INTERNATIONAL ENERGY AGENCY
CO-OPERATIVE PROGRAMME ON PHOTOVOLTAIC
POWER SYSTEMS

Task 1
Exchange and dissemination of information on PV
power systems

National Survey Report of
PV Power Applications in Austria
2010

Final version

Prepared by
H. Fechner, N. Prüggler, A. Galosi
University of Applied Sciences Technikum Vienna

Supported by the
Austrian Federal Ministry of
Transport, Innovation and Technology (BMVIT)
TABLE OF CONTENTS

Definitions, Symbols and Abbreviations ... 1
Foreword .. 4
Introduction .. 5

1 Executive Summary .. 6
 1.1 Installed PV power .. 6
 1.2 Costs & prices .. 7
 1.3 PV production ... 8
 1.4 Budgets for PV ... 8

2 The implementation of PV systems ... 9
 2.1 Applications for photovoltaics ... 9
 2.2 Total photovoltaic power installed .. 9
 2.3 PV implementation highlights, major projects, demonstration and field test programmes .. 10
 2.4 Highlights of R&D ... 11
 2.5 Public budgets for market stimulation, demonstration / field test programmes and R&D ... 12

3 Industry and growth .. 15
 3.1 Production of feedstocks, ingots and wafers .. 15
 3.2 Production of photovoltaic cells and modules .. 15
 3.3 Module prices ... 19
 3.4 Manufacturers and suppliers of other components 20
 3.5 System prices ... 21
 3.6 Labour places ... 23
 3.7 Business value of installation .. 24

4 Framework for deployment (Non-technical factors) .. 25
 4.1 Indirect policy issues .. 27
 4.2 Standards and codes .. 27

5 Highlights and prospects .. 27
 5.1 Stakeholder initiatives and awareness raising 28
 5.2 Market & deployment initiatives ... 28

Annex A: References, methods and accuracy of data .. 29
Annex B: Country information ... 30
Definitions, Symbols and Abbreviations

For the purposes of this and all IEA PVPS National Survey Reports, the following definitions apply:

PV power system market: The market for all nationally installed (terrestrial) PV applications with a PV power capacity of 40 W or more.

Installed PV power: Power delivered by a PV module or a PV array under standard test conditions (STC) – irradiance of 1 000 W/m2, cell junction temperature of 25°C, AM 1.5 solar spectrum – (also see 'Rated power').

Rated power: Amount of power produced by a PV module or array under STC, written as W.

PV system: Set of interconnected elements such as PV modules, inverters that convert d.c. current of the modules into a.c. current, storage batteries and all installation and control components with a PV power capacity of 40 W or more.

Module manufacturer: An organisation carrying out the encapsulation in the process of the production of PV modules.

Off-grid domestic PV power system: System installed to provide power mainly to a household or village not connected to the (main) utility grid(s). Often a means to store electricity is used (most commonly lead-acid batteries). Also referred to as 'stand-alone PV power system'. Can also provide power to domestic and community users (plus some other applications) via a 'mini-grid', often as a hybrid with another source of power.

Off-grid non-domestic PV power system: System used for a variety of industrial and agricultural applications such as water pumping, remote communications, telecommunication relays, safety and protection devices, etc. that are not connected to the utility grid. Usually a means to store electricity is used. Also referred to as 'stand-alone PV power system'.

Grid-connected distributed PV power system: System installed to provide power to a grid-connected customer or directly to the electricity grid (specifically where that part of the electricity grid is configured to supply power to a number of customers rather than to provide a bulk transport function). Such systems may be on or integrated into the customer's premises often on the demand side of the electricity meter, on public and commercial buildings, or simply in the built environment on motorway sound barriers etc. They may be specifically designed for support of the utility distribution grid. Size is not a determining feature – while a 1 MW PV system on a rooftop may be large by PV standards, this is not the case for other forms of distributed generation.

Grid-connected centralized PV power system: Power production system performing the function of a centralized power station. The power supplied by such a system is not associated with a particular electricity customer, and the system is not located to specifically perform functions on the electricity grid other than the supply of bulk power. Typically ground mounted and functioning independently of any nearby development.
Turnkey price: Price of an installed PV system excluding VAT/TVA/sales taxes, operation and maintenance costs but including installation costs. For an off-grid PV system, the prices associated with storage battery maintenance/replacement are excluded. If additional costs are incurred for reasons not directly related to the PV system, these should be excluded. (E.g. If extra costs are incurred fitting PV modules to a factory roof because special precautions are required to avoid disrupting production, these extra costs should not be included. Equally the additional transport costs of installing a telecommunication systems in a remote area are excluded).

Field Test Programme: A programme to test the performance of PV systems/components in real conditions.

Demonstration Programme: A programme to demonstrate the operation of PV systems and their application to potential users/owners.

Market deployment initiative: Initiatives to encourage the market deployment of PV through the use of market instruments such as green pricing, rate based incentives etc. These may be implemented by government, the finance industry, utilities etc.

Final annual yield: Total PV energy delivered to the load during the year per kW of power installed.

Performance ratio: Ratio of the final annual (monthly, daily) yield to the reference annual (monthly, daily) yield, where the reference annual (monthly, daily) yield is the theoretical annual (monthly, daily) available energy per kW of installed PV power.

Currency: The currency unit used throughout this report is EUR

RES: Renewable Energy Sources

PV support measures:

<table>
<thead>
<tr>
<th>Enhanced feed-in tariff</th>
<th>an explicit monetary reward is provided for producing PV electricity; paid (usually by the electricity utility) at a rate per kWh somewhat higher than the retail electricity rates being paid by the customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital subsidies</td>
<td>direct financial subsidies aimed at tackling the up-front cost barrier, either for specific equipment or total installed PV system cost</td>
</tr>
<tr>
<td>Green electricity schemes</td>
<td>allows customers to purchase green electricity based on renewable energy from the electricity utility, usually at a premium price</td>
</tr>
<tr>
<td>PV-specific green electricity schemes</td>
<td>allows customers to purchase green electricity based on PV electricity from the electricity utility, usually at a premium price</td>
</tr>
<tr>
<td>Renewable portfolio standards (RPS)</td>
<td>a mandated requirement that the electricity utility (often the electricity retailer) source a portion of their electricity supplies from renewable energies (usually characterized by</td>
</tr>
</tbody>
</table>

2 of 31
<table>
<thead>
<tr>
<th>PV requirement in RPS</th>
<th>a mandated requirement that a portion of the RPS be met by PV electricity supplies (often called a set-aside)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment funds for PV</td>
<td>share offerings in private PV investment funds plus other schemes that focus on wealth creation and business success using PV as a vehicle to achieve these ends</td>
</tr>
<tr>
<td>Income tax credits</td>
<td>allows some or all expenses associated with PV installation to be deducted from taxable income streams</td>
</tr>
<tr>
<td>Net metering</td>
<td>in effect the system owner receives retail value for any excess electricity fed into the grid, as recorded by a bi-directional electricity meter and netted over the billing period</td>
</tr>
<tr>
<td>Net billing</td>
<td>the electricity taken from the grid and the electricity fed into the grid are tracked separately, and the electricity fed into the grid is valued at a given price</td>
</tr>
<tr>
<td>Commercial bank activities</td>
<td>includes activities such as preferential home mortgage terms for houses including PV systems and preferential green loans for the installation of PV systems</td>
</tr>
<tr>
<td>Electricity utility activities</td>
<td>includes ‘green power’ schemes allowing customers to purchase green electricity, large-scale utility PV plants, various PV ownership and financing options with select customers and PV electricity power purchase models</td>
</tr>
<tr>
<td>Sustainable building requirements</td>
<td>includes requirements on new building developments (residential and commercial) and also in some cases on properties for sale, where the PV may be included as one option for reducing the building’s energy footprint or may be specifically mandated as an inclusion in the building development</td>
</tr>
</tbody>
</table>
Foreword

The International Energy Agency (IEA), founded in November 1974, is an autonomous body within the framework of the Organisation for Economic Co-operation and Development (OECD) which carries out a comprehensive programme of energy co-operation among its 23 member countries. The European Commission also participates in the work of the Agency.

The IEA Photovoltaic Power Systems Programme (IEA-PVPS) is one of the collaborative R & D agreements established within the IEA and, since 1993, its participants have been conducting a variety of joint projects in the applications of photovoltaic conversion of solar energy into electricity.

The 21 participating countries are Australia (AUS), Austria (AUT), Canada (CAN), Denmark (DNK), France (FRA), Germany (DEU), Israel (ISR), Italy (ITA), Japan (JPN), Korea (KOR), Malaysia (MYS), Mexico (MEX), the Netherlands (NLD), Norway (NOR), Portugal (PRT), Spain (ESP), Sweden (SWE), Switzerland (CHE), Turkey (TUR), the United Kingdom (GBR) and the United States of America (USA). The European Commission, the European Photovoltaic Industry Association and the US Solar Electric Power Association are also members.

The overall programme is headed by an Executive Committee composed of one representative from each participating country, while the management of individual Tasks (research projects / activity areas) is the responsibility of Operating Agents. Information about the active and completed tasks can be found on the IEA-PVPS website www.iea-pvps.org
Introduction

The objective of Task 1 of the IEA Photovoltaic Power Systems Programme is to facilitate the exchange and dissemination of information on the technical, economic, environmental and social aspects of photovoltaic power systems. An important deliverable of Task 1 is the annual Trends in photovoltaic applications report. In parallel, National Survey Reports are produced annually by each Task 1 participant. This document is the Austrian National Survey Report for the year 2010. Information from this document will be used as input to the annual Trends in photovoltaic applications report.

The PVPS website www.iea-pvps.org also plays an important role in disseminating information arising from the programme, including national information.
1 EXECUTIVE SUMMARY

Supported by various promotion mechanisms of the federal provinces and the federal government a new stronger market diffusion of photovoltaic (PV) systems could be reached in Austria in 2010. As a result grid-connected plants with a total capacity of 42,69 MWp and stand-alone systems with a total capacity of 0,207 MWp were installed during the year.

Hence, in 2010 the total PV market in Austria increased to 42,9 MWp which led to a cumulated total installed capacity of 95,5 MW. As a consequence the estimated renewable electricity produced by PV amounted to 88.8 GWh in 2010 and lead to a reduction in CO₂ emissions by 38.349 tons.

The Austrian photovoltaic industry has a broad standing covering production of PV modules, cells, converters and tracking system as well as other PV components and devices. Furthermore, there is a high density of installers of PV systems and significant trade of modules takes place. Finally, specialized institutions and universities play an important role in international photovoltaic research & development (R&D). Within those economic sectors in total 4.414 people are full-time employed.

1.1 Installed PV power

The domestic PV system market in 2010 showed a significant increase compared to 2009. In 2010, off-grid and grid connected PV systems with a total PV power of 42,9 MW have been installed, which represents a 112,29% growth of the domestic market compared to the year before.

The overall installed PV capacity in Austria showed a growth of 42,9 MW to reach 95,5 MW at the end of 2010. On-grid applications more and more dominate the market for PV, with grid-connected systems (GCS) accounting for about 91,7 MW of the total installed capacity at the end of 2010.

As during the previous years, the off-grid sector plays a minor role in the Austrian PV market. In 2010 only a cumulated 3,8 MW were installed in this sector for domestic and non-domestic applications.

On a 10 years basis, an average market growth of 42,6% per year for all PV installations can be reported.

Despite this very positive development, the domestic PV market is still behind the development of other European countries like Germany, with a 17 times higher installed capacity in 2010 and the Czech Republic with a 18 times higher capacity.
1.2 Costs & prices

Compared to the previous year, module prices in Austria rose in 2010. The average wholesale price in 2010 was 1.9 EUR/W, although the average sales-price of Austrian PV module producers was 3.0 EUR/W.

In 2010, turnkey prices for installed PV systems fell slightly compared to the previous years. However, the reduction was still low, following the continued high demand of the European PV market and the stringent supply of PV modules on the world market. Turnkey prices for typical on-grid systems varied between 2.6 EUR/W and 5.0 EUR/W, depending on the used PV-technology, size and type of the installation, with a typical mean price of 3.7 EUR/W for grid-connected systems.
1.3 PV production

The most important products manufactured in Austria include PV inverters, PV cells, PV modules and tracking systems as well as back-sheet laminates for module encapsulation or PV Ribbon Wires.

In 2010, the Austrian PV industry could expand their business. Domestic PV module manufacturers reported an upturn of their output. The overall PV module production in Austria in 2010 amounted to 111.6 MW (2009: 60.1 MW), which represents a growth of 83.2% compared to the previous year.

Austria’s PV inverter industry reported a 20% increase of the production of inverters for grid-connected applications. In 2010, PV inverters with a capacity of approximately 1 400 MW a.c. nominal power (2009: 1 000 MW) were produced. More than 99% of the production was exported.

The world wide leading manufacturer of back sheet laminates used for encapsulation of solar cells likewise reported ongoing growth of its PV business.

The industrial scale production of solar cells started in 2008 by several companies has been successfully extended in 2010 marking the next step in the development of Austrian PV industry.

1.4 Budgets for PV

The nationwide feed-in tariff system for electricity from RES introduced in the national Green Electricity Act is financed by all consumers of electricity via supplements on the electricity price and an obligatory purchase price for Green Electricity which has to be paid by electricity dealers. The feed-in tariffs paid for PV in 2010 increased to approximately 13.8 MEUR (2009: 12.1 MEUR), this is a growth of 14.4%. Accordingly, the share of produced electricity climbed from more than 21 GWh to 26.3 GWh. The mean tariffs amounted to 52.76 Cent/kWh which is a decline of -7.5%.

Besides the feed-in support, also further short-term incentives in form of rebates for new PV installations are provided on the national (National Fund for Climate and Energy) as well as provincial level. The total funds spent for this purpose in 2010 were approx. 17.8 MEUR (compared to 7.14 MEUR in 2009) leading to a installed capacity of 11,082 kWp (2009: 3,102 kWp).

There is no national R&D programme dedicated to PV, however, two national programmes "New Energy 2020" by the national Fund for Climate and Energy as well as "Buildings of Tomorrow Plus" by the Ministry of Transport, Innovation and Technology were launched in 2009 and explicitly addressed PV in a separate subpart of the programme. In the absence of a dedicated programme, R&D is mainly funded on a project base.

The share of public funding dedicated to PV related RTD can be estimated to 5.2 MEUR in 2009 (2008: 2.2 MEUR).
2 THE IMPLEMENTATION OF PV SYSTEMS

The PV power system market is defined as the market of all nationally installed (terrestrial) PV applications with a PV capacity of 40 W or more. A PV system consists of modules, inverters, batteries and all installation and control components for modules, inverters and batteries.

For the purposes of this report, PV installations are included in the 2010 statistics if the PV modules were installed between 1 January and 31 December 2010, although commissioning may have taken place at a later date.

2.1 Applications for photovoltaics

As in most of the other IEA countries, Off-grid installations were the first economic alternative for PV systems. Small autonomous systems provide electricity to technical systems or for domestic use in Alpine areas or mountain huts far away from the grid. But not exclusively in remote areas, also on urban sites PV is an option to supply infrastructure like traffic surveillance systems, communication systems, parking meters and a variety of other applications.

With the introduction of favourable support schemes On-grid Distributed Systems have meanwhile become a common place in public’s interest.

With the support schemes limited to small, residential scale systems, Grid-Connected Centralized Systems in form of PV Power plants play a minor role.

2.2 Total photovoltaic power installed

The domestic PV system market in 2010 showed a significant increase compared to 2009. In 2010, off-grid and grid connected PV systems with a total PV power of 42,9 MW have been installed, which represents a 112,3% growth of the domestic market compared to the year before.

The overall installed PV capacity in Austria showed a growth of 42,9 MW to reach 95,5 MW at the end of 2010. On-grid applications more and more dominate the market for PV, with grid-connected systems (GCS) accounting for about 91,7 MW of the total installed capacity at the end of 2010.

As during the previous years, the off-grid sector plays a minor role in the Austrian PV market. In 2010 only a cumulated 3,8 MW were installed in this sector for domestic and non-domestic applications.

On a 10 years basis, an average market growth of 42,6% per year for all PV installations can be reported.

Table 1 shows the PV power installed in 4 sub-markets during 2010.
Table 1: PV power installed during calendar year 2010 in 4 sub-markets.

<table>
<thead>
<tr>
<th>Sub-market/ application</th>
<th>off-grid domestic</th>
<th>off-grid non-domestic</th>
<th>grid-connected distributed</th>
<th>grid-connected centralized</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV power installed in 2010 (kW)</td>
<td>207</td>
<td>n.a.</td>
<td>42 695</td>
<td>n.a.</td>
<td>42 902</td>
</tr>
</tbody>
</table>

A summary of the cumulative installed PV Power, from 1992-2010, broken down into four sub-markets is shown in Table 2.

Table 2: The cumulative installed PV power in 4 sub-markets.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand-alone domestic</td>
<td>1 213</td>
<td>1 413</td>
<td>1 671</td>
<td>1 857</td>
<td>1 984</td>
<td>2 173</td>
<td>2 645</td>
<td>2 895</td>
<td>3 169</td>
<td>3 224</td>
<td>3 357</td>
<td>3 605</td>
<td>3.812</td>
</tr>
<tr>
<td>Stand-alone non-domestic</td>
<td>-</td>
</tr>
<tr>
<td>Grid-connected distributed</td>
<td>1 648</td>
<td>2 119</td>
<td>3 063</td>
<td>4 440</td>
<td>7 857</td>
<td>13 507</td>
<td>17 262</td>
<td>19 973</td>
<td>21 263</td>
<td>23 721</td>
<td>27 274</td>
<td>48.991</td>
<td>91.686</td>
</tr>
<tr>
<td>Grid-connected centralised</td>
<td>70</td>
<td>140</td>
<td>140</td>
<td>241</td>
<td>476</td>
<td>1 153</td>
<td>1 153</td>
<td>1 153</td>
<td>1 153</td>
<td>1 756</td>
<td>1 756</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>TOTAL (kW)</td>
<td>2 861</td>
<td>3 672</td>
<td>4 874</td>
<td>6 120</td>
<td>10 341</td>
<td>16 833</td>
<td>21 060</td>
<td>24 021</td>
<td>25 585</td>
<td>27 701</td>
<td>32 387</td>
<td>52.596</td>
<td>95.498</td>
</tr>
</tbody>
</table>

2.3 PV implementation highlights, major projects, demonstration and field test programmes

PV implementation

In view of the extraordinary growth of the international PV technology market R&D development has become an issue in Austria. However, effective and broad PV implementation programmes are missing in Austria and they will also most probably not be introduced in the upcoming year. The revised Green Electricity Act (GEA) is in operation forming the framework for PV implementation (see section 4 for details).

Besides the federal feed-in tariff scheme, a new initiative was launched in 2008 by the newly founded national Fund for Climate and Energy. The initiative, which provides rebates to newly installed private PV systems up to 5 kW this year in June with a first tender and a total budget of about 35 MEUR. In 2009 7.1 MEUR were brought to account. In 2010 the amount of 17.8 MEUR was granted under this funding scheme.

However, every Austrian province is still running regional rebate-programmes, aiming at overcoming the limitations of federal incentives. In most cases the support is subject to limited budgets and is linked to further requirements. Generally, the regional support is only granted in case the installation is not supported by the federal feed-in tariff scheme. In 2010 the regional funding initiatives amounted about 39.6 MEUR and helped to install a total PV capacity of approx. 22.6 MW.
2.4 Highlights of R&D

For many years, the Austrian PV research activities have mostly been focused on national and international projects: The involved research organisations and companies are participating in various national and European projects as well as in different tasks of the IEA-PVPS Programme and, concerning grid interconnection of renewables, in the IEA ENARD Implementing Agreement. The RTD development and approach is widespread located and decentralised orientated.

Two national programmes, “New Energy 2020” by the Austrian Climate and Energy Fund, as well as “Buildings of Tomorrow Plus,” again by the Ministry of Transport, Innovation and Technology, were launched already in 2008 and cover quite broad research items on energy technologies including a specific PV focus. On the European level, the ongoing initiative to increase the coherence of European PV RTD programming (PV-ERA-NET) is actively supported by the Austrian Ministry of Transport, Innovation and Technology.

The trend of involvement of Austrian electricity companies investing more and more in renewable power generation has been continued in 2010. Sometimes specific departments were founded to establish a business, mainly by investments in new and existing renewable energy plants; due to the insufficient national support for renewables, they frequently invest in other European countries.

Austria’s currently largest (1 MWp) PV system near Eberstalzell, by the Upper Austrian utility “Energie AG”, went into operation in 2010. Other very relevant PV activities were implemented by Verbund - Austrian Renewable Power and many other utilities. PV and the high penetration in some parts of the low voltage network become more and more drivers for the comprehensive and internationally orientated “Smart Grid” activities in Austria, which are coordinated and supported by the Ministry of Transport, Innovation and Technology.

In addition, the following paragraphs highlight some of the specific PV RTD activities and trends in Austria:

The Christian Doppler Laboratory at the University of Salzburg “Applications of Sulfosalts in Energy Conversion” installed a new method to grow single sulfosalt crystals using melt solution growth and a new photo-acoustic spectroscopy system for semiconductor band gap determination. The improvement of solar cell efficiencies by use of buffer layers was investigated and sulfosalt candidates with high Seebeck coefficients combined with high electrical conductivity for applications in thermoelectrical energy conversion were identified.

In the Christian Doppler Laboratory for Nanocomposite Solar Cells scientists of Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft are working in cooperation with the industry partner ISOVOLTAIC AG on new nanostructured materials for flexible organic based photovoltaic modules which can be fabricated with roll-to-roll processing technologies.

The Austrian Institute of Technology, Energy Department (formerly arsenal research) focuses on the strategic research fields “Electrical Infrastructure” and “Energy for the Built Environment.” The integration of PV into Smart Electricity Networks is in the centre of research efforts in the field of distributed energy resources (DER). Low and high voltage technology, power quality, safety and reliability analysis are investigated. In 2011, an extensive laboratory infrastructure for high power testing of DER will be developed. Since 2003, AIT Energy runs a fully fledged Photovoltaic Module Test Laboratory, accredited according to EN 17025, for R&D on crystalline and thin-film modules. With this background, research focuses on new PV technologies, advanced experimental investigation, characterisation and modelling of PV modules, cells and systems. Regarding PV performance, the simulation of system output and life-cycle testing as well as building
integrated PV systems (BIPV) are addressed. On a European level, AIT Energy is participating in the DERlab Network of Excellence, in projects like METAPV and EcoGRID as well as in the EU infrastructure projects DERri and SOPHIA; offering access to its research infrastructures in the areas PV, inverter and power technologies. On an international level AIT Energy is engaged in national and international standardisation for distributed generation and PV systems. It takes part in several IEA PVPS activities, such as Task 13 (Performance and Reliability of Photovoltaic Systems), and holds the lead in Task 14 (High Penetration of PV Systems in Electricity Grids).

Vienna University of Technology, Energy Economics Group (EEG), are covering major topics of teaching and research on Photovoltaics: diffusion of technology and market penetration on national and international level, non technical obstacles and supporting factors for diffusion of technology (e.g. socio-economic impact parameters), energy policy design and political economy effects of PV, PV integration in buildings as well as medium and long term diffusion scenarios of PV.

At the Energybase, the largest passive Solar office building in Austria, the University of Applied Sciences Technikum Vienna offers Bachelor and Master Programmes with a strong focus on PV and other solar technologies. Research at the University Institute is focused on PV strategies as well as on system and building integration.

The Austria Solar Innovation Center (ASIC) covers consultation for PV as well as teaching and training in collaboration with the Upper Austria University of Applied Sciences, degree programme Eco-Energy Engineering (BSc, MSc). Students have lectures and laboratory classes where also the 17 kWp PV system - 5 different module types, 5 different inverter types, 2 monitoring/data logging systems, meteorological station - are used for practice.

The Institute of Polymeric Materials and Testing (IPMT) at the Johannes Kepler University Linz (JKU) was established in 09/2009 and has now completed its first phase of laboratory investments, thus achieving full operation capability. Key individuals of the IPMT have a broad experience in the field of plastics for solar applications and expertise and know-how related to coordination and management of large research projects. In 2010, the JKU with the IPMT started a Project entitled “Solar-electrical Systems based on Polymeric Materials: Novel Polymeric Encapsulation Materials for PV Modules.”

The Polymer Competence Center Leoben (PCCL) is working in the field of polymeric encapsulation materials for solar cell and PV module encapsulation. Since 2003 the main focus of the research was set on durability testing, lifetime modelling and aging characterization of polymeric materials and components as well as the evaluation and qualification of new materials for PV encapsulation. A newly installed research focus is the establishment of correlations between material properties, processing parameters and PV module failure.

2.5 Public budgets for market stimulation, demonstration / field test programmes and R&D

The major institution dealing with research and development policy is the Federal Ministry of Transport, Innovation and Technology (BMVIT). This ministry is the major organizer and facilitator for public R&D activities in Austria. The majority of public R&D programmes operate under the BMVIT and there are several programmes which focus on energy-related fields. There is no programme specifically dedicated to PV R&D, but the topic is mainly funded within the framework of the energy R&D programmes such as “Energy Systems of the Future” (http://www.energiesystemederzukunft.at/english.htm).
Until April 2011, no data on public funding for Energy R&D in 2010 were available. Therefore the following numbers refer to data for the year 2009. The total amount of energy related research funding indicated for the year 2009 was 92,2 MEUR. This was an increase of 30% compared to 2008.

In 2009 renewable energy received about 32,5 MEUR (35,3%) of the Austrian Energy R&D budget (34,4% in 2008). The area of energy efficiency received 40,6% (2008: 33,1%). These two areas clearly show the priority of the publicly financed energy research in Austria. 900 R&D projects and activities were registered and analysed for the year 2009 (2008: 715). In 2009 the overall public spending for PV research and development was about 5,2 MEUR (2008: 2,2 MEUR).

Not included in these figures is the return from European Community (EC) R&D projects. As a member of the European Union, Austria contributes to the EC R&D framework programmes (FP), hence the return can be ultimately regarded as a part of public spending. However, no reliable data was available on these funds in 2009.

There are no specific figures available for the share of Demonstration or Field Test activities but as there was no demonstration or field test programme running in 2009, it can be assumed that the share of these activities is negligible.

The total governmental budget allocated for PV R&D, Demonstration and market incentives is shown in Table 3.

Table 3: Public budgets for R&D, demonstration/field test programmes and market incentives.

<table>
<thead>
<tr>
<th></th>
<th>R & D (2009 figures)</th>
<th>Demo/Field test</th>
<th>Market incentives</th>
</tr>
</thead>
<tbody>
<tr>
<td>National/federal</td>
<td>5,2 MEUR (2009)</td>
<td>N/A</td>
<td>17,8 MEUR</td>
</tr>
<tr>
<td>State/regional</td>
<td>N/A</td>
<td>N/A</td>
<td>47,8 MEUR (estimate)</td>
</tr>
<tr>
<td>Total</td>
<td>5,2 MEUR (2009)</td>
<td>N/A</td>
<td>65,7 MEUR (estimate)</td>
</tr>
</tbody>
</table>

1. No 2010 figures available as of April 2010.
2. Actual rebates paid in 2010 by the federal Fund for Climate and Energy (KliEn)
3. No financial data provided by 4 of 9 provinces
4. In 2010, no demo/field test programmes were reported.

Starting in 2003 the support for electricity from RES has been governed by the Green Electricity Act (GEA). The feed-in tariff system is funded by supplements on the electricity price and an obligatory purchase price for Green Electricity which has to be paid by electricity dealers. Because of the fact that this system is not financed by a public body, but instead by all consumers of electricity the according figures have not been included in Table 3 under "Market".

The total amount of feed-in tariffs paid for PV in 2010 was approximately 13,8 MEUR (2009: 12,1 MEUR), which represents a 14,4% increase compared to the previous year. The average feed-in tariff paid for PV in 2010 was 52,76 Eurocent/kWh which represents a 7,5% reduction compared to the previous year (2009: 57,02 Eurocent/kWh).

Besides the feed-in support, the federal Fund for Climate and Energy (founded in 2007) provided a limited incentive in form of a non-refundable rebate for new installations up to 5 kW. The total funds spent for this purpose in 2010 were 17,8 MEUR.
In addition to the federal incentive governed by the Green Electricity Act, some provinces (Lower Austria, Vienna, Burgenland, Styria and Carinthia) continued running their regional support in form of rebates on the costs of the PV system (investment subsidies) in 2010. Due to the complex nature of the incentives and the data provided, only a rough estimate for the total funds spent by the provinces can be given.
3 INDUSTRY AND GROWTH

3.1 Production of feedstocks, ingots and wafers

No production facilities for silicon feedstock or wafers existed in Austria in 2010.

3.2 Production of photovoltaic cells and modules

Compared to the important increase of the installed capacity in 2010 the Austrian PV industry could keep pace in terms of production. In total, Austrian module manufacturers had to register a growth of their output compared to the previous year. The total module production in 2010 amounted to 111,6 MW. Compared to 60,9 MW in 2009 this figure represents an increase of 83,2% (see Figure 2). At the same time, the export rate of Austrian modules increased by 58,1%.

Looking at the total cell production of 2010 a share of 15,4% consisted of polycrystalline cells, 84,6% of monocrystalline cells.

Currently the following Austrian companies are involved into the production of PV-modules, or inverters, namely:

AT&S used their knowledge as European market leader and one of the world's strongest performing PCB manufacturers and transferred it into the PV segment. The outcome is, that AT&S installed a 40 MW automated manufacturing line for conductive backsheet foils which will be the base for every backcontact technology module manufacturer. In addition, AT&S offers specific solutions of PV modules for all types of applications (ex.: triangles; colorized; semitransparent; personalized, etc.).

Crystalsol is developing a new type of flexible photovoltaic module with a significant versatility and cost advantage, compared to currently known photovoltaic technologies. Crystalsol's first product will be a low cost semi-finished photovoltaic film for the building integration market. The core innovation is the light absorbing layer made of a patented new crystalline semiconductor powder and the low-cost roll-to-roll production process. For this innovative technology development, Crystalsol received the Austrian State Award Environmental and Energy Technology 2010.

Since 2004, **Energetica** has been producing high quality PV modules with sophisticated technology and attractive design at its own production facility. The core competences are clearly defined as producer of PV-modules, system provider and project contractor.

Since the beginning of 2010, the **Ertex Solartechnik GmbH** is an independent company with the main investor ERTL Glas. Their main product is the laminated safety glass module (VSG) which can be also easily assembled to insulating glass. In 2010, **ertex solar** realized projects mainly in Austria, Germany and France, and also in overseas countries such as Singapore or Mexico. Beside the VSG, ertex solar also implemented their INTEVO, a roof system which provides energy and water tightness.

Powerquant Photovoltaics is a manufacturer of photovoltaic modules with silicon solar cells. Multicrystalline silicon solar cells with diagonal busbars and optimized finger grid allow unique design for individual solutions of building-integrated photovoltaics. This type of solar cells is uniquely produced for Powerquant by leading European solar cell manufacturers.
Polycrystalline silicon solar cells with optimized rectangular format are used for higher performance modules.

PVT Austria Photovoltaik Technik GmbH, is the first manufacturer of PV modules in Austria, since 2001. PVT produces standard and tailored modules from mono and multicrystalline silicon solar cells. The company successfully ramps up their production capacity to 50 MWp per year, trend increasing.

SED ProduktionsgesmbH, focuses on the production of PV-roof tiles and small size modules for BIPV applications. The custom laminates produced are directly stuck into standard format tiles made of recycled plastic and can easily replace conventional roofing materials. SED also manufactures PV elements for noise barrier walls. The glassless flexible laminates are mounted on aluminium carriers and fit all custom noise barrier types. Most of the modules produced include cells imported from various countries, such as Germany, Spain, the U.S., Taiwan, China and others. Virtually, the whole production is exported.

![Domestic PV-Module Production in MW](image)

Figure 2: Development of domestic PV module production in Austria since 2003; Data source / graph: Technikum Wien/AIT

Since 2008 there are first companies which started industrial scale production of solar cells.

Blue Chip Energy produces high efficient monocrystalline solar cells with a yearly capacity of 87 MWp. Currently, approximately 140 employees are working in the company. Besides cell production, Blue Chip Energy offers complete solutions in the field of photovoltaics and photovoltaics integrated solutions; e.g., the "Energy Efficient Greenhouse."

Falconcell Productions GmbH is the first manufacturer of high quality multicrystalline silicon solar cells in Austria. Founded in 2006, Falconcell began operations in 2007 with a production capacity of 30 MWp.

Powerquant Photovoltaik GmbH, a spin-off of Technical University of Vienna recently started a pilote production for specific design modules with polycrystalline siliconium-based
solar cells for individual and optically appealing solutions of building-integrated photovoltaics.

Several companies are performing solar cell R & D and are running pilot productions:

Due to the intensive investigation of thin-film Organic Solar Cells at the Johannes Kepler University, Konarka Technologies, a US based PV-company is operating a Research and Development centre in Linz.

Sunplugged, based in Tyrol, is developing a new type of flexible CIGS Cells. Energy supply for efficient cooling systems on commercial vehicles will be one specific application of this new development. Besides PV module and cell production, various other companies are manufacturing components for modules and BOS components, such as batteries, inverters, cell-wiring or mounting systems.

Total PV cell and module manufacturing in Austria for 2010 together with production capacity information is summarised in Table 5 below.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cell</td>
<td>Module</td>
<td>Cell</td>
</tr>
<tr>
<td>Wafer based PV cell manufactures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BlueChip Energy</td>
<td>sc-Si</td>
<td>55 (3,5)</td>
<td>-</td>
</tr>
<tr>
<td>FalconCell</td>
<td>mc-Si</td>
<td>10 (4)</td>
<td>-</td>
</tr>
<tr>
<td>Wafer-based PV module manufactures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hilber Solar GmbH</td>
<td>mc-Si / sc-Si</td>
<td>-</td>
<td>13,5 (14)</td>
</tr>
<tr>
<td>PVT Austria</td>
<td>mc-Si / sc-Si</td>
<td>-</td>
<td>35 (15)</td>
</tr>
<tr>
<td>Energetica Holding GmbH</td>
<td>mc-Si</td>
<td>-</td>
<td>17 (17)</td>
</tr>
<tr>
<td>KIOTO Photovoltaics</td>
<td>mc-Si</td>
<td>-</td>
<td>45 (17)</td>
</tr>
<tr>
<td>ERTEX Solar</td>
<td>mc-Si / sc-Si /a-Si</td>
<td>-</td>
<td>1 (0,78)</td>
</tr>
<tr>
<td>SED</td>
<td>mc-Si / sc-Si</td>
<td>-</td>
<td>0,086 (0,113)</td>
</tr>
<tr>
<td>Powerquant</td>
<td>mc-Si</td>
<td>-</td>
<td>N/A (0,011)</td>
</tr>
<tr>
<td>Thin film manufacturers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystalsol</td>
<td>a-Si</td>
<td>-</td>
<td>No data (no production 2010)</td>
</tr>
<tr>
<td>Cells for concentration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTALS (estimates)</td>
<td>65 (7,5)</td>
<td>111,6 (60,1)</td>
<td>N/A</td>
</tr>
</tbody>
</table>
3.3 Module prices

Table 6 indicates the typical module prices for the year 2010 as quoted by the manufacturers and installation companies. The price range reflects the prices for different module types for typical orders (5+ kW).

Compared to the previous years, module prices of manufacturers rose in 2010. The average wholesale price in 2010 was 1,958 EUR/W (2009: 2,175 EUR/W), the average sales-price of Austrian PV module producers was 3,05 EUR/W (2009: 2,272 EUR/W).

<table>
<thead>
<tr>
<th>Table 56: Typical module prices for a number of years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
</tr>
<tr>
<td>Standard module price(s): Typical (EUR/W)</td>
</tr>
<tr>
<td>Best price (EUR/W)</td>
</tr>
<tr>
<td>PV module price for concentration (EUR/W)</td>
</tr>
</tbody>
</table>
3.4 Manufacturers and suppliers of other components

Besides PV-Module and cell production, various other companies are manufacturing components for modules and BOS-components like batteries, inverters, cell-wiring or mounting systems.

Austria has a long tradition as one of the largest inverter producing countries in Europe. Again the large manufacturers could extend their output in 2010 following the overall expansion of the world-wide PV market. In total inverters (2009: 146 000 pieces) with a capacity (rated AC output capacity) of approximately 1 400 MW (2009: 1 000 MW) were produced. The increased power of inverters is highlighting the international trend towards larger system sizes.

Fronius International has developed and produced inverters for grid-connected PV systems since 1994. With a current production capacity of approx. 2,000 MW of inverter power, Fronius is among the top 3 inverter manufacturers in the world. The company has sales subsidiaries in 13 countries such as Australia, Germany, Italy, France, Turkey and USA.

Besides inverter manufacturing, Austria hosts some of the largest manufacturers of specialised BOS and other components for the production of PV modules.

ISOVOLTAIC AG is the global market and technology leader in the development and production of backsheets for photovoltaic modules. It has 25 years of experience in the production of high-quality composite protective sheets for solar cells - the well-established ICOSOLARR backsheets.

HILBER SOLAR GmbH: Based on 20 years’ experience in the development, production and implementation of solar technology and with more than 180 MW in total installations, HILBER SOLAR is currently launching its new product family “SOLWING.” After starting with SOLWING T, a new, multi-axis tracking system which for the first time is designed for private, commercial and industrial customers, further cutting-edge solutions will follow.

Ulbrich of Austria is manufacturing string- and buswires for PV cells and modules; with a total capacity of more than 1 GW.

PLANSEE SE in Tyrol is a subsidiary of the PLANSEE Group manufacturing refractory metals for diverse applications; more particularly metallic targets for thin film solar cells.

HEI Solar Light GmbH is the leading Austrian Energy Technology Company specialised in developing and manufacturing, stand-alone solar LED lighting systems. hei solar light™ shapes a minimalist design together with innovative technology into a uniform and integrated whole. The company started production in 2007 and is rapidly expanding fabrication facilities. At present, their main achievement is the Installation of decorative and efficient solar lights for the outdoor lighting of Masdar City, located in the United Arab Emirates.

Lisec Maschinenbau GmbH provides fully automatic production lines for any kind of PV modules based on the Lisec encapsulation technology, which benefits from 50 years of experience in the production of insulating glass. The tempered thin glass used for the glass-glass modules guarantees more robust, absolutely diffusionproof and highly efficient PV-modules.

PTS Production Technology Systems in Klagenfurt offers complete turnkey module production systems with their “string@once” technology.
Austrian Institute of Technology, Energy Department, (formerly arsenal research) is known as internationally accredited PV module test institute for crystalline modules (since 2003) according to the IEC/EN 61215, and for thin film modules, according to the IEC/EN 61646 and module safety qualification according to the EN 61730. Another industry related activity at the AIT are PV inverters, in particular their performance (MPP, efficiency aspects) and their grid compatibility (Control, Fault-Ride-Through). The AIT PV inverter laboratory attracts worldwide inverter manufacturers for collaboration.

3.5 System prices

In 2010, turnkey prices for installed PV systems fell slightly compared to the previous years. However, the reduction was still low, following the continued high demand of the European PV market and the stringent supply of PV modules on the world market.

In 2010 turnkey prices for typical on-grid systems varied between 3,2 EUR/W and 4,2 EUR/W, depending on the used PV-technology, size and type of the installation.

The according figures for typical PV applications are shown in Table 5. The considered installations are domestic rooftop systems.

Remark: Prices for specific building integrated systems are typically considerably higher and depend on the specific case. They are not reported here.

A summary of typical system prices is provided in the following tables.

<table>
<thead>
<tr>
<th>Table 6: Turnkey Prices of Typical Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category/Size</td>
</tr>
<tr>
<td>OFF-GRID Up to 1 kW</td>
</tr>
<tr>
<td>OFF-GRID >1 kW</td>
</tr>
<tr>
<td>On-Grid 1 kW</td>
</tr>
<tr>
<td>ON-GRID Specific case</td>
</tr>
<tr>
<td>ON-GRID 10 kW</td>
</tr>
<tr>
<td>ON-GRID >10 kW</td>
</tr>
<tr>
<td>GRID – CONNECTED (centralized, if relevant)</td>
</tr>
</tbody>
</table>

Prices do not include VAT. All figures are estimated based on information provided by installation companies.

*) For off-grid systems prices vary widely depending on the application (DC appliances or AC island grid) and the mounting-site.

Table 7a shows the development of turnkey prices (excluding VAT) for a typical residential, grid-connected roof-mounted system with a power of 2 kW to 3 kW (now 5 kW) since 2001.
Table 7a: National trends in turnkey system prices (EUR/kW) for a typical grid connected PV system

<table>
<thead>
<tr>
<th>YEAR</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnkey price EUR/kW:</td>
<td>7 500</td>
<td>7 000</td>
<td>6 000</td>
<td>5 500</td>
<td>5 500</td>
<td>5 400</td>
<td>5 400</td>
<td>5 100</td>
<td>4 900</td>
<td>3 600</td>
</tr>
</tbody>
</table>
3.6 Labour places

With the continued expansion of their business Austrian PV manufacturers again significantly extended their workforce in 2009. In total it can be estimated that at the end of 2010 4,414 full-time jobs (2009: 2,870 jobs) were directly linked to PV R&D, manufacturing and installation in Austria.

In the various sectors the following figures (Table 7, Table 8) represent an estimation of existing work places, based on information from the manufacturing companies and R&D institutions.

Table 78: Estimated PV-related labour places in 2010

<table>
<thead>
<tr>
<th>Category</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research and development (not including companies)</td>
<td>111</td>
</tr>
<tr>
<td>Manufacturing of products throughout the PV value chain from feedstock to systems, inverter technologies, including company research</td>
<td></td>
</tr>
<tr>
<td>System and installation companies</td>
<td>4,303</td>
</tr>
<tr>
<td>Utilities and government</td>
<td>N/A</td>
</tr>
<tr>
<td>Other</td>
<td>N/A</td>
</tr>
<tr>
<td>Total</td>
<td>4,414</td>
</tr>
</tbody>
</table>
3.7 Business value of installation

The average specific price of a grid-connected photovoltaic plant in Austria decreased from 4,400 Euro/kW to 3,600 Euro/kW, i.e. a reduction of 16%. This observation confirms a high economic learning rate, which is highly correlated to the strongly increasing world market. Austrian photovoltaic R&D is conducted in thin layer technology, grid integration and building integration and especially the latter can represent a very attractive market segment for future development of the Austrian photovoltaic industry.

In 2010 about 42.9 MW (2009: 20.2 MW) of PV systems were installed in Austria which represents an important growth and led to a cumulated total installed capacity of 95.5 MWpeaks. As a consequence the sum of produced renewable electricity by PV plants in operation amounted to 88.8 GWh in 2010.

The estimated value of the national installation market increased to about 155 MEUR (2009: 87.56 MEUR), based on average turnkey prices for off-grid and grid connected systems.

Due to the variety of PV related products manufactured by Austrian industry, no reliable estimation can be provided for the import/export and business value of these products.

Table 9 provides an overview on the estimated value of PV business in Austria, total Export and Import of PV products as well as the domestic market.

<table>
<thead>
<tr>
<th>Sub-market</th>
<th>Capacity installed in 2010 (MW)</th>
<th>Price EUR/W (from table 7)</th>
<th>Value (MEUR)</th>
<th>Totals (MEUR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-grid domestic</td>
<td>0.207</td>
<td>6.5 (4-9.1)</td>
<td>1.35</td>
<td>1.35</td>
</tr>
<tr>
<td>Off-grid non-domestic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid-connected distributed</td>
<td>42.7</td>
<td>3.6</td>
<td>153.7</td>
<td>153.7</td>
</tr>
<tr>
<td>Grid-connected centralized</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>42.9</td>
<td>3.6</td>
<td>155.06</td>
<td></td>
</tr>
</tbody>
</table>

Export of PV products (including information from Tables 4 & 5) N/A
Change in stocks held (including information from Tables 4 & 5) N/A
Import of PV products (including information from Tables 4 & 5) N/A

Value of PV business N/A
4 FRAMEWORK FOR DEPLOYMENT (NON-TECHNICAL FACTORS)

Table 9 lists the main support measures (definitions at start of guidelines) for PV which have been effective during 2010 in Austria. Further details on these are to be provided on the following pages.

Table 9: PV support measures

<table>
<thead>
<tr>
<th>Measures that commenced during 2010</th>
<th>On-going measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced feed-in tariffs</td>
<td>National level, Green Electricity Act</td>
</tr>
<tr>
<td>Capital subsidies for equipment or total cost</td>
<td>In selected (5 out of 9) provinces. National level: Short-term initiatives</td>
</tr>
<tr>
<td>Green electricity schemes</td>
<td>Various</td>
</tr>
<tr>
<td>PV-specific green electricity schemes</td>
<td>UZ46, green electricity scheme established on the national level.</td>
</tr>
<tr>
<td>Renewable portfolio standards (RPS)</td>
<td>-</td>
</tr>
<tr>
<td>PV requirement in RPS</td>
<td>-</td>
</tr>
<tr>
<td>Investment funds for PV</td>
<td>-</td>
</tr>
<tr>
<td>Income tax credits</td>
<td>-</td>
</tr>
<tr>
<td>Net metering</td>
<td>Selected DNOs</td>
</tr>
<tr>
<td>Net billing</td>
<td>-</td>
</tr>
<tr>
<td>Commercial bank activities e.g. green mortgages promoting PV</td>
<td>-</td>
</tr>
<tr>
<td>Electricity utility activities</td>
<td>-</td>
</tr>
<tr>
<td>Sustainable building requirements</td>
<td>-</td>
</tr>
</tbody>
</table>

Until today public support schemes for PV in Austria have been mainly characterized by discontinuity:

The Austrian Photovoltaic Industry is composed of mainly internationally acting production companies which could perform also in 2010 quite well; Traditional export rates of the individual production companies are frequently 90 % or even more, because the home market is still small, even though the on-going increase since 2009 might be a step to a larger home-market.

The public support schemes are more or less continuously under discussion and experience a yearly change which allows private users and investors only short time planning.

The total available budget for supporting PV Systems generally addresses only a small amount of the huge number of prospective buyers of PV systems in Austria.

Austria has mainly three levels of supporting PV systems. Different from other countries, the feed-in-tariff system will only be responsible for the minor part of the supported PV systems in Austria:

- Feed-in Tariff is provided via the national green-electricity act (GEA), firstly issued in 2002, and meanwhile revised several times. Even though the “new RES” are supported by this act, mainly via up to 13 years guaranteed feed-in tariffs, the
financial cap (current regulation: new PV-installations leading to another expenses of 2,1 MEUR per year) is low. The feed in tariffs are stated by the Federal Ministry for Economics and financed by a supplementary charge on the net price and a fixed price purchase obligation for electricity dealers. At the end of 2010, the Ministry published to increase this amount, however, not backed by concrete numbers. A significant change of the public support for PV installations (in order to match leading photovoltaic markets) as well as for other "new renewables" (Austria has about 60 % electricity from large hydro) will also most probably not be achieved within the upcoming year. Photovoltaic-Feed-in-tariffs for new installations are defined on a yearly basis in a separate Feed-in Decree. According to the 2010 Feed-in Decree tariffs ranged from 38 €Cent/kWh for installations above 5 kWp down to 25 €Cent/kWh for >20 kWp systems:

<table>
<thead>
<tr>
<th>System Type</th>
<th>2006 (€cent/kWh)</th>
<th>2007 (€cent/kWh)</th>
<th>2008 (€cent/kWh)</th>
<th>2009 (€cent/kWh)</th>
<th>2010 (€cent/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 5 kW<sub>peak</sub></td>
<td>49</td>
<td>46</td>
<td>45,99</td>
<td>45,98</td>
<td>-</td>
</tr>
<tr>
<td>above 5 kW<sub>peak</sub> up to 10 (20) kW<sub>peak</sub></td>
<td>42</td>
<td>40</td>
<td>39,99</td>
<td>39,98</td>
<td>(35 – 38)</td>
</tr>
<tr>
<td>above 10 (20) kW<sub>peak</sub></td>
<td>32</td>
<td>30</td>
<td>29,99</td>
<td>29,98</td>
<td>(25 – 33)</td>
</tr>
</tbody>
</table>

- Systems up to 5 kW are supported by the also limited sources of the governmental Austrian Climate and Energy Fund. This public initiative launched once a year, will support only small systems (private households) and was opened for the first time in August 2008 by one tender with a total budget of about 10 MEUR. In 2009, the budget was doubled leading to about 7-8 MW of PV installations. In 2010, 35 MEUR might have led to an estimated 20 MW of installations since the support per kW installation was reduced significantly according to the lower PV prices. This support scheme provides additional financial benefits to building integrated systems (BIPV).
- Besides that, some regions provide PV support budgets as well. Especially the province of Lower Austria provided significant means in 2009 and 2010, but has more or less stopped this support at the end of 2010.

However, these various initiatives, leading to some ten Megawatts per year are, by many PV stakeholders, not seen as appropriate basis to seriously and continuously introduce PV as a significant source of electricity into the energy system. The Austrian Photovoltaic Association announced 8 % of total electricity by PV to be realistic until 2020, if the support system will become more reliable and some framework conditions will be changed accordingly. At the end of 2010, about 0,1 % of the total electricity was provided by photovoltaics.

The Federal Ministry of Economy, Family and Youth, as well as the Federal Ministry of Agriculture, Forestry, Environment and Water Management, managed an energy strategy process involving more than 100 experts in order to derive a strategy in compliance with the European 20-20-20 targets; to achieve the 34 % renewable target for Austria until 2020. Currently Austria stays with 30 % in 2009, making 34 % in 2020 a quite easy target.
4.1 Indirect policy issues

As in most of the other countries, the reduction of greenhouse gas emissions according to the targets of the Kyoto-Protocol is the major indirect policy issue for the deployment of RES. For Austria the reduction target is 13% from today's 7.6 tons per capita and year towards around 6.6 tons per capita and year in 2010. The starting point for evaluating the energy yield and the CO$_2$ reduction by installed PV power is the cumulated installed capacity of 95,498 kWp in the year 2010. Further the emission coefficient of the substituted electrical energy of 431,8 gCO$_2$äqu/kWh is considered and the number of full load operation taken from literature (Fechner et al., 2007). The calculated electricity generated by cumulated Austrian PV installations is 88,8 GWh. Based on these values a CO$_2$ reduction potential of 38,349 tons of CO$_2$equ. can be established.

On the European Union (EU) level, increasing the share of renewable energy for electricity generation has a high priority. In this context, the “Directive on the promotion of electricity produced from RES (RES-E Directive)” was published in September 2001 by the European Commission. The goal set in the directive is to increase the share of RES-E in the European Union to 22.1 % until 2010. For Austria the individual target is to reach a share of 78,1 % of electricity from RES. However, currently only 65% of the electricity demand in Austria is covered by RES.

Furthermore, the European 20-20-20 targets are set for the share of RES in the total energy consumption. For Austria, this target has been set to 34% in 2020.

The Austrian Ministry of Transport, Technology and Innovation ordered a revision of the existing national PV technology roadmap in order to explicitly address the 2020 targets.

The revised roadmap was introduced into this process in early December 2009. In this new roadmap, two realistic but ambitious targets were worked out, reaching 5% respectively 8% of the total Austrian electricity consumption to be covered by photovoltaics in 2020, provided the frame conditions will be changed immediately.

4.2 Standards and codes

Generally European PV Standards are likewise applied in Austria. Grid-interconnected PV applications are covered in detail by the new national standard ÖVE E8001-4-712 published in December 2009 (Formerly ÖNORM/ÖVE E 2750), which defines all safety relevant aspects regarding planning, installation, grid-interconnection, requirements for components and operation of grid connected PV installations.

5 HIGHLIGHTS AND PROSPECTS

By far the largest share of the Austrian PV production is exported to those European Union countries, where attractive and stable incentives created a substantial market for PV. In spite of the consequences of the economic crisis and the drop of photovoltaic installations in Spain it is expected that an ongoing positive development of the international PV market will provide the basis for growth of the Austrian PV manufacturers and will help to strengthen the position of Austria as an important supplier of components for PV systems.

New industry activities in the field of cell production and further extension of module production and product portfolio clearly document this trend.
5.1 Stakeholder initiatives and awareness raising

The federal association Photovoltaic Austria is a corporate, non party association with the aim to improve the framework conditions for photovoltaics implementation in Austria. They have significantly expanded their activities by creating a national network for dissemination of information on PV and initiating awareness raising activities. By fostering political contacts, intensive political lobbying work and press coverage, the association aims at initiating stable and supportive PV market conditions, preferably based on feed in tariffs.

By the end of 2010, more than 120 companies and people involved in the PV business were members of the Association.

The annual National Photovoltaic Conference 2010 (a three days event), organised by some of the main PV stakeholders and supported by the Ministry of Transport, Innovation and Technology, was once again a great success, with more than 350 experts participating. This conference is established as THE annual come together of the Austrian PV stakeholders.

5.2 Market & deployment initiatives

When looking at the domestic market, the situation of PV in Austria remains unsatisfactory mainly because of the complex, unstable and primarily insignificant frame conditions. The 2006 revision of the main nationwide framework, the Green Electricity Act (GEA) currently in force does not provide any substantial support for PV and does not improve the situation in comparison to the period before. A new revise is just underway.

The “new RES” are supported by the GEA, mainly via up to 13 years guaranteed feed-in tariffs which are stated by the federal Ministry for Economics and financed by a supplementary charge on the net-price and a fixed price purchase obligation for electricity dealers.

These feed-in-tariffs are exclusively valid for systems > 5kW. Systems up to 5kW can apply for investment cost funding through the Austrian Climate and Energy Fund. This support initiative, launched once a year, will support small systems (private households) and was opened for the first time in August 2008 by one tender with a total budget of about 10 MEUR. The effect was the installation of about 900 PV Systems with a total of about 4 MW. In 2009, the budget was doubled leading to about 7-8 MW of PV installations. The budget in 2010 with 35 MEUR might lead to an estimated 20 MW of installation, even though installed partly in the years 2011 and 2012, since the time frame for installing the system is up to two years after positive decision. This support scheme provided additional financial benefits to building integrated systems (BIPV).
ANNEX A: REFERENCES, METHODS AND ACCURACY OF DATA

The market statistics on installed capacity, share of grid-connected and off-grid applications as well as the industry data have been collected by Natalie Prüggler, Hubert Fechner and Andreas Galosi, University of Applied Science Technikum Wien, under the coordination of Peter Biermayr, TU Wien by order of the Federal Ministry for Transport, Innovation and Technology (BMVIT).

The data on installations have been provided by funding organisations on the federal as well as provincial levels. In the annual report ("Innovative Energietechnologien in Österreich, Marktentwicklung 2010") PV applications are divided into off-grid installations and grid-connected systems (including centralised and distributed systems). No further breakdown is made in the study between centralised and distributed systems. Therefore the share of grid-connected centralised systems had to be determined by summarizing all large PV-installations which are dedicated as power-plants.

With the establishment of the organisation managing the feed-in tariff scheme, all statistics on renewable energy installations funded under the feed-in tariff scheme are now reported by OeMAG. Data on the total amount of budget spent for PV feed-in tariffs is provided by OeMAG. However, as a considerable share of new PV installations is installed outside this feed-in tariff framework, data on these systems, which are supported by regional initiatives or other programs, are not included in the national Energy Statistics, since the capacity of these installations is below 1 MW. Thus the installations reported by OeMAG do not provide a complete picture of the situation in Austria.

The uncertainty of the figures related to the installed capacity is estimated to be about ± 10%.

Industry data on actual production, production capacity, workforce, new products, prices and other market figures is based on information provided by manufacturers, and installation companies. An estimation of the accuracy of these data cannot be provided.
ANNEX B: COUNTRY INFORMATION

This annex provides some background about the national environment in which PV is being deployed. The data are not guaranteed to be 100% accurate nor intended for analysis, and the reader should do their own research if they require more detailed data.

Electricity in Austria 2008/2009 (Source: VEÖ Association of the Austrian Electricity companies, Statistik Austria)

General data about Austria:
- Territory: 83,850 km²
- Inhabitants (2009): 8,365,505
- Domestic electricity consumption (excl. PS) (2008): 67,918,6 GWh
- Electricity consumption per inhabitant (2008): 8,23 MWh/year
- Domestic electricity generation (2008): 64,283,4 GWh

Number and capacity of power plants installed 2009 (including estimations):
- 673 (5,241 MW) run-of-river plants
- 107 (7,205 MW) pumped-storage plants
- 2,589 (12,665,1 MW) (estimated) other hydro-power plants
- 614 (7,388,4 MW) (estimated) thermal power plants
- 4,880 (1,031,4 MW) (estimated) other power plants (wind, PV...)

Number of network levels: 7
- Levels 1-3: high and ultra-high voltage
- Levels 4-5: medium voltage
- Levels 6-7: low voltage

1) retail electricity prices (2009)

<table>
<thead>
<tr>
<th></th>
<th>Net-price</th>
<th>Energy tax</th>
<th>VAT</th>
<th>Total taxes</th>
<th>Final price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EUR/kWh</td>
<td>EUR/kWh</td>
<td>EUR/kWh</td>
<td>EUR/kWh</td>
<td>EUR/kWh</td>
</tr>
<tr>
<td>Electricity price</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(Industry)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity price</td>
<td>0,13</td>
<td>0,02</td>
<td>0,03</td>
<td>0,05</td>
<td>0,18</td>
</tr>
<tr>
<td>(household)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Statistik Austria
2) Typical annual household electricity consumption 2009:
 4518-5756 kWh (3-person household, Source Statistik Austria www.statistik.at)

3) Typical metering arrangements and tariff structures for electricity customers (for example, interval metering? time-of-use tariff?)
 For normal households: Typically fixed tariff (no time-of-use) or day/night time dependent tariff.

4) Typical household income:
 29.849 EUR per year (2009 data) – according to EU SILC 2009 (Source Statistik Austria www.statistik.at)

5) Typical mortgage interest rate:
 N/A

6) Voltage (household, typical electricity distribution network)
 Single phase 230 V, 3 phase 400 V; 50 Hz;
 Electricity networks structured in Transmission (220 kV – 400 kV), sub-transmission (110 kV), medium voltage distribution (10 kV – 30 kV), and low voltage distribution (400 V)

<table>
<thead>
<tr>
<th>Net-price</th>
<th>Energy tax</th>
<th>VAT</th>
<th>Total taxes</th>
<th>Final price</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUR/l</td>
<td>EUR/l</td>
<td>EUR/l</td>
<td>EUR/l</td>
<td>EUR/l</td>
</tr>
<tr>
<td>Diesel fuel (private use)</td>
<td>0,43</td>
<td>0,39</td>
<td>0,20</td>
<td>0,55</td>
</tr>
</tbody>
</table>

 Source: Statistik Austria www.statistik.at

8) Typical values of kWh / kW for PV systems in parts of your country
 850 kWh/kWp to 950 kWh/kWp
 Source: Authors estimation.