The Role of Green Hydrogen in a Solar powered World : Case studies & business models

PVSEC-30 10th November 2020

Lionel Perret Renewable Energy Director

> Determining the role of hydrogen in renewable systems

> Use cases, from single systems to whole countries

 \succ The economics of Swiss H₂ solar fuels

> Take-home messages

 \sim

Agenda

> Determining the role of hydrogen in renewable systems

> Use cases, from single systems to whole countries

> The economics of Swiss H2 solar fuels

> Take-home messages

က

Determining the role of hydrogen

The global optimality problem

- The energy system of tomorrow will be more complex than today
 - A greater number of involved technologies
 - A greater number of stakeholders
- But it still will have to be (at least) as performant as today
 - As reliable
 - As cost-effective
- How can such a system be properly designed?
 - When every single parameter influences all the others
 - Taking care of the details while always keeping the bigger picture in mind

We have developed our own design method: the Grid New Deal tool

Determining the role of hydrogen

Our approach

Economic optimization under technical constraints

- Minimization of LCOE
- Complying with the technological requirements of the considered new technologies

Developing our own solution allows us to

- Taylor our tool to our customers' needs
- Ensure a complete **mastery** of the underlying hypothesis

Agenda

> Determining the optimal hybrid renewable system

> Use cases, from single systems to whole countries

> The economics of Swiss H2 solar fuels

> Take-home messages

ဖ

Single system – a remote installation in the Swiss mountain

Customer's issues

- Supplying a load with high availability requirements in a remote location
- Building a MV-line is expensive and has a huge impact on the environment
- Consumption only during 3 months per year (winter)
- Our proposition:
 - Transform a yearly PV production into a winter ribbon thanks to an hybrid system

PLANAIR Ingénieurs conseils en énergies et environnement

Single system – a remote installation in the Swiss mountain

Comparison of 3 different scenarios

PLANAIR ngénieurs conseils en énergies et environneme

Hybridization is the path to reducing energy costs

 ∞

Single system – a remote installation in the Swiss mountain

Normalyzed monotonous power curves of hydrogen-linked elements

σ

en énergies et environneme

ngénieurs conseils

ANA

Reduced scale territory – the island of Rapa Nui

How to optimally decarbonize the island electricity production?

- Study conducted alongside Swiss Federal Institute of Technologies (EPFL)
- Published in Frontiers Energy Research
 - "Benefits of a diversified energy mix for remote areas: the case of Easter Island"

Reduced scale territory – the island of Rapa Nui

- Here again, hybridization with H₂ is the key to:
 - Cost efficiency
 - CAPEX reduction of 50%
 - LCOE reduction of 42%
 - Energy efficiency
 - Losses divided by 5.5!

φ 0.1

0

Figure 2. Summary of annual energy fluxes between energy sources, storage systems and uses. Energy sources include photovoltaic (PV), wind turbines (W) and Pyrolysis (P); storage systems include lithium-ion batteries (B) and hydrogen-based storage (H); and uses include consumption (C) and losses (L).

génieurs con

Ŧ

A whole country – Switzerland energy transition

- Switzerland problematic
 - Reduction of local production
 - Nuclear power plants are being phase out (35% in 2019)
 - Increase of local consumption
 - Electrification of mobility and building heating

How to ensure security of supply without increase dependency to neighbouring countries?

A whole country – Switzerland energy transition

> Different scenarios depending on sun, wind and storage development

- A. Solar and battery
- B. Solar, battery and hydrogen storage to control imports
- C. Solar, battery, hydrogen storage and wind to control imports

	Scenario A	Scenario B	Scenario C
Final consumption	84.7 TWh (61.9 TWh in 2018)		
Installed PV power	50 GWp	67 GWp	50 GWp
Installed Wind Power	0	0	5.3 GW
Daily storage capacity (battery)		100 GWh	
Electrolyser		38 GW	22 GW
Additionnal seasonal storage (H ₂)	0	26 TWh	19.9 TWh
Fuel cell		8,8 GW	8,8
Raw Energy import (7 TWh in 2018)	19.6 TWh	7 TWh	7 TWh

A whole country – Switzerland energy transition

A diverse renewable production (sun and wind) and seasonal storage are the keys to achieve the transition without increasing dependency toward neighbouring countries

- Discharging Battery-based storage
- Discharging Hydrogen storage
- Grid (Extraction)
- Curtailed Wind production
- Curtailed Photovoltaic production
- Wind production
- Photovoltaic production
- Basic production
- Grid (Injection)
- Charging Battery-based storage
- Charging Hydrogen storage
- ----- Consumption

https://gridview.gridnewdeal.com/cockpit/demo/?case=3#results

A whole country – Switzerland energy transition

A diverse renewable production (sun and wind) and seasonal storage are the keys to achieve the transition without increasing dependency toward neighbouring countries

Scenario C

Agenda

> Determining the optimal hybrid renewable system

> Use cases, from single systems to whole countries

The economics of Swiss H2 solar fuels

Take-home messages

Economics

The capital role of storage costs

- > We run of full CAPEX/OPEX evaluation based on each component price
- > The costs of the of the seasonal storage is of the uttermost importance!

	Gazeous H ₂	Liquid carrier
CAPEX	24 kCHF/MWh	2 kCHF/MWh
OPEX	0.2 kCHF/MWh/y	0.02 kCHF/MWh/y
Full system price (Capex)	615-806 BCHF	97-128 BCHF
National LCOE range (depending on scenarios)	0.42 – 0.57 CHF/kWh	0.10 – 0.14 CHF/kWh

Only cheap hydrogen storage can lead to a cost competitive transition

Use Switzerland 14 million m³ of oil storage for liquid hydrogen carrier

Choice of liquid carrier

Case Study: Liquid Organic Hydrogen Carriers

LOHC storage and transport concept (H₀LOHC: unloaded LOHC, H_nLOHC: loaded LOHC).

LOHC
N-Ethylca

N-Ethylcarbazole (NEC) Dibenzyltoluene (DBT) 1,2-Dihydro-1,2-azaborine (AB) Formic acid (FA) Methanol (MET) Naphthalene (NAP) Toluene (TOL) Reason for consideration

Well-studied nitrogenous LOHC
Already existing application as a LOHC; safe and convenient handling
Unique characteristics through integration of boron and nitrogen
Safe and convenient handling
Very high storage density
Well-studied cycloalkane; high storage density
Well-studied cycloalkane; planned application as a LOHC

Energy Environ. Sci., 2019, 12, 290

For our Case-Study: Dibenzyltoluene has been used in the calculation

- Existing promising development in Germany
- > Easy to transport, lower toxicity, not flammable

Seasonal storage of solar fuel with H₂

Case Study: Liquid Organic Hydrogen Carriers

- Concept
 - Use of the existing infrastructure (Pipeline and oil tank storage) of an decommissionned Raffinery
 - Storage of hydrogen with Liquid Organic Hydrogen Carriers (ca. 1 TWh potential H₂ storage with BDT & 2 TWh with Methanol)
 - Close to a waste incinerator (Avaibility of heat and potential CO₂ source)

Seasonal storage of solar fuel with H₂

Case Study: Liquid Organic Hydrogen Carriers

Seasonal storage scenario

- Open : Centralized H₂ production in the raffinery or decentralized H₂ production in industirs where heat can be used, for industrial processes)
- Storage in the existing oil tank (ca. 500'000 m³)
- Electricity production with a high temperature fuel cell, creating high temperature losses using the breaking the liquid LOHC to H₂
- Potential cost of hydrogen stored in the raffinery with summer surplus of electricity : 3-4 CHF/kg H₂
- Cost of winter electricity (150 MW renewable flexible generation in Winter) : 30 cts/kWh (short term), 15 Rp/kWh (mid term) : it is possible !

Agenda

> Determining the optimal hybrid renewable system

> Use cases, from single systems to whole countries

> The economics of Swiss H2 solar fuels

> Take-home messages

- Diversifying production and storage technologies is the key for the transition toward a decarbonized energy system.
- > Only a massive deployment of renewable energy production will make storage and green H_2 cost competitive.
- > With a system view of seasonal H_2 storage, the full load hours of electrolyser is not the main issue, H_2 storage cost is by far more central

- Policies and market designs must be adapted to this new paradigm to provide to right signals to the investors and correctly remunerate the value of hybridization : IEA PVPS Task 1 and 14 are addressing this need.
- Only a global approach, involving in depth technical, economic and regulatory understandings is able to provide appropriate answers to these challenges.

More information?

Lionel Perret Renewable Energy Director M.Sc. ETHZ Ing. Ecole Centrale Paris Lionel.perret@planair.ch

PLANAIR SA • INGENIEURS CONSEILS SIA Galilée 6 • CH-1400 Yverdon-les-Bains • Suisse T +41 (0)24 566 52 02 • F +41 (0)32 933 88 50 www.planair.ch

