Performance Indices for Parallel Agriculture and PV Usage - Approaches to quantify land use efficiency in agrivoltaic systems

Max Trommsdorff, Fraunhofer Institute for Solar Energy Systems ISE

EU PVSEC 2020, Online conference: 10th of September 2020
Agenda

• Introduction of Agrivoltaics and Main Research Results
• LER as a Performance Index for Land Use Efficiency
• Other Possible Performance Indices
Examples of Integrated Photovoltaics

- Vehicle-Integrated PV
- Building-Integrated PV
- Agrivoltaics
- Urban Photovoltaics
- Road-Integrated PV
- Floating PV
• **Technical Land Potential:**
 Consideration of technical, infrastructural and ecological constraints
Agrivoltaics – From the Idea to the Implementation

• The Concept

1. Own consumption incl. energy storage
2. Energy purchasing agreement with local residential and industrial estates
3. Energy feed-in to power grid and gas distribution system operators
Agrivoltaics – From the Idea to the Implementation

• **Brief History**

 • From 2000 EEG feed-in tariffs for Renewable Energies
 • PV „revolution“
 • First large scale ground-mounted PV plants (PV-GM)
 • EEG-reform 2010: PV-GM only in exceptional cases on arable land
 • The time has come for APV

Timeline of APV from 2010 until today

- **2010**
 - Germany: EEG-reform 2010

- **2011**
 - EU: first notable APV-systems in FR und I

- **2015**
 - China: first large scale APV-systems > 10 ha
 - Japan: first gov. supporting scheme (2013)

- **2020**
 - France: APV supporting scheme (2017)
 - Global installed APV capacity min 2.4 GWp
Agrivoltaics – From the Idea to the Implementation

• **Proof of Concept – Worldwide**

(A) **Germany**, University Weihenstephan, 30 kWp, 2013

(B) **Italy**, R.E.M. Tech Energy, 3 x APV systems since 2011, 3.2 MWp, 1.3 MWp, 2.15 MWp

(C) **France**, University of Montpellier, 50 kWp, 2010, 2017 – 2019: 45 MWp

(D) **Japan**, Solar Sharing, Ministry of Agriculture, Forest and Fishery, Akira Nagashima

1.054 Solar Sharing 2013 - 2018, 80 kWp/Projekt, 85 MWp

(E) **Italy**, Corditec, Ahlers, 800 kWp, 2012

(F) **Egypt**, SEKEM, Almaden, Kairo, 90 kWp, 2017

(G) **USA**, University of Arizona, approx. 50 kWp, 2017

(H) **Taiwan**, Green Source Technology, 400 kWp, 2016
• **Pilot Plant in Heggelbach: Facts and Figures I**

 • Installed: 2016 in Heggelbach
 • Region: Bodenseekreis
 • Length: 136m
 • Width: 25m
 • Height: 8m
 • Area: ~ 1/3 ha
 • Vertical clearance: 5m
 • Installed capacity: 194 kWp
 • Crops: clover, celery, potatoes and winter wheat

Source: Hilber Solar
Research Results APV-RESOLA

• **Pilot Plant in Heggelbach: Facts and Figures II**

 • Light management
 • Fixed-tilt towards southwest
 • Bifacial glas/glas PV-modules
 • Yield monitoring
 • Passageway for agricultural machinery
 • Rain water distribution
 • Spinnanker fundaments
 • Ram protection
 • No fence
 • Cross Compliance: high environmental sustainability

Source: BayWa r.e
Source: BayWa r.e
Source: Spinnanker
Research Results APV-RESOLA

- **Community: Citizen Workshop and Local Survey**
 - Consensus in PV expansion:
 - Priority on available roof surfaces and industrial areas
 - Preferences for APV compared to PV-GM
 - Learning from experiences with biogas plants
 - „Uncontrolled APV growth“ must be avoided
 - Optimal integration in the landscape
 - Bringing together production and consumption
 - Concentration of APV-systems should be limited
 - Size of APV-systems should be limited

Source: Deutschlandfunk
Source: de.fotolia.com
Source: de.fotolia.com
Research Results APV-RESOLA

- **Economy: PV-Power Generation Cost**

 - **Economy:** PV-Power Generation Cost
 - **APV-OPEX** < than PV-GM due to synergy effects
 - **APV-LCOE** > approx. 1/3 higher than PV-GM
 - Already today competitive with roof-mounted PV < 10 kWp
 - Yield reduction and additional expenses balanced by land rent contract (€1.440 €/a)

Assumptions:

- **Annual electricity yield:**
 - PV-FFA: 1209 kWh/kWp
 - APV: 1284 kWh/kWp
- **Area:** 2 ha
 - PV-FFA: 1.38 MWp
 - APV: 1.04 MWp
- Agricultural costs and earnings excluded

Source: Fraunhofer ISE
Agenda

• Introduction of Agrivoltaics and Main Research Results
• LER as a Performance Index for Land Use Efficiency
• Other Possible Performance Indices
Land Equivalent Ratio

• The Concept

Land Equivalent Ratio (LER): the sum of the respective yield ratios of dual land use to mono land use.

\[LER = \frac{\text{Yield}_{\text{agri}}(\text{dual})}{\text{Yield}_{\text{agri}}(\text{mono})} + \frac{\text{Yield}_{\text{elec}}(\text{dual})}{\text{Yield}_{\text{elec}}(\text{mono})} \] (Mead & Willey, 1979)

• Adopted from agroforestry

• Crop yields measured in mono and dual systems

• One possible interpretation: A 1.3 LER would mean that a 10 ha agrivoltaic system would produce as much crops and electricity as 13 ha of mono productions

• LER > 1 indicates increased productivity of dual land use

• But: in many publications theoretical considerations based on agriculture experiments without taking land losses into account
Land Equivalent Ratio

• The Concept

Additional consideration of land losses (LL)

\[LER = \frac{\text{Yield}_{\text{agri}}(\text{dual})}{\text{Yield}_{\text{agri}}(\text{mono})} + \frac{\text{Yield}_{\text{elec}}(\text{dual})}{\text{Yield}_{\text{elec}}(\text{mono})} - LL \]

• LL occur if part of the land cannot be cultivated due to the mounting structure

• Crop yields measured under the agrivoltaic system and on a reference plots

• When larger land machines are employed, LL are usually much larger than the built-up area itself

• Case Heggelbach: LL approx. 8.3%, covered area < 1%
Land Equivalent Ratio

• Agriculture: Example Yield Potatoes

<table>
<thead>
<tr>
<th>Yield [dt FM ha⁻¹]</th>
<th>REF 2017</th>
<th>APV 2017</th>
<th>REF 2018</th>
<th>APV 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Universität Hohenheim

- 2017: Yield under agrivoltaic reduced by 18 %
- 2018: Yield under agrivoltaic increased by 11 %
- Higher share of tubers with diameter 35 - 50 mm under agrivoltaic in both harvests
Land Equivalent Ratio

• APV-RESOLA LER I: Rounded Figures from Wheat Yield 2017 and Expected Average

Separate Land Use on 2 Hectare Cropland

Combined Land Use on 2 Hectare Cropland: Efficiency increases over 60%

• Crop: wheat
 • Approx. 80% of wheat and 80% of electricity
 • LL approx. 10%
 • LER approx. 1.5
 • Rise of land use efficiency of 50 %
 • No particularly shadow-tolerant or even shade-loving plants were selected
Land Equivalent Ratio

• APV-RESOLA LER II: Potatoe Yield 2018

\[
LER\ 2018 = \frac{255.26 \text{ kWh}(\text{dual})}{230.02 \text{ kWh}(\text{mono})} + \frac{249.857 \text{ kWh}(\text{dual})}{301.032 \text{ kWh}(\text{mono})} - 0.083 = 1.86
\]

• Crop: potatoes

• Extension of potential PV area without land use conflicts

• Improvement of land use efficiency between 60 – 90 % possible in Germany

• Large potential in regions with land scarcity and in arid / semi-arid climate zones
Land Equivalent Ratio

• Other LER Research Results in Agrivoltaics

• Dupraz et al., 2011
 • Modelling of light transmission and agricultural yields for agrivoltaic systems with varying module densities
 • Food crop: durum wheat
 • Results: LER between 1.35 and 1.73

• Valle et al., 2017
 • Performances of agrivoltaic systems by comparing fixed and dynamic systems with two different orientations
 • Food crop: lettuce
 • Results: LER between 1.10 and 1.50
 • Tracked systems lead to higher LERs

Source: Dupraz et al., 2011
Source: Valle et al., 2017
Agenda

• Introduction of Agrivoltaics and Main Research Results
• LER as a Performance Index for Land Use Efficiency
• Other Possible Performance Indices
Other Performance Indices

• **Light Homogeneity I**

 Standard deviation compared to an unshaded field for different orientations one meter over ground

 • Feasibility Study conducted by Fraunhofer ISE for Paras, Maharashtra, India, 2018

 • Modelled with Fraunhofer ISE tool ASSIST

 • \(s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \)

 • Targeted light homogeneity area reached from between 26° SW and 28° SW
Other Performance Indices

• **Light Homogeneity II**

Simulation of radiation distribution under agrivoltaic system

• Preliminary to APV-RESOLA project

• Model based on the APV’s specific configuration settings and the local irradiation conditions in Heggelbach, southern Germany

• Deviations of 30° from 0°S result in quite homogeneous radiation distribution

• Local conditions (e.g., orientation of field borders, direction of travel of machinery, irrigation structures etc.) might require greater deviations from 0°S
Other Performance Indices

• **Light Homogeneity III**

Monthly sums of irradiation (y-axis) under simulated agrivoltaic systems between two module rows (x-axis)

- Shown are the months March to October and yearly averages
- Small squares (left side) indicate unshaded irradiation values
Other Performance Indices

• **Further Measures**

 • Maximum sunlight reduction

 • Solar Massachusetts Renewable Energy Target Program

 • During growing season, max. sunlight reduction: < 50%

 • Vertical and width clearing

 • Enable cultivation with machinery

 • Soil compaction

 • Avoidance of system installation during humid weather

 • Type of foundation

 • Reversible or permanently installed

Source: Next2Sun GmbH

Source: BayWa r.e
Thank you very much for your attention!

Max Trommsdorff, Fraunhofer Institute for Solar Energy Systems ISE
maximilian.trommsdorff@ise.fraunhofer.de

www.iea-pvps.org