

Performance of Floating PV Systems

Wilfried van Sark, Utrecht University

EUPVSEC, Lisbon, 10 September 2020 (online)

Technology Collaboration Programme

Contents

G

- Introduction
- Floating PV Potential
- Pros and Cons
- Performance comparison
- Conclusion and outlook

PVPS

Introduction

- Deployment of solar PV
 - in the built environment (roofs, facades)
 - as large field installations

• Both require land: competition with other types of land usage (agriculture, etc.)

• Surface of the Earth consists for 71% of water (mostly oceans), and half of population lives within 100 km from oceanic shores

 \rightarrow large potential for floating PV structures

Floating PV potential

SdVc

- Identified as >5 TWp global potential [Rosa-Clot, Tina, 2020]
- 100%RE scenario requires 35 TWp, all onshore [EWG, LUT, 2019]
- What if the offshore option is added?

TABLE 1.2 Technical Photovoltaic Potential for Climate Zones.							
	Surfaces, km ²	Technical Power Potential, GWp	Technical Energy Potential, TWh/year				
Tropical zone	1,448,031	1875	2352				
Temperate zone	1,386,202	1677	1922				
Cold zone	1,611,663	1715	1714				
	4,445,896	5267	5988				

Enormous potential: 100,000 km², ~1% PV: 237 GWp off-shore: 45 GWp Agriculture, forest, nature, recreational Built environment Infrastructure (roads) Water, off-shore >50% Part of area covered with PV

Folkerts et al., Roadmap PV systemen en toepassingen, 2017

PVPS

Pros	Note:
Massive potential	 on-shore: sweet water, low winds
 Better performance due to cooling of water 	ater body off-shore: salty water, high
How much?	winds
• Cons	
Ecological	
Wind load	
Cost (infrastructure)	
httr	a://floatinggolor.pl/on/weather.rigk_management.wrm/

Water body provides cooling and thus increases efficiency

- Submerged PV panels (4 cm) [Rosa-Clot, Tina, 2018]
 - Efficiency gain: 5-15%
 - Energy yield gain: up to 15%
 - Due to cooling and less variation in panel temperatures
- Hapcheon dam water reservoir, South Korea (100 and 500 kWp)
 - Annual yields [Suh, 2020]:
 - 1297 [2012], 1364 [2013], 1260 [2015] kWh/kWp
 - 13.5% higher yield compared to land-based system

Performance

Performance test site Singapore

Aerial photograph and details of the Singapore Tengeh Reservoir test-bed with different Floating PV technologies [Reindl, 2018]

PR 10-15% higher than typical rooftop PV systems in Singapore (with PR of 75 ~ 80%) [Reindl, 2018]

Bifacial performance comparison

Daily average

PVPS

Bifacial modules have similar PR for offshore and onshore conditions, due to low albedo [Reindl, 2018]

Performance modeling

- Case study simulation North Sea, the Netherlands
- Floating pontoons with horizontally located solar panels (design: Oceans of Energy, NL)
- Performance modeling using irradiance and wind at sea
 - module temperature
 - varying tilt

[Golroodbari, 2020]

Oceans of Energy, NL

Tilt variation for August 2016 (example)

F

- Wind induces waves which affect tilt
- Using data of wind speed variation tilt variation is calculated

PVPS

Degree [⁰]	Dev 1	Day 2		Day 4	Tilt
Degree [⁰]	0 0 0	Day 6			day
Degree [°]	0 0 0 Dath Los Into Mid. of Mid. Share, July, Nr. 201 (Series and Mid. Mid. 191	Day 10	Day 11]	Day 12	- \
Degree [⁰]	0 0 0	Day 14	Day 15]	Day 16	
Degree [⁰]	0 Day 17 Day 17	Day 18	Day 19		
Degree [⁰]	0 Day 21 Day 21	Day 22		Day 24]	-
Degree [⁰]	0 0 0	Day 26	Day 27	Day 28	
Degree [⁰]	0 0 0	Day 30	Day 31		
	0 5 10 15 20 29 Time [hour]	50 5 10 15 20 29 Time [hour]	50 5 10 15 20 25 Time [hour]	[Golroodba	ri, 2020]

(c)

r2____**r**1__

(b)

r₁

(a)

- mostly calm
- except Aug 3

12

Tilt variation, montly averages

• Variation limited, larger in Jan, Feb (note: 2016)

Average module temperatures

Module temperature offshore PV is lower than on land

• 13% higher annual yield, with monthly dependence

Month

Performance ratio advantage

PVPS

• Higher yield and higher irradiance: higher PR?

Summary of performance

- Higher performance due to cooling effect of water body
- Beneficial effect differs per geographical location
 - +13% higher yield in the Netherlands, 4% PR advantage
 - +15% in Singapore, 10-15% PR advantage
- Comparing tropics with NL:
 - Higher irradiance and higher ambient temperature lead to higher panel temperature
 - Also, higher temperature of cooling water body
 - Are cooling effects similar?

Summary of performance

- Is there a link with KG classification?
 - NO (see poster 6CV.2.34, Ayyad et al.)
 - But correlation is found between latitude, temperature and clear-sky differences for offshore and onshore sites (preliminary work)
 - Offshore advantage variation up to 30%

PVPS

- Floating PV performance is better than on land, due to cooling
 - Positive effect depends on geographical location
 - Verification and further R&D necessary

- Application potential
 - Integration of floating PV with other renewables
 - Hydro reservoirs
 - Offshore wind parks: allows for cable pooling, more often constant power

www.iea-pvps.org

Thank you

Wilfried van Sark, Task 13 w.g.j.h.m.vansark@uu.nl

Funded by TKI-Urban Energy and Netherlands Ministery of Economic Affairs, Netherlands Enterprise Agency