“BUILDING INTEGRATED PHOTOVOLTAICS – FROM BEST PRACTICE EXAMPLES TO LARGE-SCALE MARKET PENETRATION”

ONYX SOLAR ENERGY S.L. Spain
Juan Luis Lechon - jlechon@onyxsolar.com
Senior Engineer & Business Development
TABLE OF CONTENTS

1. ABOUT ONYX SOLAR, A GLOBAL LEADER IN PV GLASS
2. PROJECTS & REFERENCES
3. ONYX SOLAR APPROACH FOR BIPV
4. CASE STUDY: EDMONTON CONVENTION CENTER

Solar architecture is not a fashion, it is survival. – Sir Norman Foster
1. ONYX SOLAR: ABOUT

- Year of Incorporation: 2009
- Ownership: Privately held. VC on board
- Headquarters: Avila, Spain
- Offices: New York & Beijing
- Fabrication Plant: Avila, Spain
- Annual Production Capacity: 250,000 Sqm
- Tech. Manufactured: Amorphous (a-Si) and Crystalline Silicone (c-Si)
- Projects completed: +250 worldwide.

https://www.onyxsolar.com/all-you-need
AMORPHOUS

Coating over a layer of flat glass (CVD)

Visual Light Tr: Dark, 10, 20, 30%

Efficiency 5% - 10%

Greater energy production (kWh) at the same installed power (kWp)

Better behavior under the presence of shadows / overcast (tilt, orientation)

Low temperature coefficient – performs well under high temperature

Unobstructed views
By add-ons we refer to other configurations for the photovoltaic glass that, depending on the performance desired for the project, may be required.

Spacers are a typical add-on to improve the U-value of the PV glass unit; counting on an double pane unit and considering the coatings applied, the photovoltaic glass can reach U-values as low as 0.13 BTU/h*Ft²*F°.

Typical spacer thicknesses are ¼”, ½” and 10/16”, depending on the insulation required. Air and Argon gas fills are commonly requested.

Picture on the left shows a typical amorphous Silicon double glazing configuration, as a reference.
2. ONYX SOLAR APPROACH FOR BIPV

Architectural glass which besides providing the building with the same passive properties as a conventional glazing, it also generates free electricity from the sun. It is therefore, the only building material available in the market that provides your building a return on the investment.

ARCHITECTURAL GLASS THAT GENERATES ELECTRICITY

- MATCHES THE ARCHITECTURAL GLASS SPECIFICATIONS
- ENVIROMENTAL BENEFITS: AVOIDING CO2 EMISSIONS
- ECONOMICAL BENEFITS: ENERGY GENERATION
Onyx Solar
BIPV Consultancy Services at
design phases:

• Architectural drawing and project requirement study to provide best BIPV option for the construction project

• Close collaboration with design team.
3. CASE STUDY: EDMONTON CONVENTION CENTER, CANADA

Project Data:

- Atrium Skylight replacement with IGU PV GLASS
- Area of integration: 1,600 sqm
- Technology: mono-crystalline silicon
- Installed power: 160 kWp
- Estimated Energy Generation: 227,000 kWh/year
- Owner: ECC, City of Edmonton
- Architecture: DIALOG
- General Contractor: Bird Construction Company
- Glazing Contractor: Flynn Canada Ltd.
- PV Consultant: Howell Mayhew Engineering, Inc.
3. CASE STUDY: EDMONTON CONVENTION
3. CASE STUDY: EDMONTON CONVENTION
3. CASE STUDY: EDMONTON CONVENTION

BIPV Project Schedule:
- Consultancy to the architectural design (DIALOG Architects and PV Consultant) during conceptual and developed design: **2015 - 2016**
- PV glass and PV system details during tendering phase and technical design (Glazing Contractor and PV Consultant): **2018**
- PV glass shop drawings and supply: **2019**

Main Challenges:
1. Coordination in detail design with all stakeholders: Consultant, Glazing Contractor and Electrical Contractor
2. Shop drawings, manufacturing and project management with 126 different types of units for 700 total PV glass units.
TYPICAL PV GLASS DATA SHEET

PHOTOVOLTAIC GLASS
2377 x 1130

<table>
<thead>
<tr>
<th>Type/</th>
<th>6" Mono</th>
<th>Crystalline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal peak power</td>
<td>286</td>
<td>P_{mpp} (Wp)</td>
</tr>
<tr>
<td>Open-circuit voltage</td>
<td>40</td>
<td>V_{oc} (V)</td>
</tr>
<tr>
<td>Short-circuit current</td>
<td>9.09</td>
<td>I_{sc} (A)</td>
</tr>
<tr>
<td>Voltage at nominal power</td>
<td>33</td>
<td>V_{mp} (V)</td>
</tr>
<tr>
<td>Current at nominal power</td>
<td>8.54</td>
<td>I_{mpp} (A)</td>
</tr>
<tr>
<td>Power tolerance not to exceed</td>
<td>±10</td>
<td>%</td>
</tr>
</tbody>
</table>

Mechanical description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>2377 mm</td>
</tr>
<tr>
<td>Width</td>
<td>1130 mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>3.25 mm</td>
</tr>
<tr>
<td>Surface area</td>
<td>2.98 sqm</td>
</tr>
</tbody>
</table>

Electrical data test conditions (STC)

- STC: 1000 W/m², AM 1.5 and a cell temperature of 25°C, stabilized module state.

Junction Box

<table>
<thead>
<tr>
<th>Protection</th>
<th>IP65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiring Section</td>
<td>2,5 mm² or 4,0 mm²</td>
</tr>
</tbody>
</table>

Limits

- Maximum system voltage: 1000 V_{sys} (V)
- Operating module temperature: -40°C...+85°C

Temperature Coefficients

- Temperature Coefficient of P_{mpp}: -0.451 \%/°C
- Temperature Coefficient of V_{oc}: -0.361 \%/°C
- Temperature Coefficient of I_{sc}: +0.08 \%/°C

All technical specifications are subject to change without notice by Onyx Solar

Dimensions as per inner glass dimensions in shop-drawings
WIRING ROUTE – STRING INTERCONNECTION

- Rafter Cover Cap
- Pressure Plate Cap
- Intermittent Cable Strap
- Cut-out Space in Pressure Plate for Insulated Conduit as Required
- EPDM Gasket
- Silicone Sealant
- PV You
- Spacer

Dashed line indicates pull in drainage into rainscreen cavity. Rafter beyond.

EPDM gaskets
Rafter
Furling beyond

0.8mm Aluminium Brake Shave, 200mm long as cable retainer. [1] / Row / Rafter

200mm long for internal sleeve at face cap sheet.

813-343 Deep Cap to accommodate solar panel wiring.

Top line of sealed unit offset 10mm on busbar side to allow clearance (other edges remain standard).

- 59.5-443 Cap
- 512-041
- 027-920

- 05-001 = Custom Length = 1 1/3

- 4mm to 8mm T
- 4mm H5

2. #12 x 11/2 (3/4) F.M. Self-Tapping Screws to secure pull in rafter. -Typical-

Rafter Anchor constructed of 4mm plate and D.R. Shop Welded, Primed Painted and Final Painted to Match Aluminium

1001 Grade B Bolt w/ Washer and Nylock Nut to Secure Rafter to Anchor

High Impact Plastic Shims to isolate aluminium from anchor

Anchor secured to existing structure with (4) #14 Tek Screws.

Existing Steel Structure

Anchor A or B
126 DIFFERENT TYPES OF UNITS FROM A TOTAL OF 700 UNITS
CENTRAL OCULUS

The pattern of the cells opens up to a circular oculus with lines of Morse code that spell out a poem. It is an excerpt of Gifts of a River by E.D. Blodgett, a former Edmonton Poet Laureate.
Information Note: Architectural details, drawings and electrical schemes shown on this presentations thanks to Flyn Canada, Ltd. and Howell Mayhew Engineering, Inc.