

ÎП

III

....

....

1

Ini Hami

m

Compared assessment of selected environemental indicators of photovoltaic electricity in OECD cities

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

Report IEA-PVPS-T10-01:2006

INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

COMPARED ASSESSMENT OF SELECTED ENVIRONMENTAL INDICATORS OF PHOTOVOLTAIC ELECTRICITY IN OECD CITIES

IEA PVPS Task 10, Activity 4.4

Report IEA-PVPS T10-01:2006

May 2006

This technical report has been prepared under the supervision of PVPS Task 10 by: Bruno Gaiddon and Marc Jedliczka, Hespul, Villeurbanne, France; in co-operation with Task 10 experts from: United States, Portugal and Denmark

The compilation of this report has been supported by the French Agency for Environment and Energy Management, ADEME

Contents

Forev	vord	4
Introd	luction	5
Execu	utive Summary	6
1 D	efinitions, methodology and assumptions	7
1.1	Definition of Urban Scale Photovoltaic Systems	7
1.2	Definition of indicators used	
1.3	Detailed methodology	
1.4 1.4 1.4 1.4 1.4	Assumptions and source of data 4.1 Annual energy output 4.2 Energy input 4.3 PV systems lifetime 4.4 CO ₂ content of electricity mix	10 10 10 10 11 12
1.5	Selected cities	13
2 0	verall results	14
2.1	Energy Pay-Back Time (EPBT)	14
2.2	Energy Return Factor (ERF)	
2.3	Potential for Greenhouse Gases Emissions Mitigation	15
3 R	esults by country	17
3.1	Results template	17
3.2	Results for Australia	
3.3	Results for Austria	
3.4	Results for Belgium	20
3.5	Results for Canada	21
3.6	Results for the Czech Republic	22
3.7	Results for Denmark	23
3.8	Results for Finland	24
3.9	Results for France	25
3.10	Results for Germany	26
3.11	Results for Greece	27
3.12	2 Results for Hungary	28
3.13	B Results for Ireland	29
3.14	Results for Italy	
3.15	6 Results for Japan	
3.16	8 Results for the Republic of Korea	32

3.17	Results for Luxembourg	33
3.18	Results for the Netherlands	34
3.19	Results for New Zealand	35
3.20	Results for Norway	36
3.21	Results for Portugal	37
3.22	Results for Spain	38
3.23	Results for Sweden	39
3.24	Results for Switzerland	40
3.25	Results for Turkey	41
3.26	Results for The United Kingdom	42
3.27	Results for the United States	43
4 Re	eferences	44
5 Ar	inexes	_ 45
Anne	ex A : Annual energy output	45
Anne kWh	ex B : Share of electricity generation by fuel and estimated Greenhouse Gases emissions generated	per 47
Anne	ex C : Energy Payback Time (EPBT)	49
Anne	ex D : Energy Return Factor (ERF)	51
Anne	ex E : Potential of photovoltaic systems for Greenhouse Gases Mitigation	53

Foreword

The International Energy Agency (IEA), founded in November 1974, is an autonomous body within the framework of the Organization for Economic Cooperation and Development (OECD) which carries out a comprehensive programme of energy co-operation among its member countries. The European Commission also participates in the work of the IEA. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative R & D Agreements established within the IEA. Since 1993, the PVPS participants have been conducting a variety of joint projects in the application of photovoltaic conversion of solar energy into electricity.

The mission of the Photovoltaic Power Systems Programme is "to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy as a significant and sustainable renewable energy option". The underlying assumption is that the market for PV systems is gradually expanding from the present niche markets of remote applications and consumer products, to the rapidly growing markets for building-integrated and other diffused and centralised PV generation systems.

The overall programme is headed by an Executive Committee composed of one representative from each participating country, while the management of individual research projects (Tasks) is the responsibility of Operating Agents. By the end of 2005, ten Tasks were established within the PVPS programme.

The objective of Task 10 is to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics (PV) in the urban environment as part of an integrated approach that maximizes building energy efficiency and solar thermal and Photovoltaics usage. The Task's long term goal is for urban-scale PV to be a desirable and commonplace feature of the urban environment in IEA PVPS member countries.

This technical report has been prepared by Bruno Gaiddon and Marc Jedliczka, Hespul, Villeurbanne, France under the supervision of PVPS Task 10 and in co-operation with the experts of the following countries: Christy Herig, Operating Agent, Segue Energy Consulting, Redington Shores, United States of America, Maria Joâo Rodrigues, Centre for Innovation Technology and Policy Research, Lisbon, Portugal and Kenn H.B. Frederiksen, EnergiMidt A/S, Braedstrup, Denmark and with the help of Erik A. Alsema, Copernicus Institute of Sustainable Development and Innovation, Utrecht, The Netherlands.

The report expresses, as nearly as possible, the international consensus of opinion of the Task 10 experts on the subjects dealt with.

Further information on the activities and results of the Task can be found at: http://www.iea-pvps-task10.org and http://www.iea-pvps.org.

Introduction

Photovoltaic (PV) based electricity production is pollution-free at the local as well as the global level, it does not emit greenhouse gases, it does not dip into finite fossil fuel resources and it can be easily integrated into the urban environment, close to major consumption needs.

Photovoltaic systems are therefore among the most efficient means to reduce the use of "conventional electricity" - i.e. made from hydrocarbon - and their negative impacts on the environment.

However, prior to producing electricity, manufacturing and installing PV systems and later on dismantling and recycling them require spending a certain amount of energy, which must be "reimbursed" before PV can be considered as renewable and clean.

Although the qualification of photovoltaics as a renewable energy has long been considered as definitively unquestionable among the "PV community" worldwide, there are still rumours circulating here and there about the actual capability of PV to reimburse its "embedded energy" content.

Based on the latest available scientific publications at the time of writing, the main objective of the present study is to provide clear and well-documented answers to politicians, decision-makers and the general public about what PV can and cannot achieve.

Through this publication, the authors hope to contribute to a better understanding of PV potential by closing the debate on an unjustified controversy and by providing clear and useful information to all interested people, most importantly to national and local decision-makers in OECD countries, who will inevitably have to deal with PV in the coming years considering its huge potential for deployment at large scale on the short to medium term.

Executive Summary

Photovoltaic (PV) based electricity production is pollution-free at the local as well as the global level, it does not emit greenhouse gases, it does not dip into finite fossil fuel resources and it can be easily integrated into the urban environment, close to major consumption needs. However, prior to producing electricity, manufacturing and installing PV systems and later on dismantling and recycling them require spending a certain amount of energy, which must be "reimbursed" before PV can be considered as renewable and clean. The purpose of this report is to provide clear and well-documented answers to politicians, decision-makers and the general public about what PV can and cannot achieve in terms of renewable, clean energy production and environmental protection.

The conclusion of this study is that, depending on the location, rooftop-mounted PV systems produce the amount of energy so as to recover their energy content from manufacturing and recycling in the range of 1.6 to 3.3 years and produce during their energy production period or service life between 17.9 and 8 times their initial energy content. Once they have reimbursed their initial energy input, rooftop-mounted PV systems can avoid, during their lifetime, the emission of up to 40 tons of CO_2 depending on their location and on the local electricity mix available.

Results for PV facades are logically slightly worse than for roof-top PV systems since they produce less energy for the same installed power. They produce the amount of energy to recover their energy content from manufacturing and recycling in the range of 2,7 to 4,7 years and produce during their service life between 10,1 and 5,4 times their initial energy content. Their contribution to CO_2 emissions mitigation can be up to 23 tons of CO_2 per kWp installed.

The first part of this report describes the methodology used for the calculation of two energy indicators, the "Energy Payback Time" (EPBT) and the "Energy Return Factor (ERF) and one environmental indicator, the potential for CO₂ emissions mitigation. All factors are dependant on the PV installation location. EPBT and ERF are calculated with the yearly energy production which depends on the amount of sun at a location and the environmental indicator depends on the local electricity mix. The performance of PV systems is therefore assessed on a country-by-country basis and even a city-by-city approach in larger countries where the potential for urban-scale integrated PV is highest, with a view to both better reflect the varying reality and to facilitate the use of the results at national and local levels. The global range for 41 main cities in 26 OECD countries are presented in the second section of the study and detailed results on a country-by-country - and city-by-city when relevant - basis are given in the third part. Finally, some indications of comparison and ranking between countries are given in annexes for the purpose of comparison of an individual country's performance amongst the others.

These figures clearly demonstrate how beneficial urban-scale PV systems are for reducing the use of highly polluting conventional energy sources and for contributing to improving the general efficiency of large cities wherever they are located worldwide. Country results can be used to raise the awareness of politicians and decision-makers at national level in order to accelerate the development and the deployment of PV technologies in a given country.

1 Definitions, methodology and assumptions

1.1 Definition of Urban Scale Photovoltaic Systems

For the purpose of this study, only grid-connected PV-systems that are made of mainstream components available on the market (standard multi-crystalline silicon modules and standard grid-tied inverters) and architecturally integrated in buildings are considered.

Since the tilt angle of the modules when installed has a significant impact on the annual energy output of the PV systems, and therefore on their environmental benefits, the two most common types of PV systems are considered:

- Rooftop-mounted systems with a tilt angle of 30° (see figure 1)
- PV façades with a tilt angle of 90° (see figure 2)

It is furthermore assumed that all PV systems are installed in the most favourable conditions, i.e. facing South and without any shade at any hour of the day in all seasons. Thus, results found for rooftop-mounted PV systems can be considered as optimistic values and results for PV façades as pessimistic values so that the environmental benefits of a broad range of PV systems, for instance not ideally oriented, can also be evaluated

Figure 1 - 131 kWp Solar PV Community in The Netherlands (source: Bear Architecten)

Figure 2 - 92 kWp Solar PV Community in France (source: ADEME)

1.2 Definition of indicators used

Consistent with the position of PV as an energy technology and with the fact that energy consumption is the major contributor to the environmental impacts of crystalline silicon PV [1], the study focuses on two energy indicators, the "Energy Pay Back Time" (EPBT) and the "Energy Return Factor" (ERF), and one environmental indicator considered as the most relevant indicator at global level (potential for CO_2 emissions), given the fact that it is assessed that the electricity produced by PV systems will substitute to the local energy mix composed mainly of conventional energy sources.

Energy indicators used are:

- the "Energy Pay Back Time" (EPBT), defined as the ratio of the total energy input during the system life cycle and the yearly energy generation during system operation, both should be of course expressed in the same unit, either in primary energy or in final electrical energy [1]. The EPBT is expressed in years,
- the "Energy Return Factor" (ERF) defined as the ratio of the total energy generation during the system operation lifetime and the total energy input during the system life cycle. An ERF equal to ten means that a PV system produces ten times more energy than it consumes throughout its life cycle. The ERF is expressed as a single figure with no unit.

The environmental indicator used is:

- the "Potential for CO₂ Mitigation" defined as the quantity of greenhouse gas emissions that will be avoided by a given PV system. It is calculated by multiplying the energy output of a PV system during its lifetime by the average CO₂ content of the local electricity mix (taken at national level). It is expressed in tons of CO₂ per kWp installed.

This last indicator of course makes sense only after PV systems have paid back their energy input.

Another approach adopted by some scientific studies is to consider the greenhouse gas content of PV systems themselves rather than their substitution potential as production facilities.

It has been decided not to assess this value in the framework of the present study because this is a task that must be performed separately for each manufacturer and even for each single factory, which is hardly compatible with the usual confidentiality of sensitive production data.

In addition this value does not depend only on the PV technology used, but also on the electricity mix of the different locations where the different components are manufactured, and this mix can change at any time when switching from one electricity supplier to another.

Finally this approach does not make much sense when considered at global level, simply leading to the irrelevant conclusion that PV components manufacturing should be concentrated where the electricity mix is carbon-free.

1.3 Detailed methodology

The main innovation of the present study lies in the assessment of the environmental benefits of PV systems for a broad range of specific locations where PV systems can be installed and produce electricity. The methodology used is divided into 7 steps:

- 1- Selection of a sample of cities representative of the area covered by IEA on a country-by-country basis, completed by a city-by-city approach in the largest countries with contrasted climates, provided that the potential for urban-scale integration of PV is significant enough. This resulted in a set of 41 main cities spread over 26 OECD countries
- 2- Calculation of the average annual energy production for each type of system (roof-top PV systems with a tilt angle of 30° and PV façades) in each city following the same protocol (same source of data and same software)
- 3- Comprehensive survey of the latest available scientific publications concerning the energy input of PV component manufacturing, focused on silicon technologies
- 4- Calculation of the EPBT for each system in each location
- 5- Calculation of the ERF for each system in each location
- 6- Evaluation of the average CO₂ content of the local electricity mix with the same source of data and the same protocol
- 7- Calculation of the Potential for CO₂ mitigation for each system in each location

1.4 Assumptions and source of data

1.4.1 Annual energy output

The annual energy output for each system at each location is estimated with the simplified conventional method:

$$E_{out}=H_i.P_o.PR$$
 [2]

With:

E_{out}: annual energy output in kWh/year H_i: global in-plane irradiation in kWh/m²/year P_o: nominal power of the photovoltaic system in kWp PR: Performance Ratio

The global in-plane irradiation is calculated with the global horizontal irradiation database Meteonorm 4.10 [3] and a conversion factor generated for each location with PVsyst 3.3 software [4] used to convert horizontal irradiation into in-plane irradiation (transposition factor). Although the Performance Ratio may vary from one location to the other, it is set at 75% for each system at each location, which is the average PR value observed by Task 2 - Performance, Reliability and Analysis of Photovoltaic Systems of the IEA PVPS program [5]. The annual energy output for each system in each location is given in annex A.

1.4.2 Energy input

Many scientific studies have been undertaken so far in view to assess the energy input necessary to manufacture a PV system. Most of them are now out-of-date and the conclusions are not relevant to modern photovoltaics. The Energy Input data used for this study comes from an up-to-date set of life-cycle inventories based on real, measured data from production lines of nine PV companies in Europe and the USA [6]. The Preliminary results of these up-dated data that have been published recently [7] for PV systems composed of multi-crystalline silicon modules are summarised in table 1.

Total system	29 327		
system	2 660		
Balance of			
Frame	1 061		
Laminate	25 606		
	[MJ/kWp]		
	Primary energy		
expressed in primary energy			

Table 1 – Energy input of current technology grid connected PV system expressed in primary energy

Energy input are expressed either in primary energy or in final electrical energy (see table 2), with the help of an average grid efficiency value, making it compatible with the annual electrical energy generated by the same PV system in operation for calculating EPBT and ERF.

Total system	2 525
Balance of system	229
Frame	91
Laminate	2 205
	Electrical energy [kWh/kWp]
expressed in final e	ectrical energy

Table 2 – Energy input of current technology grid connected PV system expressed in final electrical energy

The source of data [7] uses a grid efficiency value of 31%, which is the commonly agreed value for Western Europe Mainland medium voltage grid (the so-called "UCTE Region"). It includes:

- Energy consumption for building infrastructures, i.e. centralised power stations and transmission networks,
- Energy consumption during transport and distribution of fuels,
- Electric losses in transmission from power stations to medium-voltage consumers.

This value concretely results in the need to use an average 3.23 kWh of primary energy to supply 1 kWh of electricity through the grid to a medium-voltage consumer [8].

Although PV systems considered in this rapport are composed of multi-crystalline modules, it is possible to assess the value of indicators for PV systems composed of PV modules with other technologies as the published scientific up-to-date set of life-cycle inventories [7] gives for PV systems composed of mono-crystalline modules an energy input which is 31% higher than the total value given in table 1 and 2 and for PV systems composed of ribbon silicon modules an energy input which is 21% lower.

1.4.3 PV systems lifetime

An average lifetime of PV-systems as power production facilities must be determined prior to being able to evaluate any specific indicators.

This study uses the maximum lifetime of PV modules, estimated to be 30 years [7] consistent with most published studies on this topic. The actual PV modules power production capability guaranteed by major module suppliers worldwide is generally over 25 years [9].

The weakest part of a grid-connected PV system however is the inverter, for which the Mean Time Between Failures (MTBF) is claimed by inverter manufacturers to be between 80 000 and 100 000 hours, i.e approximately 10 years [10]. This means that although inverters are reliable devices, two repairs are necessary on average during the system's lifetime: this value has also been taken into account for calculating ERF, but has very little impact on the final results.

1.4.4 CO₂ content of electricity mix

Since the CO_2 content of the electricity mix is not directly available in international publications for each OECD country, it has been calculated for the purpose of the present study using two different sources of data:

- the "Electricity Information 2005" published by the IEA [11] provides the gross electricity production of each OECD country, given by type of fuel and for conventional or Combined Heat & Power (CHP) plants
- freely available on the Internet "Retscreen" software [12] provides the Greenhouse Gas (GHG) content per MWh for all electricity production primary sources, the specific GHG emission factors (see table 3 below).

	[tCO ₂ /MWh]
Nuclear	0
Hydro power	0
Coal	0,999
Oil	0,942
Gas	0,439
Geothermal, Solar, Tide, Wave,	0
Ocean, Wind, Waste and other	

Table 3 – Greenhouse Gas emission factor for electricity production by fuel type [12]

In case of CHP, the GHG factor specifically designated to the electricity production has been assumed to be equal on average to 40% of the total GHG emissions as given in table 3, in order to take into account the fact that not only electricity is produced, but also heat, and that therefore GHG emissions must be shared with regards to the ratio of heat and electricity produced.

It is possible to derive from these data and assumptions an average CO_2 content of the specific energy mix for each OECD country (see annex B).

1.5 Selected cities

Depending on the size of each country and the climatic variation observed between major cities in each country, from 1 to 3 cities of each OECD member country have been selected (see table 4).

1 4010 1	
Australia	Sydney, Perth, Brisbane
Austria	Vienna
Belgium	Brussels
Canada	Ottawa, Vancouver
Czech Republic	Prague
Denmark	Copenhagen
Finland	Helsinki
France	Paris, Lyon, Marseille
Germany	Berlin, Cologne, Munich
Greece	Athens
Hungary	Budapest
Ireland	Dublin
Italy	Rome, Milan
Japan	Tokyo, Hiroshima, Sapporo
Republic of Korea	Seoul
Luxembourg	Luxembourg
The Netherlands	Amsterdam
New Zealand	Wellington
Norway	Oslo
Portugal	Lisbon
Spain	Barcelona, Madrid, Sevilla
Sweden	Stockholm
Switzerland	Bern
Turkey	Ankara
United Kingdom	London, Edinburgh
United States	Washington, Los Angeles, Houston

2 Overall results

The Environmental Benefits of Photovoltaic Systems in selected OECD cities listed in §1.5 was evaluated using the methodology developed in §1.3. This methodology was based on the assumptions explained in §1.4. The results are presented for different PV systems (see §1.1) using four specific indicators as detailed in §1.2. Detailed results for each country and each city are presented in §3 and the annex of this report

2.1 Energy Pay-Back Time (EPBT)

For rooftop-mounted PV systems, the range of EPBT is between 1.6 and 3.3 years, with the best case in Perth, Australia and the worst case in Edinburgh, UK.

The EPBT for PV façades is logically slightly longer, since their production rate per installed kWp is significantly lower, all other parameters being equal, with a range from 2.7 to 4.7 years, with the best case in Perth, Australia and the worst case in Brussels, Belgium (see Table 5 and Figure 3).

Table 5 – Energy Payback Time of Urban Scale PV systems				
	Minimum value Maximum value			
	[Years]	[Years]		
Roof-top mounted PV system	1,6	3,3		
PV facade	2,7	4,7		

Figure 3 : EPBT of Urban Scale PV systems

The Energy Payback Time of each system in each location is given in annex C.

2.2 Energy Return Factor (ERF)

Rooftop-mounted PV systems are expected to produce during their whole lifetime between 8 and 17.9 times the amount of energy that was needed for their manufacture, installation and dismantling, with the best case in Perth, Australia and the worst case in Edinburgh, UK

PV façades are expected to produce during their whole lifetime between 5.4 and 10.1 times the amount of energy that was needed for their manufacture, installation and dismantling, with the best case in Perth, Australia and the worst case in Brussels, Belgium (see Table 6 and Figure 4).

Table 6 – Energy Return Factor of Urban Scale PV systems				
	Maximum value			
	[-]	[-]		
Roof-top mounted PV system	8,0	17,9		
PV facade	5,4	10,0		

Figure 4 : ERF of Urban Scale PV systems

The Energy Return Factor of each system in each location is given in annex D.

2.3 Potential for Greenhouse Gases Emissions Mitigation

Once they have paid back their energy input, rooftop-mounted PV-systems can avoid during their lifetime the emission of up to 40 tons of CO_2 for each kWp installed, with the highest value in Perth, Australia due to a combination of high solar irradiation and a high CO_2 content of the power mix, and the lowest in Oslo, Norway, with a combination of an almost carbon-free power mix and a low solar irradiation.

The corresponding figure for PV façades is limited to 23,5 tons of CO_2 per kWp installed, with the same best and worst cases (see Table 7 and Figure 5).

	Minimum value	Maximum value		
	[tCO ₂ /kWp]	[tCO ₂ /kWp]		
Roof-top mounted PV system	0,1	40,0		
PV facade	0,0	23,5		

Table 7 -	Potential for		Vitigation	of Urban	Scale PV	systems
100101		002.	magaalon	or or our	000.01	0,000,000

Figure 5 : potential for CO₂ mitigation of Urban Scale PV systems

The potential for CO_2 mitigation of each system in each location is given in annex E.

3 Results by country

3.1 Results template

In this section, results are summarised on a country-by-country basis with the same template for all OECD countries. The results template is composed of one table per city that summarises results and a minimum of 3 figures as presented below :

Figure 6 : location of studied cities

For each country, a map shows the location of cities that were selected for the calculation of indicators defined in §1.2 in order to assess the environmental benefits of PV systems (see figure 6).

	Global horizontal irradiation		
Lyon	1204 kWh/m2		
	Roof-top	Façade	
Annual output [kWh/kWp]	984	632	
Energy Pay-Back Time [years]	2,6	4,0	
Energy Return Factor [number of times]	10,7	6,5	
Potential for CO ₂ mitigation [tCO ₂ /kWp]	2,4	1,5	

Table 8 : results for the considered city

Tables such as table 8 summarise for each city the value of each indicator calculated within this study and also gives specific data such as the global horizontal irradiation of the city and the estimated annual energy output of PV systems in kWh/kWp in this city.

A figure gives, for each PV systems and for each city, the EPBT ranked from the shortest to the longest (see figure 7). It also shows the contribution of the laminate, the frame and the balance of system.

Figure 8 : Energy Payback time

For each city, a graph shows the net energy production over the system lifetime (see figure 8). The negative value at year 0 corresponds to the energy required for manufacturing the PV system expressed in electrical energy (2 525 kWh/kWp). The year at which the curve crosses the x-axis is the EPBT and the value at year 30 is the net energy production over the system lifetime.

3.2 Results for Australia

Figure 9 : location of studied cities

Table 9 : results for Sydney		
	Global horizontal irradiation	
Sydney	1614 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	1 319	811
Energy Pay-Back Time [years]	1,9	3,1
Energy Return Factor [number of times]	14,7	8,6
Potential for CO ₂ mitigation [tCO ₂ /kWp]	33,3	20,5

Table 10 : results for Perth		
	Global horizont	al irradiation
Perth	1941	kWh/m2
	Roof-top	Façade
Annual output [kWh/kWp]	1 587	932
Energy Pay-Back Time [years]	1,6	2,7
Energy Return Factor [number of times]	17,9	10,1
Potential for CO ₂ mitigation [tCO ₂ /kWp]	40,0	23,5

Table 11 : results for Brisbane		
	Global horizontal irradiation	
Brisbane	1686 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	1 315	721
Energy Pay-Back Time [years]	1,9	3,5
Energy Return Factor [number of times]	14,6	7,6
Potential for CO ₂ mitigation [tCO ₂ /kWp]	33,2	18,2

Figure 10 : Energy Payback time

Figure 11 : Cumulative net energy production over system lifetime for Sydney

Figure 12 : Cumulative net energy production over system lifetime for Perth

Figure 13 : Cumulative net energy production over system lifetime for Brisbane

3.3 Results for Austria

Figure 14 : location of studied cities

Table 12 : results for Vienna		
	Global horizont	al irradiation
Vienna	1108 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	906	598
Energy Pay-Back Time [years]	2,8	4,2
Energy Return Factor [number of times]	9,8	6,1
Potential for CO ₂ mitigation [tCO ₂ /kWp]	5,7	3,8

Figure 15 : Energy Payback time

Figure 16 : Cumulative net energy production over system lifetime for Vienna

3.4 Results for Belgium

Figure 17 : location of studied cities

Table 13 : results for Brussels		
	Global horizont	al irradiation
Brussels	946 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	788	539
Energy Pay-Back Time [years]	3,2	4,7
Energy Return Factor [number of times]	8,4	5,4
Potential for CO ₂ mitigation [tCO ₂ /kWp]	5,9	4,0

Figure 18 : Energy Payback time

Figure 19 : Cumulative net energy production over system lifetime for Brussels

3.5 Results for Canada

Figure 20 : location of studied cities

Table 14 : results for Ottawa		
	Global horizont	al irradiation
Ottawa	1377 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	1 188	826
Energy Pay-Back Time [years]	2,1	3,1
Energy Return Factor [number of times]	13,1	8,8
Potential for CO ₂ mitigation [tCO ₂ /kWp]	8,7	6,0

Table 15 : results for Vancouver		
	Global horizontal irradiation	
Vancouver	/er 1273 kWh/m	
	Roof-top	Façade
Annual output [kWh/kWp]	1 088	735
Energy Pay-Back Time [years]	2,3	3,4
Energy Return Factor [number of times]	11,9	7,7
Potential for CO ₂ mitigation [tCO ₂ /kWp]	7,9	5,4

Figure 21 : Energy Payback time

Figure 22 : Cumulative net energy production over system lifetime for Ottawa

Figure 23 : Cumulative net energy production over system lifetime for Vancouver

3.6 Results for the Czech Republic

Figure 24 : location of studied city

Table 16 : results for Prague		
	Global horizontal irradiation	
Prague	1000 kWh/m2	
_	Roof-top	Façade
Annual output [kWh/kWp]	818	548
Energy Pay-Back Time [years]	3,1	4,6
Energy Return Factor [number of times]	8,7	5,5
Potential for CO ₂ mitigation [tCO ₂ /kWp]	12,7	8,5

Figure 25 : Energy Payback time

Figure 26 : Cumulative net energy production over system lifetime for Prague

3.7 Results for Denmark

Figure 27 : location of studied city

Table 17 : results for Copenhagen		
Global horizontal irradiat		al irradiation
Copenhagen	985 kWh/m2	
-	Roof-top	Façade
Annual output [kWh/kWp]	850	613
Energy Pay-Back Time [years]	3,0	4,1
Energy Return Factor [number of times]	9,1	6,3
Potential for CO ₂ mitigation [tCO ₂ /kWp]	13,7	9,9

Figure 28 : Energy Payback time

Figure 29 : Cumulative net energy production over system lifetime for Copenhagen

3.8 Results for Finland

Figure 30 : location of studied city

Table 18 : results for Helsinki		
	Global horizontal irradiation	
Helsinki	956 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	825	602
Energy Pay-Back Time [years]	3,1	4,2
Energy Return Factor [number of times]	8,8	6,2
Potential for CO ₂ mitigation [tCO ₂ /kWp]	7,8	5,7

Figure 31 : Energy Payback time

Figure 32 : Cumulative net energy production over system lifetime for Helsinki

3.9 Results for France

Figure 33 : location of studied cities

Table 19 : results for Paris		
	Global horizont	al irradiation
Paris	1057 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	872	595
Energy Pay-Back Time [years]	2,9	4,2
Energy Return Factor [number of times]	9,4	6,1
Potential for CO ₂ mitigation [tCO ₂ /kWp]	2,1	1,4

Table 20 : results for Lyon		
	Global horizontal irradiation	
Lyon	1204 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	984	632
Energy Pay-Back Time [years]	2,6	4,0
Energy Return Factor [number of times]	10,7	6,5
Potential for CO ₂ mitigation [tCO ₂ /kWp]	2,4	1,5

Table 21 : results for Marseille		
	Global horizontal irradiation	
Marseille	1540 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	1 317	878
Energy Pay-Back Time [years]	1,9	2,9
Energy Return Factor [number of times]	14,6	9,4
Potential for CO ₂ mitigation [tCO ₂ /kWp]	3,2	2,1

Figure 34 : Energy Payback time

Figure 35 : Cumulative net energy production over system lifetime for Paris

Figure 36 : Cumulative net energy production over system lifetime for Lyon

Figure 37 : Cumulative net energy production over system lifetime for Marseille

3.10 Results for Germany

Figure 38 : location of studied cities

Table 22 : results for Berlin		
	Global horizont	al irradiation
Berlin	999 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	839	584
Energy Pay-Back Time [years]	3,0	4,3
Energy Return Factor [number of times]	9,0	5,9
Potential for CO ₂ mitigation [tCO ₂ /kWp]	14,4	10,1

Table 23 : results for Cologne		
	Global horizont	al irradiation
Cologne	972 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	809	561
Energy Pay-Back Time [years]	3,1	4,5
Energy Return Factor [number of times]	8,6	5,7
Potential for CO ₂ mitigation [tCO ₂ /kWp]	13,9	9,7

Table 24 : results for Munich		
	Global horizont	al irradiation
Munich	1143 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	960	660
Energy Pay-Back Time [years]	2,6	3,8
Energy Return Factor [number of times]	10,4	6,8
Potential for CO ₂ mitigation [tCO ₂ /kWp]	16,5	11,4

Figure 39 : Energy Payback time

Figure 40 : Cumulative net energy production over system lifetime for Berlin

Figure 41 : Cumulative net energy production over system lifetime for Cologne

Figure 42 : Cumulative net energy production over system lifetime for Munich

3.11 Results for Greece

Figure 43 : location of studied city

Table 25 : results for Athens		
	Global horizont	al irradiation
Athens	1563 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	1 278	774
Energy Pay-Back Time [years]	2,0	3,3
Energy Return Factor [number of times]	14,2	8,2
Potential for CO ₂ mitigation [tCO ₂ /kWp]	30,7	18,6

Figure 44 : Energy Payback time

Figure 45 : Cumulative net energy production over system lifetime for Athens

3.12 Results for Hungary

Figure 46 : location of studied city

Table 26 : results for Budapest		
	Global horizont	al irradiation
Budapest	t 1198 kWh/m2	
-	Roof-top	Façade
Annual output [kWh/kWp]	988	656
Energy Pay-Back Time [years]	2,6	3,9
Energy Return Factor [number of times]	10,7	6,8
Potential for CO ₂ mitigation [tCO ₂ /kWp]	12,1	8,0

Figure 47 : Energy Payback time

Figure 48 : Cumulative net energy production over system lifetime for Budapest

3.13 Results for Ireland

Figure 49 : location of studied city

Table 27 : results for Dublin		
	Global horizont	al irradiation
Dublin	948 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	811	583
Energy Pay-Back Time [years]	3,1	4,3
Energy Return Factor [number of times]	8,6	5,9
Potential for CO ₂ mitigation [tCO ₂ /kWp]	15,6	11,2

Figure 50 : Energy Payback time

Figure 51 : Cumulative net energy production over system lifetime for Dublin

3.14 Results for Italy

Figure 52: location of studied cities

Table 28 : results for Rome		
	Global horizont	al irradiation
Rome	1552 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	1 315	861
Energy Pay-Back Time [years]	1,9	2,9
Energy Return Factor [number of times]	14,6	9,2
Potential for CO ₂ mitigation [tCO ₂ /kWp]	22,4	14,7

Table 29 : results for Milan		
	Global horizont	al irradiation
Milan	1251 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	1 032	676
Energy Pay-Back Time [years]	2,4	3,7
Energy Return Factor [number of times]	11,3	7,0
Potential for CO ₂ mitigation [tCO ₂ /kWp]	17,6	11,5

Figure 53: Energy Payback time

Figure 54 Cumulative net energy production over system lifetime for Rome

Figure 55 : Cumulative net energy production over system lifetime for Milan

3.15 Results for Japan

Figure 56 : location of studied cities

Table 30 : results for Tokyo		
	Global horizont	al irradiation
Tokyo	1168 kWh/m2	
-	Roof-top	Façade
Annual output [kWh/kWp]	955	631
Energy Pay-Back Time [years]	2,6	4,0
Energy Return Factor [number of times]	10,3	6,5
Potential for CO ₂ mitigation [tCO ₂ /kWp]	14,5	9,6

Table 31 : results for Hiroshima		
	Global horizont	al irradiation
Hiroshima	1350	kWh/m2
	Roof-top	Façade
Annual output [kWh/kWp]	1 073	668
Energy Pay-Back Time [years]	2,4	3,8
Energy Return Factor [number of times]	11,7	6,9
Potential for CO ₂ mitigation [tCO ₂ /kWp]	16,3	10,2

Table 32 : results for Sapporo		
	Global horizont	al irradiation
Sapporo	1225	kWh/m2
	Roof-top	Façade
Annual output [kWh/kWp]	1 029	707
Energy Pay-Back Time [years]	2,5	3,6
Energy Return Factor [number of times]	11,2	7,4
Potential for CO ₂ mitigation [tCO ₂ /kWp]	15,7	10,8

Figure 57 : Energy Payback time

Figure 58 : Cumulative net energy production over system lifetime for Tokyo

Figure 59 : Cumulative net energy production over system lifetime for Hiroshima

Figure 60 : Cumulative net energy production over system lifetime for Sapporo

3.16 Results for the Republic of Korea

Figure 61 : location of studied city

Table 33 : results for Seoul		
	Global horizontal irradiation	
Seoul	1215 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	1 002	674
Energy Pay-Back Time [years]	2,5	3,7
Energy Return Factor [number of times]	10,9	7,0
Potential for CO ₂ mitigation [tCO ₂ /kWp]	15,0	10,1

Figure 62 : Energy Payback time

Figure 63 : Cumulative net energy production over system lifetime for Seoul

3.17 Results for Luxembourg

Figure 64 : location of studied city

Table 34 : results for Luxembourg		
	Global horizontal irradiation	
Luxembourg	1035 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	862	582
Energy Pay-Back Time [years]	2,9	4,3
Energy Return Factor [number of times]	9,2	5,9
Potential for CO ₂ mitigation [tCO ₂ /kWp]	7,6	5,2

Figure 65 : Energy Payback time

Figure 66 : Cumulative net energy production over system lifetime for Luxembourg

3.18 Results for the Netherlands

Figure 67 : location of studied city

Table 35 : results for Amsterdam		
	Global horizont	al irradiation
Amsterdam	1045 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	886	611
Energy Pay-Back Time [years]	2,9	4,1
Energy Return Factor [number of times]	9,5	6,3
Potential for CO ₂ mitigation [tCO ₂ /kWp]	13,6	9,4

Figure 68 : Energy Payback time

Figure 69 : Cumulative net energy production over system lifetime for Amsterdam

3.19 Results for New Zealand

Figure 70 : location of studied city

Table 36 : results for Wellington		
	Global horizontal irradiation	
Wellington	1412 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	1 175	762
Energy Pay-Back Time [years]	2,1	3,3
Energy Return Factor [number of times]	13,0	8,1
Potential for CO ₂ mitigation [tCO ₂ /kWp]	6,6	4,3

Figure 71 : Energy Payback time

Figure 72 : Cumulative net energy production over system lifetime for Wellington

3.20 Results for Norway

Figure 73 : location of studied city

Table 37 : results for Oslo		
	Global horizontal irradiation	
Oslo	967 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	870	674
Energy Pay-Back Time [years]	2,9	3,7
Energy Return Factor [number of times]	9,3	7,0
Potential for CO ₂ mitigation [tCO ₂ /kWp]	0,1	0,0

Figure 74 : Energy Payback time

Figure 75 : Cumulative net energy production over system lifetime for Oslo

3.21 Results for Portugal

Figure 76 : location of studied city

Table 38 : results for Lisbon		
	Global horizontal irradiation	
Lisbon	1682 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	1 388	858
Energy Pay-Back Time [years]	1,8	2,9
Energy Return Factor [number of times]	15,5	9,2
Potential for CO ₂ mitigation [tCO ₂ /kWp]	20,5	12,6

Figure 77 : Energy Payback time

Figure 78 : Cumulative net energy production over system lifetime for Lisbon

3.22 Results for Spain

Figure 79 : location of studied cities

Table 39 : results for Barcelona		
Global horizontal irradiat		al irradiation
Barcelona	1446 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	1 193	759
Energy Pay-Back Time [years]	2,1	3,3
Energy Return Factor [number of times]	13,2	8,0
Potential for CO ₂ mitigation [tCO ₂ /kWp]	15,9	10,1

Table 40 : results for Madrid		
	Global horizontal irradiation	
Madrid	1660	kWh/m2
	Roof-top	Façade
Annual output [kWh/kWp]	1 394	884
Energy Pay-Back Time [years]	1,8	2,9
Energy Return Factor [number of times]	15,6	9,5
Potential for CO ₂ mitigation [tCO ₂ /kWp]	18,6	11,8

Table 41 : results for Sevilla		
	Global horizontal irradiation	
Sevilla	1754 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	1 460	895
Energy Pay-Back Time [years]	1,7	2,8
Energy Return Factor [number of times]	16,3	9,6
Potential for CO ₂ mitigation [tCO ₂ /kWp]	19,5	11,9

Figure 80 : Energy Payback time

Figure 81 : Cumulative net energy production over system lifetime for Barcelona

Figure 82 : Cumulative net energy production over system lifetime for Madrid

Figure 83 : Cumulative net energy production over system lifetime for Sevilla

3.23 Results for Sweden

Figure 84 : location of studied city

Table 42 : results for Stockholm		
Global horizontal i		al irradiation
Stockholm	980 kWh/m2	
	Roof-top	Façade
Annual output [kWh/kWp]	860	639
Energy Pay-Back Time [years]	2,9	3,9
Energy Return Factor [number of times]	9,2	6,6
Potential for CO ₂ mitigation [tCO ₂ /kWp]	1,1	0,8

Figure 85 : Energy Payback time

Figure 86 : Cumulative net energy production over system lifetime for Stockholm

3.24 Results for Switzerland

Figure 87 : location of studied city

Table 43 : results for Bern		
	Global horizontal irradiation 1117 kWh/m2	
Bern		
	Roof-top	Façade
Annual output [kWh/kWp]	922	620
Energy Pay-Back Time [years]	2,7	4,1
Energy Return Factor [number of times]	9,9	6,4
Potential for CO ₂ mitigation [tCO ₂ /kWp]	0,2	0,1

Figure 88 : Energy Payback time

Figure 89 : Cumulative net energy production over system lifetime for Bern

3.25 Results for Turkey

Figure 90 : location of studied city

Table 44 : results for Ankara		
	Global horizontal irradiation	
Ankara	1697	kWh/m2
	Roof-top	Façade
Annual output [kWh/kWp]	1 400	840
Energy Pay-Back Time [years]	1,8	3,0
Energy Return Factor [number of times]	15,6	9,0
Potential for CO ₂ mitigation [tCO ₂ /kWp]	20,6	12,3

Figure 91 : Energy Payback time

Figure 92 : Cumulative net energy production over system lifetime for Ankara

3.26 Results for The United Kingdom

Figure 93 : location of studied cities

Table 45 : results for London				
	Global horizontal irradiation			
London	955 kWh/m2			
	Roof-top	Façade		
Annual output [kWh/kWp]	788	544		
Energy Pay-Back Time [years]	3,2	4,6		
Energy Return Factor [number of times]	8,4	5,5		
Potential for CO ₂ mitigation [tCO ₂ /kWp]	12,6	8,7		

Table 46 : results for Edinburgh			
	Global horizont	al irradiation	
Edinburgh	890 kWh/m2		
	Roof-top	Façade	
Annual output [kWh/kWp]	754	547	
Energy Pay-Back Time [years]	3,3	4,6	
Energy Return Factor [number of times]	8,0	5,5	
Potential for CO ₂ mitigation [tCO ₂ /kWp]	12,0	8,7	

Figure 94 : Energy Payback time

Figure 95 : Cumulative net energy production over system lifetime for London

Figure 96 : Cumulative net energy production over system lifetime for Edinburgh

3.27 Results for the United States

Figure 97 : location of studied cities

Table 47 : results for Washington			
	Global horizontal irradiation		
Washington	1487	kWh/m2	
_	Roof-top	Façade	
Annual output [kWh/kWp]	1 249	814	
Energy Pay-Back Time [years]	2,0	3,1	
Energy Return Factor [number of times]	13,8	8,7	
Potential for CO ₂ mitigation [tCO ₂ /kWp]	22,8	14,9	

Table 48 : results for Los Angeles				
	Global horizontal irradiation			
Los Angeles	1816	kWh/m2		
	Roof-top	Façade		
Annual output [kWh/kWp]	1 512	913		
Energy Pay-Back Time [years]	1,7	2,8		
Energy Return Factor [number of times]	17,0	9,8		
Potential for CO ₂ mitigation [tCO ₂ /kWp]	27,6	16,7		

Table 49 : results for Houston			
	Global horizontal irradiation		
Houston	1615 kWh/m2		
	Roof-top	Façade	
Annual output [kWh/kWp]	1 272	715	
Energy Pay-Back Time [years]	2,0	3,5	
Energy Return Factor [number of times]	14,1	7,5	
Potential for CO ₂ mitigation [tCO ₂ /kWp]	23,2	13,1	

Figure 98 : Energy Payback time

Figure 99 : Cumulative net energy production over system lifetime for Washington

Figure 100 : Cumulative net energy production over system lifetime for Los Angeles

Figure 101 : Cumulative net energy production over system lifetime for Huston

4 References

[1] Alsema, E.A., Nieuwlaar, E., Energy Viability of Photovoltaic Systems, Energy Policy 28 (2000) 999-1010, 2000

[2] based on CEI-IEC 61724 photovoltaic system performance monitoring – Guidelines for measurement, data exchange and analysis

[3] Meteornorm 4.10 is a Meteotest software available at www.meteotest.ch

[4] Pvsyst 3.3 is a PV simulation tool developed by the University of Geneva and is available at <u>www.pvsyst.com</u>

[5] Clavadetscher, L., Country Reports on PV system performance, Report IEA-PVPS T2-05:2005 available at <u>www.iea-pvps.org</u>

[6] European Integrated Research project, Crystalclear : www.ipcrystalclear.info

[7] Alsema, E.A., de Wild-Scholten, M.J., The real environmental impacts of crystalline silicon PV modules : an analysis based on up-to-date manufacturers data, in : 20th European PV Solar Conference, Barcelona, 2005

[8] The grid efficiency value of 31% is derived from the Swiss Ecoinvent database : <u>www.ecoinvent.ch</u>

[9] for instance, see Sharp's module datasheets, <u>www.sharpusa.com/solar</u>

[10] for instance, see SMA's inverter datasheets www.sma.de

[11] Electricity Information 2005, IEA Statistics, <u>www.iea.org</u>

[12] RETSCreen 3 is a Clean Energy Decision Support software managed by the CANMET Energy Technologie Centre – Varennes (CETC – Varennes) <u>www.retscreen.net</u>

5 Annexes

Annex A : Annual energy output

See part 1.4.1 for assumptions, methodology and source of data

· · · · · · ,	City	Root top	PV taçade
		PV system	
		[kWh/kWp.year]	[kWh/kWp.year]
Australia	Sydney	1 319	811
	Perth	1 587	932
	Brisbane	1 315	721
Austria	Vienna	906	598
Belgium	Brussels	788	539
Canada	Ottawa	1 188	826
	Vancouver	1 088	735
Czech Republic	Prague	818	548
Denmark	Copenhagen	850	613
Finland	Helsinki	825	602
France	Paris	872	595
	Lyon	984	632
	Marseille	1 317	878
Germany	Berlin	839	584
	Cologne	809	561
	Munich	960	660
Greece	Athens	1 278	774
Hungary	Budapest	988	656
Ireland	Dublin	811	583
Italy	Rome	1 315	861
-	Milan	1 032	676
Japan	Tokyo	955	631
·	Hiroshima	1 073	668
	Sapporo	1 029	707
Republic of Korea	Seoul	1 002	674
Luxembourg	Luxembourg	862	582
The Netherlands	Amsterdam	886	611
New Zealand	Wellington	1 175	762
Norway	Oslo	870	674
Portugal	Lisbon	1 388	858
Spain	Barcelona	1 193	759
•	Madrid	1 394	884
	Sevilla	1 460	895
Sweden	Stockholm	860	639
Switzerland	Bern	922	620
Turkev	Ankara	1 400	840
United Kinadom	London	788	544
	Edinburah	754	547
United States	Washington	1 249	814
	Los Angeles	1 512	913
	Houston	1 272	715

Annex B : Share of electricity generation by fuel and estimated Greenhouse Gases emissions per kWh generated

See part 1.4.4 for assumptions, methodology and source of data

Country	Nuclear	Hydro	Coal	lio	Gas	Geothermal, Solar, Tide, Wave, Ocean, Wind, Waste and other	Estimated Greenhouse Gases emissions per kWh generated
	-	-	-	-	-	-	[kgCO ₂ /kWh]
Australia	0%	7%	77%	1%	14%	1%	0,841
Austria	0%	61%	15%	3%	18%	4%	0,211
Belgium	56%	2%	14%	1%	26%	2%	0,248
Canada	13%	58%	19%	3%	6%	2%	0,243
Czech Republic	31%	2%	62%	0%	4%	1%	0,517
Denmark	0%	0%	55%	5%	21%	19%	0,536
Finland	27%	11%	32%	1%	17%	12%	0,315
France	78%	11%	5%	2%	3%	1%	0,080
Germany	28%	4%	52%	1%	10%	5%	0,574
Greece	0%	9%	60%	15%	14%	2%	0,801
Hungary	32%	1%	27%	5%	35%	1%	0,409
Ireland	0%	4%	32%	10%	52%	2%	0,642
Italy	0%	15%	15%	26%	40%	4%	0,569
Japan	23%	10%	28%	13%	24%	2%	0,508
Republic of Korea	37%	2%	39%	9%	12%	1%	0,498
Luxembourg	0%	25%	0%	0%	72%	3%	0,295
The Netherlands	4%	0%	28%	3%	59%	6%	0,512
New Zealand	0%	58%	8%	0%	24%	10%	0,187
Norway	0%	99%	0%	0%	0%	1%	0,002
Portugal	0%	34%	31%	13%	16%	5%	0,491
Spain	24%	17%	29%	9%	15%	6%	0,444
Sweden	50%	39%	3%	3%	0%	5%	0,042
Switzerland	41%	55%	0%	0%	1%	2%	0,007
Turkey	0%	25%	23%	7%	45%	0%	0,489
United Kingdom	22%	2%	35%	2%	37%	2%	0,532
United States	19%	7%	51%	3%	16%	2%	0,609

Annex C : Energy Payback Time (EPBT)

See part 1.2 and 1.4.2 for assumptions, methodology and source of data

Country	City	Roof top	PV façade
_	_	PV system	-
		[year]	[year]
Australia	Sydney	1,9	3,1
	Perth	1,6	2,7
	Brisbane	1,9	3,5
Austria	Vienna	2,8	4,2
Belgium	Brussels	3,2	4,7
Canada	Ottawa	2,1	3,1
	Vancouver	2,3	3,4
Czech Republic	Prague	3,1	4,6
Denmark	Copenhagen	3,0	4,1
Finland	Helsinki	3,1	4,2
France	Paris	2,9	4,2
	Lyon	2,6	4,0
	Marseille	1,9	2,9
Germany	Berlin	3,0	4,3
	Cologne	3,1	4,5
	Munich	2,6	3,8
Greece	Athens	2,0	3,3
Hungary	Budapest	2,6	3,9
Ireland	Dublin	3,1	4,3
Italy	Rome	1,9	2,9
	Milan	2,4	3,7
Japan	Tokyo	2,6	4,0
	Hiroshima	2,4	3,8
	Sapporo	2,5	3,6
Republic of Korea	Seoul	2,5	3,7
Luxembourg	Luxembourg	2,9	4,3
The Netherlands	Amsterdam	2,9	4,1
New Zealand	Wellington	2,1	3,3
Norway	Oslo	2,9	3,7
Portugal	Lisbon	1,8	2,9
Spain	Barcelona	2,1	3,3
	Madrid	1,8	2,9
	Sevilla	1,7	2,8
Sweden	Stockholm	2,9	3,9
Switzerland	Bern	2,7	4,1
Turkey	Ankara	1,8	3,0
United Kingdom	London	3,2	4,6
0	Edinburah	3,3	4,6
United States	Washington	2,0	3,1
	Los Angeles	1,7	2,8
	Houston	2,0	3,5

Annex D : Energy Return Factor (ERF)

See part 1.2 and 1.4.4 for assumptions, methodology and source of data

Country	City	Roof top	PV façade
-	-	PV system	-
		[-]	[-]
Australia	Sydney	14,7	8,6
	Perth	17,9	10,1
	Brisbane	14,6	7,6
Austria	Vienna	9,8	6,1
Belgium	Brussels	8,4	5,4
Canada	Ottawa	13,1	8,8
	Vancouver	11,9	7,7
Czech Republic	Prague	8,7	5,5
Denmark	Copenhagen	9,1	6,3
Finland	Helsinki	8,8	6,2
France	Paris	9,4	6,1
	Lyon	10,7	6,5
	Marseille	14,6	9,4
Germany	Berlin	9,0	5,9
	Cologne	8,6	5,7
	Munich	10,4	6,8
Greece	Athens	14,2	8,2
Hungary	Budapest	10,7	6,8
Ireland	Dublin	8,6	5,9
Italy	Rome	14,6	9,2
	Milan	11,3	7,0
Japan	Tokyo	10,3	6,5
	Hiroshima	11,7	6,9
	Sapporo	11,2	7,4
Republic of Korea	Seoul	10,9	7,0
Luxembourg	Luxembourg	9,2	5,9
The Netherlands	Amsterdam	9,5	6,3
New Zealand	Wellington	13,0	8,1
Norway	Oslo	9,3	7,0
Portugal	Lisbon	15,5	9,2
Spain	Barcelona	13,2	8,0
	Madrid	15,6	9,5
	Sevilla	16,3	9,6
Sweden	Stockholm	9,2	6,6
Switzerland	Bern	9,9	6,4
Turkey	Ankara	15,6	9,0
United Kingdom	London	8,4	5,5
ž	Edinburgh	8,0	5,5
United States	Washington	13.8	8,7
	Los Angeles	17,0	9,8
	Houston	14,1	7,5

Annex E : Potential of photovoltaic systems for Greenhouse Gases Mitigation

See part 1.2 and 1.4.3 for assumptions, methodology and source of data

Country	City	Roof top	PV façade
-		PV system	5
		[tCO ₂ /kWp]	[tCO ₂ /kWp]
Australia	Sydney	33,3	20,5
	Perth	40,0	23,5
	Brisbane	33,2	18,2
Austria	Vienna	5,7	3,8
Belgium	Brussels	5,9	4,0
Canada	Ottawa	8,7	6,0
	Vancouver	7,9	5,4
Czech Republic	Prague	12,7	8,5
Denmark	Copenhagen	13,7	9,9
Finland	Helsinki	7,8	5,7
France	Paris	2,1	1,4
	Lyon	2,4	1,5
	Marseille	3,2	2,1
Germany	Berlin	14,4	10,1
	Cologne	13,9	9,7
	Munich	16,5	11,4
Greece	Athens	30,7	18,6
Hungary	Budapest	12,1	8,0
Ireland	Dublin	15,6	11,2
Italy	Rome	22,4	14,7
	Milan	17,6	11,5
Japan	Tokyo	14,5	9,6
•	Hiroshima	16,3	10,2
	Sapporo	15,7	10,8
Republic of Korea	Seoul	15,0	10,1
Luxembourg	Luxembourg	7,6	5,2
The Netherlands	Amsterdam	13,6	9,4
New Zealand	Wellington	6,6	4,3
Norway	Oslo	0,1	0,0
Portugal	Lisbon	20,5	12,6
Spain	Barcelona	15,9	10,1
- 1	Madrid	18,6	11,8
	Sevilla	19,5	11,9
Sweden	Stockholm	1,1	0,8
Switzerland	Bern	0,2	0,1
Turkev	Ankara	20,6	12,3
United Kingdom	London	12,6	8,7
	Edinburah	12,0	8,7
United States	Washington	22.8	14.9
	Los Angeles	27.6	16.7
	Houston	23.2	13.1
		,-	, -

