

Characterizing and Modeling AC PV Modules

Daniel Riley, Sandia National Laboratories

EUPVSEC 2020 Workshop

Technology Collaboration Programme

- An AC photovoltaic module is created when a PV module and a microinverter are fully integrated
 - AC power is generated when exposed to sunlight
 - No access to the DC circuit

- AC modules provide benefits
 - Reduced installation time
 - Design flexibility and shade tolerance
 - Lower DC voltages

- Describing AC module performance is difficult
 - No standard rating definition
 - Performance metrics on spec sheets are not consistent across manufacturer
 - Performance metrics on spec sheets unhelpful
 - How are I-V curves or I_{MP} and V_{MP} helpful when talking about an AC module?

•	Temperature Coefficients(DC)					
	NOCT	45	45 ± 2 °C			
	Ртрр	-0.4	-0.41 %/°C			
	oc		29 %/°C			
	lsc	0.04	0.04 %/°C			
Ľ						
Rated Voltage V		Vmpp	40.5 V			
Rated	Current	Impp	5.93 A			

3

The Question for AC Modules

- C.
- How do we compare or describe the performance of AC modules?

- In 2014 Sandia National Laboratories
 - Developed AC Module characterization tests
 - Developed a performance model for AC Modules
 - Evaluated the characterization techniques and performance model on 4 AC Modules

 Funded by the United States Department of Energy, Solar Energy Technologies Office

PV Performance Modeling

Basic AC Module Model Description

- Active AC power is controlled by the microinverter and has three principle operating states
 - P_3 Low irradiance self-consumption
 - P₂ Maximum power self-limiting
 - P₁ Typical operating state
- The performance model is a piecewise function with three subdomains

$$P_{AC} = \begin{cases} P_1 & P_3 \le P_1 \le P_2 \\ P_2 & P_1 > P_2 \\ P_3 & P_1 < P_3 \end{cases}$$

Equation Subdomains

- $\bullet P_3 = -1 \times P_{NT}$
 - P_{NT} is the night tare value, obtained by testing or via spec sheet
 - P₃ could be a function of input conditions
- $\bullet P_2 = P_{AC,max}$
 - *P_{AC,max}* is the maximum active AC power output, obtained by testing or spec sheets
 - Spec sheets may be quite inaccurate, so I recommend testing
 - P₂ could be a function of input conditions

Equation Subdomains (continued)

• P_1 is a function of environmental conditions

$$P_{1} = Pac_{ref} \times f_{1}(AMa - AMa_{ref}) \times \left[C_{0} \times \frac{E_{POA}}{E_{ref}} + C_{1} \times \ln \left(\frac{E_{POA}}{E_{ref}}\right)\right] \times \left[1 + \gamma_{ac}(T_{c} - T_{0})\right]$$

- · Absolute airmass, as a proxy for spectrum
- · Absorbed plane of array (POA) irradiance
 - Accounts for surface reflections
- PV cell temperature
- · Model parameters must be obtained by outdoor testing
 - 6 parameters listed above
 - Pac_{ref} Reference active AC power at reference conditions
 - C_0 , C_1 Adjust estimated power for irradiance
 - E_{ref} Reference irradiance (may not be 1000 W/m²)
 - γ_{ac} Temperature coefficient for AC power
 - T_0 Reference cell temperature
 - 3 parameters are embedded in f_1 for airmass adjustments A_1 , A_2 , A_3
 - 1 used to account for surface reflection losses (model by Martin & Ruiz) $-a_r$
 - · If the module has flat glass without AR coating, a representative parameter may be used

9

Validating the AC Module Model

- Tested 4 different AC modules on a two axis tracker and developed model parameters for each module
- Placed modules 3 and 4 in a fixed-tilt orientation for several days.
- Compared the active AC power predicted by the model to the measured AC power from the module

Model Errors in the Parameter Generation Data

- Errors less than 2% of Pac_{ref}
- Approximately 0 mean - As expected
- Shows that the model form is capable of modeling an AC module

Pac_{ref}

Results from Module 3, Fixed Tilt

Two of nine test days presented here with measured and modeled power

• A warm, calm, sunny day

PVPS

- A cool, breeze, partly-cloudy day
- Good transition to power limiting

Model Errors for Typical Use – Fixed Tilt

- Slight positive bias in model residuals (indicates model over-prediction of power)
- Errors still mostly less than 2% of Pac_{ref}

PVPS

	MBE	MBE	RMSE	RMSE
	(watts)	(% of Pac _{ref})	(watts)	(% of Pac _{ref})
Daytime data only	1.700	0.6776	2.484	0.9903

How can the model help industry?

- The same way that performance models have helped the PV industry in general
 - Performance evaluation of potential (unbuilt) systems
 - Expected energy
 - · Selecting between two types of AC modules
 - · Measured vs. Modeled comparison of existing systems for health evaluation
- As a basis for a standard performance rating conditions and metrics

- As PV modules and power inverting electronics become more highly integrated, current methods for characterizing and modeling performance become obsolete.
- Sandia has developed an AC module performance model to characterize and model AC modules
 - Test processes
 - Analysis techniques
 - RMSE approximately 1% of the reference power
 - MBE 0.68% of the reference power

• A complete white paper (SAND2015-0179) with test processes, analysis techniques, more discussion, and model validation is available at

http://1.usa.gov/1B3sxum

• Or just search for SAND2015-0179 in your favorite search engine

www.iea-pvps.org

Thank you

Daniel Riley, Task 13 driley@sandia.gov

