25                                        | +1,5<br>(per quarter)                                        |
| 1,3 - 1,5                                       | 0                                            | +1,5<br>(per quarter)                                        |
| 1,0 - 1,3                                       | 0                                            | +3,0<br>(per quarter)                                        |
| <1                                              | +1,5<br>(per quarter)                        | +3,0<br>(per quarter)                                        |

#### 3.1.1.2 BIPV development measures

There were no special measures favouring the development of PV as building element in Germany in 2016.

#### 3.1.1.3 Support for electricity storage and demand response measures

Since 2013 the KfW (see also Chapter 2.3.1) is running a market stimulation program to boost the installation of local stationary storage systems in conjunction with small PV systems < 30 kWp. The funding is two-fold: A loan and a grant on the repayment. The first phase ended in 2015 and was limited to a total of 25 MEUR of grants. A second phase is active from 2016 until end of 2018 with a funding volume of 10 MEUR (grants) per year.

During 2016, the installation of a storage system was funded for 6.468 storage systems (800 for existing and 5.668 for newly installed PV systems), with the total volume of loans reaching 105 MEUR.

During the first phase (2013-2015), more than 17.000 storage systems were funded. [16] [17]

|                                            | -                                   | -                                                             |                                                    |                                                                                 |                                            |                                                                        |
|--------------------------------------------|-------------------------------------|---------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------|
|                                            | On-going<br>measures<br>residential | Measures<br>that<br>commenced<br>during 2016<br>- residential | On-going<br>measures<br>Commercial<br>+ industrial | Measures<br>that<br>commenced<br>during 2016<br>–<br>commercial<br>+ industrial | On-going<br>measures<br>Ground-<br>mounted | Measures<br>that<br>commenced<br>during 2016<br>–<br>ground<br>mounted |
| Feed-in tariffs                            | yes                                 | -                                                             | yes                                                | -                                                                               | -                                          | Only after a tender                                                    |
| Feed-in premium<br>(above market<br>price) | yes                                 | -                                                             | yes                                                | -                                                                               | yes                                        | -                                                                      |
| Self-consumption                           | yes                                 | -                                                             | yes                                                | -                                                                               | yes                                        | -                                                                      |
| Net-metering                               | -                                   | -                                                             | -                                                  | -                                                                               | -                                          | -                                                                      |
| Net-billing                                | -                                   | -                                                             | -                                                  | -                                                                               | -                                          | -                                                                      |
| Sustainable<br>building<br>requirements    |                                     | -                                                             |                                                    | -                                                                               |                                            | -                                                                      |
| <b>BIPV</b> incentives                     | -                                   | -                                                             | -                                                  | -                                                                               | -                                          | -                                                                      |

Table 13: PV support measures (summary table)

# 3.2 Self-consumption measures

Table 14 gives an overview of the current situation regarding self-consumption in Germany. In general, self-consumption is pushed forward during the last years due to several reasons. Main reasons are the continuous degression of FiT (making self-consumption financially attractive), the decreasing prices of storage systems (leading the possibility of higher self-consumption) and regulatory measures like the limitation of the grid injection to 70 %.

| PV self-                 | 1  | Right to self-consume                                                          | Yes                                                                                                                                               |
|--------------------------|----|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| consumption              | 2  | Revenues from self-consumed PV                                                 | Savings on the electricity bill.                                                                                                                  |
|                          | 3  | Charges to finance transmission & distribution grids                           | For systems > 10 kWp,<br>the "EEG surcharge"<br>(see Chapter 3.4) has to<br>be payed on self<br>consumed electricity.                             |
| Excess PV<br>electricity | 4  | Revenues from excess PV electricity injected<br>into the grid                  | FiT (see Chapter 3.1.1)                                                                                                                           |
|                          | 5  | Maximum timeframe for compensation of fluxes                                   | Real time                                                                                                                                         |
|                          | 6  | Geographical compensation                                                      | On site only                                                                                                                                      |
| Other                    | 7  | Regulatory scheme duration                                                     | 20 years (FiT)                                                                                                                                    |
| characteristics          | 8  | Third party ownership accepted                                                 | All                                                                                                                                               |
|                          | 9  | Grid codes and/or additional taxes/fees impacting the revenues of the prosumer | Grid codes compliance<br>and partial EEG<br>surcharge (for systems<br>>10 kWp)                                                                    |
|                          | 10 | Regulations on enablers of self-consumption (storage, DSM)                     | Battery storage incentives                                                                                                                        |
|                          | 11 | PV system size limitations                                                     | Minimum 10 % of self-<br>consumption                                                                                                              |
|                          | 12 | Electricity system limitations                                                 | 52 GW of PV<br>installations                                                                                                                      |
|                          | 13 | Additional features                                                            | Systems >10 kWp must<br>be either remotely<br>controllable by network<br>operator or need to limit<br>grid injection to 70 % of<br>maximum power. |

# 3.3 Tenders, auctions & similar schemes

Since 2015, within the "market integration model" three auctions per year take place for groundmounted photovoltaic installations. The aim of the auctions for ground-mounted PV installations is to achieve the expansion targets for renewables in a cost-efficient manner, especially pushing market price oriented financing models. The three calls in 2016 covered a capacity of around 400 MW altogether and were characterized by a high degree of competition.

As shown in Table 15, the proposed capacity was in all calls significantly over-subscribed and the price level was reduced from call to call.

| Call Deadline                | Apr 15         | Aug 15             | Dec 15             | Apr 16         | Aug 16         | Dec 16         |
|------------------------------|----------------|--------------------|--------------------|----------------|----------------|----------------|
|                              | Pay-as-<br>bid | Uniform<br>pricing | Uniform<br>pricing | Pay-as-<br>bid | Pay-as-<br>bid | Pay-as-<br>bid |
| Volume [MW]                  | 150            | 150                | 200                | 125            | 125            | 160            |
| Bids                         | 170            | 136                | 127                | 108            | 62             | 76             |
| Total volume<br>of bids [MW] | 715            | 558                | 562                | 539            | 311            | 423            |
| Accepted bids                | 25             | 33                 | 43                 | 21             | 22             | 27             |
| Accepted<br>volume [MW]      | 157            | 159                | 204                | 128            | 118            | 163            |
| Average price<br>[€ct/kWh]   | 9,17           | 8,49               | 8,00               | 7,41           | 7,25           | 6,90           |
| Commissioning deadline       | May 17         | Aug 17             | Dec 17             | Apr 18         | Aug 18         | Dec 18         |

 Table 15: Calls for ground-mounted systems (overview 2015-2016) [3]

#### 3.4 Financing and cost of support measures

The direct costs of the energy transition to renewables are compensated by the so called EEG-levy, paid by the electricity consumers. In 2015 the EEG-levy amounted to 6,35 €ct/kWh (2015: 6,17 €ct/kWh, 2017: 6,88 €ct/kWh). There are special treatments for energy intensive industries. [1]

# 4 HIGHLIGHTS OF R&D

#### 4.1 Highlights of R&D

Research and Development (R&D) is conducted under the 6th Programme on Energy Research "Research for an Environmental Friendly, Reliable and Economical Feasible Energy Supply" [18], which came into force in August 2011. Within this framework, the Federal Ministry for Economic Affairs and Energy (BMWi) as well as the BMBF (Federal Ministry of Education and Research) support R&D on different aspects of PV. The main parts of the programme are administrated by the funding agency "Project Management Jülich (PtJ)".

So far, crystalline silicon solar cells – in particular p-type Passivated Emitter and Rear Contact (PERC) solar cells - are state of the art. However, ongoing research still leads to higher levels of efficiency, hence higher yield. Heterojunction solar cells and tandem solar cells are two additional examples for intensive research activities.

In 2016 the consultation procedure for the 7th Programme on Energy Research started. Experts of economy, research and development, federal and federal state government participate in that process, which should be finished in 2018.

# 4.2 Public budgets for market stimulation, demonstration / field test programmes and R&D

#### 4.2.1 Funding activities of the Federal Ministry for Economic Affairs and Energy (BMWi)

In December 2014, the BMWi released a new call for tender, which reflects the targets of the 6th energy research program. Concerning PV, the call addresses six focal points which are all connected to applied research:

- Silicon wafer technology,
- Thin-film technologies, especially based on chalcopyrites (CIS/CIGS),
- Quality control and lifetimes
- System technology for both, decentralised grid-connection and island systems,
- Alternative solar cell concepts such as Concentrated PV (CPV)
- Cross-cutting issues like Building Integrated PV (BIPV), recycling or research on the ecological impact of PV systems.

In 2016 the BMWi support for R&D projects on PV amounted to about 57,8 MEUR shared by 366 projects in total. That year, 166 (2015: 97) new grants were contracted. The funding for these projects amounts to 116,6 (2015: 78,6) MEUR in total. **Figure 2** gives a more detailed overview of the funding volume in the years between 2012 and 2016.

Details on running R&D projects can be found in the BMWi publication "Innovation durch Forschung; Erneuerbare Energien und Energieeffizienz: Projekte und Ergebnisse der Forschungsförderung 2016" [19] or via a web-based database of the Federal Ministries. [20].

The German contributions to the PVPS Tasks 1, 12, 13 and 14 are part of the programme.



Figure 2: Development of the volume of R&D funding from the Federal Ministry for Economic Affairs and Energy (BMWi) (adapted from [19]).

# 4.2.2 Funding Activities of the Federal Ministry of Education and Research (BMBF)

From 2013 to 2015, the BMBF funded PV projects under the program "Material Research for the Energy Transition" aiming for the support of long-term R&D which is complementary to the BMWi funding. From September 2015 on, the BMBF relaunched its energy related funding under the "Kopernikus" initiative. Under this scheme cooperative research on four central topics of the "Energiewende" will be addressed: storage of excess renewable energy, development of flexible grids, adaption of industrial processes to fluctuating energy supply and the interaction of conventional and renewable energies.

# 4.2.3 "R&D for Photovoltaics" – a Joint Initiative of BMWi and BMBF

To support the momentum stimulated by the "Innovation Alliance PV" of 2010, a new joint initiative of BMWi and BMBF has been launched in 2013. The aim of this 3 year programme "R&D for Photovoltaics" is to support R&D activities especially with participation of the German PV industry in the fields of

- economical operation of grid-connected and off-grid PV system solutions including energy management and storage systems
- efficient and cost effective production concepts including the introduction of new materials and production monitoring systems
- introduction of new PV module concepts with a special focus on quality, reliability and life time

The running 13 joint projects are funded by the ministries BMWi and BMBF with a total budget of about 50 MEUR.

A mid-term evaluation took place in early 2016. First results show a 22 % record cell efficiency for a p-type PERC solar cell using industrial standard materials and processes only. [21]

# **5 INDUSTRY**

#### 5.1 Production of feedstocks, ingots and wafers (crystalline silicon industry)

The production capacity of the three main suppliers of silicon feedstock - Schmid Polysilicon Production GmbH, Silicon Products Group and Wacker Chemie AG – is shown in Table 16 [22], [23]. The production of Wacker Chemie AG includes the production location Burghausen and Nünchritz (both Germany) and Charleston (USA).

Additionally, there is a production capacity of SolarWorld AG (Germany) in the range of 250 MW for multi-Si ingots and 500 MW for mono-Si ingots [24]. Remark: Solarworld AG announced their insolvency in May 2017.

| Manufacturers (or<br>total national<br>production) | Process &<br>technology | Total production<br>[t] |  |
|----------------------------------------------------|-------------------------|-------------------------|--|
| Schmidt Polysilicon<br>Production GmbH             | Silicon<br>feedstock    | 180                     |  |
| Silicon Products Group                             | Silicon<br>feedstock    | 1.800                   |  |
| Wacker Chemie AG                                   | Silicon<br>feedstock    | 66.000                  |  |

Table 16: Production information for silicon feedstock in 2016 [22], [23], [24].

# 5.2 Production of photovoltaic cells and modules (including TF<sup>4</sup> and CPV<sup>5</sup>)

Table 17 and Table 18 give an overview of the solar cell and module manufacturers with production capacity and number of employees [22].

| Table 17: Production and production capacit | information of solar cell manufacturer in 2016 [22] |
|---------------------------------------------|-----------------------------------------------------|
|---------------------------------------------|-----------------------------------------------------|

| Cell manufacturer           | Location | Production capacity<br>[MWp] | Employees |
|-----------------------------|----------|------------------------------|-----------|
| aleo sunrise GmbH           | Prenzlau | 100                          | n/a       |
| Bluecell GmbH <sup>6</sup>  | Arnstadt | 100                          | 84        |
| Solar World AG <sup>7</sup> | Arnstadt | 700                          | > 250     |
| Solar World AG <sup>7</sup> | Freiberg | 330                          | > 250     |

<sup>&</sup>lt;sup>4</sup> Thin Film: CIGS, CdTe, OPV

<sup>&</sup>lt;sup>5</sup> Concentrating PV, predominantly based on highly efficient III-V-multiple junction cells

<sup>&</sup>lt;sup>6</sup> Insolvency 06/2017

<sup>&</sup>lt;sup>7</sup> Insolvency 05/2017

| Module manufacturer                        | Location                | Technology | Production capacity<br>[MWp] | Employees |
|--------------------------------------------|-------------------------|------------|------------------------------|-----------|
| aleo solar GmbH                            | Prenzlau                | Si         | 320                          | n/a       |
| ALGATEC Solarwerke<br>Brandenburg GmbH     | Prösen,<br>Großräschen  | Si         | 25                           | < 50      |
| asalo Technologies<br>GmbH (TUSAI Holding) | Erfurt                  | Si         | 40                           | <50       |
| Astronergy Solar<br>Module GmbH            | Frankfurt<br>(Oder)     | Si         | 300                          | n/a       |
| Axitec Energy GmbH & Co, KG                | Böblingen               | Si         | 300                          | <50       |
| AxSun Solar Energy<br>GmbH & Co. KG        | Laupheim-<br>Baustetten | Si         | 70                           | n/a       |
| CS Wismar GmbH<br>(Sonnenstromfabrik)      | Wismar                  | Si         | 525                          | n/a       |
| GSS Gebäude-<br>Solarsysteme GmbH          | Korbußen                | Si         | 20                           | <50       |
| Heckert Solar GmbH                         | Chemnitz                | Si         | 300                          | 51-250    |
| Hörmann Novo Solar<br>GmbH                 | Laubusch                | Si         | 10                           | <50       |
| ML&S GmbH                                  | Greifswald              | Si         | 200                          | n/a       |
| SI Module GmbH                             | Freiburg                | Si         | 25                           | < 50      |
| Solarfabrik CL GmbH                        | Freiburg                | Si         | n/a                          | < 50      |
| Solarnove GmbH                             | Wedel                   | Si         | 35                           | < 50      |
| Solarwatt GmbH                             | Dresden                 | Si         | 250                          | 51-250    |
| Soluxtec GmbH                              | Bitburg                 | Si         | n/a                          | < 50      |
| Sunset Solar GmbH &<br>Co. KG              | Löbichau                | Si         | 40                           | < 50      |
| Sunware Solartechnik<br>GmbH & Co. KG      | Duisburg                | Si         | n/a                          | < 50      |
| Solarworld AG <sup>7</sup>                 | Arnstadt                | Si         | 200                          | > 250     |
| Solarworld AG <sup>7</sup>                 | Freiberg                | Si         | 660                          | > 250     |
| Avancis GmbH (CNBM international)          | Torgau                  | CIGS       | 100                          | > 250     |
| Manz CIGS Technology<br>GmbH (NICE)        | Schwäbisch Hall         | CIGS       | 5 - 10                       | 150       |
| Solibro GmbH<br>(Hanergy)                  | Bitterfeld-<br>Wolfen   | CIGS       | 120                          | n/a       |
| Calyxo GmbH (Solar<br>Fields LLC)          | Bitterfeld-<br>Wolfen   | CdTe       | 85                           | 51 - 250  |
| Azur Space Solar Power<br>GmbH             | Heilbronn               | GaAs       | n/a                          | 51-250    |
| Heliatek GmbH                              | Dresden                 | OPV        | R&D                          | n/a       |

 Table 18: Production and production capacity information of module manufacturer in 2016 [22]

# 5.3 Manufacturers and suppliers of other components

Balance of system component manufacture and supply is an important part of the PV system value chain. Table 19 shows German manufacturers of such components.

|           | Company                               | Location                     | Capacity 2012<br>[MWp] | Employees<br>at respective<br>location |
|-----------|---------------------------------------|------------------------------|------------------------|----------------------------------------|
| Inverters | AEG Power Solutions                   | Warstein-Belecke             | n/a                    | 680                                    |
|           | Bonfiglio Vectron                     | Krefeld                      | n/a                    | 112                                    |
|           | Converteam                            | Berlin                       | n/a                    | 700                                    |
|           | Diehl AKO                             | Wangen                       | 700                    | 140                                    |
|           | Dorfmüller Solaranlagen               | Kernen                       | 5                      | 5                                      |
|           | Enecsys Europe                        | Bad Homburg                  | n/a                    | 6                                      |
|           | FEG                                   | Sömmerda                     | < 1                    | 11                                     |
|           | Ingeteam                              | Hamburg, München             | 2.000                  | 350                                    |
|           | KACO new energy                       | Neckarsulm                   | 1.200                  | 400                                    |
|           | KOSTAL Industrie Elektrik             | Hagen                        | n/a                    | 190                                    |
|           | LTi REEnergy                          | Unna                         | 500                    | 250                                    |
|           | M+W Group                             | Crailsheim                   | 100                    | 50                                     |
|           | PCS Power Converter<br>Solutions GmbH | Berlin                       | n/a                    | 250                                    |
|           | REFU Elektronik                       | Metzingen                    | n/a                    | 170                                    |
|           | SMA Solar Technology                  | Niestetal, Kassel            | 10.000                 | 4.000                                  |
|           | Solutronic                            | Großbettlingen               | 250                    | 30                                     |
|           | Sputnik Engineering                   | Neuhausen auf den<br>Fildern | 1.600                  | 21                                     |
|           | Steca Elektronik                      | Memmingen                    | 40                     | 510                                    |
|           | Sunways                               | Konstanz                     | n/a                    | 145                                    |
|           | Bosch Power Tec                       | Hamburg                      | 250                    | 100                                    |
| Cables    | bedea                                 | Aßlar, Herborn               |                        | 320                                    |
|           | Draka Cable Wuppertal                 | Wuppertal                    |                        | 500                                    |
|           | HELUKABEL                             | Windsbach                    |                        | 450                                    |
|           | HEW-KABEL                             | Wipperfürth                  |                        | 320                                    |
|           | HI Kabelkonfektionierung              | Beerfelden                   |                        | 120                                    |
|           | HUBER+SUHNER                          | Taufkirchen                  |                        | 140                                    |
|           | KBE Elektrotechnik                    | Berlin                       |                        | 220                                    |
|           | Klasing Kabel                         | Denkendorf                   |                        | 170                                    |
|           | KWV Kabelwerke                        | Villingen-<br>Schwenningen   |                        | 30                                     |
|           | Lumberg Connect                       | Schalksmühle,<br>Cloppenburg |                        | 1000                                   |
|           | Multi-Contact                         | Weil am Rhein                |                        | 120                                    |
|           | Nexans                                | Hannover                     |                        | 400                                    |
|           | PRYSMIAN                              | Eschweiler,<br>Schwerin      |                        | 110                                    |
|           | Sykonec                               | Neustadt bei<br>Coburg       |                        | 42                                     |

 Table 19: Overview of balance of system component manufacturers [22]

|                                          | Company                           | Location                                        | Capacity 2012<br>[MWp] | Employees<br>at respective<br>location |
|------------------------------------------|-----------------------------------|-------------------------------------------------|------------------------|----------------------------------------|
|                                          | Tyco Electronics                  | Bensheim                                        |                        | 1.950                                  |
|                                          | U.I. Lapp                         | Stuttgart                                       |                        | 800                                    |
|                                          | VOKA                              | Plauen, Falkenstein                             |                        | 500                                    |
|                                          | XBK-Kabel                         | Rottweil                                        |                        | 200                                    |
|                                          | Yamaichi Electronics              | Frankfurt (Oder)                                |                        | 150                                    |
| Connectors                               | Amphenol-Tuchel                   | Heilbronn                                       |                        | 300                                    |
|                                          | Büschel                           | Jungingen                                       |                        | 30                                     |
|                                          | Citel                             | Bochum                                          |                        | 130                                    |
|                                          | HI Kabelkonfektionierung          | Beerfelden                                      |                        | 120                                    |
|                                          | Hirschmann                        | Neckartenzlingen,<br>Ettlingen,<br>Schalksmühle |                        | 350                                    |
|                                          | Huber + Suhner                    | Taufkirchen                                     |                        | 200                                    |
|                                          | Huonker                           | Villingen-<br>Schwenningen                      |                        | 100                                    |
|                                          | Lumberg Connect                   | Schalksmühle,<br>Cloppenburg                    |                        | 800                                    |
|                                          | Molex                             | Bretten                                         |                        | 80                                     |
|                                          | Multi-Contact                     | Weil am Rhein                                   |                        | 120                                    |
|                                          | Pöppelmann Kunststoff-<br>Technik | Lohne                                           |                        | 350                                    |
|                                          | U.I.Lapp GmbH                     | Stuttgart                                       |                        | 800                                    |
|                                          | Wieland Electric                  | Bamberg                                         |                        | 1.000                                  |
|                                          | Yamaichi Electronics              | Frankfurt (Oder)                                |                        | 150                                    |
| Tracking systems<br>own<br>manufacturing | a+f                               | Würzburg                                        |                        | 109                                    |
|                                          | DEGERenergie                      | Horb                                            |                        | 30                                     |
|                                          | Eggert                            | Oberstadion                                     |                        | 25                                     |
|                                          | EGIS-Equipment                    | Offenbach                                       |                        | 5                                      |
|                                          | EQ-SYS                            | Treuenbrietzen                                  |                        | 21                                     |
|                                          | Galaxy Energy                     | Heroldstatt                                     |                        | 35                                     |
|                                          | Green Factory                     | Heidenheim                                      |                        | 10                                     |
|                                          | GSM Solar                         | Mamming                                         |                        | 90                                     |
|                                          | Hanse Solar                       | Wismar                                          |                        | 12                                     |
|                                          | IMO Anlagenbau                    | Gremsdorf                                       |                        | 50                                     |
|                                          | Kemper                            | Vreden                                          |                        | 100                                    |
|                                          | Bernt Lorentz                     | Henstedt-Ulzburg                                |                        | 25                                     |
|                                          | Löseke & Marx<br>Maschinenbau     | Paderborn                                       |                        | 30                                     |
|                                          | mp-tec                            | Eberswalde                                      |                        | 70                                     |
|                                          | PV-Eiwa                           | Plattling                                       |                        | 100                                    |
|                                          | PVStrom Energy Systems            | Kirchheim am<br>Neckar                          |                        | 25                                     |
|                                          | Schüco International              | Bielefeld                                       |                        | 1.500                                  |
|                                          | Altec Solartechnik                | Sömmerda                                        |                        | 70                                     |

|                                                       | Company                         | Location                            | Capacity 2012<br>[MWp] | Employees<br>at respective<br>location |
|-------------------------------------------------------|---------------------------------|-------------------------------------|------------------------|----------------------------------------|
|                                                       | Solarpark Rödenäs               | Rodenäs                             |                        | 50                                     |
|                                                       | Solea                           | Platting                            |                        | 29                                     |
|                                                       | sonnen_systeme                  | Alheim-Heinebach                    |                        | 100                                    |
| Tracking systems<br>- OEM<br>production in<br>Germany | Energiebau<br>Solarstromsysteme | Köln                                |                        | 300                                    |
|                                                       | IDEEMATEC                       | Wallerfing                          |                        | 16                                     |
|                                                       | RWenergy                        | Schwandorf                          |                        | 30                                     |
|                                                       | S+S Energietechnik              | Lüchow-Grabow                       |                        | 5                                      |
|                                                       | Solar-Track                     | Lübeck                              |                        | 10                                     |
|                                                       | Bosch Power Tec                 | Hamburg                             |                        | 100                                    |
| Mounting<br>systems - own<br>manufacturing            | ALTEC Solartechnik              | Crispendorf,<br>Sömmerda            |                        | 185                                    |
|                                                       | Benz Alusysteme                 | Ingersheim                          |                        | 15                                     |
|                                                       | СЕКО                            | Neresheim                           |                        | 15                                     |
|                                                       | EQ-SYS                          | Treuenbrietzen                      |                        | 20                                     |
|                                                       | Fath Solar                      | Spalt                               |                        | 100                                    |
|                                                       | Grammer Solar                   | Amberg                              |                        | 50                                     |
|                                                       | Metall Josten                   | Düsseldorf                          |                        | 25                                     |
|                                                       | Mounting Systems<br>(Conergy)   | Rangsdorf                           |                        | 250                                    |
|                                                       | mp-tec                          | Eberswalde                          |                        | 70                                     |
|                                                       | MÜPRO                           | Hofheim-Wallau                      |                        | n/a                                    |
|                                                       | Niemetz Metall                  | Königsfeld                          |                        | 50                                     |
|                                                       | PV-Eiwa                         | Plattling                           |                        | 100                                    |
|                                                       | RegTec                          | Augsburg,<br>Wiesthal,<br>Bad Berka |                        | 20                                     |
|                                                       | Schletter                       | Kirchdorf                           |                        | 400                                    |
|                                                       | Solarpark Rodenäs               | Rodenäs                             |                        | 50                                     |
|                                                       | Solarstep                       | Königstein                          |                        | 6                                      |
|                                                       | Soltech                         | Bielefeld                           |                        | 15                                     |
|                                                       | TS-Aluminium                    | Großefehn,<br>Burgsstädt            |                        | 85                                     |
|                                                       | VM Edelstahltechnik             | Plettenberg                         |                        | 20                                     |
|                                                       | Wagener & Simon                 | Wuppertal                           |                        | 180                                    |
|                                                       | Wagner & Co. Solartechnik       | Cölbe                               |                        | 400                                    |
|                                                       | Wilhelm Flender                 | Netphen                             |                        | 75                                     |
|                                                       | Zambelli                        | Grafenau                            |                        | 650                                    |
|                                                       | Zentralsolar                    | Rheine                              |                        | 25                                     |
|                                                       | Zinco                           | Unterensingen                       |                        | 70                                     |

|                                                       | Company                         | Location       | Capacity 2012<br>[MWp] | Employees<br>at respective<br>location |
|-------------------------------------------------------|---------------------------------|----------------|------------------------|----------------------------------------|
| Mounting<br>systems - OEM<br>production in<br>Germany | alfasolar                       | Hannover       |                        | 40                                     |
|                                                       | E.u.r.o Tec                     | Hagen          |                        | 30                                     |
|                                                       | ECOSOLAR                        | Duisburg       |                        | 9                                      |
|                                                       | Energiebau<br>Solarstromsysteme | Köln           |                        | 300                                    |
|                                                       | HABDANK PV-<br>Montagesysteme   | Göppingen      |                        | 40                                     |
|                                                       | HELTRON                         | Breisach       |                        | 19                                     |
|                                                       | IDEEMATEC                       | Wallerfing     |                        | 16                                     |
|                                                       | K2 Systems                      | Weil der Stadt |                        | 45                                     |
|                                                       | PanelClaw                       | Wuppertal      |                        | 23                                     |
|                                                       | Renusol                         | Köln           |                        | 90                                     |
|                                                       | RWenergy                        | Schwandorf     |                        | 30                                     |

# 6 PV IN THE ECONOMY

#### 6.1 Labour places

From 2014 to 2015 the total amount of employees in the field of renewable energy decreased from 355.400 to 330.000 (seeTable 20). Only in the sectors "wind offshore", "deep thermal energy" and "biomass (small plants)" the number of employees could be slightly increased. The most significant reduction is observed for the sector of "wind onshore".

The long term development in Germany's renewable energy sector is shown in Figure 3. After a peak in the year 2012 (399.800 employees) the amount of employees has been reduced down to 355.400 in the year 2014. However, this is still more than doubling compared to 2004. Most affected by external circumstances (e. g. market development) is the sector of "solar energy".

# Table 20 : Development of Germany's gross employment, subdivided in the different categories of renewable energy within the years 2014/2015 (adapted from [25]).

|                                           | Employees in 2014 | Employees in 2015 |
|-------------------------------------------|-------------------|-------------------|
| Wind Onshore                              | 130.500           | 122.400           |
| Wind Offshore                             | 18.700            | 20.500            |
| Photovoltaics                             | 38.300            | 31.600            |
| Solar thermal                             | 10.300            | 9.900             |
| Solar thermal power plants                | 700               | 700               |
| Hydropower                                | 11.800            | 6.700             |
| Deep thermal energy                       | 1.100             | 1.200             |
| Near surface thermal energy               | 16.100            | 16.100            |
| Biogas                                    | 48.300            | 45.000            |
| Biomass (small plants)                    | 25.400            | 26.500            |
| Biomass combined heat and power plant     | 23.100            | 18.900            |
| Biofuel                                   | 23.100            | 22.800            |
| Publicly funded research / administration | 8.000             | 7.700             |
| In total                                  | 355.400           | 330.000           |



# Figure 3: Long term development of gross employment in Germany's renewable energy sector (adapted from [25]). Data for 2016 is not available.

# 6.2 Business value

#### Table 21: Value of PV business

| Sub-market                    | Capacity installed in 2016<br>[MW] | Price per W [EUR]<br>(from Table 8) | Value<br>[MEUR] | Totals<br>[MEUR] |
|-------------------------------|------------------------------------|-------------------------------------|-----------------|------------------|
|                               | (from Table 1)                     |                                     |                 |                  |
| Grid-connected                | 285                                | 1,500                               | 427,5           |                  |
| distributed                   | 302                                | 1,227                               | 370,6           |                  |
| distributed                   | 695                                | 1,084                               | 753,4           |                  |
| Grid-connected<br>centralized | 251                                | 0,600                               | 150,6           |                  |
|                               |                                    |                                     |                 | 1.702            |
| Export of PV products         |                                    |                                     |                 | N/A              |
| Change in stocks held         |                                    |                                     |                 | N/A              |
| Import of PV products         |                                    |                                     |                 | N/A              |

The Value of the PV business in Germany can be estimated as in Table 21. As there is no reliable data for the value of im- and exports as well as for the stocks, the estimation can only be done with respect to the installed systems and leads to a value of 1,7 Billion EUR. In good accordance, the Federal Ministry of Economic Affairs and Energy published a value of 1,6 Billion EUR for the invest in new PV-Systems during 2016 [2].

# 7 INTEREST FROM ELECTRICITY STAKEHOLDERS

#### 7.1 Structure of the electricity system

The electricity market and production are affected by 4 large enterprises:

- EON (Transmission Grid: Tennet TSO GmbH)
- RWE
- Vattenfall
- EnBW

The four market leaders hold 67,6 % of the production capacities and reached a share of 76,2 % regarding the produced electricity.<sup>8</sup> Additionally, there are municipal utilities and independent power producers who generate electricity for their own facilities.

The high voltage transmission grid originally was also controlled by the 4 large electricity companies. In order to facilitate a free access, today the transmission grids are operated by independent companies. EnBW has set up a subsidiary which is running the grid. Figure 4 shows the control areas of the four transmission system operators (TSO):

- Tennet TSO GmbH
- Amprion GmbH
- 50Hertz Transmission GmbH
- TransnetBW GmbH

The total transmission grid length summed up to 36.001 km in 2015 [26].



Figure 4: The high voltage transmission grid operators [27].

The final distribution to the customers is carried out by 817 distribution network operators (DNO), controlling a grid length of 1.780.856 km [26]. Most of the distribution networks belong to municipal energy suppliers, but some belong to private companies. Figure 5 gives an overview of the expansion of the energy lines.

<sup>&</sup>lt;sup>8</sup> Electricity production without EEG-electricity. This means in particular, that most renewable electricity sources are not included in the calculation. Due to the availability of data, a part of the EEG-electricity under direct marketing is included.



Figure 5: Status of the expansion of energy lines pursuant to the Energy Line Extension Act (EnLAG) and the Gesetz über den Bundesbedarfsplan (BBPIG) in the fourth quarter of 2016 [28].

The Bundesnetzagentur (Federal Network Agency) is Germany's regulatory authority for the electricity, gas, telecommunications, postal and rail markets. Since 2011, it has also taken on responsibility for implementing the Grid Expansion Acceleration Act (NABEG) [22] [29].

# 7.2 Interest from electricity utility businesses

Driven by the regulatory framework, the 4 large enterprises EON, RWE, Vattenfall and EnBW increase their engagement in renewables, the main focus is in the wind sector. EON and RWE started in 2016 to separate their renewable energy part from the conventional power production: RWE transferred the renewables to the newly founded Innogy SE, EON moved the conventional part (including hydropower, but not nuclear) to Uniper SE.

The PV market is dominated by the private sector for roof-top systems and by project developers for ground mounted systems.

Still, due to the large variety of companies in the German energy market, there are numerous concepts from local energy suppliers. Most of the energy suppliers offer green electricity tariffs for their customers and operate their own renewable systems and/or support private PV systems. Among the nationwide acting companies, there are some who only sell electricity from renewables.

# 8 REFERENCES

- [1] "Renewable Energy Sources Act (EEG)," [Online]. Available: http://www.bmub.bund.de/fileadmin/bmuimport/files/english/pdf/application/pdf/eeg\_2012\_en\_bf.pdf.
- [2] "Development of renewable energy sources in germany 2016, Based on statistical Data from the Working Group on Renewable Energy-Statistics (AGEE-Stat)," 2016. [Online]. Available: www.erneuerbare-energien.de.
- [3] "Bundesnetzagentur / German Federal Network Agency," [Online]. Available: http://www.bundesnetzagentur.de/cln\_1432/EN/Home/home\_node.html.
- [4] Bundeskartellamt and Bundesnetzagentur, "Monitoring Report 2016 (published 30.11.2016)".
- [5] Fraunhofer ISE based on Data from AGEE, BMWi and Bundesnetzagentur, "Fraunhofer ISE Energy Charts," [Online]. Available: https://www.energy-charts.de/index.htm. [Zugriff am 28 08 2017].
- [6] "pvXchange," [Online]. Available: http://www.pvxchange.com/priceindex/Default.aspx?template\_id=1&langTag=en-GB.
- [7] EUPD Research on behalf of BSW Solar, *German PV Module PriceMonitor 2016, Results 1st Quarter.*
- [8] Fraunhofer Institute for Solar Energy Systems ISE, "Recent facts about photovoltaics in Germany".
- [9] German Federal Ministry of Economic Affairs and Energy (BMWi), "Energie der Zukunft," 2015.
- [10] "photovoltaik.org," [Online]. Available: http://www.photovoltaik.org/wirtschaftlichkeit/photovoltaik-preise. [Zugriff am Jan 2016].
- [11] "Statista," [Online]. Available: www.statista.com.
- [12] Federal Statistical Office (Statistisches Bundesamt), [Online]. Available: www.destatis.de.
- [13] Deutscher Wetterdienst (German Meteorologocal Office), *Globalstrahlungskarten* (*Global solar irradiation maps*).
- [14] "Energy Concept for an Environmentally Sound, Reliable and Affordable Energy Supply," [Online]. Available: http://www.germany.info/contentblob/3043402/Daten/3903429/BMUBMWi\_Energy\_Co ncept\_DD.pdf.
- [15] Federal Ministry for Economic Affairs and Energy (BMWi), "10-point energy agenda," [Online]. Available: http://www.bmwi.de/English/Redaktion/Pdf/10-punkteenergieagenda,property=pdf,bereich=bmwi2012,sprache=en,rwb=true.pdf.
- [16] Zentrum für Sonnenenergie- und Wasserstoffforschung Baden-Württemberg (ZSW), "Evaluierung der inländischen KfW-Programme zur Förderung Erneuerbarer Energien in den Jahren 2013 und 2014 - Gutachten im Auftrag der KfW Bankengruppe," 2015.

- [17] KfW Bankengruppe, "Förderreport".
- [18] Federal Ministry for Economic Affairs and Energy (BMWi), [Online]. Available: http://www.bmwi.de/DE/Themen/Energie/Energieforschung-und-Innovationen/6energieforschungsprogramm.html.
- [19] "Innovation durch Forschung Erneuerbare energien und Energieeffizienz: Projekte und Ergebnisse der Forschungsförderung 2016," http://www.bmwi.de/Redaktion/DE/Publikationen/Energie/innovation-durch-forschung-2016.pdf?\_\_blob=publicationFile&v=18.
- [20] "Research project database (in German)," [Online]. Available: http://foerderportal.bund.de.
- [21] "Solarstromforschung," [Online]. Available: http://www.solarstromforschung.de/.
- [22] "German Trade & Invest (GTAI)," [Online]. Available: www.gtai.de.
- [23] "Wacker Chemie AG Geschäftsbericht 2016".
- [24] "Solarworld AG Konzernbericht 2016".
- [25] "Bruttobeschäftigung durch erneuerbare Energien in Deutschland und verringerte fossile Brennstoffimporte durch erneuerbare Energien und Energieeffizienz," [Online]. Available: http://www.bmwi.de/DE/Mediathek/publikationen,did=739134.html.
- [26] Bundesnetzagentur/Bundeskartellamt, "Monitoringbericht 2016," 2016.
- [27] "Wikipedia Netzentwicklungsplan," [Online]. Available: https://de.wikipedia.org/wiki/Netzentwicklungsplan.
- [28] Bundesnetzagentur, "Annual Report 2016".
- [29] "Second Monitoring Report "Energy of the future" Summary, BMWi," [Online]. Available: http://www.bmwi.de/EN/Service/publications,did=639404.html.

