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FOREWORD 

Solar energy technologies—such as photovoltaics (PV), solar heating and cooling, or 

concentrating solar power—provide solutions to the growing need for clean energy to 

mitigate climate change and to improve air quality. During the past few years, the use of 

solar energy has strongly progressed, in particular thanks to the impressive development of 

PV, which has become one of the most cost-competitive energy technologies overall. As the 

markets for the various solar energy systems increase, reliable and precise historical 

estimates and future projections of the solar resource are relevant not only to predict the 

energy output of solar installations and power systems but also increasingly to determine 

their expected competitiveness and economic return. 

This third edition of the Best Practices Handbook for the Collection and Use of Solar 

Resource Data for Solar Energy Applications has been prepared under the leadership of the 

National Renewable Energy Laboratory (NREL) together with a team of worldwide experts 

comprising 41 authors from 14 countries working within the framework of the International 

Energy Agency’s Photovoltaic Power Systems Programme (IEA PVPS) Technology 

Collaboration Programme Task 16 on “Solar Resource for High Penetration and Large-Scale 

Applications.” This project is a joint task with the IEA’s Solar Power and Chemical Energy 

Systems (SolarPACES) Technology Collaboration Programme. Building on the previous 

work under the IEA’s Solar Heating and Cooling Technology Collaboration Programme, this 

handbook is a prominent example of technology collaboration across the different solar 

energy technologies and the respective IEA technology collaboration programs. 

This third edition of the handbook follows only less than four years after the previous edition, 

published in 2017, and marks the rapid evolution in the field of solar resource assessment 

and forecasting. It reflects the considerable progress that has occurred since then in the 

measurement and modeling of solar radiation and related topics. For instance, this edition 

features a new chapter on other relevant meteorological parameters, such as wind, 

temperature, humidity, pressure, surface albedo, and spectral distribution. Particular 

emphasis is on the progress of forecasts using all-sky images as well as on probabilistic and 

regional forecasts, which increasingly use artificial intelligence. For the practitioner, an 

important chapter deals with the application of solar resource data to solar energy projects, 

including performance modeling. 

With its comprehensive coverage of the state of the art of solar resource assessment and 

forecasting, this handbook serves as a reference document for a wide range of target 

audiences—from science to solar energy professionals. Understanding the nature of solar 

radiation, its variations across the globe, and forecasting its evolution over time will 

increasingly contribute to make the use of solar energy more predictable. As the contribution 

of solar energy to the energy supply increases over time, the improved predictability is 

crucial for the optimization of future energy systems. 

The IEA PVPS Technology Collaboration Programme is pleased to publish the third edition 

of this handbook together with NREL. Most importantly, I would like to acknowledge the 

leadership of NREL, in particular Aron Habte and Manajit Sengupta; the IEA PVPS Task 

16/IEA SolarPACES Task 5 experts; and the support of the U.S. Department of Energy. 

I hope this handbook finds many interested readers and contributes to the further 

deployment of solar energy worldwide. 

Stefan Nowak 

Chair, IEA PVPS Technology Collaboration Programme, September 2020 
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PREFACE 

Jan Remund1 and Dave Renné2 
1
 Meteotest AG 

2
 Dave Renné Renewables, LLC 

 

As the world looks for carbon-free sources to meet final energy demand associated with 

heat, electrical power, and transport, energy from the sun stands out as the single most 

abundant energy resource on Earth. Harnessing this energy is the challenge and opportunity 

for achieving a carbon-free energy supply by 2050 to fulfil the 1.5°C target set by the 

Intergovernmental Panel on Climate Change1 and recommended in the 2015 Paris 

Agreement. Reducing carbon-dioxide emissions per energy unit and rapidly accessing the 

huge potential of solar energy will have the largest effects on achieving the 1.5°C target. 

Photovoltaics (PV), solar heating and cooling, and concentrating solar power (CSP) are the 

primary forms of energy applications using sunlight. These solar energy systems use 

different technologies, collect different fractions of the solar resource, and have different 

siting requirements and production capabilities. Reliable information about the solar resource 

is required for every solar energy application. This holds true for small installations on a 

rooftop as well as for large solar power plants; however, solar resource information is of the 

most critical interest in the latter case because such projects require a substantial 

investment, sometimes exceeding $1 billion in construction costs. Before such projects can 

be undertaken, the best possible information about the quality and reliability of the fuel 

source (i.e., solar radiation) must be made available. That is, project developers need to 

have reliable data about the solar resource available at specific locations, including historic 

trends with seasonal, daily, hourly, and (preferably) subhourly variability to predict the daily 

and annual performance of a proposed power plant. Without this information or its accuracy 

requirements, a bankable financial analysis is not possible. 

In response to a meeting of prominent CSP developers and stakeholders hosted by the U.S. 

Department of Energy (DOE) in September 2008, the National Renewable Energy 

Laboratory (NREL) produced a handbook to provide best practices for the use of solar 

resource data, which was titled Concentrating Solar Power: Best Practices Handbook for the 

Collection and Use of Solar Resource Data.2 The content was based on the experiences of 

scientists and engineers from industry, academia, and DOE for identifying the sources, 

quality, and methods for applying solar and meteorological data to CSP projects.  

During this same time, the International Energy Agency’s (IEA’s) Solar Heating and Cooling 

Programme (SHC) was hosting tasks on solar resource knowledge management (Task 36, 

2005–2011; Task 46, 2011–2016). This work was then followed by the IEA’s Photovoltaic 

Power Systems Programme (PVPS) Task 16 (2017–2020). These tasks have brought 

together the world’s foremost experts in solar energy meteorology. This group of experts 

agrees there is a need to maintain a collective document to disseminate the knowledge that 

was being developed through these tasks. It was decided that combining the efforts of the 

experts involved in the IEA tasks to build on the information in NREL’s original version of the 

handbook would provide the best use of resources and deliver a handbook of outstanding 

quality to users. It was also decided that additional solar technologies, such as PV, would be 

                                                

 

1 See https://www.ipcc.ch/report/ar4/syr/. 
2 See https://www.nrel.gov/docs/fy10osti/47465.pdf.  

https://www.ipcc.ch/report/ar4/syr/
https://www.nrel.gov/docs/fy10osti/47465.pdf
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incorporated along with additional aspects of energy meteorology that have become 

extremely important, such as solar forecasting. As a result, a second edition of the handbook 

appeared under a revised title, Best Practices Handbook for the Collection and Use of Solar 

Resource Data for Solar Energy Applications, published by NREL in 2017.3 This served as 

the final deliverable for IEA SHC Task 46. An update to that document concludes the work of 

the first phase of IEA PVPS Task 16 and is presented here as the third edition of the 

handbook. This edition is available in two different formats, as separate NREL and IEA 

PVPS reports. 

The solar PV industry has developed rapidly throughout the last few years based on ongoing 

technical evolution and shrinking prices. The size of the installations as well as the 

penetration levels have grown tremendously—both enhancing the needs for accurate solar 

data for planning and operation. Induced by these needs, there have been significant 

enhancements in the body of knowledge in the areas of solar resource assessment and 

forecasting. This third edition of the handbook updates and enhances the initial versions and 

presents the state of the art in a condensed form for all of its users.  

In the coming years, another stage of solar penetration will be reached: solar energy will not 

be only a small or growing part of power production but will become a major share of the 

production. This growth will increase the needs for high-quality and reliable resource data. 

The data needs for this growing industry are summarized in Table P-1. 

The structure of the handbook has been slightly updated since the previous editions. 

Chapter 1 lays out the need for high-quality and reliable solar resource data to support the 

rapidly growing industry, and Chapter 2, as before, provides a basic tutorial on solar 

resources. Chapter 3 presents a comprehensive overview of best practices for measuring 

solar radiation, including information gained under collaborative work completed during Task 

16. Chapter 4 summarizes techniques used to develop estimates of solar resources from 

weather satellite data and numerical model predictions. Chapter 5 is a new chapter 

describing additional meteorological variables (besides radiation) that are required for 

accurate performance analysis. Chapter 6 describes an updated list of commonly used data 

sets available both in the public and private sectors, and Chapter 7 provides important 

information on both measured and modeled solar data uncertainty. Chapter 8 provides an 

update on recent developments in the ability to forecast solar resources over time horizons 

spanning from minutes to hours ahead and days ahead. All this information leads to Chapter 

9, which provides data application techniques for the various stages of project development, 

from prefeasibility to routine operations, as shown in Table P-1. The outlook for future work 

is summarized in Chapter 10. 

                                                

 
3
 See https://www.nrel.gov/docs/fy18osti/68886.pdf. 

https://www.nrel.gov/docs/fy18osti/68886.pdf
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Table P-1. Data Application Techniques for the Various Stages of Project 

Development 

 
Project developers, engineering procurement and construction firms, utility companies, 

system operators, energy suppliers, financial investors, organizations involved in planning 

and managing solar research programs, and others involved in solar energy systems 

planning and development should find this handbook to be a particularly valuable resource 

for the collection and interpretation of solar resource data. Readers are encouraged to 

provide feedback to the authors for future revisions and an expansion of the handbook’s 

scope and content. 
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SVF sky view factor 
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1 WHY SOLAR RESOURCE DATA ARE IMPORTANT TO 
SOLAR POWER 

Manajit Sengupta1 and Richard Meyer2 

1
 National Renewable Energy Laboratory 

2
 Suntrace GmbH 

 

Sunlight is the fuel for all solar energy technologies. For any solar generation source, 

knowledge of the quality and future reliability of the fuel is essential for determining the 

financial viability of any new project. This information is also important during operations for 

accurate control, analyses, and integration of the generation to the grid. The variability of the 

supply of sunlight represents the single greatest uncertainty in a solar power plant’s 

predicted performance. Solar resource information is needed for various stages of a plant’s 

development and operation, such as: 

 Historical long-term data for site selection during feasibility studies 

 Prediction of power plant output for plant design and financing 

 Real-time measurement and solar forecasting for plant and grid operations. 

Site selection requires information about numerous parameters for prospective project 

locations, including current land use, grid access, and proximity to load centers. The top 

priority though is determining if an adequate solar resource exists for a proposed project. For 

site selection, average annual solar irradiation at the site is the first selection criterion. Other 

meteorological parameters, such as ambient temperature and wind speed, may also play an 

important role. Further, lower seasonal variability could also be advantageous because of a 

more consistent match to the power demand. Because weather patterns can change from 

one year to another, many years of data are required to determine reliable average 

irradiation conditions and interannual variability. For this purpose, satellite-derived, high-

quality historic solar radiation data sets covering at least 10 years are usually considered 

necessary for the site selection of large solar energy systems. 

As flat-priced electricity feed-in-tariff regulations get phased out, the economic yield of solar 

power systems increasingly depends on the solar production at specific times of the day as 

well as during various times of the year. Thus, for solar projects with variable prices, the 

temporal distribution of solar irradiance to estimate potential yields among competing sites 

might be critical even during site selection. At this early stage of project development, it is 

sufficient to study the temporal variability of the energy output throughout the year and 

typical daily cycles. As an alternative to multiple-year data sets, typical meteorological year 

(TMY) data for each site might be sufficient at this stage, in particular for smaller 

installations; however, the TMY cannot characterize interannual variability and might have 

limited use for certain projects. 

If an appropriate site is identified, the development of a power generation project will require 

more precise and detailed data sets. For site-specific techno-economic optimization of a 

solar system, the availability of high-resolution data is always beneficial. These data 

generally exist in the form of satellite-derived time series. To finance large solar power 

plants, data sets that are validated by ground measurements on or near the site are 

essential to reduce the yield risk. In addition to accurate solar radiation measurements, 

specialized meteorological stations usually provide additional environmental parameters that 

help to optimize the sizing and proper selection of plant components. 
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Accurate solar and meteorological stations are also valuable during plant commissioning 

because reliable measurements are the base for acceptance testing to demonstrate proof of 

fulfillment of technical specifications for heat or electric output. Although temporary 

measurement equipment can be used for acceptance testing, reliable measurements are 

essential for estimating real-time plant output to ensure high efficiency of the plant 

throughout its service life. The evaluation of plant output as a function of solar irradiance is 

the most important indicator of power plant performance. A reduction in overall efficiency 

implies a degradation of one or more power plant components or poor maintenance or 

operation. Although remotely-sensed data can be used for smaller systems, where 

performance accuracy can be relaxed, larger solar systems usually rely on ground-based 

measurements, which might be combined with near-real-time satellite-derived solar radiation 

data. Local ground measurements also assist in site-specific model validation and 

improvements of solar forecasts. 

Proper and accurate solar forecasts are important for the optimized use of solar power 

plants, both economically and operationally. They help to improve system operations, such 

as the optimal use of a storage tank in a solar thermal water heating system, a molten salt 

system for high-temperature applications, or a battery system in a photovoltaic (PV) system. 

With the fast growth of grid-connected solar electrical systems, solar radiation forecasts 

have become highly important for safe grid operations and efficient dispatching between 

power plants. Although short-term solar forecasts in the areas of high solar penetration 

enable efficient dispatch, day-ahead forecasts enable accurate unit commitment, leading to 

efficient planning of reserves.  

This handbook covers all pertinent aspects of solar radiation that are relevant for the 

planning and operation of PV plants, solar thermal heating and cooling systems, 

concentrating solar thermal plants, and the electric grid. Chapter 2 explains the basic 

concepts and terms that are essential to understanding the subsequent chapters. Chapter 3 

describes the state of the art in measuring solar radiation on the Earth’s surface and offers 

methods and protocols to produce a data set that withstands the scrutiny of due diligence. 

Chapter 4 focuses on modeling solar radiation. It introduces the theory of radiative transfer in 

the atmosphere, facilitating an understanding of current practices for calculating the incident 

solar radiation at the Earth’s surface. Today, many data sets are calculated using radiative 

transfer models with observations from operational meteorological satellites as input, and 

these examples are also presented in Chapter 4.  

Chapter 5 introduces additional sources of meteorological and advanced solar parameters 

that are required for improved accuracy in solar modeling. Several examples of solar 

resource data sets—both satellite-derived and ground-measured data—are presented in 

Chapter 6. It is important to understand the uncertainty of any data set, whether measured or 

modeled; therefore, Chapter 7 provides an understanding of how to estimate and interpret 

uncertainty in both measured and modeled data sets. Radiative transfer calculations, similar 

to those described in Chapter 4, are used to forecast solar radiation and are described in 

Chapter 8. This chapter describes nowcasting (forecasting for a few hours ahead) by 

extrapolating satellite-derived and ground-mounted observations as well as solar radiation 

forecasts beyond the first few hours using numerical weather prediction models.  

Chapter 9 summarizes various techniques for estimating solar power using data sets 

described in previous chapters, and it recommends best practices for the application of data 

to various stages of a solar power project. Significant work remains to improve the accuracy, 

reliability, and level of detail of solar resource products. Many open questions remain in the 

field of solar resource assessment, and Chapter 10 provides an overview of how these 

outstanding issues could be resolved in the future. Research leading to these solutions could 

be through the development of new or improved techniques, the application of new 
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measurement techniques, the use of new meteorological satellites, the development of 

improved weather models, or, ideally, the use of a smart combination of these approaches. 
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2 OVERVIEW OF SOLAR RADIATION RESOURCE 
CONCEPTS 

Aron Habte,1 Thomas Stoffel,2 Christian Gueymard,3 Daryl Myers,4 Philippe 
Blanc,5 Stefan Wilbert,6 and Frank Vignola7 
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 National Renewable Energy Laboratory 
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 National Renewable Energy Laboratory, retired 
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 MINES ParisTech 
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 German Aerospace Center (DLR) 

7
 University of Oregon 

2.1 Introduction 

Describing the relevant concepts and applying a consistent terminology are important to the 

usefulness of any handbook. This chapter discusses standard terms that are used to 

illustrate the key characteristics of solar radiation—the fuel for all solar technologies. 

Beginning with the Sun as the source, this chapter presents an overview of the effects of 

Earth’s orbit and atmosphere on the possible types and magnitudes of solar radiation 

available for energy conversion. An introduction to the concepts of measuring and modeling 

solar radiation is intended to prepare the reader for the more in-depth treatments in Chapter 

3–Chapter 6. This overview concludes with an important discussion of the estimated 

uncertainties associated with solar resource data as affected by the experimental and 

modeling methods used to produce the data. The reader is referred to Chapter 7 for a 

detailed treatment of uncertainty in measurement and modeling. 

2.2 Radiometric Terminology 

Before discussing solar radiation further, it is important to understand basic radiometric 

terms. Radiant energy, flux, power, and other concepts used in this handbook are 

summarized in Table 2-1. 

Table 2-1. Radiometric Terminology and Units 

Quantity Symbol Unit Unit Description 

Radiant energy Q Joule J Energy 

Radiant flux Φ Watt W Radiant energy per unit of time (radiant power) 

Radiant intensity I Watt per steradian W/sr Power per unit solid angle 

Radiant emittance M Watt per square meter W/m² Power emitted from a surface 

Radiance L 
Watt per steradian per 
square meter 

W/(sr·m²) 
Power per unit solid angle per unit of projected 
source area 

Irradiance E Watt per square meter W/m² Power incident on a unit area surface 

Spectral irradiance Eλ 
Watt per square meter 
per nanometer 

W/(m²·nm) 
Power incident on a unit area surface per unit 
wavelength 

Irradiation H 
Joule per square 
meter 

J/m² 

 

 

 

 

 

Energy accumulated on a unit area surface during a 
period; a more practical energy unit is kilowatt-hours 
per square meter (1 kWh / m² = 3.6 MJ/m²) 
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2.3 Extraterrestrial Irradiance 

Any object with a temperature above absolute zero Kelvin emits radiation. With an effective 

surface temperature of ≈5800 K, the Sun behaves like a quasi-static blackbody and emits 

radiation over a wide range of wavelengths, with a distribution that is close to that predicted 

by Planck’s law (Figure 2-1). This constitutes the solar spectral power distribution, or solar 

spectrum. For terrestrial applications, the useful solar spectrum, also called the shortwave 

spectrum (≈290–4000 nm), includes the spectral regions called ultraviolet (UV), visible, and 

near-infrared (NIR) (Figure 2-1). The latter is the part of the infrared spectrum that is below 

4000 nm in the solar spectrum. In contrast, the longwave (or far-infrared) spectrum extends 

beyond 4 µm, where the planetary thermal emission is dominant. Based on a recent 

determination (Gueymard 2018a), most spectral irradiance (98.5%) of the extraterrestrial 

spectrum (ETS), is contained in the wavelength range from 290–4000 nm. In what follows, 

broadband solar radiation will always refer to this spectral range, unless specified otherwise. 

 
Figure 2-1. Reference ETS (ASTM E490-19) and 5,800 K blackbody distribution using 

Planck’s law. Image by Philippe Blanc, MINES ParisTech/ARMINES 

Various ETS distributions have been derived based on ground measurements, 

extraterrestrial measurements, and physical models of the Sun’s output. Some historical 

perspective is offered by Gueymard (2004, 2006, 2018a). All distributions contain some 

deviations from the current standard extraterrestrial spectra used by ASTM Standard E490 

(2019) (Figure 2-1). A new generation of ETS distribution, based on recent spectral 

measurements from space, was recently published (Gueymard 2018a). 

2.4 Solar Constant and Total Solar Irradiance 

The total radiant power from the Sun is nearly constant. The solar output (radiant emittance) 

is called the total solar irradiance (TSI) and can be obtained as the integration of the ETS at 

1 AU (astronomical unit, approximate average Sun-Earth distance, discussed in Section 2.5) 

over all wavelengths. TSI was commonly called the solar constant (SC) until slight temporal 

variations were discovered (Fröhlich and Lean 1998, 2004; Kopp and Lean 2011). The solar 

constant is now defined as the long-term mean TSI. Both TSI and solar constant are made 

independent from the actual Sun-Earth distance by evaluating them at 1 AU. Small but 

measurable changes in the Sun’s output and TSI are related to its magnetic activity. There 

are cycles of approximately 11 years in solar activity, which are accompanied by a varying 

number of sunspots (cool, dark areas on the Sun) and faculae (hot, bright spots). TSI 

increases during high-activity periods because the numerous faculae more than 

counterbalance the effect of sunspots. From an engineering perspective, these TSI 
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variations are relatively small, so the solar constant concept is still useful and perfectly 

appropriate in solar applications.  

Figure 2-2 shows the latest version of a composite TSI time series based on multiple 

spaceborne instruments that have monitored TSI since 1978 using a variety of instruments 

and absolute scales (Gueymard 2018b). Estimates are also used for the period from 1976–

1978 to make this time series start at the onset of solar cycle 21. The solar cycle numbers 

are indicated for further reference. (Solar cycle 25 is assumed to have started at the end of 

2019, but this is still debated as of this writing.) Figure 2-2 shows the solar constant (always 

evaluated at 1 AU) as a horizontal solid line.  

  
Figure 2-2. Four solar cycles show the temporal variations of daily TSI in a composite 

reconstruction of the 1976–2017 time series based on observations from spaceborne 

radiometers after corrections and gap-filling. The thick line indicates the 27-day 

moving average (corresponding to the 27-day mean solar rotation period), and the 

circled numbers refer to the solar cycle designation. The horizontal line shows the 

solar constant (1361.1 W/m2). Image based on data published in Gueymard (2018b) 

On a daily basis, the passage of large sunspots results in much lower TSI values than the 

solar constant. The measured variation in TSI resulting from the sunspot cycle is at most 

±0.2%, only twice the precision (i.e., repeatability—not total absolute accuracy, which is 

approximately ±0.5%) of the most accurate radiometers measuring TSI in space. There is, 

however, some large variability in a few spectral regions—especially the UV (wavelengths 

less than 400 nm)—caused by solar activity. 

Historic determinations of solar constant have fluctuated throughout time (Gueymard 2006; 

Kopp 2016). At the onset of the 21st century, it was 1366.1 ± 7 W/m2 (ASTM 2000; 

Gueymard 2004). More recent satellite observations using advanced sensors and better 

calibration methods, however, have shown that the solar constant is somewhat lower: ≈1361 

W/m2. After careful reexamination and corrections of decades of past satellite-based 

records, Gueymard (2018b) proposed a revised value of 1361.1 W/m2.  

According to astronomical computations such as those made by the National Renewable 

Energy Laboratory’s (NREL’s) solar position software (https://midcdmz.nrel.gov/spa/), using 

SC ≈1361 W/m2, the seasonal variation of ±1.7% in the Sun-Earth distance causes the 

irradiance at the top of the Earth’s atmosphere to vary from ≈1409 W/m2 (+3.5%) near 

January 3 to ≈1315 W/m2 (–3.3%) near July 4. This seasonal variation is systematic and 

deterministic; hence, it does not include the daily (somewhat random) or cyclical variability in 

https://midcdmz.nrel.gov/spa/
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TSI induced by solar activity, which was discussed previously. This variability is normally 

less than ±0.2% and is simply ignored in the practice of solar resource assessments. 

2.5 Solar Geometry 

The amount of radiation exchanged between two objects is affected by their separation 

distance. The Earth’s elliptical orbit (eccentricity 0.0167) brings it closest to the Sun in 

January and farthest from the Sun in July, as mentioned. The average Sun-Earth distance is 

close to the new definition of the AU, which is exactly 149,597,870,700 m, as introduced in 

2012 by the International Astronomical Union and recognized as a Système International 

(SI) unit in 2014 by the International Bureau of Weights and Measures (BIPM). Figure 2-3 

shows the Earth’s orbit in relation to the northern hemisphere’s seasons, caused by the 

average ≈23.4° tilt of the Earth’s rotational axis with respect to the plane of the orbit. The 

solar irradiance available at the top of atmosphere (TOA) is called the extraterrestrial 

radiation (ETR). ETR (see Eq. 2-1) is the power per unit area, or flux density, in Watts per 

square meter (W/m2), radiated from the Sun and available at the TOA. Just like ETS, ETR 

varies with the Sun-Earth distance (r) and annual mean distance (r0): 

 ETR = TSI (r0/r)2 (2-1) 

 
Figure 2-3. Schematic of the Earth’s orbit. The Earth’s orbit around the Sun is slightly 

elliptic. Image by NREL 

As indicated in Section 2.4, it is customary to neglect temporal variations in TSI so that TSI 

can be replaced by the solar constant in Eq. (2-1) for simplification. The Sun-Earth distance 

correction factor, (r0/r)2, in Eq. 2-1 is normally obtained from sun position algorithms, such as 

those described in Section 2.6.1. Daily values of sufficient accuracy for most applications 

can also be found in tabulated form—e.g., Iqbal (2012). 

From the TOA, the sun appears as a very bright disk with an angular diameter of ≈0.5° (the 

actual apparent diameter varies by a small amount, ±1.7%, because the Sun-Earth distance 

varies) surrounded by a completely black sky, apart from the light coming from stars and 

planets. This angle can be determined from the distance between the Earth and the Sun and 

the latter’s apparent diameter. More precisely, a point at the top of the Earth’s atmosphere 

intercepts a cone of light from the hemisphere of the Sun facing the Earth with a total angle 

of 0.53°±1.7% at the apex and a divergence angle from the center of the disk of 0.266° (half 

the apex angle, yearly average). Because the divergence angle is very small, the rays of 

light emitted by the Sun are nearly parallel; these are called the solar beam. The interaction 

of the solar beam with the terrestrial atmosphere is discussed next. 

https://en.wikipedia.org/wiki/International_Bureau_of_Weights_and_Measures
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2.6 Solar Radiation and the Earth’s Atmosphere 

The Earth’s atmosphere can be seen as a continuously variable filter for the solar ETR as it 

reaches the surface. Figure 2-4 illustrates the “typical” absorption of solar radiation by 

atmospheric constituents such as ozone, oxygen, water vapor, or carbon dioxide. The 

amount of atmosphere the solar photons must traverse, also called the atmospheric path 

length or air mass (AM), depends on the relative position of the observer with respect to the 

sun’s position in the sky (Figure 2-4). By convention, air mass one (AM1) is defined as the 

amount of atmospheric path length observed when the sun is directly overhead. As a first 

approximation, and for low zenith angles, air mass is geometrically related to the solar zenith 

angle (SZA). Actually, air mass is approximately equal to the secant of SZA, or 1/cos(SZA). 

Air mass 1.5 (AM1.5) is a key quantity in solar applications and corresponds to SZA = 

48.236° (Gueymard, Myers, and Emery, 2002). Air mass two (AM2) occurs when SZA is 

≈60° and has twice the path length of AM1. By extrapolation, one refers to the value at the 

TOA as AM0 (Myers 2013).  

 
Figure 2-4. Scattering of the direct-beam photons from the sun by the atmosphere 

produces diffuse radiation that varies with air mass. Image by NREL, modified from 

Marion et al. (1992) 

The cloudless atmosphere contains gaseous molecules and particulates (e.g., dust and 

other aerosols) that reduce the ETR as it progresses farther down through the atmosphere. 

This reduction is caused mostly by scattering (a change of a photon’s direction of 

propagation) and also by absorption (a capture of radiation). Finally, clouds are the major 

elements that modify the ETR (also by scattering and absorption) on its way to the surface or 

to a solar collector.  

Absorption converts part of the incoming solar radiation into heat and raises the temperature 

of the absorbing medium. Scattering redistributes the radiation in the hemisphere of the sky 

dome above the observer, including reflecting part of the radiation back into space. The 

longer the path length through the atmosphere, the more radiation is absorbed and 

scattered. The probability of scattering—and hence of geometric and spatial redistribution of 

the solar radiation—increases as the path (air mass) from the TOA to the ground increases. 

Part of the radiation that reaches the Earth’s surface is eventually reflected back into the 

atmosphere. A fraction of this returns to the surface through a process known as 

backscattering. The actual geometry and flux density of the reflected and scattered radiation 

depend on the reflectivity and physical properties of the surface and constituents in the 

atmosphere, especially clouds and aerosols. 

Based on these interactions between the radiation and the atmosphere, the terrestrial solar 

radiation is divided into two components: direct beam radiation, which refers to solar photons 
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that reach the surface without being scattered or absorbed, and diffuse radiation, which 

refers to photons that reach the observer after one or more scattering events with 

atmospheric constituents. These definitions and their usage for solar energy are discussed 

in detail in Section 2.7. 

Ongoing research continues to increase our understanding of the properties of atmospheric 

constituents, ways to estimate them, and their impact on the magnitude of solar radiation in 

the atmosphere at various atmospheric levels and at the surface. This is of great importance 

to those who measure and model solar radiation fluxes (see Chapter 3–Chapter 6). 

2.6.1 Relative Motions of the Earth and Sun 

The amount of solar radiation available at the TOA is a function of TSI and the Sun-Earth 

distance at the time of interest, per Eq. (2-1). The slightly elliptical orbit of the Earth around 

the Sun was briefly described in Section 2.5 and is shown in Figure 2-3. The Earth rotates 

around an axis through the geographic north and south poles, inclined at an average angle 

of ≈23.4° to the plane of the Earth’s orbit. The axial tilt of the Earth’s rotation also results in 

daily variations in the solar geometry during any year. 

In the Northern Hemisphere, at latitudes above the Tropic of Cancer (23.437 N) near 

midday, the sun is low on the horizon during winter and high in the sky during summer. 

Summer days are longer than winter days because of progressive changes where the sun 

rises and sets. Similar transitions take place in the Southern Hemisphere. All these changes 

result in changing geometry of the solar position in the sky with respect to time of year and 

specific location. Similarly, the resulting yearly variation in the solar input creates seasonal 

variations in climate and weather at each location. The solar position in the sky corresponds 

to topocentric angles, as follows: 

 The solar elevation angle is defined as the angle formed by the direction of the sun and 

the local horizon. It is the complement of SZA, i.e., 90°–SZA. 

 The solar azimuth angle is defined as the angle formed by the projection of the direction 

of the sun on the horizontal plane defined eastward from true north, following the 

International Organization for Standardization (ISO) 19115 standard. For example, 0° or 

360° = due north, 90° = due east, 180° = due south, and 270° = due west. 

An example of apparent sun path variations for various periods of the year is depicted in 

Figure 2-5. Because of their significance in performing any analysis of solar radiation data or 

any radiation model calculation, the use of solar position calculations of sufficient accuracy is 

necessary, such as those derived from NREL’s Solar Position Algorithm4 (Reda and 

Andreas 2003, 2004). This algorithm predicts solar zenith and azimuth angles as well as 

other related parameters such as the Sun-Earth distance and the solar declination. All this is 

possible in the period from 2000 B.C. to 6000 A.D. with an SZA standard deviation of only 

≈0.0003° (1''). To achieve such accuracy during a long period, this algorithm is very time 

consuming, with approximately 2300 floating operations and more than 300 direct and 

inverse trigonometric functions at each time step. Other algorithms exist, differing in the 

attained accuracy and in their period of validity. Various strategies exist to reduce 

operations, such as reducing the period of validity while maintaining high accuracy (Blanc 

and Wald 2012; Grena 2008; Blanco-Muriel et al. 2001) or keeping a long period while 

reducing the accuracy (Michalsky 1988). 

                                                

 
4
 See http://www.nrel.gov/midc/spa/.  

http://www.nrel.gov/midc/spa/
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Figure 2-5. Apparent sun path variations during a typical year in Denver, Colorado. 

Image from the University of Oregon Solar Radiation Monitoring Laboratory 

(http://solardata.uoregon.edu/SunChartProgram.php) 

2.7 Solar Resource and Components 

Radiation can be transmitted, absorbed, or scattered in varying amounts by an attenuating 

medium, depending on wavelength. Complex interactions of the Earth’s atmosphere with 

solar radiation result in three fundamental broadband components of interest to solar energy 

conversion technologies: 

 Direct normal irradiance (DNI): solar (beam) radiation from the sun’s disk itself—of 

interest to concentrating solar technologies (CST), tracked collectors, and other solar 

technologies because of incidence angle dependent efficiency 

 Diffuse horizontal irradiance (DHI): scattered solar radiation from the sky dome 

(excluding the sun and thus DNI)5 

 Global horizontal irradiance (GHI): geometric sum of the direct and diffuse horizontal 

components (also called the total hemispheric irradiance) 

 Global tilted irradiance (GTI): geometric sum of the direct, sky diffuse, and ground-

reflected components on a tilted surface. GTI is also referred to as the plane-of-array 

(POA) irradiance in the photovoltaic (PV) literature. 

 Global normal irradiance (GNI): geometric sum of the direct, sky diffuse, and ground-

reflected components on a tracking surface that remains perpendicular to the sunbeam. 

The radiation components are shown in Figure 2.6.  

                                                

 
5
 The diffuse horizontal irradiance is also frequently referred to as DIF in the literature to avoid 

confusion with the direct horizontal irradiance, which is also a quantity of interest in various 
applications. 

http://solardata.uoregon.edu/SunChartProgram.php
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Figure 2-6. Solar radiation components resulting from interactions with the 

atmosphere. Image by Al Hicks, NREL 

These basic solar components are related to SZA by the fundamental expression:  

 GHI = DNI × cos(SZA) + DHI (2-2a) 

 GTI = DNI × cos(AI) + DHI × SVF + RHI × GVF (2-2b) 

where AI is the angle of incidence of the solar beam onto the tilted surface, SVF is the sky 

view factor between the collector and the visible part of the sky, GVF is the ground view 

factor between the collector and the visible part of the foreground surface, and RHI is the 

global reflected horizontal irradiance, which is discussed further in Chapter 5, Section 5.11.  

2.7.1 Direct Normal Irradiance and Circumsolar Irradiance 

By definition, DNI is the irradiance on a surface perpendicular to the vector (i.e., normal 

incidence) from the observer to the center of the sun caused by radiation that was not 

scattered by the atmosphere out of the region appearing as the solar disk (WMO 2018). This 

strict definition is useful for atmospheric physics and radiative transfer models, but it results 

in a complication for ground observations: it is not possible to measure whether or not a 

photon was scattered if it reaches the observer from the direction in which the solar disk is 

seen. Therefore, DNI is usually interpreted in a less stringent way in the world of solar 

energy. Direct solar radiation is understood as the “radiation received from a small solid 

angle centered on the sun’s disk” (ISO 2018). The size of this “small solid angle” for DNI 

measurements is recommended to be 5 ∙ 10-3 sr (corresponding to ≈2.5° half angle) (WMO 

2018). This recommendation is approximately 10 times larger than the angular radius of the 

solar disk itself based on no-atmosphere geometry, whose yearly average is 0.266°, as 

mentioned earlier. This relaxed definition is necessary for practical reasons because the 

instruments used for DNI measurement (pyrheliometers) need to track or follow the sun 

throughout its path of motion in the sky, and small tracking errors are to be expected. The 

relatively large field of view (FOV) of pyrheliometers reduces the effect of such tracking 

errors. Similarly, DHI must be obtained by masking the sun from the pyranometer detector 

with a small shade. An FOV with a radius of 2.5° is necessary to avoid the impact of tracking 

errors (e.g., wind-induced tracking errors) and to maintain an FOV complementary to that of 

the pyrheliometer. 
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To understand the definition of DNI and how it is measured by pyrheliometers in practice, the 

role of circumsolar radiation—scattered radiation coming from the annulus surrounding the 

solar disk—must be discussed. (The reader is referred to the detailed review, based on both 

experimental and modeling results, found in Blanc et al. (2014).) Because of forward 

scattering of direct sunlight in the atmosphere, the circumsolar region closely surrounding 

the solar disk (solar aureole) looks very bright and can alter the observed sunshape (Buie et 

al. 2003). The sunshape—a quantity not to be confused with the “shape of the Sun”—is the 

azimuthally averaged radiance profile as a function of the angular distance from the center of 

the sun normalized to 1 at the apparent sun’s disc center. The radiation coming from this 

region is called the circumsolar radiation. For the typical FOV of modern pyrheliometers 

(2.5°), circumsolar radiation contributes a variable amount, depending on atmospheric 

conditions, to the DNI measurement. Determining the magnitude of the circumsolar radiation 

is of interest in CST applications because DNI measurements are typically larger than the 

beam irradiance that can be used in concentrating systems. This causes an overestimate of 

CST plant production because the FOV of the concentrators (typically of the order of 1° or 

even less) is much smaller than the FOV of the pyrheliometers that are used on-site to 

determine the incident DNI.  

The circumsolar contribution to the observed DNI can be quantified if the radiance 

distribution within the circumsolar region and the so-called penumbra function of the 

pyrheliometer are known. The latter is a characteristic of the instrument and can be derived 

from the manufacturer’s data. The former, however, is difficult to determine experimentally 

with current instrumentation. For instance, a method based on two commercial instruments 

(a sun and aureole measurement system and a sun photometer) has been presented 

(Gueymard 2010; Wilbert et al. 2013). Other instruments that can measure the circumsolar 

irradiance are documented in Wilbert et al. (2012, 2018), Kalapatapu et al. (2012), and 

Wilbert (2014). 

To avoid additional measurements, substantial modeling effort is required and might involve 

estimation of the spectral distribution (Gueymard 2001). Some specific input data are rarely 

accessible in real time, particularly when a thin ice cloud (cirrus) reduces DNI but 

considerably increases the circumsolar contribution. Despite these difficulties and because 

of the special needs of the solar industry, new specialized radiative models have been 

developed recently to evaluate the difference between the true and apparent DNI using 

various types of observations (Eissa et al. 2018; Räisänen and Lindfors 2019; Sun et al. 

2020; Xie et al. 2020). More research is being conducted to facilitate the determination of the 

circumsolar fraction at any location and any instant as part of solar resource assessments. 

Further information on circumsolar radiation can be found in Chapter 5, Section 5.9. 

2.7.2 Diffuse Irradiance 

A cloudless atmosphere absorbs and scatters some radiation out of the direct beam before it 

reaches the Earth’s surface. Scattering occurs in essentially all directions, away from the 

specific path of the incident beam radiation. This scattered radiation constitutes the sky 

diffuse radiation in the hemisphere above the surface. In particular, the Rayleigh scattering 

theory explains why the sky appears blue (short wavelengths, in the blue and violet parts of 

the spectrum, are scattered more efficiently by atmospheric molecules) and why the sun’s 

disk appears yellow-red at sunrise and sunset (blue wavelengths are mostly scattered out of 

the direct beam, whereas the longer red wavelengths undergo less scattering, resulting in a 

red shift). As mentioned above, the sky radiation in the hemisphere above the local surface 

is referred to as DHI. A more technical and practical definition of DHI is that it represents all 

radiation from the sky dome except what is considered DNI; hence, in practice, DHI is the 

total diffuse irradiance from the whole-sky hemisphere minus the 2.5° annulus around the 

sun center. 
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DHI includes radiation scattered by molecules (Rayleigh effect), aerosols (Mie effect), and 

clouds (if present). It also includes the backscattered radiation that is first reflected by the 

surface and then re-reflected downward by the atmosphere or clouds. The impact of clouds 

is difficult to model because they have optical properties that can vary rapidly over time and 

can also vary considerably over the sky hemisphere. Whereas a single and homogenous 

cloud layer can be modeled with good accuracy, complex three-dimensional cloud scenes 

present extreme challenges (Hogan and Shonk 2012). 

2.7.3 Global Irradiance 

The total hemispherical solar radiation on a horizontal surface, or GHI, is the sum of DHI and 

the projected DNI to the horizontal surface, as expressed by Eq. 2-2. This fundamental 

equation is used for data quality assessments, some solar radiation measurement system 

designs, and atmospheric radiative transfer models addressing the needs for solar resource 

data. Because GHI is easier—and less expensive—to measure than DNI or DHI, most 

radiometric stations in the world provide only GHI data. It is then necessary to estimate DNI 

and DHI by using an appropriate separation model, as discussed in the next section. 

2.7.4 Solar Resources for Solar Energy Conversion 

Obtaining data time series or temporal averages of the solar radiation components—most 

importantly, GHI and DNI—that relate to a conversion system is the first step in selecting the 

site-appropriate technology and evaluating the simulated performance of specific system 

designs. Systems with highly concentrating optics rely solely on DNI. Low-concentration 

systems might also be able to use some sky diffuse radiation. Flat-plate collectors, fixed or 

tracking, can use all downwelling radiation components as well as radiation reflected from the 

ground if in the collector’s FOV. 

Solar radiation data are required at all stages of a solar project. Before construction, long time 

series of historical data are necessary to quantify the solar resource and its variability. During 

operation, real-time data are typically necessary to verify the performance of the system and to 

detect problems. In both cases, the required data can be obtained from measurements, 

modeling, or a combination of both. Typically, measurements are not used exclusively for the 

early stages of development because (1) long time series of measured irradiance data generally 

do not exist at the location of interest; (2) measured data, when available, most likely contain 

gaps that must be filled by modeling; and (3) conducting quality measurements is considerably 

more costly than operating models (assuming, of course, that the otherwise prohibitively high 

costs of satellite operations and data management are borne by other agencies). High-quality 

measurements remain essential, however, because their uncertainty is normally significantly 

less than that of modeled data (see Chapter 7), and thus they can serve to validate models and 

even improve the quality of long-term modeled time series through a “site adaptation” process 

(see Chapter 4). The development and validation of solar radiation models is an intricate 

procedure that requires irradiance observations obtained with very low measurement 

uncertainty, typically obtained only at research-class stations. 

GHI is measured at a relatively large number of stations in the world (see Chapter 6); however, 

the quality of such data remains to be verified at most of these stations. Assuming that good-

quality GHI data are available at a station of interest, how can the analyst derive the two other 

components—DNI and DHI—for example, to compute global irradiance on a tilted plane?  

There are two possible solutions to this frequent situation. The first is to temporarily ignore the 

existing GHI data and obtain time series of GHI, DNI, and DHI from a reputable source of 

satellite-derived data. The modeled and measured GHI data can then be compared for quality 

assurance and possible bias corrections to the modeled data or, conversely, to determine the 

quality of the measured data. Both measured and modeled GHI values can incorporate 
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systematic biases. Understanding the magnitude and nature of these biases and how they can 

affect the calculation is important when determining the uncertainty in the results (see Chapter 

7).  

The second method for determining DNI and DHI from GHI data consists of using one of 

numerous “separation” or “decomposition” models, about which considerable literature 

exists. Gueymard and Ruiz-Arias (2016) reviewed 140 such models and quantified their 

performance at 54 high-quality radiometric stations over all continents using data with high 

temporal resolution (1 minute, in most cases). Previous evaluations had targeted a limited 

number of models, exclusively using the more conventional hourly resolution—e.g., Ineichen 

(2008); Jacovides et al. (2010); Perez et al. (1990); and Ruiz-Arias et al. (2010). All current 

models of this type being empirical in nature are not of “universal” validity and thus might not 

be optimized for the specific location under scrutiny, particularly under adverse situations 

(e.g., subhourly data, high surface albedo, or high aerosol loads) that can trigger significant 

biases and random errors; hence, the most appropriate way to deal with the component 

separation problem cannot be ascertained at any given location. The solar radiation scientific 

research community continues to validate the existing conversion algorithms and to develop 

new ones.  

In general, the higher the time resolution, the larger random errors in the estimated DNI or 

DHI will be. Even large biases could appear at subhourly resolutions if the models used are 

not appropriate for short-interval data. This issue is discussed by Gueymard and Ruiz-Arias 

(2014, 2016), who showed that not all hourly models are appropriate for higher temporal 

resolutions and that large errors might occur under cloud-enhancement situations. A new 

avenue of research is to optimally combine the estimates from multiple models using 

advanced artificial intelligence techniques (Aler et al. 2017).  

2.7.5 Terrestrial Solar Spectra 

Many solar energy applications rely on collectors or systems that have a pronounced 

spectral response. The performance of solar cells that constitute the building blocks of PV 

systems are affected by the spectral distribution of incident radiation. Each solar cell 

technology has a specific spectral dependence (see Figure 3-22). To allow for the 

comparison and rating of solar cells or modules, it is thus necessary to rely on reference 

spectral conditions. To this end, various international standardization bodies—ASTM, the 

International Electrotechnical Commission (IEC), and ISO—have promulgated standards 

that describe such reference terrestrial spectra. In turn, these spectra are mandated to test 

the performance of any solar cell using either indoor or outdoor testing methods. Currently, 

all terrestrial standard reference spectra are for an air mass of 1.5 (noted AM1.5). The 

reason for this as well as historical perspectives on the evolution of these standards are 

discussed by Gueymard et al. (2002). The standard reference spectra of relevance to the 

solar energy community are the following: 

 ASTM G173: for GTI on a 37° tilted surface and DNI 

 ASTM G197: for the direct, diffuse, and global components incident on surfaces tilted at 

20° and 90° 

 IEC 60904-3: similar to ASTM G173, with only slightly different values, lower by 0.29% 

 ISO 9845-1: replicating ASTM G159 (now deprecated and replaced by G173); ISO is 

currently preparing an update. 

In addition, CIE 241:2020 proposes a number of recommended reference solar spectra for 

industrial applications at various air masses, and ASTM G177 defines a “high-UV” spectrum 

at an air mass of 1.05 for material degradation purposes. 
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It is emphasized that these reference spectra correspond to clear-sky situations and are 

difficult to realize experimentally (Gueymard 2019). Spectroradiometers are now available 

that measure the spectral irradiance at high temporal resolution (e.g., each minute) under all 

possible sky conditions. Although the availability of spectral data are limited, they can be 

used to test systems under field conditions (see Chapter 3–Chapter 6). 
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Accurate measurements of the incoming irradiance are essential to solar power plant project 

design, implementation, and operations. Because solar irradiance measurements are 

relatively complex—and therefore expensive—compared to other meteorological 

measurements, they are available for only a limited number of locations. This is true 

especially for direct normal irradiance (DNI). Developers use irradiance data for: 

 Site resource analysis 

 System design 

 Plant operation. 

Irradiance measurements are also essential for: 

 Developing and testing models that use remote satellite sensing techniques or available 

surface meteorological observations to estimate solar radiation resources 

 Site adaptation of long-term resource data sets 

 Developing solar resource forecasting techniques and enhancing their quality by 

applying recent measurements for the creation of the forecast  

 Other disciplines not directly related to renewable energy, such as climate studies and 

accelerated weathering tests.  

This chapter focuses on the instrument selection, characterization, installation, design, and 

operation and maintenance (O&M)—including calibration of measurement systems suitable 

for collecting irradiance resource measurements—for renewable energy technology 

applications. 

3.1 Instrumentation  

Before considering instrumentation options and the associated costs, the user should first 

evaluate the data accuracy or uncertainty levels that will satisfy the ultimate analyses based 

on the radiometric measurements. This ensures that the best value can be achieved after 

considering the various available measurement and instrumentation options. 

By first establishing the project needs for solar resource data accuracy, the user can then 

base the instrument selection and the associated levels of effort necessary to operate and 

maintain the measurement system on an overall cost-performance determination. 

Specifically, the most accurate instrumentation should not be purchased if the project 

resources cannot support the maintenance required to ensure measurement quality that is 

consistent with the radiometer design specifications and the manufacturer’s 

recommendations. In such cases, alternative instrumentation designed for reduced 

maintenance requirements and reduced measurement performance—such as radiometers 
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with photodiode-based detectors and diffuser disks or integrated measurement systems 

such as rotating shadowband irradiometers (RSIs)—could produce more consistent results 

(see Section 3.2.5). As stated, however, in this context the first consideration is the accuracy 

required to support the final analysis. If budget limitations cannot sustain the necessary 

accuracy, a reevaluation of the project goals and resources must be undertaken. 

Redundant instrumentation is another important approach to ensure confidence in data 

quality. Multiple radiometers at the project site and/or providing for the measurement of the 

solar irradiance components—e.g., global horizontal irradiance (GHI), diffuse horizontal 

irradiance (DHI), DNI, and global tilted irradiance (GTI, also referred to as plane-of-array 

(POA) irradiance)—regardless of the primary measurement need, can greatly enhance 

opportunities for post-measurement data quality assessment, which is required to provide 

confidence in the resource data. 

Measuring other meteorological parameters relevant to the amounts and types of solar 

irradiance available at a specific time and location can also provide opportunities for post-

measurement data quality assessment (see Section 3.3). 

3.2 Radiometer Types 

Instruments designed to measure any form of radiation are called radiometers. The earliest 

developments of instrumentation for measuring solar radiation were designed to meet the 

needs of agriculture for bright sunshine duration to understand evaporation and by physicists 

to determine the sun’s output or “solar constant.” During the 19th and 20th centuries, the 

most widely deployed instrument for measuring solar radiation was the Campbell-Stokes 

sunshine recorder (Iqbal 1983; Vignola, Michalsky, and Stoffel 2020). This analog device 

focuses the direct beam by a simple spherical lens (glass ball) to create burn marks during 

clear periods (when DNI exceeds ≈120 W/m2) on a sensitized paper strip placed daily in the 

sphere’s focus curve. By comparing the total burn length to the corresponding day length, 

records of percentage possible sunshine from stations around the world became the basis 

for characterizing the global distribution of solar radiation (Löf, Duffie, and Smith 1966). The 

earliest pyrheliometers (from the Greek words for fire, sun, and measure) were based on 

calorimetry and used by scientists to measure brief periods of DNI from various locations, 

generally at high elevations to minimize the effects of a thick atmosphere on the 

transmission of radiation from the sun. By the early 20th century, scientists had developed 

pyranometers (from the Greek words for fire and measure) to measure GHI to understand 

the Earth’s energy budget (Vignola, Michalsky, and Stoffel 2020). 

This section summarizes the types of commercially available radiometers most commonly 

used to measure solar radiation resources for solar energy technology applications. Solar 

resource assessments are traditionally based on broadband measurements—i.e., 

encompassing the whole shortwave spectrum (0.29–4 µm). More specialized instruments 

(spectroradiometers) are needed to evaluate the spectral distribution of this irradiance, which 

in turn is useful to investigate the spectral response of photovoltaic (PV) cells, for instance. 

Such instruments are described in Chapter 5, Section 5.6. 

3.2.1 Pyrheliometers and Pyranometers 

Pyrheliometers and pyranometers are two types of radiometers used to measure solar 

irradiance. Their ability to receive solar radiation from two distinct portions of the sky 

distinguishes their designs. As described in Chapter 2, pyrheliometers are used to measure 

DNI, and pyranometers are used to measure GHI, DHI, GTI (aka POA), or the in-plane rear-

side irradiance (RPOA). Another important measurement involving pyranometers is the 

albedo, which can be used to estimate RHI (reflected horizontal irradiance) in Eq. (2-2b) as 
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well as RPOA. Albedo measurements are described in Chapter 5, Section 5.11. Table 3-1 

summarizes some key attributes of these two radiometers. 

Table 3-1. Overview of Solar Radiometer Types and Their Applications 

Radiometer 

Type 
Measurement 

Field of View 

(Full Angle) 
Installation 

Pyrheliometer DNI 5°–6° Mounted on a solar tracker for 

alignment with the solar disk 

Pyranometer GHI 2π steradians Mounted on a stable horizontal 

surface free from local obstructions
a
 

Pyranometer DHI 2π steradians Mounted on a solar tracker fitted with 

shading mechanism or on a 

manually adjusted shadowband 

platform to block DNI from the 

detector’s surface
a
 

Pyranometer GTI (POA) 2π steradians Mounted in the plane of the flat-plate 

solar collector (fixed or tracked in 

one or two axes) 

Pyranometer RPOA 2π steradians Mounted in the plane of the rear side 

of the flat-plate solar collector 

oriented toward the ground (fixed or 

tracked in one or two axes) 

Pyranometers Albedo 2π steradians Two pyranometers mounted 

horizontally measuring the 

downward and upward irradiance, 

see Chapter 5, Section 5.11. 

a
 Optionally, thermopile pyranometers are installed with a powered ventilator and 

heating system to reduce contamination of optical surfaces and thermal errors. The 

base of thermopile pyranometers must be shielded from direct sunlight. 

Pyrheliometers and pyranometers commonly use either a thermoelectric or photoelectric 

passive sensor to convert solar irradiance (W/m2) into a proportional electrical signal 

(microvolts [µV] DC). Thermoelectric sensors have an optically black coating that allows for a 

broad and uniform spectral response to all solar radiation wavelengths from approximately 

300–3000 nm (Figure 3-1, left). The most common thermoelectric sensor used in 

radiometers is the thermopile. There are all-black thermopile sensors used in pyrheliometers 

and pyranometers as well as black-and-white thermopile pyranometers. In all-black 

thermopile sensors, the surface exposed to solar radiation is completely covered by the 

absorbing black coating. The absorbed radiation creates a temperature difference between 

the black side of the thermopile (i.e., “hot junction”) and the other side (i.e., “reference” or 

“cold junction”). The temperature difference causes a voltage signal. In black-and-white 

thermopiles, the surface exposed to radiation is partly black and partly white. In this case, 

the temperature difference between the black and the white surfaces creates the voltage 

signal. Despite having a relatively small thermal mass, their 95% response times are not 
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negligible, and they are typically 1–30 seconds6—that is, the output signal lags the changes 

in solar flux. Some instruments include a signal post-processing that tries to compensate for 

this time lag. Recently, new smaller thermopile sensors with response times as low as 0.2 

second have been made commercially available as well. A detailed analysis of radiometer 

response times is found in Driesse (2018). 

In contrast to thermopiles, common photoelectric sensors generally respond to only the 

visible and near-infrared spectral regions from approximately 350–1,100 nm (Figure 3-1, 

right; Figure 3-2). Pyranometers with photoelectric sensors are sometimes called silicon (Si) 

pyranometers or photodiode pyranometers. These sensors have very fast time-response 

characteristics—on the order of microseconds.  

For both thermopile and photelectric detectors used in commercially available instruments, 

the electrical signal generated by exposure to solar irradiance levels of approximately 1000 

W/m2 is on the order of 10 mV DC (assuming no amplification of the output signal and an 

appropriate shunt resistor for photodiode sensors). This rather low-level signal requires 

proper electrical grounding and shielding considerations during installation (see Section 

3.3.4). Most manufacturers now also offer pyrheliometers and pyranometers with built-in 

amplifiers and/or digital outputs. Such digital instruments can be of advantage for several 

reasons. Corrections for systematic errors depending on, e.g., the sensor temperature or the 

incident angle of the sun can be corrected directly in the instrument, which reduces the effort 

needed for data treatment and avoids user errors. Their implementation in a data acquisition 

system can be easier, and errors resulting from the transmission of low-voltage signals might 

be avoided. On the other hand, such digital sensors are sensitive to transients, surges, and 

ground potential rise, so the isolation and surge protection of power and communications 

lines is of high importance (Section 3.3.4). 

   

Figure 3-1. (Left) Thermopile assembly used in an Eppley Laboratory, Inc., model PSP 

and (right) a typical photodiode detector. Photos used with permission from LI-COR, 

Inc. 

 

                                                

 
6
 The given response time represents the time it takes the instrument to reach 95% of the final value. 

Typically, a steplike change of the incoming irradiance is used to determine the response time. 
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Figure 3-2. Spectral response of LI-COR pyranometer LI200SA, Kipp & Zonen CM21 

thermopile pyranometer, and CHP1 pyrheliometer plotted next to the GHI, DNI, DHI, 

and GTI spectra for ASTM G-173 conditions at AM1.5. Image by DLR 

3.2.1.1 Pyrheliometers 

Pyrheliometers are typically mounted on automatic solar trackers to maintain the 

instrument’s alignment with the solar disk and to fully illuminate the detector from sunrise to 

sunset (Figure 3-3 and Figure 3-4). Alignment of the pyrheliometer with the solar disk is 

determined by a simple diopter—a sighting device in which a small spot of light (the solar 

image) falls on a mark in the center of a target located near the rear of the instrument, 

serving as a proxy for alignment of the solar beam to the detector. The tracking error is 

acceptable as long as the solar image is at least tangent to the diopter target. Modern sun 

trackers use software to compute and precisely track the sun position. These calculations 

require that the sun tracker is assembled and positioned correctly (horizontally levelled, 

correct azimuth orientation), and tracking errors occur if the tracker is not installed and 

positioned correctly. Tracking errors caused by imperfect levelling vary with the sun position. 

Sun sensors can help to reduce the remaining tracking errors during periods with no direct 

irradiance; hence, they are used in high-quality stations. The sun sensor is tracked to the 

sun and uses a four-quadrant sensor placed behind a pinhole or a lens to detect the tracking 

error. The tracking error is then sent to the tracker software so that it can be corrected. By 

convention—and to allow for small variations in tracker alignment—view-limiting apertures 

inside a pyrheliometer allow for the detection of radiation in a narrow annulus of sky around 

the sun (WMO 2018), called the circumsolar region. This circumsolar radiation component is 

the result of forward scattering of radiation near the solar disk, itself caused by cloud 

particles, atmospheric aerosols, and other constituents that can scatter solar radiation. All 

modern pyrheliometers should have a 5° field of view (FOV), following the World 

Meteorological Organization (WMO) (2018) recommendations. The FOV of older instruments 

could be larger, however, such as 5.7°–10° full angle. Depending on the FOV—or, to be 

more precise, the sensor’s penumbra function (see Chapter 2, Section 2.7.1, and references 

therein)—and tracker alignment, pyrheliometer measurements include varying amounts of 

circumsolar irradiance contributions to DNI. Although this is usually a very small contribution 

to the measurement, under atmospheric conditions of high scattering, it can be measurable, 

or even significant. 
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Figure 3-3. Schematic of a Kipp & Zonen B.V., model SHP1—a pyrheliometer with a 

smart interface. Image modified from Kipp & Zonen (2017) 

  

Figure 3-4. A pyrheliometer (1), a shaded pyranometer (2), and a shaded pyrgeometer 

(3) (See Section 3.2.4) mounted on an automatic solar tracker. Photo from DLR 

The most accurate measurements of DNI under stable conditions are accomplished using an 

electrically self-calibrating absolute cavity radiometer (ACR; see Figure 3-5). This advanced 

type of radiometer is the basis for the World Radiometric Reference (WRR), the 

internationally recognized detector-based measurement standard for DNI (Fröhlich 1991). 

The WMO World Standard Group of ACRs is shown in Figure 3-6. By design, ACRs have no 

windows and are therefore generally limited to fully attended operation during dry conditions 

to protect the integrity of the receiver cavity (Figure 3-7). Removable windows and 

temperature-controlled all-weather designs are available for automated continuous operation 

of these radiometers; however, the installation of a protective window nullifies the “absolute” 

nature of the DNI measurement. The window introduces additional measurement 

1 

2 3 
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uncertainties associated with the optical transmittance properties of the window (made from 

either quartz or calcium fluoride) and the changes to the internal heat exchange resulting 

from the sealed system. Moreover, ACRs need some periods of self-calibration during which 

no exploitable measurement is possible. This creates discontinuities in the high-accuracy 

DNI time series that could be measured with windowed ACRs, unless a regular 

pyrheliometer is also present to provide the necessary redundancy (Gueymard and Ruiz-

Arias 2015). Combined with their very high cost of ownership and operation, this explains 

why ACRs are rarely used to measure DNI in the field. 

A unique 10-month comparison of outdoor measurements from 33 pyrheliometers, including 

ACRs, under a wide range of weather conditions in Golden, Colorado, indicated that the 

estimated measurement uncertainties at a 95% confidence interval ranged from ±0.5% for 

windowed ACRs to +1.4%/–1.2% for commercially available instruments (Michalsky et al. 

2011). The results also suggested that the measurement performance during the 

comparison was better than indicated by the manufacturers’ specifications. 

 

Figure 3-5. Multiple electrically self-calibrating absolute cavity radiometers mounted 

on solar trackers with control and data acquisition electronics. Photo by NREL 
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Figure 3-6. The World Standard Group of six absolute cavity radiometers is used to 

define the WRR or DNI measurement standard. Photo by NREL 

 

Figure 3-7. Schematic of the Eppley Laboratory, Inc., model automatic Hickey-Frieden 

absolute cavity radiometer. Image modeled from Reda (1996) 

3.2.1.2 Pyranometers 

A pyranometer has a thermoelectric or photoelectric detector with a hemispherical FOV 

(360° or 2π steradians) (see Figure 3-4 and Figure 3-8). This type of radiometer is mounted 

horizontally to measure GHI. In this horizontal mount, the pyranometer has a complete view 

of the sky dome. Ideally, the mounting location for this instrument is free of natural or 

artificial obstructions on the horizon. Alternatively, the pyranometer can be mounted at a tilt 
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to measure GTI, e.g., in the case of latitude-tilt or 1-axis tracking systems, or vertically for 

building applications. In an upside-down position, it measures the ground-reflected 

irradiance. The local albedo is simply obtained by dividing the latter by GHI as further 

discussed in Chapter 5, Section 5.11. 

The pyranometer detector is mounted under a protective dome (made of precision quartz or 

other high-transmittance optical material) and/or a diffuser. Both designs protect the detector 

from the weather and provide optical properties consistent with receiving hemispheric solar 

radiation. Pyranometers can be fitted with ventilators that constantly blow air—sometimes 

heated—from under the instrument and over the dome (Figure 3-9). The ventilation reduces 

the potential for contaminating the pyranometer optics caused by dust, dew, frost, snow, ice, 

insects, or other materials. Ventilation and heating also affect the thermal offset 

characteristics of pyranometers with single all-black detectors (Vignola, Long, and Reda 

2009). The ventilation devices can require a significant amount of electrical power (5–20 W), 

particularly when heated, adding to the required capacity for on-site power generation in 

remote areas. Both DC and AC ventilators exist, but current research indicates that DC 

ventilators are preferable (Michalsky, Kutchenreiter, and Long 2019). 

 

Figure 3-8. Schematic of the Eppley Laboratory, Inc., PSP. Image by NREL 

Photodiode pyranometers provide the signal in the form of a photodiode’s short-circuit 

current. The fast response of such photodiode pyranometers makes them interesting for 

some applications, e.g., the measurement of cloud enhancement or ramping events. 

Photodiode pyranometers employ a diffuser above the detector (Figure 3-10) to achieve an 

approximate hemispherical response and to omit the glass dome to reduce cost. The 

application of a diffuser as an external surface compared to transparent glass domes makes 

such pyranometers measurably more dust tolerant than pyranometers with optical glass 

domes (Maxwell et al. 1999). The long-term stability of photodiode pyranometers can vary 

differently from thermopile-based pyranometers, as shown in Figure 3-11 and as further 

analyzed in Geuder et al. (2014). These instrument-specific behaviors dictate the need for 

regular calibrations as recommended by the manufacturers.  
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Figure 3-9. Kipp & Zonen model CM22 pyranometers installed in ventilated CV2 

enclosures. Photo by NREL 

   

Figure 3-10. Selected photodiode sensors with different diffusor geometries. Photos 

by DLR 

Pyranometers can also be used to measure the diffuse irradiance. The required device for 

this measurement is known as a diffusometer. It consists of a pyranometer and a shading 

structure that blocks the direct radiation on its way to the sensor. Shading balls, shading 

disks, shading rings, or shadowbands are used for that purpose. Shading balls and shading 

disks must track the sun, and they cover only a small part of the sky corresponding to the 

angular region defined for measuring DNI (normally 5°). Shading rings and shadowbands 

cover the complete solar path during a day as seen from the pyranometer. They are built a 

little bit wider to cover the sun’s path on several consecutive days so that readjustments of 

the shading ring position are not required every day. The shading rings and shadowbands 

block a significant part of sky diffuse radiation; therefore, correction functions are necessary 

to determine DHI from the shading device. This explains why the accuracy of such a DHI 

determination is less than that of a DHI measurement with a shading disk or a shading ball. 

Shadowbands are further described in Section 3.2.5 in connection with the RSIs. 
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Figure 3-11. Example of long-term calibration responsivity changes for two 

photodiode-based pyranometers (A and B) with an acrylic diffuser and a thermopile-

based pyranometer (C) based on results from periodic NREL Broadband Outdoor 

Radiometer Calibration events. 

3.2.2 Pyrheliometer and Pyranometer Classifications 

Both the International Organization for Standardization (ISO) and WMO have established 

instrument classifications and specifications for the measurement of solar irradiance. 

Radiometer classification can help to find the correct instrument and to interpret the data. 

Several instrument properties are used as the basis for these pyrheliometer and 

pyranometer classifications. The latest ISO specifications for these radiometers are found in 

ISO 9060 (ISO 2018) and are summarized in Table 3-2 and Table 3-3 based on Apogee 
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(2019). The standard provides not only acceptance intervals but also corresponding guard 

bands, which is advantageous because the measurements used to obtain the sensor 

specifications have nonnegligible uncertainties.  

The acceptance intervals provided by ISO 9060 give a general idea of the differences in data 

quality afforded by instrument classes; therefore, the radiometer classes can be understood 

as accuracy classes. The current standard also notes, however, that the acceptance 

intervals shown in the tables cannot be used for uncertainty calculations for measurements 

obtained at conditions that are different from those defined for the classification. For 

example, the temperature response limits are defined for the interval from -10°C to 40°C 

relative to the signal at 20°C. A measurement at 10°C will be connected to a different 

temperature response error than a measurement at 0°C or even -20°C. For the other 

parameters, the same principle applies. In particular, the spectral clear-sky irradiance error 

used for the classification can deviate from the spectral irradiance error for other conditions, 

e.g., cloudy conditions or other air masses. For pyranometers, it must also be considered 

that the spectral error for diffuse or tilted radiation is different from the spectral error for 

global horizontal radiation. A more detailed discussion of the clear-sky spectral error can be 

found in Wilbert et al. (2020). 

The most important changes in the current ISO 9060 compared to the previous version, from 

1990 (ISO 1990a), are as follows: 

 Simple names are used for the classes (AA, A, B, C), and a new class is introduced 

mainly for ACRs. 

 The clear-sky spectral error is used to classify the spectral properties of the radiometers, 

allowing photodiode-based radiometers to be also included in the ISO classification. 

Previously, the spectral selectivity was used, which excluded photodiode radiometers. 

The spectral selectivity is defined by ISO as the deviation of the spectral responsivity 

from the average spectral responsivity between 0.35–1.5 µm.  

 Additional radiometer classes are defined relatively to their response time and their 

spectral responsivity. If the 95% response time is less than 0.5 second, the radiometer 

can be called a “fast response radiometer.” Similarly, “spectrally flat radiometers” are 

defined using the spectral selectivity. If a radiometer has a spectral selectivity less than 

3%, it can be called a spectrally flat radiometer. 

 For Class A pyranometers, individual testing of temperature response and directional 

response is required. 

 The final signal of a sensor can be used for classification after the application of specific 

correction functions (e.g., for temperature response) if these corrections are applied 

within the measurement system (processor within instrument or control unit). Processing 

errors are also used as a classification criterion.  

Including photodiode radiometers was considered helpful because only fast (µs) photodiode 

sensors can be used for accurate monitoring of extremely rapid fluctuations of solar 

irradiance. Under such circumstances—typically caused by cloud enhancement events—

side-by-side thermopile and photodiode radiometers can disagree by a significant margin 

(Gueymard 2017a, 2017b). Because the most accurate way to determine GHI involves the 

combination of DNI and DHI measurements (ISO 2018; Michalsky et al. 1999), the shading 

balls, shading disks, shading masks, and rotating shadowbands used in RSIs are also 

defined in the current ISO 9060. 

The WMO characteristics of operational pyrheliometers and pyranometers are presented for 

three radiometer classifications: 
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1. High quality: near state of the art, suitable for use as a working standard, maintainable 
only at stations with special facilities and staff 

2. Good quality: acceptable for network operations 

3. Moderate quality: suitable for low-cost networks where moderate to low performance is 
acceptable. 
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Table 3-2. ISO 9060:2018 Specifications Summary for Pyrheliometers Used to Measure 

DNI 

Pyrheliometer Classification List 

Parameter Name of Class, Acceptance Interval 

Name of Class AA A B C 

Roughly Corresponding Class 

from ISO 9060:1990 

Not Defined Secondary 

Standard 

First Class Second Class 

Response time for 95% 

response 

No requirement <10 s <15 s <20 s 

Zero offset: 

a) Response to 5 K/h-

change in ambient 

temperature 

 

b) Complete zero offset 

including the effect a) and 

other sources 

 

±0.1 W/m
2
 

 

 

 

±0.2 W/m
2
 

 

 

±1 W/m
2
 

 

 

 

±2 W/m
2
 

 

 

±3 W/m
2
 

 

 

 

±4 W/m
2
 

 

 

±6 W/m
2
 

 

 

 

±7 W/m
2
 

 

Non-stability: Percentage 

change in responsivity per year 

±0.01% 

 

±0.5% 

 

±1% 

 

±2% 

 

Nonlinearity: Deviation from the 

responsivity at 500 W/m
2
 

because of change in 

irradiance from 100–1000 

W/m
2 

±0.01% 

 

±0.2% 

 

±0.5% 

 

±2% 

 

Clear-sky DNI spectral error ±0.01% 

 

±0.2% 

 

±1% 

 

±2% 

 

Temperature response: 

Percentage deviation because 

of change in ambient 

temperature within interval from 

-10C–40C relative to 20°C 

±0.01% 

 

±0.5% 

 

±1% 

 

±5% 

 

Tilt response: Percentage 

deviation from the responsivity 

from 0–90 at 1000 W/m
2
 

irradiance 

±0.01% 

 

±0.2% 

 

±0.5% 

 

±2% 

 

Additional signal-processing 

errors 
±0.1 W/m

2
 ±1 W/m

2
 ±5 W/m

2
 ±10 W/m

2
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Table 3-3. ISO 9060:2018(E) Specifications Summary for Pyranometers 

Pyranometer Classification List 

Specification 
Class of Pyranometer

a
 

A B C 

Roughly Corresponding Class from 

ISO 9060:1990 

Secondary 

Standard 

First Class Second 

Class 

Response time: 95% response <10 s <20 s <30 s 

Zero offset: 

a) Response to –200 W/m
2
 net 

thermal radiation  

 

b) Response to 5 K h
-1

 change in 

ambient temperature 

 

c) Total zero offset including the 

effects a), b), and other sources 

 

±7 W/m
2
 

 

 

±2 W/m
2
 

 

 

±10 W/m
2
 

 

 

±15 W/m
2 

 

 

±4 W/m
2
 

 

 

±21 W/m
2
 

 

 

±30 W/m
2
 

 

 

±8 W/m
2
 

 

 

±41 W/m
2
 

 
Non-stability: Change in responsivity 

per year 

±0.8% 

 

±1.5% 

 

±3% 

 

Nonlinearity: Percentage deviation from 

the responsivity at 500 W/m
2 

because 

of change in irradiance from 100–1000 

W/m
2
 

±0.5% 

 

±1% 

 

±3% 

 

Directional response for beam radiation 

(range of errors caused by assuming 

that the normal incidence responsivity 

is valid for all directions when 

measuring, from any direction, a beam 

radiation that has a normal incidence 

irradiance of 1000 W/m
2
) 

±10 W/m
2
 

 

±20 W/m
2
 

 

±30 W/m
2
 

 

Clear-sky GHI spectral error ±0.5% ±1% ±5% 

Temperature response: 

Deviation because of change in 

ambient temperature within the interval 

from -10ºC–40ºC relative to 20ºC 

±1% 

 

±2% 

 

±4% 

 

Tilt response: Percentage deviation 

from the responsivity at 0° tilt because 

of tilt change from 0–180° at 

1000 W/m
2
 irradiance 

±0.5% 

 

±2% 

 

±5% 

 

Additional signal-processing errors ±2 W/m
2
 

 

±5 W/m
2
 

 

±10 W/m
2
 

 
The WMO characteristics are similar to the classifications presented in the previous version 

of ISO 9060. The difference between the WMO and the outdated ISO 9060 classification is 

in the definition of spectral selectivity. The wavelength range used in the WMO definition is 

from 300–3000 nm; whereas it was from 350–1500 nm in the 1990 version of ISO 9060. The 
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WMO limits for the selectivity for the different classes were the same or even stricter as in 

the case of the highest pyranometer class. This led to the unfortunate situation that, 

apparently, no weather-proof pyrheliometer fulfills the requirements of the WMO classes 

even though the spectral errors of Class A field pyrheliometers are small. (Clear-sky spectral 

errors are approximately 0.1% [Wilbert et al. 2020]). Typical pyranometers of the highest 

class in ISO 9060 are also excluded from the WMO classification (Wilbert et al. 2020). This 

is true for both the 1990 and the 2018 versions of the standard; therefore, it is currently not 

recommended to use the WMO classification but instead to work with the most recent 

version of ISO 9060. 

Even within each instrument class, there can be some measurement uncertainty variations. 

The user should research various instrument models to gain familiarity with the design and 

measurement performance characteristics in view of a particular application (Myers and 

Wilcox 2009; Wilcox and Myers 2008; Gueymard and Myers 2009; Habte et al. 2014). 

Further, the accuracy of an irradiance measurement depends on the instrument itself as well 

as on its alignment, maintenance, data logger calibration, appropriate wiring, and other 

conditions and effects that degrade performance. The accuracy of radiometers is further 

discussed in Chapter 7. 

3.2.3 Pyrheliometer and Pyranometer Calibrations 

As stated, the signal of field radiometers is a voltage or a current that is ideally proportional 

to the solar irradiance reaching the detector. A calibration factor is required to convert the 

current or voltage to a solar irradiance. The calibration factor, Ccal, is the inverse of the 

responsivity, Rs. For example, the responsivity of a thermopile pyrheliometer is given in µV 

per W/m2. The irradiance, E, can be obtained from the voltage signal, Vpyr, or from the 

instrument’s responsivity as: 

 E = Vpyr/Rs = Vpyr ∙ Ccal (3-1) 

These calibration factors can vary over time, which requires periodic recalibrations, as 

demonstrated by the time-series plot of calibration responsivities of two pyrheliometers 

shown in Figure 3-12. The instability can be caused by changes in the instrument, the 

meteorological conditions at the time of calibration, the stability of the calibration reference 

radiometer(s), the performance of the data acquisition system, and other factors included in 

the estimated uncertainty of each calibration result.  

 

Figure 3-12. Calibration histories for two pyrheliometer control instruments spanning 

23 years of Broadband Outdoor Radiometer Calibration events. Image by NREL 

The calibration of pyrheliometers and pyranometers is described in detail in international 

standards ASTM G167-05, ASTM E816-05, ASTM E824-05, ASTM G183-05, ISO 9059, ISO 
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9846, and ISO 9847. The calibration methods described in ISO 9846 (ISO 1993) for 

pyranometers and in ISO 9059 (ISO 1990b) for pyrheliometers are based on simultaneous 

solar irradiance measurements with test and reference instruments. ISO 9847 (ISO 1992) 

describes pyranometer calibrations using a reference pyranometer. These standards will be 

revised in the next years by the corresponding ISO working groups. 

Pyrheliometers are calibrated following ISO 9059 by comparing the voltage signal of the 

tracked test pyrheliometer to the reference DNI from one or a group of reference 

pyrheliometers. For each simultaneous measurement pair, a preliminary responsivity can be 

calculated as the ratio of the test instrument’s voltage to the reference DNI (Figure 3-13, 

right). After rejecting outliers and data collected during unstable conditions, an average 

responsivity can be determined. Because some pyrheliometers show a noticeable 

correlation with the solar zenith angle (SZA), specific angular responsivities can also be 

derived (Figure 3-13, left and bottom). For this calibration method, it is important that clouds 

do not mask the sun or the circumsolar region. The calibration can be affected if significant 

levels of circumsolar radiation prevail during the calibration. This risk increases with the 

instrument’s FOV; hence, Linke turbidities should be less than 6 according to the standard 

method. The Linke turbidity coefficient, TL, is a measure of atmospheric attenuation under 

cloudless conditions. It represents the number of clean and dry atmospheres that would 

result in the same attenuation as the real cloudless atmosphere. One method to derive the 

Linke turbidity from DNI is presented in Ineichen and Perez (2002). 

 

Figure 3-13. Pyrheliometer calibration results for an Eppley NIP summarizing (left) Rs 

compared to SZA and (right) Rs compared to local standard time. Image by NREL 

As mentioned, the WRR must be used as the traceable reference for the calibration of all 

terrestrial broadband radiometers, as stipulated by the internationally accepted Système 

International (SI). This internationally recognized measurement reference is a detector-

based standard maintained by a group of electrically self-calibrating absolute cavity 

pyrheliometers at the World Radiation Center (WRC) by the Physical Meteorological 

Observatory in Davos, Switzerland. The present accepted inherent uncertainty in the WRR is 

±0.3% (Finsterle 2011). All radiometer calibrations must be traceable to the WRR, but that 

does not mean that all radiometers are calibrated directly against the WRR. The calibration 

chain from the WRR to a field instrument can have several steps. For example, reference 

ACRs are used as national and institutional standards, and these instruments are calibrated 

by comparison to the WRR during international pyrheliometer comparisons conducted by the 
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WRC once every 5 years. Pyranometers calibrated against traceable WRR reference 

pyrheliometers make these pyranometer calibrations traceable to the WRR. 

Pyranometers can be calibrated outdoors with three different methods. One option, as 

described in ISO 9846, is to compare the DNI output from a reference pyrheliometer to that 

derived from the test pyranometer using the shade-unshade method. The successive 

voltages, Vunshade and Vshade, are proportional to GHI (unshaded) and DHI (shaded), 

respectively. Using the reference DNI and the relationship between GHI, DHI, and DNI, as 

described by Eq. (2-2a), the responsivity, Rs, of the pyranometer under test for one 

measurement sequence can be derived: 

 Rs = [(Vunshade – Vshade)/cos (SZA)]/DNI (3-2) 

This method is described in more detail by Reda, Stoffel, and Myers (2003).  

For this calibration method, virtually constant atmospheric conditions during the pair of 

shaded and unshaded measurements are required. Cloud cover must be very low, and the 

angular distance between clouds and the sun must be high. In addition to cloud cover, 

aerosol and water vapor variations could affect the calibration. This explains why only data 

collected for a low TL (less than 6) should be used for the calibration. 

Another option offered by ISO 9846 consists of comparing the voltage signal of the test 

pyranometer obtained in the GHI measurement position to the GHI calculated from the DNI 

and DHI measurements of a reference pyrheliometer and a shaded reference pyranometer. 

The Rs of a pyranometer under calibration for one simultaneous set of three measurements 

can be computed from their unshaded signal (Vunshaded): 

 Rs = Vunshaded/[DNI ∙ cos (SZA) + DHI] (3-3) 

Computing the Rs this way is called the “component-summation calibration technique.” 

Again, TL should be less than 6, and a high angular distance of clouds from the sun should 

exist during the whole calibration period. 

The third option to calibrate pyranometers outdoors is described in ISO 9847. It compares a 

test pyranometer to a reference pyranometer while both sensors are in the same 

measurement position (either GHI or GTI). The Rsi is then obtained as the ratio of the test 

signal to the reference irradiance. For outdoor pyranometer calibrations using a reference 

pyranometer (ISO 1992), the sky conditions are less precisely defined than for the other 

methods described. The calibration interval is adjusted depending on the sky conditions. 

The indoor calibration methods from ISO 9847 use irradiance measurements under an 

artificial light source. For the first option, measurements are taken simultaneously after 

ensuring that the test and the reference pyranometer receive the same irradiance from an 

integrating sphere. This is done by switching pyranometer positions during the calibration 

procedure. The other option is to take consecutive measurements by mounting the test and 

the reference instrument one after the other in the same position under a direct beam. The 

indoor calibrations are carried out in a controlled environment that is independent from 

external meteorological conditions. If measurements with the reference and test 

pyranometer are made after each other, however, instabilities of the artificial light source 

increase the calibration uncertainty compared to outdoor calibrations. If simultaneous 

measurements are used, an additional uncertainty contribution comes from the fact that the 

test and the reference pyranometer might not receive exactly the same irradiance from the 

artificial light source, though some of this error can be mitigated by switching the positions of 

the instruments during the calibration procedure. Further, the incident angle of the radiation 

is usually not well defined for indoor calibrations. Because of the pyranometer’s directional 

errors (see Table 3-3), this is another source of calibration uncertainty; therefore, in general, 
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thorough outdoor calibrations with accurate reference instruments have lower uncertainties 

than indoor calibrations. 

The shade/unshade and component summation techniques, when conducted throughout a 

range of SZA, show that pyranometer responsivities are correlated with it. The variation of 

Rs as a function of SZA is like a fingerprint or signature of each individual pyranometer 

(Figure 3-14). 

 

Figure 3-14. Pyranometer calibration results for an Eppley PSP summarizing (left) Rs 

compared to SZA and (right) Rs compared to local standard time. Image by Daryl 

Myers, NREL 

This means that the angular responsivities of different specimens of the same model can 

differ. Variations of pyranometer Rs can be symmetrical with respect to solar noon, or they 

can be highly skewed, depending on the mechanical alignment of the pyranometer, detector 

surface structure, and detector absorber material properties. To improve the accuracy in the 

GHI measurement, using an SZA and azimuth angle-dependent calibration factor for each 

individual measurement are recommended. This method, however, is applicable only to 

conditions with high direct radiation contribution to the GHI because the variation of 

responsivity with SZA is mostly caused by direct radiation and the associated cosine error. 

For situations when thick clouds mask the sun or for DHI measurements, the angular 

distribution of the incoming irradiance cannot be approximated well by one incidence angle. 

For DHI measurements, it is recommended to use the Rs for a 45° incidence angle. 

For accurate photodiode pyranometer calibration, further considerations beyond these 

standards are necessary because of the uneven spectral response. A specific calibration 

method is discussed in Section 3.2.5 for RSI instruments. 

3.2.4 Correction Functions for Systematic Errors of Radiometers 

Some pyrheliometer and pyranometer measurement errors are systematic and can be 

reduced by applying correction functions. An example is the correction of the directional 

errors, as mentioned. Some manufacturers provide one calibration constant for a 

pyranometer and additional correction factors for different intervals of SZA. This treatment of 

the incidence angle dependence has the same effect as using an incidence-angle-

dependent responsivity. 
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Moreover, an additional temperature correction can be applied if the internal temperature of 

pyranometers or pyrheliometers is measured using a temperature-dependent resistor close 

to the sensor. Correction coefficients are often supplied by the manufacturer. 

Measurements from only black (as opposed to black-and-white) thermoelectric 

pyranometers can be corrected for the expected thermal offset using additional 

measurements from pyrgeometers (Figure 3-4, right). Pyrgeometers allow for the 

determination of the downward longwave irradiance between approximately 4.5–40 µm, 

based on their sensor (thermopile) signal and body temperature. The thermopile is 

positioned below an opaque window that is transparent only to the specified infrared 

radiation wavelength range while excluding all visible, near- infrared, and far-infrared 

radiation. Most pyrgeometers must be positioned below a shading ball or disk to limit window 

heating by DNI. Ventilation units are also used for pyrgeometers, as in the case of 

pyranometers. If no pyrgeometer is available, a less accurate correction for the thermal 

offset can be made based on estimations of the thermal offset from the typically negative 

measurements collected during the night (Dutton et al. 2000; Gueymard and Myers 2009). 

Correction functions for photodiode pyranometers are presented in Section 3.2.5.2. 

3.2.5 Systems for Determining Solar Irradiance Components 

A measurement system that independently measures the basic solar components—GHI, 

DNI, and DHI—will produce data with the lowest uncertainty if the instruments are properly 

installed and maintained. Alternatives exist to reduce the overall cost of such a system while 

offering potentially acceptable data accuracies, depending on the application. These 

alternatives are designed to eliminate the expense and complexity of an automatic solar 

tracker with pyrheliometer and shaded pyranometer.  

3.2.5.1 Rotating Shadowband Irradiometers 

RSIs use a fast detector that is periodically shaded by a motorized shadowband, which 

rapidly sweeps back and forth across the detector’s FOV (Figure 3-15). The principle of 

operation of these RSIs is to measure GHI when unshaded and DHI when shaded. The DNI 

is calculated using the fundamental closure equation relating these three components, Eq. 

(2-2a): 

 DNI = (GHI – DHI) / cos (SZA) (3-4) 

RSIs are often called rotating shadowband radiometers (RSRs) or rotating shadowband 

pyranometers (RSPs), depending on the instrument manufacturer. RSI refers to all such 

instruments measuring irradiance by use of a rotating shadowband. There are two types of 

RSIs: RSIs with continuous rotation and RSIs with discontinuous rotation. 
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Figure 3-15. Four commercially available RSIs (clockwise from top left): Irradiance, 

Inc., model RSR2; Reichert GmbH RSP 4G; Yankee Environmental Systems, Inc., 

model SDR-1; and CSP-Services GmbH Twin-RSI. Photos by (clockwise from top left) 

Irradiance, Inc.; CSP-Services; NREL; and CSP-Services 

The operational principle of RSIs with continuous rotation is shown in Figure 3-16. At the 

beginning of each rotation cycle, the shadowband is below the pyranometer in its rest 

position. The rotation is performed with constant angular velocity and takes approximately 1 

second. During the rotation, the irradiance is measured with a high and constant sampling 

rate (approximately 1 kHz). This measurement is called a burst or sweep. At the beginning of 

the rotation, the pyranometer measures GHI. The moment the center of the shadow falls on 

the center of the sensor, it approximately detects DHI; however, the shadowband covers 

some portion of the sky, so the minimum of the burst is less than DHI. Thus, so-called 

shoulder values are determined by curve analysis algorithms. Such algorithms are usually 

implemented in the data logger program and use the maximum of the absolute value of the 

burst’s slope to find the position of the “shoulder values.” The difference between GHI and 

the average of the two shoulder values is added to the minimum of the curve to obtain the 

actual DHI. Subsequently, DNI is calculated by the data logger using GHI, DHI, and the SZA 

calculated by the known time and coordinates of the location, as stated. All the RSIs shown 

in Figure 3-15 (except for the SDR-1 model) work with a continuous rotation. 
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Figure 3-16. Burst (sweep) with sensor signal and the derived GHI, shoulder values, 

and DHI. Image from Wilbert (2014) 

RSIs with discontinuous rotation do not measure the complete burst but only four points of it. 

First, the GHI is measured while the shadowband is in the rest position. Then the 

shadowband rotates from the rest position toward the position just before it begins shading 

the diffuser, stops, and a measurement is taken (e.g., during 1 second for the SDR-1 shown 

in Figure 3-15). Then it continues the rotation toward the position at which the shadow lies 

centered on the diffuser, and another measurement is taken. The last point is measured in a 

position at which the shadow has just passed the diffuser. The measurement with the 

completely shaded diffuser is used equivalently to the minimum of the burst, as shown in 

Figure 3-16. The two measurements for which the shadow is close to the diffuser are used 

equivalently to the shoulder values to correct for the portion of the sky blocked by the 

shadowband. 

These two types of RSIs have advantages and disadvantages. An RSI with continuous 

rotation needs a detector with a fast response time (much less than 1 second—e.g., 

approximately 10 µs). Because thermopile sensors cannot be used, photodiodes are used 

instead—typically using Si. An example is the Si-based radiometer model LI-200SA shown 

in Figure 3-11. Because of the nonhomogeneous spectral response of such Si sensors (see 

Figure 3-2), the measurement accuracy of highest class thermopile pyranometers cannot be 

reached. Correction functions for this and other systematic errors must be applied to reach 

the accuracy required in resource assessments, albeit still not on par with the accuracy of 

thermopile instruments. These correction functions are discussed in Section 3.2.5.2.  

RSIs with discontinuous rotation need sufficiently long measurement times for each of the 

four points to allow the use of a thermopile detector (e.g., the Yankee TSR-1 thermopile 

shadowband radiometer, now discontinued); thus, the spectral error of a photodiode can be 

avoided—at least partly. So far, RSIs with discontinuous rotation typically rely on a diffuser, 

which has its own uneven spectral transmittance over the shortwave spectrum; hence, the 

spectral error of such RSIs cannot be neglected. Further, the discontinuous rotation is 

connected to other disadvantages compared to the continuous rotation. Although RSIs with 

continuous rotation are not affected by small azimuth alignment errors (within approximately 

±5°), the azimuth alignment of RSIs with discontinuous rotation is crucial for their accuracy. 

Moreover, the accuracy of the sensor’s coordinates and sweep time is more important for 

the discontinuous rotation. If the shadowband stops in the wrong position, the DHI 

measurement is incorrect. Further, the duration of the measurement with a discontinuous 
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rotation increases the measurement uncertainty. This is especially relevant if the RSI uses a 

thermopile sensor and if sky conditions are not stable (e.g., cloud passages). If GHI and the 

sky radiance distribution change during the four-point measurement, the data used to 

determine DHI will be inconsistent. In contrast, this complication is less relevant for 

continuously rotating RSIs because their rotation takes approximately only 1 second.  

DHI is typically determined one or four times per minute, but GHI measurements can be 

sampled at a higher frequency whenever the shadowband does not rotate—for example, 

every second. The temporal variation of GHI also contains some information about any 

concomitant change in DNI. Different algorithms are used to determine the averages of DHI 

and DNI between two DHI measurements using the more frequent GHI measurements. 

Temporal variation detected by the higher frequency GHI measurement can be used to 

trigger an additional sweep of the shadowband to update the DHI measurement under 

rapidly changing sky conditions. 

The initial lower accuracy of RSIs compared to ISO 9060 first-class pyrheliometers and 

secondary standard pyranometers is often compensated by some unique advantages of 

RSIs. Their simplicity/robustness, low soiling susceptibility (Pape et al. 2009; Geuder and 

Quaschning 2006; Maxwell et al. 1999), low power demand, and comparatively lower cost 

(instrumentation and O&M) provide significant advantages compared to thermopile sensors 

and solar trackers, at least when operated under the measurement conditions of remote 

weather stations, where power and daily maintenance requirements are more difficult and 

costly to fulfill.  

With neither correction of the systematic deviations nor a matched calibration method, under 

the best field circumstances RSIs yield an uncertainty of only 5%–10%. This accuracy is 

notably improved, to approximately 2%–3%, with proper calibration and the application of 

advanced correction functions (Wilbert et al. 2016), which are described in the following 

sections. Most instrument providers also offer post-processing software or services that 

include these correction functions. Users should ask the manufacturer whether such post-

processing is part of the instrument package and is readily available. 

Because of the stated disadvantages of RSIs with discontinuous rotation and the higher 

relevance of RSIs with continuous rotation for solar energy applications, the focus here is on 

RSIs with Si photodiodes and continuous rotation. More information about RSIs with 

discontinuous rotation can be found in Harrison, Michalsky, and Berndt (1994). Further 

general information on the accuracy of RSIs can be found in Chapter 7. 

3.2.5.2 Correction Functions for Rotating Shadowband Irradiometers 

The main systematic errors of RSIs with photodiode sensors are caused by the spectral 

response of the detector, its cosine response, and its temperature dependence. 

Several research groups have developed correction functions that reduce systematic errors 

in RSI readings. In all cases, the photodiode of the RSI is a LICOR LI-200SA. Whereas 

temperature correction is similar in all versions (King and Myers 1997; Geuder, Pulvermüller, 

and Vorbrügg 2008), the methods for the spectral and cosine corrections vary.  

Alados-Arboledas, Batlles, and Olmo (1995) used tabular factors for different sky clearness 

and skylight brightness parameters as well as a functional correction depending on SZA. 

King and Myers (1997) proposed functional corrections in dependence on air mass and SZA, 

primarily targeting GHI. This approach was further developed by Augustyn et al. (2002) and 

Vignola (2006), including diffuse and subsequently direct beam irradiance. The combination 

of the GHI correction of Augustyn et al. (2002) and of the diffuse correction from Vignola 

(2006) provides a complete set of corrections for LI-200SA-based RSIs. Independently, a 

method for DNI, GHI, and DHI correction was developed by the German Aerospace Agency, 
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Deutsches Zentrum für Luft- und Raumfahrt (DLR), using functional corrections that include 

a particular spectral parameter obtained from GHI, DHI, and DNI (Geuder, Pulvermüller, and 

Vorbrügg 2008). Additional corrections in dependence on air mass and SZA were used. 

Another set of correction functions was later presented in Geuder et al. (2011). Additional 

new correction methods are on their way (Vignola et al. 2017; 2019; Forstinger et al 2020). 

An overview of RSI correction functions can be found in Jessen et al. (2017). 

3.2.5.3 Calibration Methods for Rotating Shadowband Irradiometers 

In addition to the corrections mentioned, special calibration techniques are required for RSIs. 

As of this writing, RSIs with continuous rotation are equipped with LI-200SA or LI-200R 

pyranometers. They come with precalibration values from the manufacturer (LI-COR) for 

GHI based on outdoor comparisons with an Eppley precision spectral pyranometer (PSP) 

with an accuracy stated as better than 5% (LI-COR Biosciences 2005). Considering that the 

PSP has only limited performance (Gueymard and Myers 2009), an additional calibration 

(e.g., on-site or with respect to DHI, DNI, or GHI independently) of the RSIs can noticeably 

improve their accuracy (Wilbert et al. 2016). 

Because of the rather narrow and inhomogeneous spectral response of the photodiodes and 

the combined measurement of DHI and GHI, only some aspects of the existing ISO 

standards for pyrheliometer and pyranometer calibrations can be transferred to RSI 

calibration. Calibrating RSI instruments involves independently field-calibrating them for DNI, 

DHI, and GHI. Each of these three steps is challenging because each irradiance component 

has a distinct spectral composition that can change during the day or from one location to 

another. Because of the spectral response of the Si detectors and/or the diffusers, it is 

problematic to calibrate an RSI based on only a few short series of measurements. This is 

possible for thermopile sensors because of their homogenous spectral response covering at 

least 300–3000 nm (which amounts to >99% of the ASTM G173 DNI spectrum). A similar 

calibration method of RSIs would need the spectra during the calibration and the 

additional—but incorrect—assumption that all RSIs from a single manufacturer have exactly 

the same nominal spectral and cosine response. Then the RSI measurements obtained later 

in a resource assessment station could be described by nominal correction functions and 

estimated or measured spectra. A similar approach using a calibration period of several 

weeks was tested in Forstinger et al. (2020), but it is still not applied for solar projects. 

Because of the possible variations between the spectral response of different pyranometers 

of the same model, using separate calibration constants for at least two of the three 

components (GHI, DHI, and DNI) is recommended; however, some RSI calibration methods 

include only GHI calibration. The current best practice is to consider a long enough 

calibration period to include the wide variety of meteorological conditions that are expected 

at the site where the RSI is planned to be used. Such conditions should be assessed and 

characterized wisely during the calibration process. The calibration accuracy generally 

improves when the atmospheric conditions during the calibration closely represent those at 

the site where the RSI is intended to be operated later, though in reality such conditions will 

be highly variable. In addition to cloud cover, the effects of aerosols, water vapor, and site 

altitude on the solar spectrum must be considered (Myers 2011; Wilbert et al. 2016). 

Calibrations with artificial radiation sources that lack the spectral power distributions of 

natural solar radiation components usually also lack the variety of natural irradiation 

conditions; therefore, field calibrations under natural irradiation conditions should yield more 

accurate calibrations and are thus preferable. 

Outdoor RSI calibrations are performed at only a few laboratories, such as the National 

Renewable Energy Laboratory (NREL), in Golden, Colorado; and DLR at CIEMAT’s (Centro 
de Investigaciones Energéticas, Medioambientales y Tecnológicas) Plataforma Solar de 

Almería in Spain. Additionally, on-site calibrations are performed by a few specialized 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data  - 3rd Edition 

3-25 

companies. At the Plataforma Solar de Almería, for instance, RSIs are operated parallel to 

ISO-9060 Class-A pyrheliometers and pyranometers under real-sky conditions (Figure 3-17). 

The duration of RSI calibrations is from several hours to more than 1 year. These longer 

calibration periods provide a database for the analysis of systematic signal deviations and 

measurement accuracy. An analysis of the dependence of the calibration constants on the 

duration of the calibration period, as well as more details on two possible calibration 

methods, are presented in Jessen et al. (2016) and Geuder, Affolter, and Kraas (2012). Data 

quality is analyzed and compared to the reference irradiances. RSI calibrations are 

performed according to the different methods described. All published calibration techniques 

are based on the comparison of corrected RSI signals (using the existing correction 

functions described) to reference irradiance measurements obtained with thermopile 

sensors. 

Depending on the calibration method, one, two, or even three calibration constants are 

defined. The motivation for determining one calibration constant is that only one 

pyranometer is used and the calibration based on GHI is less time-consuming than 

performing separate calibrations for GHI, DHI, and DNI. Because of the Si detector’s 

spectral response, the spectral sensitivities for DHI, GHI, and DNI are not the same; hence, 

the application of two or three calibration constants is physically reasonable, even though 

only one sensor is used.  

Examples of drift in the GHI calibration constants obtained from Geuder et al. (2008) were 

later investigated for nine sensors in Geuder et al. (2016) and Jessen et al. (2016). For 

recalibration periods from 2–3.75 years, changes in this GHI calibration constant were less 

than 1% in most cases. Recalibration is recommended at least every 2 years. An overview of 

current RSI calibration methods is presented in Jessen et al. (2016), and more details can 

be found in Geuder et al. (2008, 2016) and Kern (2010). A case study for the accuracy 

achievable by different combinations of correction functions and calibration methods is 

summarized in Chapter 7. 

The calibration techniques for RSIs can be partially used for other solid-state radiometers. 

Further details on RSIs and RSI-specific measurement best practices can be found in 

Wilbert et al. (2015). 
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Figure 3-17. RSI calibration station at CIEMAT’s Plataforma Solar de Almería. Photo by 

DLR 

3.2.5.4 Other Instruments Used to Derive Diffuse Horizontal Irradiance and Direct Normal 
Irradiance 

In addition to the radiometers described above, other instruments can be used to derive DHI 

or DNI from irradiance measurements. For example, the scanning 

pyrheliometer/pyranometer (Bergholter and Dehne 1994, 245ff) or the sunshine duration 

sensor Soni e3 (Lindner 1984) can be used to derive DNI; however, these two sensors reach 

only lower accuracies than tracked pyrheliometers, thermopile pyranometers with shading 

balls, or even RSIs, as documented in Geuder et al. (2006). Note that researchers have 

developed methods for estimating daily integrated values of DNI from the vast archive of 

measurements from Campbell-Stokes sunshine recorders (Stanhill 1998; Painter 1981). 

Another option for DNI measurements without tracking is the EKO MS-90 instrument (Figure 

3-18), which is based on an earlier sunshine recorder sensor (MS-093). The revised design 

uses a rotating mirror within a fixed glass tube tilted to latitude (–58° to +58°). The mirror 

reflects the direct beam onto a broadband pyroelectric detector that senses DNI four times 

per minute. Preliminary tests were conducted against a reference pyrheliometer (EKO MS-

57) during the North American Pyrheliometer Comparison held at NREL in September 2016. 

The tests showed rather small deviations for a simple nontracking instrument when DNI 

exceeds 600 W/m2. 
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Figure 3-18. EKO MS-90. Image by NREL 

Recently, all-sky imagers have also been used to measure solar irradiance (Kurtz and 

Kleissl 2017). The accuracy of such measurements alone is still too low for their application 

in resource assessment. All-sky imagers are so far mainly of interest for forecasting 

applications; hence, these instruments are further discussed in Chapter 8, Section 8.2.11. 

Another option for estimating DNI from measurements of both DHI and GHI by a single 

instrument is the SPN1 (Figure 3-19). The SPN1 consists of an array of seven fast-response 

thermopile radiation detectors that are distributed in a hexagonal pattern under a glass 

dome. The detectors are positioned under diffuser disks and a special hemispherical shadow 

mask. The shape of the mask is selected such that for any position of the sun in the sky 

there is always one or more detectors that are fully shaded from the sun and exposed to 

approximately half the diffuse radiance (for completely overcast skies). Also, one or more 

detectors are exposed to the full solar beam for all positions. The minimum and the 

maximum readings of the seven detectors are used to derive GHI and DHI. 

 

Figure 3-19. Delta-T Devices, Ltd., SPN1. Image by NREL 

With this principle of operation, GHI, DHI, and DNI can be derived without any moving parts 

and without needing alignment other than horizontal leveling. Further, the SPN1’s low power 

demand (the temperature-controlled dome prevents dew and frost) increases its suitability 

for operation in remote sites compared to DNI or DHI measurements involving solar trackers. 

Test results indicate that the accuracy of the SPN1’s GHI is comparable with RSIs, but its 

DNI and DHI readings have higher errors than the DNI measured with RSIs (Vuilleumier et 

al. 2012). Further, SPN1 performance results obtained at six different locations worldwide 
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can be found in Badosa et al. (2014). An additional comparison with traditional radiometers 

is presented by Habte et al. (2016).  

3.2.6 Photovoltaic Reference Cells for Outdoor Use 

The photodiode detectors in the photoelectric pyranometers that are discussed are 

essentially tiny PV cells, usually only several square millimeters, and their operating principle 

is identical to the larger cells used in PV modules and PV power plants. The larger cells can 

also be used as radiometer elements, and when they are mounted in a suitable enclosure for 

measurement purposes, they are referred to as PV reference cells. Commercial products in 

this category are quite diverse, as shown in Figure 3-20. Their active cell area ranges from 

approximately 4–225 cm2 (from left to right). 

       

Figure 3-20. A variety of commercial outdoor PV reference cells.  

Photos by PV Performance Labs 

Although they can be physically diverse, PV reference cells share four main characteristics: 

1. The output signal is proportional to the short-circuit current of the detector PV cell, 
and it is usually the voltage measured across an internal shunt resistor. The cell does 
not produce electrical power in this configuration, but the measured short-circuit 
current represents the amount of radiation that could be converted to electric power.  

2. The detector PV cells are protected by a flat, transparent window, which leads to 
reflections at the air-window interface and consequently lower irradiance readings for 
beam radiation coming at higher angles of incidence. This would be considered a 
very poor directional response by the definition of the pyranometer classes, but it 
allows the reference cell readings to more closely track the power output of a PV 
plant—especially when the window material matches the glass used in the plant’s PV 
modules. Figure 3-21 shows the variations in the angular response from the four 
commercial reference cells. 

3. Like photodiode pyranometers, the spectral response of PV reference cells is narrow 
and nonuniform (Figure 3-22). This leads to a high spectral error according to the 
terms of the pyranometer classification, but, again, it allows the reference cells to 
track the PV plant output more closely. This works best when the technology of the 
reference cell—and hence its spectral response—matches that of the modules in the 
PV plant. In some reference cells, a filter glass is used to absorb some of the near-
infrared light before it reaches the silicon detector (PV cell), thereby creating an 
overall spectral response that more closely matches another cell type, such as 
amorphous silicon or cadmium telluride. 
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Figure 3-21. Deviations of directional response for four commercial reference cells 

relative to ideal cosine response. Measurements and graphics courtesy of Anton 

Driesse, PV Performance Labs 

4. In practice, the output signal has a pronounced positive temperature dependency. 
This dependency is primarily a by-product of the spectral response and therefore 
varies by technology (it is approximately 400–500 ppm/K for crystalline silicon cells); 
however, it is not the same as the effect of temperature on PV module power output, 
which decreases with temperature. Reference cell products nearly always include a 
temperature sensor, and they could offer temperature-corrected or uncorrected 
irradiance signals as output. 

 

Figure 3-22. Spectral response functions for selected PV materials. Image courtesy of 

Chris Gueymard 

Note that this handbook focuses on PV reference cells designed for long-term continuous 

outdoor measurements. Products outside this category could differ substantially—for 

example, certain reference cells for indoor use only do not have a protective window. It is 

also possible to use a regular full-sized PV module as a radiometer by measuring its short-

circuit current; however, this is also out of scope. 

It is clear from these descriptions that reference cells are fundamentally different from the 

other types of radiometers discussed in this handbook. These differences are not intrinsically 

good or bad, but rather they influence which type of radiometer is best suited for a given 

measurement objective. PV reference cells are not intended to measure broadband 

hemispherical irradiance; in fact, some product designs would collect water when mounted 
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horizontally, thus yielding large errors. If a low-cost substitute for a thermopile pyranometer 

is needed, a photodiode pyranometer is a usually better choice.  

3.2.6.1 Standardization of Photovoltaic Reference Cells 

Because of their measurement characteristics, reference cells are not consistent with ISO or 

WMO pyranometer classifications (ISO 2018; WMO 2018). Although many standards apply 

to PV reference cells directly or indirectly, there is no standard akin to ISO 9060 that would 

describe precisely and completely how reference cells should behave. In other words, there 

exists a definition of an ideal pyranometer but not of an ideal reference cell. Nevertheless, 

IEC 60904-2:2015 – Part 2 (IEC 2015) provides many useful requirements (e.g., linearity 

better than 0.5% and acceptance angle >160°) and recommendations for reference devices 

ranging from single cells to whole modules. One of the most important aspects of this 

standard is the extensive documentation requirement, which states that calibration reports 

must include spectral responsivity, temperature coefficient, and many other details about the 

device itself as well as the calibration method and equipment used. Currently, most 

manufacturers of PV reference cells for outdoor use do not claim to apply this standard. 

There is also a de facto World Photovoltaic Scale (WPVS) reference cell standard. This was 

first established in 1997 by a group of laboratories seeking to establish a reference scale 

similar to the WRR (Osterwald et al. 1999). WPVS cells conform to IEC 60904-2 and fulfill 

several very specific additional design criteria (e.g., physical dimensions and connections) 

that improve long-term stability and repeatability of measurements. Their high cost is more 

easily justified in a laboratory setting than for fieldwork; nevertheless, outdoor versions of 

WPVS cells are available. 

3.2.6.2 Calibration of Photovoltaic Reference Cells 

The responsivity of PV reference cells varies with wavelength, intensity and direction of the 

incident light, and the temperature of the cell. The calibration value is the response of the 

device (usually a value in millivolts) under a precisely defined spectral irradiance: the AM1.5 

global spectrum (IEC 60904-3, IEC (2019a)) with irradiance 1000 W/m2; and with a device 

temperature of 25°C. Combined, these conditions are referred to as the standard test 

conditions (STC), which apply equally to PV module ratings. Reference cell response is 

normally linear with irradiance; therefore, the value of the response under STC is equal to 

the responsivity of the device in mV per 1000 W/m2 or µV/(W/m2). 

IEC 60904-4:2019 – Part 4 (IEC 2019b) describes four different methods to perform the 

calibration of primary reference devices with traceability to SI units, so the relationship of 

reference cells to broadband radiometers is well defined. All these methods consider the 

narrow spectral response of PV devices by calculating a spectral mismatch factor, which 

compensates for the fact that the light used during calibration does not normally correspond 

precisely to the AM1.5 global reference spectrum. 

IEC 60904-2:2019 – Part 2 describes how secondary or field reference cells can be 

subsequently calibrated by comparison to a primary reference device using either natural or 

simulated sunlight. When the spectral response of the primary reference cell is the same as 

that of the cell being calibrated, there is no spectral mismatch to be considered. 

Primary reference cells are usually calibrated at precisely 25°C so that no temperature 

correction is required, and when identical devices are used for secondary or field 

calibrations, the effect of temperature cancels out. When there are differences in devices or 

device temperatures, however, a correction must be done as part of the calibration. 

Measurement procedures to determine the temperature coefficient are covered by IEC 

60891 (IEC 2009); essentially, they consist of measuring the response over a range of 

temperatures and determining the slope of a linear fit.  
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In all calibration situations, the direction of the incident light is predominantly normal to the 

plane of the cell, implying little or no diffuse irradiance. This minimizes the influence of the 

directional dependence, but in recent work this aspect has been analyzed more 

comprehensively, and the use of an angular mismatch factor has been proposed to further 

improve calibration consistency (Plag et al. 2018). 

In the context of calibrations, any adjustments for temperature, spectrum, or direction tend to 

be small compared to the effects of temperature, spectrum, and direction on field 

measurements. 

3.2.6.3 Deployment Considerations 

Because of the four distinct characteristics of PV reference cells, the natural place to deploy 

them would be in the context of PV projects. The benefit of the application of reference cells 

in solar resource assessment depends on the technology and the project phase. The 

benefits of reference cells for a resource assessment before the power plant construction 

are different from those for PV plant monitoring. The similarity of a PV reference cell to a 

specific PV technology can be of advantage if this PV technology is used, but other PV 

technologies will require a different reference cell, and solar thermal systems will require 

broadband measurements.  

For planning large power plants, satellite data sets are adapted to the site using ground 

measurements to achieve the required high accuracy (see also Chapter 4 and Chapter 9). 

Traditionally, the available irradiance data were broadband and collected using 

pyranometers, pyrheliometers, RSIs, or other devices, as described; hence, only broadband 

irradiance is provided by most satellite data sets, and broadband ground measurements are 

required for their validation and site adaptation. Only a few satellite-derived data sets include 

spectral data (Müller et al. 2012; Xie and Sengupta 2018), and such data are not available 

for the full globe.  

Another application of ground measurements collected before the plant construction is PV 

plant modeling. PV power plant models include effects such as reflectance losses and 

spectral mismatches to derive the power output from the broadband irradiance. Modeling 

these effects is related to additional errors, and the reference cells could offer an attractive 

alternative: If irradiance is measured under a flat glass cover, the reflectance losses do not 

need to be modeled; and if the irradiance measurement is already weighted by the spectral 

response of the reference cell, then no spectral correction model is required. In other words, 

if a PV reference cell is used, then the expected PV system output can be calculated with 

substantially fewer modeled steps, avoiding the uncertainty those would contribute; 

therefore, including a tilted reference cell in a ground measurement station is of interest 

before the plant construction. One drawback for the use of reference cells before actual plant 

construction is that the exact technology that will be used in the power plant might not be 

known at the beginning of the measurement campaign. Deviations among the temperature, 

incidence angle, and spectral effects of different PV products could be bigger than the 

uncertainty of the PV simulation models for these effects; hence, different reference cells 

should be used if the PV technology has not been selected before a measurement 

campaign. Another important limiting factor for the application of reference cells for PV 

system modeling is the available software used for PV yield simulations. Most do not 

accommodate selectively bypassing certain model calculation steps, which would be 

required for adequate use of PV reference cell irradiance measurements. If such a limited 

software is used, it imposes to some extent the use of a broadband pyranometer. 

For PV monitoring, the advantages of PV reference cells are already much clearer, even 

without significant further research and development. The described accuracy enhancement 

is of great interest for PV monitoring and capacity testing. The limitation due to the PV 
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system modeling tools also affects this application if a model using pyranometer-based GTI 

measurement is contracted for the monitoring; however, PV models used for PV monitoring 

or capacity testing more frequently allow the application of reference cell measurements as 

input than models used before the PV plant is built. Moreover, measurements with both 

pyranometers and reference cells are of interest. In the case of bifacial PV modules, 

spectrally matched reference cells are also an option to measure the required rear-side 

irradiance. To measure the rear-side irradiance, the reference cells are mounted on the 

module racking with an adequate support structure so that they are exposed as similarly as 

possible as the modules. End row effects are avoided and depending on the size of the PV 

plant and the variation of the ground and shading properties, several sensors must be used. 

To conclude, PV reference cells can be a helpful source of solar resource data, especially 

for PV monitoring, but currently they cannot replace broadband measurements in the context 

of general solar resource assessments. It is possible, however, that new, improved resource 

assessment methods will evolve that are specialized for PV applications and rely primarily 

on PV reference cells.  

General considerations for the instrument selection and the selection of the radiation 

components that should be measured are presented in Section 3.3.5. 

3.2.6.4 Recent and Ongoing Research 

The key to the effective use of PV reference cells is to understand their special 

characteristics and to apply that knowledge when collecting, interpreting, and using the data 

they produce. One active area of research is to quantify these characteristics for product 

categories, product models, and individual instruments (see Figure 3-23) (Driesse et al. 

2015; Vignola et al. 2018). Directly related to this are studies attempting to apply this 

knowledge of characteristics to instrument calibration, uncertainty analysis, and modeling 

(Driesse and Stein 2017). 

Although complete knowledge of PV reference cell characteristics is desirable, it is not 

always practical to acquire and use it, even if it is available. Parallel and complementary 

efforts are underway to promote increased homogeneity and further standardization (Habte 

et al. 2018). Future editions of this handbook will expand on these and other topics related to 

PV reference cells. 

 

Figure 3-23. Test facility to quantify PV reference cell characteristics and compare 

them with other types of radiometers. Photo by PV Performance Labs 

3.3 Measurement Station Design Considerations 

To collect useful solar resource data, the successful design and implementation of a solar 

resource measurement station or a network of stations requires careful consideration of the 

elements summarized in this section. The measurement stations also include additional 

meteorological instrumentation, such as anemometers, wind vanes, thermometers, and 

hygrometers. These measurements are described in Chapter 5. The general 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data  - 3rd Edition 

3-33 

recommendations—such as station security and data logging—described in this section also 

apply to these instruments.  

3.3.1 Location 

The primary purpose of setting up a solar resource measurement station before the 

construction of a solar power plant is to collect data that will ultimately allow an analyst to 

accurately characterize the solar irradiance and relevant meteorological parameters at that 

specific location. Ideally, the instruments would be within the targeted analysis area. In some 

cases, however, separation distances might be tolerated depending on the complexities of 

local climate and terrain variations. Less variability in terrain and climate generally translates 

to less variability in the solar resource over larger spatial scales. These effects should be 

well understood before determining the final location of a measurement station. (See 

Chapter 9 for more discussion of the effect of distance between the station and plant site.) 

The proximity to the target area must be weighed against operational factors, such as the 

availability of power, communications, and access for maintenance, as discussed in this 

chapter. Considerations should also include the possible effects of local sources of pollution 

or dust—for example, traffic on a nearby dirt road that could impact the measurements. 

Solar radiation measurements are also required for medium or large power plants (see 

Chapter 9). Further, measurements can be helpful for other solar energy purposes, such as 

testing power plant components or for PV power forecasting for many small PV systems. In 

power plants and for component or system tests, the position of the station must be such 

that the measurements reflect the conditions of the power system as well as possible. In 

large power plants, this means that several distributed stations can be required. For PV 

systems, IEC 61724-1:2017 defines the number of required radiometers within the PV power 

plant depending on the system’s peak power.  

When measurement stations are constructed in metropolitan areas, industrial areas, or near 

electrical substations or solar power plants, consideration should be given to possible 

sources of radio frequency signals and electromagnetic interference that could impart 

unwanted noise in sensors or cables. For example, the same high building that could provide 

an attractive unobstructed site for solar measurements could also be the ideal location for 

radio or television broadcast towers or some other apparatus. Such sites should be 

investigated for interference with the irradiance sensors and monitoring station. See Section 

3.3.4 for additional information regarding proper shielding and grounding.  

Instrument placement is also an important consideration. If nearby objects—such as trees or 

buildings—shade the instruments for some period during the day, the resulting measurement 

will not truly represent the available solar resource in a nearby unshaded part of the site. 

Distant objects—especially mountains—could be legitimate obstructions because the 

shadows they cast are likely to produce an influence beyond the area local to the 

instruments. Conversely, nearby objects can potentially reflect solar radiation onto the 

instruments, resulting in measurements that do not represent the conditions for the power 

plant. Such cases could include a nearby wall, window, or other highly reflective object. The 

best practice is to locate instruments far from any objects that are in view of the instrument 

detector. The recommendations from WMO (2018) for radiation apply, if not mentioned 

otherwise. 

The easiest way to determine the quality of solar access is to scan the horizon for a full 360° 

of azimuth and note the elevation of any objects protruding into the sky above the local 

horizon. Look for buildings, trees, antennae, power poles, and even power lines. Most 

locations will have some obstructions, but whether they will be significant in the context of 

the necessary measurements must be determined. Camera-based devices can be used to 

assess any obstructions including far shading from mountains, trees, etc., and the 
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assessment can be easily documented and quantified, such as seasonal shade effects. 

Generally, pyranometers are insensitive to sky blockage within approximately 5° elevation 

above the horizon. Pyrheliometers, however, are more sensitive because objects can 

completely block DNI, depending on the daily path of the sun throughout the year. The 

duration and amount of daily blockage are related to the object’s width and height above the 

horizon. On an annual basis, the number of blockage days depends on where along the 

horizon the object lies. To be a concern, the object must be in the area of the sun near 

sunrise or sunset, the time and azimuth of which vary throughout the year. For most of the 

horizon, objects blocking the sky will not be a factor because the sun rises in a limited 

angular range in the east and sets likewise in the west during sunset (e.g., at 40° N latitude, 

sunrise occurs approximately 60° from true north at the summer solstice and 120° from true 

north at the winter solstice). The farther north in latitude the site is located, however, the 

greater the angular range of these sunrise and sunset areas of interest. A solar horizon map, 

or even a sketch of obstructions by elevation and azimuth, will help determine the areas 

where horizon objects will affect the measurement (see Figure 2-5). Such maps can be 

created with digital cameras and software. Several commercial products using curved 

mirrors and also apps for smartphones exist. 

Considerations for locating a station should also include environmental factors, such as 

wildlife habitat, migratory paths, drainage, and antiquities or archeological areas. 

3.3.2 Station Security and Accessibility 

Measurement stations can cost tens of thousands or even hundreds of thousands of dollars. 

Although this equipment is typically not the target of thieves seeking property for resale, it is 

still subject to theft and should be protected. Vandalism might be even more likely than theft. 

The less visible and accessible the station is to the public, the less likely it will be the target 

of theft or vandalism. For example, instruments mounted on a rooftop are less likely to 

attract unwanted attention than those unprotected beside a highway. Lack of visibility is the 

best defense against vandalism. 

Security fences should be used if people or animals are likely to intrude. Within a fenced 

solar power plant, no additional fences are required. Fencing should be at least 1.8-m tall, 

preferably with barbed wire and fitted with locking gates in high-profile areas where intrusion 

attempts are likely. Less elaborate fences might suffice in areas that are generally secure 

and where only the curious need to be discouraged from meddling with the equipment. In 

remote venues with few human hazards, cattle fence paneling (approximately 1.2-m tall) 

might be advisable if large animals roam the area. The fencing should be sturdy enough to 

withstand the weight of a large animal that might rub against the compound or otherwise be 

pushed or fall against the fence. It might not be possible to keep smaller animals out of the 

station compound, and precautions should be taken to ensure that the equipment, cabling, 

and supports can withstand encounters with these animals. Rodents, birds, and other wildlife 

could move through the wires or jump over or burrow under fences. Signal cabling between 

modules or sensors at or near ground level is prone to gnawing by rodents and should be 

run through a protective conduit or buried. Any buried cable should be either specified for 

use underground or run through conduit approved for underground use. Underground 

utilities and other objects should be investigated before postholes are dug or anchors are 

sunk. 

If fences are used, they must be considered a potential obstacle that could shade the 

instruments or reflect radiation to the instruments. The radiometers should be positioned at 

least above the line between the horizon and the fence (including barbed wire), if only by a 

few millimeters, to prevent any shading of the sensor. This assumes that the pyranometer is 

mounted in a horizontal position and that the pyrheliometer is installed on a solar tracker. 
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Tilted pyranometers should have an unobstructed view of the ground and sky in front of 

them. For albedo measurements, fences cause measurement errors if the area under the 

downward-facing pyranometer is shaded (see also Chapter 5, Section 5.11). This must be 

considered for the station design. The recommendations from WMO (2018) concerning 

obstacles should be followed. Deviations between WMO (2018) and the actual station 

design are acceptable if these deviations affect not only the measurement station but also 

the solar energy system that is analyzed using the measurements. If nearby towers are 

unavoidable, the station should be positioned between the tower and the equator (e.g., to 

the south of the tower in the northern hemisphere) to minimize shading. The radiometers 

should be positioned as far as possible from the tower—at least several meters—so the 

tower blocks as little of the sky as possible. Nevertheless, radiometer signal cables should 

be shorter than 50 m to avoid losses caused by line resistance. The tower should also be 

painted a neutral gray to minimize strong reflections that could contaminate the solar 

measurement. These guidelines assume that the tower is part of the measurement station 

proper and that the site operator has control of the placement or modification of the tower. 

Without that control, the radiometers should be placed as far as possible from the tower. 

Access to the equipment must also be part of a station’s construction plan. Because routine 

maintenance is a primary factor affecting data quality, provisions must be made for 

reasonable and easy access to the instruments. Factors here could include ease of access 

to cross-locked property, well-maintained all-weather roads, and roof access that could be 

controlled by other departments. Safety must also be a consideration. Locations that present 

hazardous conditions—such as rooftops without railings or that require access using 

unanchored ladders—must be avoided. 

3.3.3 Power Requirements 

Ongoing measurements require a reliable source of electrical power to minimize system 

downtime from power outages. In some areas, power from the utility grid is reliable, and 

downtime is measured in minutes per year. In other areas, multiple daily power interruptions 

are routine. Depending on the tolerance of the required analysis to missing data, precautions 

should be taken to ensure that gaps in the data stream from power outages do not seriously 

affect the results. The most common and cost-effective bridge for power outages is an 

uninterruptible power supply (UPS). The UPS can also filter out unwanted or harmful line 

voltage fluctuations that can occur for a variety of reasons. It has internal storage batteries 

that are used as a source of power in case of an AC power interruption. When the AC power 

is interrupted, internal circuitry makes an almost seamless switch from grid-connected AC 

power to AC provided through an inverter connected to the battery bank. When power is 

restored, the UPS recharges the internal battery from the AC line power. Power loss is 

detected quickly, as is switching to the battery, and it is measured in milliseconds or partial 

line cycles. Some equipment could be particularly susceptible to even millisecond power 

interruptions during switching and should be identified through trial and error to avert 

unexpected downtime despite use of the UPS. 

The UPS is sized according to: 

 Operating power: How much can it continuously supply either on or off grid-connected 

AC power? 

 Operating capacity: How long can the UPS supply power if the grid connection is 

interrupted? 

Users should estimate the longest occurring power outage and size the UPS for the 

maximum load of attached devices and the maximum period of battery capacity. Batteries 

should be tested regularly to ensure that the device can still operate per design 
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specifications. This is most important in hot areas (such as deserts) because batteries could 

overheat and become inoperative (temporarily or permanently). Internal battery test 

functions sometimes report errors only when batteries are near complete failure and not 

when performance has degraded. A timed full-power-off test should be conducted 

periodically to ensure that the UPS will provide backup power for the time needed to prevent 

measurement system failure. 

In remote locations where utility power is not available, local power generation with battery 

storage should be devised. Options for on-site electrical power generation include PV or 

small wind turbine systems (or both) and gasoline- or diesel-fueled generators. The 

renewable energy systems should be sized to provide enough energy for the maximum 

continuous load and power through several days of adverse conditions (cloudy weather 

and/or low wind speeds). This includes sites prone to persistent surface fog. The sizing is a 

function of the extremes of the solar climate and should consider the longest gap during 

reduced generation, the shortest recharge period available after discharge, and the 

generation capacity and storage necessary to provide uninterrupted power for the target 

location. Some oversizing is necessary to accommodate degradation of PV panels and 

battery storage, and consideration should be given to ambient temperature, which affects the 

ability of a battery to deliver energy. Sizing calculators are available to help with this effort.7 

Equipment should be specified and tested for self-power-on capability in the event of a 

power outage. This ensures that when power is restored, the equipment will automatically 

resume measurements and logging without operator intervention. This is an important 

consideration for remote locations where considerable downtime might occur before 

personnel can be dispatched to restart a system. 

3.3.4 Grounding and Shielding 

Station equipment should be protected against lightning strikes and shielded from radio 

frequency interference that could damage equipment or reduce the validity of the 

measurements. Several references are available that describe techniques for grounding and 

shielding low-voltage signal cables (see, e.g., Morrison 1998). Those designing solar 

resource measurement systems are urged to consult these references and seek expert 

technical advice. If digital sensors with onboard analog-to-digital converters are used, their 

sensitivity to transients, surges, and ground potential rise must be considered; therefore, the 

power and communications lines should be isolated and surge protected with physical 

isolation, surge protection devices, or other equivalent technology. 

In general, the following steps should be taken when designing and constructing a 

measurement station: 

1. Use a single-point ground (e.g., a copper rod driven several feet into the ground) for 
all signal ground connections to prevent ground loops that can introduce noise or 
biases in the measurements. 

2. Use twisted pair, shielded cables for low-voltage measurements connected as 
double- ended measurements at the data logger. Double-ended measurements 
require separate logger channels for + and – signal input conductors. These inputs 
are compared to each other; therefore, the possibilities for electrical noise introduced 
in the signal cable are significantly reduced. 

                                                

 
7
 See http://pvwatts.nrel.gov/.  

http://pvwatts.nrel.gov/
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3. Physically isolate low-voltage sensor cables from nearby sources of electrical noise, 
such as power cables. Do not run signal cables in the same bundle or conduit as AC 
power cables. If a power cable must cross a signal cable, always position the two at 
right angles to each other. This case is not recommended, but this limited contact will 
minimize the possibility of induced voltages in the signal cable. Also, the data logger 
settings should be selected to avoid signal noise (the integration time of the voltage 
measurement adjusted to AC frequency). 

4. Connect metal structures such as masts and tripods to the ground to provide an easy 
path to the ground in the event of a lightning strike. This will help protect sensitive 
instruments. Electronic equipment often has a special ground lug and associated 
internal protection to help protect against stray voltages from lighting strikes. These 
should be connected with a heavy gauge wire to ground (12 American wire gauge or 
larger). Metal oxide varistors, avalanche diodes, or gas tubes can be used to protect 
signal cables from electrical surges such as lightning. These devices must be 
replaced periodically to maintain effectiveness. The replacement frequency is a 
function of the accumulated energy dissipated by the unit. The U.S. National Electric 
Code recommends a ground resistance of less than 5 Ohms for “sensitive” electronic 
equipment. If that cannot be met with one rod, multiple rods should be used and 
bonded together. Ground resistance should be measured with a ground resistance 
tester using the three-pin or four-pin method.  

3.3.5 Measurement and Instrument Selection 

From among the descriptions, the station designers should choose the instrumentation and 

the radiation components that will best support the data and uncertainty goals of the project. 

As discussed, station designers must consider not only the accuracy under optimum 

maintenance conditions but also the expected accuracy for the likely maintenance 

conditions. Depending on the project phase, different instruments could be used.  

Before constructing large power plants, radiation measurements are used mainly to enhance 

the accuracy of satellite-derived long-term data sets with different site adaptation methods 

(see Chapter 4, Section 4.8). For concentrating technologies, only the DNI resource is 

ultimately of interest, and hence in principle only a pyrheliometer would be needed. This 

minimalist setup is not recommended, however, because the best data quality control 

methods rely on the independent measurement of the three radiation components (see 

Section 3.4.2). For fixed non-concentrating techniques, such as most PV plants, measuring 

GHI would be the minimal option because long-term GHI data can be site-adapted with the 

GHI measurement and then converted to POA with decomposition and transposition models. 

Measuring only GTI on a tilt corresponding to the anticipated POA is not advisable because 

long-term data sets typically do not provide GTI and because site adaptation methods have 

only been developed for DNI, GHI, and DHI. Although such minimalistic measurement 

setups with only one instrument might seem sufficient at first, it is advantageous and hence 

common to measure further radiation components or to include redundant sensors for the 

same component. There are several reasons for this. Measuring multiple radiation 

components in one station increases the accuracy of yield predictions, improves the 

detection of measurement errors, and gives more flexibility regarding the selection of the 

power plant technology.  

The accuracy of PV yield calculations can be increased by measuring not only GHI but also 

DNI or DHI. Transposition models used to derive GTI from GHI and DNI are much more 

accurate than decomposition and transposition models that derive GTI from GHI alone (see 

Chapter 2, Section 2.7.4). With only the DNI or DHI measurement available at a site, the DNI 

satellite data can be enhanced with the ground measurements. For more detailed PV system 

simulations, ground measurements are helpful as direct input. With GHI and DNI data, the 
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PV simulations are more accurate because one can consider that mainly the direct 

component is affected by incidence angle and shading.  

Additional GTI measurements are advantageous for resource assessment because they can 

be used to select the best transposition (or decomposition and transposition) model for the 

site. One must consider that the best transposition (and decomposition) model for open field 

measurements, however, might not be the best option once the plant is built because the 

modules affect the incoming radiance distribution. GTI measurements are more accurate 

than modeled GTI and can be used as direct input for detailed PV modeling. One 

complication for GTI measurements is selecting the right orientation and tilt of the POA 

pyranometer before starting the measurement campaign. The optimal orientation depends 

on the latitude, the meteorological conditions at the site, the shading effects, and the 

electricity market, among others. Tracked POA measurements might also be of interest, and 

deploying reference cells should also be considered (Section 3.2.6.3). Reference cells can 

be valuable for such additional measurements. 

A further advantage of radiometers is related to the quality control of the data and to the 

detection of errors. If global, direct, and diffuse irradiance are known, it is possible—though 

not advisable—to measure two of the three because the third parameter can be calculated 

from the other two. The most accurate installations include all three components. This 

provides not only redundancy in case of instrument failure but also—and more importantly—

the basis for the most rigorous data quality protocols, as described in Section 3.4.2. Also, 

redundant measurements of the same radiation component can be of interest to avoid data 

gaps and increase accuracy.  

Measuring the three radiation components with a solar tracker, a pyrheliometer, a 

pyranometer, and a shaded pyranometer induces a significant maintenance effort. Without 

trained personnel providing daily cleaning and prompt corrections in case of tracker or 

alignment errors, data gaps and increased uncertainties are common. Measurements of DNI 

or DHI, however, in addition to that of GHI, are recommended for both tracked and fixed 

utility-scale PV projects and of course also for concentrating collectors; therefore, simple, 

more robust instruments, such as RSIs (section 3.2.5), at times in combination with a 

thermopile pyranometer, can be a better option to determine the three radiation components. 

In this case, only a less effective quality control, as in the case of measurements with two 

radiometers (e.g., GHI and DNI), is possible because of the principle of operation of these 

radiometers.  

The third main advantage of measuring several radiation components is the increase in 

flexibility for the selection of the solar technology. The exact technology option or mix might 

not be selected at the start of the measurement campaign. Depending on the site conditions, 

tracked PV could be an advantage over fixed PV. If tracked PV is used, DNI measurements 

are more important than they are for fixed PV systems. A concentrating solar power (CSP) 

project could be less adequate than PV for a specific site—for example, because of higher 

than expected aerosol load, which reduces DNI much more than GTI. If PV is selected 

instead of CSP, GTI must be measured or modeled.  

Additional radiometers add to the instrumentation budget, but when considering the overall 

costs of acquiring the property, building the infrastructure, providing long-term labor for 

O&M, and underwriting the resources required for processing and archiving, the added cost 

is nominal, and its inclusion will likely pay off with a valuable dimension of credibility for the 

project and the associated reduced financing costs. 

To operate solar power plants, different measurements are required. For PV, the 

International Electrotechnical Commission (IEC) standard 61724-1 (IEC 2017) defines the 

parameters to be measured for PV monitoring. GTI and GHI measurements are required for 
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the highest accuracy level defined in the standard. Depending on the peak power of the PV 

system, different numbers of sensors of the same type are required. The IEC standard also 

defines the instrument types allowed in the classes. PV monitoring Class A systems use the 

highest ISO 9060 class pyranometers or reference cells with low uncertainty. For PV 

monitoring Class B systems, less accurate pyranometers and reference cells are allowed. 

Class B can be of interest for small- or medium-size power plants. For bifacial PV systems, 

rear-side irradiance and/or albedo (see section 5.11 (Chapter 5)) must also be measured, 

according to a revision of the standard that is currently under preparation. For CSP, no 

standard is available that defines the instrumentation that should be used at the power plant; 

however, virtually all CSP plants use ISO 9060 Class-A pyrheliometers to measure DNI. GHI 

and DHI are not specifically mentioned, but this is a disadvantage because of the reduced 

ability to quality-control the radiation measurements. At present, there is no consensus on 

the required number of DNI measurements per CSP plant. In some instances, only one 

pyrheliometer is used; whereas in other plants, four or more DNI measurements are taken.  

Apart from the radiation measurements, other meteorological parameters are required for 

resource assessment and during the operation of a solar power plant. These parameters 

and the corresponding instruments are discussed in Chapter 5. 

3.3.6 Data Loggers 

Most radiometers output a voltage, current, or resistance that is measured by the data 

logger, which comprises a voltmeter, ammeter, and/or ohmmeter. The measured output 

value is subsequently converted to the units of the measurand through a multiplier and/or an 

offset determined by calibration to a recognized measurement standard.  

Data loggers should be chosen to have a very small measurement uncertainty, perhaps 3–

10 times smaller than the estimated measurement uncertainty associated with the 

radiometer. This is the accuracy ratio between the data logger and the radiometer. For 

example, typical specifications for a good data logger measuring a 10-mV output from the 

radiometer accurate to 1%, or 0.1 mV (100 µV), are on the order of total uncertainty 

(accuracy) of better than (less than) 0.1% of reading (or full scale) for the parameter in 

question, which would be 0.010 mV, or 10 µV. 

The logger should also have a measurement range that can cover the signal at near full 

scale to best capture the resolution of the data. For example, a sensor with a full-scale 

output of 10 mV should be connected to a logger with a range that is at least 10 mV. A 

logger with a 1-V range might be able to measure 10 mV but not with the desired accuracy 

and resolution. Most modern data loggers have several range selections, allowing the user 

to optimize the match for each instrument. Because of the nature of solar radiation, 

radiometers (e.g., pyranometers used for GHI measurements) can sometimes produce 

200% or more of clear-sky readings under certain passing cloud enhancement conditions, 

and the logger range should be set to prevent over-ranging during these sky conditions. The 

absolute GHI limit that can be reached during cloud-enhancement situations is a decreasing 

function of the measurement time step, but this can be misleading. At a 1-minute resolution, 

a safe limit seems to be 1800 W/m2, but it could reach 2000 W/m2 or more at a 1-second 

resolution with photodiode radiometers. Because the data logger measures near-

instantaneous values regardless of its averaging or recording time step, the range should be 

set to accommodate the higher values described. See Gueymard (2017a, 2017b) for more 

details. 

Some radiometers use amplifiers to increase the instrument output to a higher range to 

better satisfy signal range matching requirements; however, such amplifiers will add system 

complexity and some uncertainty to the data with nonlinearity, noise, temperature 

dependence, or instability. High-quality amplifiers could minimize these effects and allow a 
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reasonable trade-off between logger cost and data accuracy. Calibrations should be made of 

these radiometer systems by coupling the pyranometer or pyrheliometer with its uniquely 

associated amplifier. 

The logging equipment should also have environmental specifications that are compatible 

with the environment where the equipment will be used. Loggers used inside an 

environmentally controlled building could have less stringent environmental performance 

specifications than one mounted outside in a desert or arctic environment. Equipment 

enclosures can create an internal environment several degrees above ambient air 

temperature because of solar heating (absorption by the enclosure materials), heat 

generated by electronic devices mounted inside, and the lack of sufficient ventilation to help 

purge heat. 

The sampling rate and recording rates of the solar resource data should be determined from 

the desired data analysis requirements. The sampling rate refers to how often the logger 

measures in a time interval. The recording rate is often also called the reporting rate or the 

time resolution. It is the length of the time interval that is represented by one data point in the 

logger’s output file. Monthly averages or sums, daily, hourly, minute, or sub-1-minute data 

records can be of interest. Data loggers can generally be configured to produce output of 

instantaneous or integrated values at any reasonable time period consistent with the 

radiometer time-response characteristics. The design should consider the current 

requirements and, if convenient and practical, future needs for additional analyses. A high-

temporal-resolution data-logging scheme can be down-sampled or integrated into longer 

time periods—but not the other way around. Data logging equipment, data transfer 

mechanisms, and data storage can generally handle 1-minute data resolution, and this 

should be considered the recording rate in the data logger. A resolution of 1 minute or better 

is recommended to allow for accurate data quality control. Because most applications 

address the solar energy available over time, integrating data of sub-minute samples within 

the data logger is a common method of data output regardless of the final data resolution 

required by the analysis. For instance, 1-second signal sampling is recommended for 

irradiance measurements in the Baseline Surface Radiation Network (BSRN) (McArthur 

2005) so that 60 samples are averaged to the reported 1-minute data. The output of the 

instantaneous samples at longer intervals is much less likely to represent the available 

energy and should be avoided when configuring a data logger. If the size of a measured 

data set is a defining issue (e.g., limited data communications throughput), the user can 

determine the lowest temporal resolution necessary for the application and optimize the data 

collection accordingly. 

3.3.7 Data Communications 

Provisions should be made for automatically and frequently transferring data from the data 

logger to a data processing facility. This is the basis for adequately frequent data checks and 

timely corrections of outages and errors. Such frequent connections also allow for automatic 

data logger clock corrections when a local Global Positioning System device, which is 

preferred, is not available. Noticeable clock corrections of more than 1 second should never 

be necessary. Historically, data have been captured, transferred, and processed in various 

ways. Today, electronics and telecommunications allow remote data collection from nearly 

any location. One option uses a physical connection between logger and a computer that is 

used for further data analysis or that forwards the data via Internet connection. To avoid a 

cable connection, a cellphone network can be configured to provide virtual Internet links 

between a measurement station and the data center. Satellite uplinks and downlinks are 

also available for data transfers in areas that are not served by either wire- or cell-based 

phone service. Within the area of an observing station, wireless communications such as 

radio-frequency connectivity might be useful to minimize the need for long cables between 
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radiometers and data loggers. Depending on the antennas, data can be transferred over 

distances of a few kilometers. Such distances can occur between the data logger and the 

control room in big solar power plants with several megawatts of electrical design power. 

To prevent data loss in case of connection problems, the memory of the data logger should 

be selected appropriately. Memory extensions are available for many data loggers with 

external cards.  

3.4 Station and Network Operations 

The protocols and procedures dictating station operations play a fundamental role in the 

assurance of data quality. These procedures must be established prior to the start of data 

collection, and then a process must be put into place to carry forth and document adherence 

to the procedures. Data quality is in great part established the moment the measurement is 

taken. If errors occur during the measurement, little can be done to improve fundamental 

quality. For example, a poorly maintained station with dirty optics or misaligned instruments 

will produce unreliable (large uncertainties or systematic biases) data, and the magnitude of 

the problem is not likely to be discernable until days or weeks later. Often, one can only 

guess at which approximate a posteriori adjustments (if any) to make.  

In this context, data quality control involves a well-defined supervisory process by which 

station operators are confident that when a measurement is taken with unattended 

instruments, the instruments are in a state that produces data of known quality. This process 

largely encompasses the calibration, inspection, and maintenance procedures discussed in 

Section 3.4.1, along with log sheets and other items that document the condition of the 

station. It also includes a critical inspection or assessment of the data to help detect 

problems not evident from physical inspection of the instruments. 

When designing and implementing a data quality plan, keep in mind that eventually the data 

set will undergo scrutiny for quality. In the best scenario (and a scenario that is certainly 

attainable), a data analyst will feel comfortable with the quality of the data set and will be 

willing to move unhindered to the analysis at hand. The plan should eliminate as much as 

possible any doubts and questions about how the data were collected and whether the 

values they contain are suitable for the intended purpose. Implementation of the best 

practices contained in this handbook help eliminate doubts and uncertainties that might 

jeopardize future projects. 

3.4.1 Equipment Maintenance 

Proper O&M practices are essential for acquiring accurate solar resource measurements. 

Several elements in a chain form a quality system. Collectively, these elements produce 

accurate and reliable solar resource data: station location, measurement system design, 

equipment installation, data acquisition, and O&M practices. Proper O&M requires long-term 

consistency, attention to detail, complete and transparent documentation, and a thorough 

appreciation for the importance of preventive and corrective maintenance of sensitive 

equipment. 

Calibrations are performed with clean instrument optics and a carefully aligned/leveled 

instrument. To properly apply the calibration factor, the instrument should be kept in the same 

condition during field measurements as during the calibration. To maintain the calibration 

relationship between irradiance and radiometer output, proper cleaning and other routine 

maintenance are necessary. All O&M should be carefully documented with log sheets or 

preferably with electronic databases that contain enough information to reveal problems and 

solutions or to assert that the instruments were in good form when inspected. The exact 

times of the maintenance events should be noted rather than estimated. Time-stamped 
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pictures taken before and after maintenance with a camera can be extremely useful to 

evaluate the importance of soiling and misalignment, for example. A button connected to the 

data logger that is pressed at the beginning and at the end of an inspection is also 

recommended. The O&M information enables an analyst to identify potentially bad data and 

provides important documentation to determine and defend the overall quality of the 

measurements. 

The maintenance process includes: 

 Checking the alignment/leveling of the detector. Pyrheliometers must be accurately 

aligned with the solar disk for accurate DNI measurements. Pyranometer detectors must 

be horizontal for GHI and DHI measurements and accurately tilted (or aligned with a flat-

plate collector) for GTI measurements. The radiometer orientation should be checked 

periodically using the features described earlier in this chapter. 

 Cleaning the instrument optics. To properly measure the solar irradiance, no 

contaminant should block or reduce the radiation falling on the detector. The outdoor 

environment provides many sources of such contamination, such as dust, precipitation, 

dew, frost, plant matter, insects, and bird droppings. The sensors should be cleaned 

regularly to minimize the effect of contaminants on the measurements. In many cases, 

this can require daily maintenance of radiometers, especially in the case of 

pyrheliometers. Different standards require or recommend different cleaning frequencies 

between daily and weekly. 

 Documenting the condition of the radiometer. For analysts to understand limitations of 

the data, conditions that affect the measurements must be documented. This includes 

substandard measurement conditions, but it is equally important to document proper 

operations to add credibility to the data set. Observations and notes provide a critical 

record of conditions that positively and negatively affect data quality. 

 Documenting the environment. As a consistency check, note the sky and weather 

conditions at the time of maintenance. Note any ground surface changes, such as 

vegetation removal or the presence of snow. This information is valuable when 

interpreting data from the radiometer, including measurements with unusual values. 

 Documenting the infrastructure. The whole measurement station should be examined for 

general robustness. Any defects should be noted and corrected. 

Maintenance frequency depends on prevailing conditions that soil the instruments. This 

includes dust, rain, dew, snow, birds, and insects. It also depends on instrument type. 

Radiometer designs based on optical diffusers as the surface separating the inside of the 

instrument from the environment are less susceptible to the effects of dust contamination 

than instruments with clear optics, such as domed pyranometers (Myers et al. 2002). This is 

because fine soiling particles scatter much more than they absorb solar radiation. Absorption 

affects instruments with clear optics and diffusers the same way. In contrast, the scattering-

induced soiling effect has less impact on instruments with diffusers because the latter can 

transmit most of what the particles have scattered. The scattered radiation (mostly in the 

forward direction) hence reaches the detector in nearly the same way that radiation would 

enter a clean diffuser. Conversely, the scattering often causes the incoming radiation to miss 

the detector in instruments with clear optics because the latter is some distance from the 

former. This is especially relevant for pyrheliometers (Geuder and Quaschning 2006). Soiling 

of windowed or domed radiometers can quickly affect their reading and increase their 

measurement uncertainty. This explains why thermopile radiometers must be cleaned very 

frequently (e.g., daily). As described earlier, using a ventilator for a pyranometer can reduce 

this risk of contamination; thus, it is important to consider the frequency and cost of 

maintenance for proper instrument specification. Although sensors with diffusers, such as 
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RSIs, are not prone to strong soiling effects, they still require regular cleaning (e.g., twice per 

month). Note that a diffuser below a clear entrance window/dome does not have an 

advantage compared to a thermopile below the same clear entrance window/dome. 

Daily cleaning for sensors with clear optics or cleaning twice per month for sensors with 

diffusers as an outer surface is appropriate in most cases; however, different standards 

require or recommend different cleaning frequencies between daily (ISO TR9901) and 

weekly (IEC 61724-1). It is recommended to determine the cleaning interval for each site 

depending on the climate conditions of similar sites or, e.g., by analyzing the immediate 

effect of cleaning on the measurement signal. Depending on the noted period after which 

soiling significantly influences the measurement, the cleaning interval can be adjusted so 

that the degradation in sensitivity is limited to an acceptable level (e.g., <1% for high-quality 

stations). Each cleaning period and the state of the sensors should be documented, and the 

measurement values should be checked to evaluate the effect of cleaning on the recorded 

values. 

Radiometers should be carefully cleaned at each inspection, even if soiling appears minimal. 

Cleaning is generally a very short procedure. A recommendation for the cleaning procedure 

is as follows. First, remove any loose particles from the entrance window with a soft brush or 

compressed air. Then clean the entrance window, dome, or diffuser with a dry cloth. If dirt 

remains after this step, wet a second cloth with distilled water (or methyl hydrate), and wipe 

the window/diffusor/dome clean. If ice sticks to the surface, try melting the ice with one’s 

hands. Avoid using a hair dryer to melt the ice because the heat can crack the cold optics. 

More aggressive methods might damage the entrance windows and are therefore not 

recommended. 

Collimators without entrance windows (as used in active cavity radiometers and at least one 

new commercially available, low-cost pyrheliometer) greatly reduce the accumulation of dust 

on the sensor’s entrance optics, but they could still be affected by insects or spiders because 

they can enter the collimators, causing strong signal reductions. Even a single fiber of a 

spiderweb can significantly reduce the signal; therefore, such collimators must be inspected 

frequently.  

At remote sites that could be too difficult to maintain during extended periods, a higher class 

windowed instrument might not be optimal, despite its potential for better measurements. 

The cost of maintenance for a remote site could dominate the estimated cost of setting up 

and operating a station. This aspect should be anticipated when planning a measurement 

campaign. Often, less maintenance-intensive sensors with initially lower accuracy than 

windowed instruments can be a better choice, at least until the station becomes permanently 

serviceable on a sufficiently frequent basis. 

Additional spot inspections should be conducted after significant weather events (e.g., dust 

storms, snowstorms, heavy rainfall, rainfall during periods with high aerosol loads, and 

storms). Radiometer optics might not necessarily soil within a 24-hour period, but the effects 

of soiling can be best mitigated with frequent inspection.  

Maintenance at remote measurement sites away from institutional or corporate employment 

centers will require finding a qualified person nearby who can perform the necessary 

maintenance duties. The qualifications for maintenance are generally nontechnical, but they 

require someone with the interest and disposition to reliably complete the tasks. As a rule, 

compensating these people for time and vehicle mileage—rather than seeking volunteers— 

becomes a worthwhile investment in the long run because it sets up a firm contractual 

commitment to perform all necessary maintenance duties. Without that formal relationship, it 

can become difficult to assert the need for reliable and regular attention. 
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A general conclusion is that a conservative maintenance schedule will support the credibility 

of the measurement data set and provide the analyst with a base of justification when 

assigning confidence intervals for the data. 

3.4.2 Data Inspection 

The collection of quality data cannot occur without careful and ongoing inspection of the data 

stream for evidence of error or malfunction. Although the maintenance procedures discussed 

in the previous section rely heavily on the physical appearance of the equipment to detect 

malfunction, some sources of error are so insidious that they cannot be revealed by simple 

physical observation; thus, an operations plan must include a careful inspection of the data 

itself for unrealistic values that might appear only with mathematical analysis. As with the 

inspections during equipment maintenance, inspection of data should be done with a 

frequency great enough to avoid prolonged error conditions that would impose a significant 

bias on the eventual statistical characterization of the data set.  

3.4.2.1 Data Quality Control and Assurance 

A successful quality-control process requires elements of quality assessment and feedback. 

Figure 3-24 depicts a quality-assurance cycle that couples data acquisition with quality 

assessment and feedback. 

 

Figure 3-24. Information flow of a quality-assurance cycle. Image by NREL 

As shown in Figure 3-24, the information flows from data acquisition to quality assessment, 

where criteria are applied to determine data quality. The results of the quality assessment 

are analyzed and formed into feedback that goes back to the data acquisition module. The 

activities in the boxes can take several forms. For example, quality assessment could be the 

daily site inspection, and the analysis and feedback could be a simple procedure that adjusts 

the equipment malfunctions. Alternatively, the quality assessment could be a daily summary 

of data flags, and the analysis would then provide a determination of a specific instrument 

problem that is transmitted back to maintenance personnel, instructing them to correct 

deficiencies or to further troubleshoot problems. 

The faster the cycle runs, the sooner problems will be detected. This reduces the amount of 

erroneous data collected during failure modes. Conversely, if the site is inspected 

infrequently, the chances increase that a large portion of the data set would be contaminated 

with substandard measurements. More than one quality-assurance cycle can—and likely 

will—run at any time, each with a different period and emphasis, as noted: daily inspection, 

weekly quality reports, and monthly summaries. 

One practical aspect of this cycle is the importance of positive feedback—a regular report 

back to site personnel of high-quality operations. This positively reinforces a job well done 

and keeps site operators cognizant that data are being used and checked and that their 
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efforts are an integral part of an ongoing process. It is often helpful to have an on-site person 

handle maintenance and address problems and a central facility that runs quality checks and 

spots potential problems with the data. Maintenance reports can advantageously include a 

photographic record of each radiometer, e.g., before and after cleaning or leveling.  

The quality-assurance cycle is important, and thus it should be well defined and funded to 

maintain consistent data quality over time. After the quality of the data is determined, 

corresponding conclusions must be made for further use of the data. In every case, the 

quality-assurance data must be included in the data set as metadata. In some cases, the 

completeness of the data can even be improved based on the quality assurance. For 

example, data gaps from one sensor can be filled with the redundant data from related 

sensors. Gap filling is a complex topic that is not described in detail here. To calculate daily, 

monthly, or yearly sums, gap filling will nearly always be necessary, and it is recommended 

that the reader consider various publications concerning the topic for this type of correction 

(Hoyer-Klick et al. 2009; Espinar et al. 2011; Schwandt et al. 2014). Because data gaps can 

rarely be completely avoided in long time series, and because gap filling might not always 

work during long periods of missing data, a critical problem is then to obtain correct 

estimates of the long-term (e.g., monthly or annual) averages, which are of utmost 

importance in solar resource assessments. Practical methods have been developed to 

overcome this problem with the minimum possible loss of accuracy, as described by Roesch 

et al. (2011a, 2011b). But in the context of this section, an investment in planning and 

funding for maintaining the quality of ongoing data collection can repay manifold in the 

believability of the final data set.  

Another systematic bias that savvy analysts might be able to address concerns the 

instrument’s calibration. If the recalibration of a sensor shows a noticeable change relative to 

the calibration factor that was used shortly before the recalibration, the data might be 

reprocessed with a corrected, time-variable calibration factor. For sun photometers, this kind 

of post processing is applied to the Aerosol Robotic Network (AERONET) Level 1.5 data to 

elevate them to Level 2 (Holben et al. 1998). A distinct change in calibration factor can be 

assumed to be linear in time, and the data between two calibration periods are then 

reprocessed with a time series of this linearly corrected calibration factor. 

Finally, the systematic effects of soiling on measured irradiance data can be reduced a 

posteriori—at least to some extent. This requires any change in irradiance following the 

sensor cleaning to be documented. Examples of data correction methods can be found in 

Geuder and Quaschning (2006), Bachour et al. (2016), and Schüler et al. (2016); however, 

such a correction can result in acceptable accuracy only if the soiling effect is small (e.g., 

<1%). The availability of such a rough soiling correction method does not eliminate the 

stated requirement that instrument cleaning must be done frequently. For example, station 

operators cannot assume that a discontinuity observed at a single cleaning event can be 

generalized to encompass conditions leading up to all such cleaning events. As stated 

previously, the effect of soiling (and conversely, cleaning) on pyranometers with diffusing 

optics is generally less than that seen on pyranometers with clear optics (Maxwell et al. 

1999); however, certain meteorological events can produce anomalous effects, even with 

instruments less prone to soiling. Figure 3-25 shows data from an RSI with diffusing optics, 

the effect of cleaning the day after a dust storm revealed a 5% attenuation in the measured 

value prior to maintenance. Documenting the magnitude of such occurrences can be difficult, 

particularly with a large measurement network. In extreme situations, the data analyst must 

simply be aware that some increase in measurement uncertainty is necessary. 
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Figure 3-25. Cleaning effect (~5%) on an RSI using a pyranometer with diffusing 

optics. Image by NREL 

3.4.2.2 Data Quality Assessment 

When assimilating a large volume of data, some measure of automated quality assessment 

must be employed. The methods can range from rudimentary—for example, the temporal 

behavior of data can be used to identify problems, such as blocked wind vanes or damaged 

cables; to more sophisticated methods to meet this demand as explained in the following 

and in Chapter 7, Section 7.7. Depending on how strict the screening parameters are and 

how their corresponding values are chosen, however, too many or too few events might be 

detected. A variety of factors—ranging from characteristics of the site and/or instruments to 

local weather conditions—can affect the data and the validity of screening tests; therefore, 

the results of the automatic screening always demand a manual check by an expert to 

ensure their validity. Finally, additional data issues potentially known by the station’s 

supervisor must be included as comments or flags. Such information should be documented 

in the metadata (Section 3.4.2.3) 

As a general rule, data for inspection should be aggregated to some degree, typically in daily 

sets (Wilcox and McCormack 2011). This is because individual data points might not lend 

well to definitive conclusions about quality without the context of many nearby 

measurements. For example, a sudden change in solar irradiance can often be correlated 

with the passage of weather fronts that bring clouds and wind. And those conditions might 

also show a rapid change in temperature, adding to a compelling conclusion.  

Data inspection routines should be automated toward the end goal of presenting the quality 

analyst with on-demand visual plots to streamline the inspection process. This becomes 

particularly necessary for network operations with dozens of stations where hundreds of 

thousands of measurements could be generated each day. Background processes can run 

automated data quality assessment routines and then plot the data and flags in a report 

readied for the quality analyst to begin inspection. For example, Figure 3-26 holds multiple 

panels with data graphs from a single station, providing the expert analyst thousands of data 
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points that can be quickly scanned by eye and related with each other to spot 

inconsistencies. 

 

Figure 3-26. Multiple-grouped data plots for a single station for a single day: (left) 

three-component irradiance data; (center) wind speed, temperature, and battery 

voltage; and (right) wind direction and barometric pressure. Image from NREL 

The flags can be visualized next to the data, as shown in Figure 3-27. Here, a suspicious 

period in the morning was detected by the automatic quality control and marked with the 

orange background. Of great help is the visualization of the difference between the 

measured DNI and the DNI calculated from collocated GHI and DHI measurements. This 

difference plotted over time can help to identify, for example, pyranometer levelling issues, 

radiometer soiling/dew, or tracking errors. 

 

Figure 3-27 Time plot of the three irradiance components and the difference of 

measured and calculated DNI. Data marked by automatic quality control is marked 

with an orange background to guide the data analyst during the daily data control. 

Image from DLR, after Geuder et al. (2015) 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data  - 3rd Edition 

3-48 

If redundant sensors are used, both measurements or their differences can be plotted and 

analyzed, which allows for detecting errors that affected only one of the instruments. Digital 

instruments and some ventilation units for pyranometers also provide additional useful 

information, such as the rotation speed of the ventilator, the sensor inclination, the sensor 

acceleration (shock sensor), or error codes. Such data are valuable for quality control and at 

times allow for corrections before the measurements are strongly affected by the error.  

A time series of some measurements can reveal error conditions before they become a 

problem. Figure 3-28 shows a plot of the daily battery voltage for a remote RSI instrument 

and indicates a charging problem. In this case, a technician was dispatched, parts were 

obtained, and the charging circuit was repaired before the instrument lost power and data 

were lost. 

The addition of data quality flags to the data files is an extremely important step in the quality 

assurance process. For example, the SERI QC software for irradiance measurements 

(Maxwell, Wilcox, and Rymes 1993) (see Chapter 7, Section 7.7.1) produces flags that can 

be plotted and included in the rapid visual inspection paradigm (see Figure 3-29). These 

flags are plotted in the left panel to show a gradation of flag severity from low (dark blue) to 

high (red) for each minute of a month. To aid the analysis, each solar measurement’s K-

space value is plotted in the right three panels, allowing the analyst to find measurement 

periods that correspond with periods of high flags. Although Figure 3-29 shows a plot for a 

calendar month, these reports can be generated daily in a moving window to show flagging 

from previous weeks that lead up to the current day. This allows the analyst to detect error 

trends early and to formulate a correction. 

 

Figure 3-28. Time-series plot of battery voltage as a diagnostic tool. Figure from NREL 
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Figure 3-29. Plots of SERI QC flags (left panel) for 1 month (y-axis) by hour of day (x-

axis). The three right panels plot associated K-space values. Image from NREL 

In all these examples, the automated reports should be generated daily (or some other 

interval consistent with the end use of the data) in preparation for a scheduled session by 

the analyst, minimizing the amount of manpower required for a thorough data inspection.  

Other automated procedures, usually implemented in the data ingest system, employ more 

rudimentary bounds checking, parameter coupling, and detection of missing data. These 

checks provide near-real-time triggers for automated email messages to alert operators that 

a potential error condition exists. These alerts are a first line of defense against serious 

failures in the system. 

3.4.2.3 Metadata and Record-Keeping 

The interpretation and application of solar resource measurements depend greatly on the 

efforts to record and include metadata relevant to the observations. This includes site 

location; quantitative local horizon surveys with a device visualizing the solar path during the 

year; data acquisition system(s); input signal channel assignments; radiometer types, 

models, serial numbers, calibration histories, and installation schemes; and information on 

eventual post processing of the data and maintenance records. For example, online 

metadata are available from NREL’s Solar Radiation Research Laboratory.8 Such metadata 

should be included with the archiving of the measured solar resource data. Examples of 

issues that need to be documented include damaged or misaligned sensors, maintenance 

works on the instruments, detection of soiled sensors and subsequent sensor cleaning, 

obstructed sensors, temporarily erroneous calibration constants in the program code, loose 

electrical connections, and data logger clock error. These events are frequently not detected 

automatically or sometimes not even detectable by automatic quality-control screening tools; 

                                                

 
8
 See http://www.nrel.gov/midc/srrl_bms.  

http://www.nrel.gov/midc/srrl_bms
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hence, manual on-site checks are required. The metadata should not necessarily be limited 

to error conditions and corrections. Information about unusual weather events, animal 

activity, or even significant flora blooms or vegetation die-off events could prove useful in 

future analyses that could benefit from knowledge of the measurement environment. Such 

supplementary information could convey to an auditor that the station operators were 

thorough in recording station details.  

When deciding on a metadata archival method, some consideration should be given to the 

pros and cons of paper (physical) versus electronic storage. Paper, though not immune to 

peril, is a simple form that can be read for decades or even centuries. Electronic formats, 

which are invaluable for easy access and extraction for computer analyses, are too often 

subject to catastrophic loss through myriad electronic mishaps. Further, changes in the 

format of once commonplace electronic storage schemes might also render historic 

metadata unreadable or inaccessible. Using both methods simultaneously solves many of 

these problems, but it can create new issues with the additional labor for double entry or 

possible inconsistencies between the two methods. 

Figure 3-30 shows a sample paper log that a maintenance technician is required to complete 

on-site during the maintenance visit. The log not only provides a checklist to ensure a 

complete inspection but also serves as permanent documentation for the station archive.  

 

Figure 3-30. Sample paper maintenance log sheet to be filled out by a technician on-site during 
a maintenance visit. Image from NREL 

Figure 3-31 shows a (partial) online log form that allows the maintenance technician to 

remotely access a database interface. Each item in the prescribed maintenance checklist is 

reported to complete the documentation for the station visit. The log sheet streamlines much 
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of the documentation with codes and checkmarks, and it provides space for freehand 

comments to describe unusual conditions. For paper logs and online logs, protocols must be 

in place to ensure that the technician is actually performing the tasks that appear in the logs. 

At a minimum, station management must be aware of the possibility that a dishonest 

technician might develop creative ways to falsify a work product. There are ways to remotely 

verify that the maintenance protocol is being followed. In many cases, when instruments are 

cleaned, an anomaly appears in the data while the sky irradiance is blocked. The analyst 

can look at a data plot at the logged time of the visit, and if no disruption appears, further 

investigation could be warranted. Some systems provide a momentary switch or button that 

the technician is required to push when arriving on-site. This action places a flag in the data 

stream verifying that the technician was on-site for the inspection. Remote video cameras 

can also be a valuable means to verify a proper inspection. 

 

Figure 3-31. Sample online interface for documenting maintenance. Image from NREL 

Analysts—whether associated with station operations or employed in a later due diligence 

process—are immensely aided by ample documentation of station O&M. The 

documentation, in addition to providing the specific information contained, also indicates the 

extent of the maintenance protocol. This gives the analyst confidence that problems are 

discovered and corrected in a minimal amount of time. Further, the documents show that 

even at well-run stations with a few inevitable malfunctions, best practices and high-quality 

data govern operations. 
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Complete documentation includes thorough information in a dedicated metadata archive 

about the instruments, including manufacturer and model, serial number, calibrations 

(current and historical), deployment location and configuration, repairs, and inventory or 

storage details. Of particular importance is the record of instrument calibrations and the 

associated certificate, traceability, and statement of uncertainty. The calibration record is 

fundamental to the measurement itself and the assignment of uncertainties to the measured 

data. Absent a current calibration certificate, a knowledgeable analyst performing validation 

or due diligence on a data set will likely reject any statement of uncertainty, rendering the 

measurements highly questionable.  

3.4.3 Data Aggregations and Summaries 

Solar irradiance measurements for renewable energy applications are becoming more 

common, and in some electric utility applications, they are required. These measurements 

are also important for applications in energy-efficiency and climate research. Measurement 

station design includes data loggers and their configuration as described in Section 3.3.5. 

Ideally, the station designers will have knowledge in advance about the form (necessary 

parameters, time resolution, period of record, acceptable uncertainty limits, etc.) of the data 

required to complete the planned analyses to satisfy the project objectives. But this is not 

always the case. Further, it is quite common for data sets to be accessed for uses other than 

their original purpose; thus, the value of a data set could be significantly enhanced if it is in a 

more generic form that is easily adaptable or convertible to other more specific forms. This 

typically relates to the frequency of the measurements, which could range from 1 minute to 

monthly or even yearly. 

As noted in Section 3.3.5, the time resolution of the measurements can be increased without 

significantly increasing the costs for data transfer and storage when compared with the 

overall costs of operating a station. Because data values can be easily converted to longer 

timescales, it is recommended that the station be designed to collect data at 1-minute 

intervals.9 Many commercially available data loggers are capable of sampling the 

instruments near 1 Hz and then integrating the samples to a 1-minute value (or some other 

chosen time interval). These values are quite often represented with a unit of W/m2, but the 

correct unit from this process is W-minute/m2. Most solar analytical tools expect values in 

Wh/m2, so the conversion must be made prior to further averaging to daily, monthly, or 

annual values. As a practical matter, the conversion to Wh/m2 can be made by averaging the 

1-minute values for 1 hour. The result is mathematically the same as the more descriptively 

correct method of adding the 60 values in W-minute/m2 and dividing by 60 minutes to 

convert from the minute to the hourly unit. 

Some analytical tools expect hourly values during the period of interest, often a full year. 

Other tools might expect daily total energy, and others monthly mean daily totals. The 

conversion from Wh/m2 can then be made to the daily total in Wh/m2 per day by simply 

adding the hourly values from a single day. From there, the conversion to monthly mean 

daily totals is accomplished by averaging the daily totals for the month. Examples of 

reporting monthly solar irradiance measurements are available from 

https://midcdmz.nrel.gov/apps/report.pl?site=BMS. 

In addition to the statistics described, some applications (power plant load matching or 

building design) look for long-term values by hour of day, for example, the average energy 

                                                

 
9
 Data recording at time intervals as short as 1 second has been needed for research applications 

requiring special attention to the radiometer performance specifications. (See 
https://dx.doi.org/10.5439/1052451.)  

https://midcdmz.nrel.gov/apps/report.pl?site=BMS
https://dx.doi.org/10.5439/1052451
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available throughout a month at 11:00. These slices are formed by sorting the hourly data by 

time stamp and then averaging the subsets during the desired period. 

Aggregating solar irradiance and meteorological measurements over various timescales also 

requires careful attention to methods for estimating the associated measurement 

uncertainties. This is currently an active area of research that will be addressed in future 

editions of this handbook. 
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4.1 Introduction 

High-quality solar resource assessment accelerates technology deployment by making a 

positive impact on decision making and by reducing uncertainty in investment decisions. 

Global horizontal irradiance (GHI), global tilted irradiance (GTI), and/or direct normal 

irradiance (DNI) are the quantities of interest for solar resource assessment and 

characterization at a particular location. Surface-based measurements of DNI and GHI can 

be made only on a relatively sparse network, given the costs of operation and maintenance. 

GTI is rarely measured in radiometric networks. Nevertheless, observations from ground 

networks have been used in conjunction with models to create maps of surface solar 

radiation (Gueymard 2008a). Another option is to use information from geostationary 

satellites to estimate GHI and DNI at the surface (Cano et al. 1986; Diabate et al. 1988; 

Pinker and Laszlo 1992; Beyer, Costanzo, and Heinemann 1996; Perez et al. 2002; Rigollier 

et al. 2004; Cebecauer and Suri 2010; Qu et al. 2016). Because different geostationary 

satellites are available at different longitudes around the world, radiation can be available for 

the entire globe (at least between latitudes from approximately -60° to +60°) at temporal and 

spatial resolutions representative of a particular satellite. For northern and southern high 

latitudes, a compilation of satellite-derived data based on observations from polar orbiters 

offers good spatial coverage but typically at a lower spatiotemporal resolution (Karlsson et 

al. 2017a, 2017b; Kato et al. 2018). 

Solar radiation models that use only ground-measured input parameters were used in the 

past when satellite or weather-model-derived databases were not available. Examples of 

such models are briefly mentioned for historic reasons. One popular historic model type is 

based on data from the Campbell-Stokes sunshine duration recorder. The monthly mean 

GHI is derived using a regression fit to the number of sunshine hours measured by the 

sunshine recorder’s burn marks when direct solar irradiance exceeds a threshold value of 

≈120 W/m2. The regression coefficients are calculated using existing GHI measurements at 

specific locations. The exact method to calculate GHI using sunshine recorder information is 

empirical and therefore specific to each geographic area. Moreover, the meteorological 

services of some countries, such as the United States and Canada, have stopped measuring 

sunshine duration because of the limited quality and significance of this measurement, which 

is not standardized and varies from one country to another.  

In the absence of surface radiation measurements, estimates of surface radiation can be 

made using routine meteorological ground measurements and human observations of cloud 

cover in a radiative transfer model (Marion and Wilcox 1994). For instance, the 

METeorolgoical-STATistical (METSTAT) model (Maxwell 1998) used information about 

cloud cover, water vapor, ozone, and aerosol optical depth (AOD) to develop empirical 

correlations to compute atmospheric transmittance extinction during both clear- and cloudy-

sky conditions.  That model was used to create earlier versions of the U.S. National Solar 

Radiation Database (NSRDB) (1991–2005) (e.g., George et al. [2007]). Similar 
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developments have been carried out in Europe with successive versions of the European 

Solar Radiation Atlas (Page, Albuisson, and Wald 2001). 

Long-term GHI data can also be obtained from various numerical weather prediction (NWP) 

models, either by operating them in reanalysis mode or from actual operational weather 

forecasts. Examples of reanalysis data include the ERA5 (Hersbach et al. 2019; Trolliet et al, 

2018) from the European Center for Medium-Range Weather Forecasting (ECMWF) and the 

Modern Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) 

from the National Aeronautics and Space Administration (NASA) (Bosilovich, Lucchesi, and 

Suarez 2016; Trolliet et al. 2018). Weather forecasts such as those from the ECMWF’s 

Integrated Forecasting System (IFS) and the National Oceanic and Atmospheric 

Administration’s (NOAA’s) Global Forecast System (GFS) can also provide estimates of 

GHI. Such estimates, however, are typically not as accurate as those derived from satellite-

based models, and they require careful bias corrections (Boilley and Wald 2015, Urraca et 

al, 2018).  

This chapter contains an introduction to satellite-based models, information about currently 

operational models that provide surface radiation data for current or recent periods, a 

summary of radiative transfer models used in the operational models, and a discussion of 

uncertainty in solar-based resource assessments. A short discussion on NWP-based solar 

radiation data is also included. 

4.2 Estimating the Direct and Diffuse Components from Global 
Horizontal Irradiance 

During clear and partly cloudy conditions, diffuse irradiance on a horizontal surface, DHI, is 

often only a relatively small part (<30%) of GHI. During dense overcast conditions, GHI and 

DHI should be identical. When no simultaneous DHI or DNI measurements exist and no 

alternate determinations are available—for example, from physical-based satellite-based 

models—DNI and DHI must be estimated from GHI data. Many models based on empirical 

correlations between GHI and either DHI or DNI data have been developed since Liu and 

Jordan (1960); Erbs, Klein, and Duffie (1982); Maxwell (1987); Perez et al. (1990); and 

Louche et al. (1991). More recently, Engerer (2015), Gueymard and Ruiz-Arias (2016), Aler 

et al. (2017), and Yang and Gueymard (2020) extended this empirical methodology to obtain 

DNI and DHI at a 1-minute resolution. These algorithms use empirical correlations between 

the global clearness index, Kt = GHI/[ETR cos(SZA)], and the diffuse fraction, K = DHI/GHI, 

the diffuse clearness index (i.e., the diffuse transmittance), Kd = DHI/[ETR cos(SZA)], or the 

direct clearness index (direct transmittance), Kn = DNI/ETR. All these separation models are 

derived empirically. There are reviews of substantial literature on this topic (e.g., see 

Gueymard [2008a], Gueymard and Ruiz-Arias [2016], and Tapakis et al. [2016]). Analysts 

should note that some hourly separation models, including the most popular ones, might not 

perform correctly if used with subhourly data (Gueymard and Ruiz-Arias 2016). 

4.3 Estimating Irradiance on a Tilted Surface 

Solar conversion systems, such as flat-plate collectors or non-concentrating photovoltaics 

(PV), are tilted toward the equator to increase their solar resource. Estimating or modeling 

the irradiance incident upon them is essential to predicting their performance and yield. This 

irradiance incident on the plane of array (POA) is usually called GTI, or sometimes simply 

POA. GTI can be measured directly by pyranometers that are tilted the same as the collector 

plane. Modeling GTI mainly requires data of the three main components on the horizontal 

surface (GHI, DNI, and DHI). GTI can be estimated as the sum of the incident beam, 

incident sky diffuse, and incident ground-reflected irradiances on the tilted surface; see Eq. 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data  - 3rd Edition 

4-3 

2-2b. The incident beam contribution is simply a straightforward geometric transformation of 

DNI, requiring only the angle of incidence of DNI on the tilted plane. The ground-reflected 

contribution is generally small for tilts less than 45°, unless the ground is covered with snow. 

A simple estimation is possible but requires several assumptions: the foreground is assumed 

infinite, horizontal, and of isotropic reflectance. In practice, however, the reflected irradiance 

incident on PV panels outside of the front row would be overestimated with this approach. 

The main difficulty is the computation of the sky diffuse irradiance, which has been studied 

by many authors with different approaches ranging from the simplest isotropic model to more 

elaborate and complex formulations (Gueymard 1987; Kambezidis, Psiloglou, and 

Gueymard 1994; Khalil and Shaffie 2013; Liu and Jordan 1960; Loutzenhiser et al. 2007; 

Muneer and Saluja 1985; Olmo et al. 1999; Padovan and Del Col 2010; Ridley, Boland, and 

Lauret 2010; Wattan and Janjai 2016; Xie et al. 2016). See the recent review of these 

models in Yang (2016). Based on the existing studies of the literature, one of the most 

widely used and validated models is the Perez model (Perez et al. 1987, 1988, 1990). It is 

the result of a detailed analysis of the isotropic diffuse, circumsolar, and horizon brightening 

irradiances that are computed by using empirically derived parameters. This approach works 

well with hourly data, but recently it has been found to generate erroneous values with 

subhourly data when Kt >1 (i.e., under cloud-enhancement conditions) (Gueymard 2017).  

4.4 Introduction to Satellite-Based Models 

The goal of satellite-based irradiance models is to use observed information about top-of-

atmosphere (TOA) upwelling radiances and atmospheric and surface albedos to derive GHI 

and DNI at the surface of the Earth. During the last decades, satellite-based retrievals of GHI 

have been used, for example, for climate studies (Justus et al. 1986). A broad overview of 

these methods was published by Renné et al. (1999). These methods were originally divided 

into subjective, empirical/statistical, empirical/physical, and physical methods (Pinker, Frouin, 

and Li 1995; Schmetz 1989; Myers 2013). The empirical/statistical methods are based on 

developing relationships between satellite- and ground-based observations; the 

empirical/physical and theoretical methods estimate surface radiation directly from satellite 

information using retrieval schemes to determine the atmospheric properties important to 

radiative transfer. Most empirical/statistical and empirical/physical models are now classified 

as semiempirical because they involve the development of intermediate relationships either 

to relate satellite observations with surface radiation measurements or to convert satellite 

observations directly to solar radiation estimates. Empirical and semiempirical methods 

generally produce only GHI and require additional models (see Sections 4.2 and 4.4.3) to 

calculate DNI from GHI. Physical models, on the other hand, generally follow a two-step 

process that derives cloud optical properties using the satellite radiances in the first step and 

then computes GHI and DNI using these cloud properties in a radiative transfer model in the 

second step. 

4.4.1 Geostationary Satellites 

Geostationary satellites located above the equator that orbit at the same rate as the Earth’s 

rotation provide continuous coverage of their field of view. Observations are usable up to 

latitudes 60° N and 60° S because of the Earth’s curvature, as shown in Figure 4-1. The 

current Geostationary Operational Environmental Satellite (GOES) series covers North and 

South America (full disk) every 10–15 minutes and the Northern Hemisphere every 5 

minutes. Two GOES satellites (GOES-East/GOES-16 and GOES-West/GOES-17) operate 

concurrently and provide 5-minute coverage for the entire United States. The Advanced 

Baseline Imager (ABI) on the current GOES satellites makes radiance observations in 16 

wavelength bands, or spectral regions (see Table 1) (Schmit et al. 2005; Schmit 2018). 
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GOES-16 became operational in 2018, and GOES-17 became operational in 2019. The 

wavelengths in Table 1 are representative of the latest generation of geostationary satellite 

and are similar to those used on the Himawari series of satellites. The previous version of 

the GOES-East and GOES-West series provided data for five channels (one visible, four 

infrared) every 30 minutes for the Northern Hemisphere and every 3 hours at full disk.  

Table 4-1. GOES-16 and GOES-17 ABI Bands 

ABI  
Band 

Central  

Wavelength (m) 
Type 

Spatial  
Resolution at Nadir (km) 

1 0.47 Visible 1 

2 0.64 Visible 0.5 

3 0.86 Near-infrared 1 

4 1.37 Near-infrared 2 

5 1.6 Infrared 1 

6 2.2 Infrared 2 

7 3.9 Infrared 2 

8 6.2 Infrared 2 

9 6.9 Infrared 2 

10 7.3 Infrared 2 

11 8.4 Infrared 2 

12 9.6 Infrared 2 

13 10.3 Infrared 2 

14 11.2 Infrared 2 

15 12.3 Infrared 2 

16 13.3 Infrared 2 

The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) 

owns the Meteosat series of satellites that covers Europe, Africa, Middle East, the Indian 

Ocean, and western Asia. The visible and infrared imager on the Meteosat First Generation 

(MFG) satellites (up to Meteosat-7) had three visible channels, water vapor (6.2 µm), and 

infrared. The visible channel produced a 5-km nadir resolution; the infrared channel’s nadir 

resolution was also 5 km. Moreover, there were two channels with 2.5-km resolution, in 

interleaved format. Imagery had a repetition frequency of 30 minutes. The Spinning 

Enhanced Visible and InfraRed Imager (SEVIRI) on the Meteosat Second Generation (MSG) 

satellites (Meteosat-8 onward) provides satellite imagery every 15 minutes at a nominal 3-

km resolution for 11 channels (Schmetz et al. 2002). The 12th channel, a high-resolution 

visible channel, has a nadir resolution of 1 km. 

The Himawari-8 is a third-generation satellite similar to GOES-16 and the EUMETSAT’s 

Meteosat Third Generation (MTG) satellites and covers East Asia and the Western Pacific. 

Himawari-8 was launched in October 2014 and harbors the Advanced Himawari Imager, 

which has characteristics similar to the ABI (Besho et al. 2016). Of the 16 bands, the visible 

and near-infrared bands measure at resolutions of 0.5 km or 1 km, whereas the infrared 

bands measure at 2 km. A full-disk image is produced every 10 minutes, and the sectors are 

generated every 2.5 minutes. Himawari-8 replaced the Multifunctional Transport Satellite 

series of satellites, which had been in operation since 2005. 
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Figure 4-1. Location of the current geostationary satellites that provide coverage 

around the globe. Image from NREL 

4.4.2 Polar-Orbiting Satellites 

Polar-orbiting satellites are used to continuously sense the Earth and retrieve cloud 

properties and solar radiation at the surface. An example of one such instrument is the 

Advanced Very High Resolution Radiometer (AVHRR) on the NOAA series of polar-orbiting 

platforms. Other examples are the Moderate Resolution Imaging Spectroradiometer 

(MODIS) and the Clouds and the Earth's Radiant Energy System (CERES) instruments on 

NASA’s Aqua and Terra satellites. The Joint Polar Satellite System (JPSS) series of 

satellites is expected to replace the legacy NOAA polar satellites. The first satellite in the 

JPSS series was launched in 2011 and is called the Suomi National Polar-Orbiting 

Partnership. The second satellite, NOAA-20, was launched in 2017. This next-generation 

series of satellites has multiple instruments, including the Visible Infrared Imaging 

Radiometer Suite, Cross-track Infrared Sounder, Advance Technology Microwave Sounder, 

Ozone Mapping and Profiler Suite, and CERES. Although polar orbiters provide global 

coverage, their temporal coverage is limited because of their orbit, in which they essentially 

cover a particular location only once per day at the lower latitudes. At higher latitudes, a 

combination of many polar-orbiting, satellite-based products is recommended to achieve a 

sufficient temporal resolution while also benefiting from better spatial resolution. 

4.4.3 Satellite-Based Empirical and Semiempirical Methods 

Satellite-based semiempirical methods consider a pseudo-linear correlation between the 

atmospheric transmittance and the radiance sensed by the satellite. Semiempirical models 

are classified as such because of their hybrid approach to retrieving surface radiation from 

satellite observations, in which the normalized satellite-observed reflectance is related to 
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GHI at the surface. Cloud-cover indices that use visible satellite imagery are first created 

with budget equations between TOA and surface radiation. Those indices are then used to 

modify the clear-sky GHI and estimate GHI at the ground consistent with the cloud scene. 

DNI can then be derived from GHI and the clear-sky DNI using one of the empirical methods 

discussed later in this subsection. The semiempirical approach was originally designed to 

create regression relationships between what is simultaneously observed by a satellite and 

ground-based instruments (Cano et al. 1986; Hay et al. 1978; Justus et al. 1986; Tarpley 

1979). The method developed by Cano et al. (1986) is called the Heliosat method. It has 

been regularly updated and modified to rely on atmospheric transmittance properties of 

water vapor and aerosols to provide solar radiation estimates under clear-sky conditions 

rather than direct empirical relationships with ground data.  

The original Heliosat method evaluates the clearness index, Kt, or the ratio of the radiative 

flux at the Earth’s surface and the radiative flux at the TOA (which is known), using the 

relationship:  

 Kt = a n + b (4-1) 

where a and b are the slope and intercept of the assumed linear relation, and n is the so-

called cloud index defined as: 

 n = [ – g] / [cloud – g]  (4-2) 

where , cloud, and g are the satellite-based reflectance observations of the current scene, 

of the brightest clouds, and of the ground, respectively. The cloud index is close to 0 when 

the observed reflectance is close to the ground reflectance (i.e., when the sky is clear). It can 

be negative if the sky is very clear, in which case  is smaller than g. The cloud index 

increases as clouds appear, and it can be greater than 1 for clouds that are optically very 

thick. 

The parameters a and b in Eq. 4-1 can be derived empirically by comparison with coincident 

ground measurements or they can determined based on the physical principles of 

atmospheric transmittance, which include not only the cloud index but also the influence of 

aerosols, water vapor, and trace gases. Diabate et al. (1988) observed that three sets of 

parameters for the morning, noon, and afternoon were needed for Europe. The Heliosat 

method (and all cloud-index-based methods) requires the determination of cloud-free and 

extremely high cloud reflectivity instances to establish bounds to Eq. 4-1. Espinar et al. 

(2009) and Lefèvre, Wald, and Diabate (2007) found that a relative error in the ground 

albedo related to errors in determining the reflectivity from a cloud-free pixel leads to a 

relative error of the same magnitude in GHI under clear‐sky conditions, which corresponds 

to approximately 10% of the GHI in clear cases. In cloudy cases, the error, which is caused 

by an error in the limit for the albedo of the brightest clouds, increases as cloud optical depth 

(COD) increases, and the relative error in the GHI can reach 60% (Espinar et al. 2009; 

Lefèvre, Wald, and Diabate 2007). 

Beyer, Costanzo, and Heinemann (1996) developed an enhanced version of the Heliosat 

method called Heliosat‐1. One major enhancement was the adoption of the clear‐sky index, 

Kc (the ratio of the actual GHI to the GHI under ideal clear conditions), instead of the 

clearness index, Kt. This resulted in the relationship Kc = 1 – n, which simplified the method. 

Additional work was done to remove the dependence of the satellite radiance based on the 

sun-to-satellite geometry, thereby leading to a more spatially homogeneous cloud index. In 

addition, the determination of ground albedo and cloud albedo was improved by Beyer, 

Costanzo, and Heinemann (1996). Rigollier et al. (2004) developed Heliosat-2, which further 

enhanced Heliosat-1 by removing parameters that needed to be tuned and replacing them 

with either constants or values that can be computed automatically during the process. The 
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HelioClim-3 and Solar Energy Mining (SOLEMI) databases, produced by MINES ParisTech 

and DLR, respectively, use Heliosat-2. The Heliosat-3 version was designed collaboratively 

by the University of Oldenburg, MINES ParisTech, and DLR, among others, and it uses the 

SOLIS clear-sky model, which approximates radiative transfer equations for fast 

implementation (Müller et al. 2004). Centro de Investigaciones Energéticas, 

Medioambientales y Tecnológicas (CIEMAT) and its spin-off, IrSoLaV, performed 

remarkable modifications on the Heliosat-3 scheme. This resulted in a different model, which 

includes a clear-sky detection algorithm, different possible clear-sky models with 

atmospheric component data sets as input, and a dynamic model for estimating the ground 

albedo as a function of the scattering angle (Polo et al. 2012, 2013). 

Hay et al. (1978) developed a regression model that relates the atmospheric transmittance 

to the ratio of incoming to outgoing radiation at the TOA. The transmittance was then used to 

derive GHI. In this method, the coefficients of the regression model change significantly 

based on location, and they need to be trained with surface observations (Nunez 1990) to 

produce accurate results. The Tarpley (1979) method also used the well-known relation 

between surface radiation, TOA radiation (both upwelling and downwelling), and 

atmospheric transmittance to create three separate regression equations. The regression 

equations were classified based on sky conditions labeled as clear, partly cloudy, and 

cloudy, and they were used accordingly. 

Models such as those developed by Perez et al. (2002), Rigollier et al. (2004), and 

Cebecauer and Suri (2010) evolved from Cano et al. (1986) and included refinements to 

address albedo issues, when the surface is covered by snow, and the effects of sun-satellite 

geometry. Some of these models have since been modified to include the simplified SOLIS 

model (Ineichen 2008), and are used to estimate GHI first and then DNI after component 

separation (Section 4.2).  

4.4.4 Satellite-Based Physical Models 

Physical models generally use radiative transfer theory to directly estimate surface radiation 

based on first principles using cloud properties, water vapor, AOD, and ozone as inputs. The 

radiative transfer models can be classified as either broadband or spectral, depending on 

whether the radiative transfer calculations involve a single broadband calculation or multiple 

calculations in different wavelength bands. 

The broadband method of Gautier et al. (1980) used thresholds depending on multiple days 

of satellite pixel measurements to determine clear and cloudy skies. Separate clear-sky and 

cloudy-sky models were then used to evaluate the surface DNI and GHI. The clear-sky 

model initially included water vapor and Rayleigh scattering but progressively added ozone 

(Diak and Gautier 1983) and aerosols (Gautier and Frouin 1984). Assuming that attenuation 

caused by the atmosphere does not vary from clear to cloudy conditions, Dedieu, 

Deschamps, and Kerr (1987) created a method that combines the impacts of clouds and the 

atmosphere. This method uses a time series of images to determine clear-sky periods for 

computing surface albedo. Darnell et al. (1988) created a parameterized model to calculate 

surface radiation using a product of the TOA irradiance, atmospheric transmittance, and 

cloud transmittance. Developed with data from polar-orbiting satellites, this model used 

collocated surface and satellite measurements to create relationships between cloud 

transmittance and planetary albedo. 

Möser and Raschke (1983) created a model based on the premise that GHI is related to 

fractional cloud cover and used it with Meteosat data to estimate solar radiation over Europe 

(Möser and Raschke 1984). The fractional sky cover was determined to be a function of 

satellite measurements in the visible channel. This method uses radiative transfer modeling 

(Kerschgens et al. 1978) to determine the clear- and overcast-sky boundaries. Stuhlmann et 
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al. (1990) have since enhanced the model to include elevation dependence and additional 

constituents as well as multiple reflections in the all-sky model. 

An important spectral model developed by Pinker and Ewing (1985) divided the solar 

spectrum into 12 intervals and applied the Delta-Eddington approximation for radiative 

transfer (Joseph et al. 1976) to a three-layer atmosphere. The primary input to the model is 

the COD, which can be provided from various sources. This model was enhanced by Pinker 

and Laszlo (1992) and used in conjunction with cloud information from the International 

Satellite Cloud Climatology Project (ISCCP) (Schiffer and Rossow 1983). Another physical 

method involves the use of satellite information from multiple channels to derive cloud 

properties (Stowe et al. 1999) and then evaluate DNI and GHI using the cloud properties in a 

radiative transfer model. This method, called CLOUDS, was originally developed using the 

polar-satellite data from the AVHRR instrument onboard NOAA satellites, and the 

processing system was called Clouds from AVHRR Extended System (CLAVR-x) (Heidinger 

2003; Pavolonis et al. 2005). This method has been modified and enhanced to use cloud 

properties from the GOES satellites (Heidinger 2003; Pavlonis et al. 2005). In 2013, CLAVR-

x was updated again to support the generation of higher spatial resolution output for the 

NOAA National Centers for Environmental Prediction and incorporated many algorithm 

improvements from the GOES-R Algorithm Working Group effort. 

The cloud information produced from the CLAVR-x type of algorithms can then be input to a 

radiative transfer model, such as the Fast All-sky Radiation Model for Solar applications 

(FARMS) (Xie et al. 2016), to calculate GHI and DNI, as has been done for the development 

of the most recent versions of the National Renewable Energy Laboratory’s (NREL’s) 

gridded NSRDB (1998–2015). 

Another cloud retrieval scheme, called AVHRR Processing scheme Over cLouds, Land, and 

Ocean (APOLLO), was developed by Kriebel et al. (1989, 2003) for the AVHRR instrument. 

APOLLO has been adapted for use with data obtained from the SEVIRI instrument on the 

MSG satellite. APOLLO-derived cloud products, including COD and cloud type, can be used 

in a radiative transfer model such as Heliosat-4 (Oumbe 2009; Qu et al. 2016), made 

operational by the Copernicus service (http://www.copernicus-atmosphere.eu). 

The ISCCP (Schiffer and Rossow 1983) was established in 1982 as part of the World 

Climate Research Programme. The ISCCP cloud products include COD, cloud top 

temperature, cloud particle size, and other cloud properties that could be used to derive 

surface radiation. 

Physical models are computationally more intensive than empirical and semiempirical 

models. Advantage of physical models, however, are that they can use additional channels 

from new satellites (such as MSG or GOES-16) to improve cloud property retrieval and can 

include physical properties of aerosols and other gaseous species, such as water vapor, 

explicitly. 

4.5 Clear-Sky Models Used in Operational Models 

4.5.1 Bird Clear-Sky Model 

The Bird clear-sky model (Bird and Hulstrom 1981) is a broadband algorithm that produces 

estimates of clear-sky direct beam, hemispherical diffuse, and total hemispherical solar 

radiation on a horizontal surface. The model uses a parameterization based on radiative 

transfer computations and comprising simple algebraic expressions. Model results are 

expected to agree within ±10% with detailed high-resolution spectral or broadband physics-

based radiative transfer models. The model can be used at resolutions of 1 minute or better 

and can duly accept inputs at that frequency, if available. In the absence of high-temporal-

http://www.copernicus-atmosphere.eu/
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resolution input parameters, however, climatological or annual average values can be used 

alternatively as inputs to the model. The Bird clear-sky model also forms the basis of the 

clear-sky part of METSTAT, with only minor modifications. The performance of these two 

models has been assessed rigorously and compared to other algorithms (Badescu et al. 

2012; Gueymard 1993, 2003a, 2003b, 2004a, 2004b, 2012; Gueymard and Myers 2008; 

Gueymard and Ruiz-Arias 2015). 

4.5.2 European Solar Radiation Atlas Model  

The European Solar Radiation Atlas (ESRA) model is another example of a clear-sky model 

(Rigollier et al. 2000). Used in the Heliosat-2 model that retrieves GHI from satellites, this 

model computes DNI, GHI, and DHI using Rayleigh optical depth, elevation, and the Linke 

turbidity factor as its inputs. The performance of the model has been evaluated at various 

locations (Badescu et al. 2012; Gueymard and Myers 2008; Gueymard 2012; and Gueymard 

and Ruiz-Arias 2015). 

4.5.3 SOLIS Model 

The SOLIS model (Müller et al. 2004) is a relatively simple spectral clear-sky model that can 

calculate DNI, GHI, and diffuse radiation based on an approximation to the Lambert-Beer 

relation for computing DNI: 

 I = I0 e
(-M*τ)

 
 
(4-3) 

where: 

 τ is the atmospheric optical depth at a specific (monochromatic) wavelength  

 M is the optical air mass 

 I0 is the TOA spectral direct irradiance for a monochromatic wavelength 

 I is the DNI at the surface for a monochromatic wavelength. 

This equation is modified to account for slant paths and adapted for global and diffuse 

radiation. The modified Lambert-Beer relation (Müller et al. 2004) is: 

 I(SZA) = I0 ∙exp(-τc / (cos (SZA))
c
) (4-4) 

where: 

 I(SZA) is one of the irradiance components GHI, DNI, or DHI 

 c is the empirical exponent that depends on the radiation component DNI, DHI, or GHI 

 τc is the vertical broadband optical depth of the atmosphere for the radiation component 

of interest 

 SZA is the solar zenith angle. 

The Beer-Lambert equation is a simple relationship because it accounts for monochromatic 

DNI and is impacted only by atmospheric attenuation. On the other hand, DHI and GHI are 

broadband values that contain energy that is scattered by the atmosphere. The empirical 

exponent c is used as an adjustment to compute either GHI or DHI, as explained in Müller et 

al. (2004). Ineichen (2008) developed a simplified (broadband) version of that clear-sky 

model by developing parameterizations to replace radiative transfer model runs, thereby 

increasing the speed of the model. 
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4.5.4 McClear Model 

The fast clear-sky broadband model called McClear implements a fully physical model, 

replacing the empirical relations or simpler models used before, such as ESRA. It exploits 

the recent results on aerosol properties and total column content in water vapor and ozone 

produced by the European Copernicus Atmosphere Monitoring Service (CAMS) project. It is 

based on lookup tables precomputed with the radiative transfer model libRadtran (Gschwind 

et al. 2019). McClear irradiances were compared to 1-minute measurements made under 

clear-sky conditions at several Baseline Surface Radiation Network (BSRN) stations 

representative of various climates (Lefèvre et al. 2013). For GHI and DNI, the correlation 

coefficients range from 0.95–0.99 and from 0.86–0.99, respectively. The bias ranges from 

14–25 W/m² and 49–33 W/m², respectively. The root mean square errors range from 20 

W/m² (3% of the mean observed irradiance) to 36 W/m² (5%) and from 33 W/m² (5%) to 64 

W/m² (10%), respectively. 

4.5.5 REST2 Model 

The high-performance REST2 model is based on transmittance parameterizations over two 

distinct spectral bands separated at 0.7 µm. The model’s development and its benchmarking 

are described by Gueymard (2008b). REST2 has been thoroughly validated and compared 

to other irradiance models under varied atmospheric conditions, including extremely high 

aerosol loads (Antonanzas-Torres et al. 2016; Engerer and Mills 2015; Gueymard 2012, 

2014; Gueymard and Myers 2008; Gueymard and Ruiz-Arias 2015; Sengupta and Gotseff 

2013; Zhong and Kleissl 2015).  

The model is used in solar-related applications, including the benchmarking of the radiative 

output of the Weather Research and Forecasting (WRF) model (Ruiz-Arias et al. 2012), the 

operational derivation of surface irradiance components using MODIS satellite observations 

(Chen et al. 2014), the improvement in GHI to DNI separation modeling (Vindel et al. 2013), 

and the development of future climate scenarios (Fatichi et al. 2011). REST2 is also being 

used at NREL (Xie et al. 2016) and is integrated into its suite of algorithms that produces the 

current version of the NSRDB (1998–2019). 

4.6 All-Sky Models Used in Operational Models 

4.6.1 Fast All-Sky Radiative Transfer Model 

Radiative transfer models are capable of simulating atmospheric radiation under all-sky 

conditions and have been used in a broad range of applications, such as satellite remote 

sensing or climate studies. Compared to other applications, solar energy has unique 

requirements from radiative transfer models and thus has particular prerequisites in the 

model design. For instance, the study of solar energy demands more efficient simulations of 

solar irradiance than the conventional models used in weather or climate studies, such as 

the Rapid Radiation Transfer Model (RRTM) or its simplified two-stream version for inclusion 

in general circulation models (RRTMG). To provide a new option for efficiently computing 

solar radiation, NREL developed FARMS (Xie et al. 2016) using cloud transmittances and 

reflectances for direct and diffuse radiation computed by RRTM with the 16-stream discrete-

ordinates radiative transfer method. To reduce the computing burden, the cloud 

transmittances and reflectances are parameterized as functions of SZA, cloud 

thermodynamic phase, optical thickness, and particle size. The all-sky GHI, DHI, and DNI 

are ultimately computed by coupling the cloud transmittances and reflectances with surface 

albedo and a fast clear-sky radiation model (REST2) to account for atmospheric absorption 

and scattering. 
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To understand the accuracy and efficiency of FARMS, GHI was simulated using the cloud 

microphysical and optical properties retrieved from GOES data during 2009–2012 with both 

FARMS and RRTMG and compared to measurements taken at the Southern Great Plains 

site of the U.S. Department of Energy’s Atmospheric Radiation Measurement Climate 

Research Facility. Results indicate that the accuracy of FARMS is comparable to, if not 

better than, the two-stream approach; however, FARMS is approximately 1000 times more 

efficient and faster because it does not explicitly solve the radiative transfer equation for 

each individual cloud condition. 

Note that FARMS, as well as the conventional radiative transfer models developed for 

weather and climate studies, outputs only broadband irradiance over horizontal surfaces. 

Recently, FARMS expanded its capabilities to incorporate tilted surfaces and spectral 

distributions (Xie and Sengupta 2018; Xie, Sengupta, and Wang 2019).  

4.6.2 All-Sky Models Used in the Recent Heliosat Model 

The CAMS radiation service uses a physical retrieval of cloud parameters and the fast 

parameterized radiative transfer method called Heliosat-4 (Qu et al. 2016). The new 

Heliosat‐4 method computes GHI, DNI, and DHI under all-sky conditions as a broadband 

aggregation of spectrally resolved internal computations. It is a fast but accurate physical 

model that mimics a full radiative transfer model, and it is well suited for geostationary 

satellite retrievals. The method is based on the work of Oumbe et al. (2014), which proved 

that the surface solar irradiance can be approximated by the product of the irradiance under 

cloudless conditions and a modification index depending only on cloud properties and 

ground albedo. This is why Heliosat-4 contains two precomputed lookup-table-based 

models: the McClear model (Lefèvre et al. 2013; Gschwind et al. 2019) for clear-sky 

conditions and the McCloud model for cloudy conditions. The databases for both models 

were developed using the libRadtran radiative transfer model (Mayer and Kylling 2005). The 

main inputs to McClear are aerosol properties, total column water vapor, and ozone, 

whereas cloud properties, such as COD, are the main inputs to the McCloud part of 

Heliosat-4. With MSG satellite observations, cloud properties are derived at a 15-minute 

temporal resolution using an adapted APOLLO retrieval scheme. An easy-to-read summary 

can be found in the “User’s Guide to the CAMS Radiation Service”10 (Schroedter-

Homscheidt et. al. 2016). 

4.6.3 Cloud Physical Properties-Surface Insolation under Clear and Cloudy 
Skies Algorithm 

The Cloud Physical Properties (CPP) retrieval algorithms have been developed in 

EUMETSAT’s Satellite Application Facility on Climate Monitoring (CM SAF)11 as well as 

other European and national (The Netherlands) projects (Roebeling et al. 2006; Stengel et 

al. 2014; Karlsson et al. 2017a, 2017b; Benas et al. 2017). The basic retrieved parameters 

are cloud mask, cloud-top height, cloud thermodynamic phase, COD, particle effective 

radius, and water path. From these parameters, surface downwelling shortwave radiation is 

derived, as well as precipitation. 

                                                

 
10

 See http://www.soda-
pro.com/documents/10157/326238/CAMS72_2015SC1_D72.11.3.1_201612_UserGuide_v2.pdf/ed54
f8ec-e19e-4948-af14-d4c2a94083ac. 
11

 See http://www.soda-
pro.com/documents/10157/326332/CAMS72_2015SC3_D72.1.3.1_2018_UserGuide_v1_201812.pdf/
95ca8325-71f6-49ea-b5a6-8ae4557242bd. 

http://www.soda-pro.com/documents/10157/326238/CAMS72_2015SC1_D72.11.3.1_201612_UserGuide_v2.pdf/ed54f8ec-e19e-4948-af14-d4c2a94083ac
http://www.soda-pro.com/documents/10157/326238/CAMS72_2015SC1_D72.11.3.1_201612_UserGuide_v2.pdf/ed54f8ec-e19e-4948-af14-d4c2a94083ac
http://www.soda-pro.com/documents/10157/326238/CAMS72_2015SC1_D72.11.3.1_201612_UserGuide_v2.pdf/ed54f8ec-e19e-4948-af14-d4c2a94083ac
http://www.soda-pro.com/documents/10157/326332/CAMS72_2015SC3_D72.1.3.1_2018_UserGuide_v1_201812.pdf/95ca8325-71f6-49ea-b5a6-8ae4557242bd
http://www.soda-pro.com/documents/10157/326332/CAMS72_2015SC3_D72.1.3.1_2018_UserGuide_v1_201812.pdf/95ca8325-71f6-49ea-b5a6-8ae4557242bd
http://www.soda-pro.com/documents/10157/326332/CAMS72_2015SC3_D72.1.3.1_2018_UserGuide_v1_201812.pdf/95ca8325-71f6-49ea-b5a6-8ae4557242bd
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The CPP algorithm first identifies cloudy and cloud-contaminated pixels using a series of 

thresholds and spatial coherence tests imposed on the measured visible and infrared 

radiances (Roebeling et al. 2006; 2009). Depending on the tests, the sky can be classified 

as clear, contaminated, or overcast. Subsequently, cloud optical properties (COD and 

effective radius) are retrieved by matching observed reflectances at visible (0.6 μm) and 

near-infrared (1.6 μm) wavelengths to simulated reflectances of homogeneous clouds 

comprising either liquid or ice particles. The thermodynamic phase (liquid or ice) is 

determined as part of this procedure using a cloud-top temperature estimate as additional 

input.  

Building on the retrieval of cloud physical properties, the Surface Insolation under Clear and 

Cloudy Skies (SICCS) algorithm was developed to estimate surface downwelling solar 

radiation using broadband radiative transfer simulations (Deneke et al. 2008; Greuell et al. 

2013). GHI, DNI, and DHI are retrieved. The cloud properties are the main input for cloudy 

and cloud-contaminated (partly cloudy) pixels. Information about atmospheric aerosol from 

the Monitoring Atmospheric Composition and Climate (MACC) is used for cloud-free scenes. 

Other inputs for the CPP and SICCS algorithms include surface elevation from the 

ETOPO2v2-2006 database, monthly varying integrated atmospheric water vapor from the 

ECMWF ERA-Interim reanalysis, and 8-day varying surface albedo derived from MODIS 

data. 

4.7 Numerical Weather Prediction-Based Solar Radiation Estimates 

NWP models, run either in reanalysis mode or to generate weather forecasts, can provide 

GHI estimates for long periods of time. The accuracy of such estimates is known to be less 

than those provided by satellite-based models. Significant improvements, however, can be 

obtained by improving both the model physics and the assimilation of various observations. 

Some commonly available models and data sets are described in the following sections. 

Note that this is not a complete and comprehensive list. The goal is only to provide the user 

with initial information related to this potential source of data. 

4.7.1 Reanalysis Models 

ERA5 is a global atmospheric reanalysis that provides data starting in 1979. This data set is 

produced using the ECMWF’s data assimilation system used in the IFS. This system uses 

four-dimensional variational analysis and provides analysis data with TOA and both GHI and 

direct horizontal irradiance (all-sky and clear-sky) in hourly time resolution on an 

approximate 0.25° x 0.25° grid. More information can be found on the Copernicus ERA5 

website.12 

NASA’s MERRA-2 is another global atmospheric reanalysis data set that provides data 

starting in 1980 and comprises TOA and GHI (all-sky and clear-sky). It includes additional 

data sets from those assimilated into the original MERRA data set. The spatial resolution is 

0.5° x 0.625°, and the temporal resolution is hourly.13 

                                                

 
12

 See https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-
levels?tab=overview/.  
13

 See https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/.  

https://www.ecmwf.int/
https://www.ecmwf.int/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
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Finally, the Climate Forecast System Reanalysis from NOAA provides reanalysis data from 

1979. The GHI data are available hourly at a 0.5° resolution.14 

4.7.2 Forecast Models 

Various national meteorological agencies run operational weather forecasts both regionally 

and globally. Some data from these operational models might be available from archives. 

Some of the most popular examples of global data sets are from the ECMWF’s IFS runs and 

from NOAA’s GFS runs. There are various regional model runs by national meteorological 

agencies that produce forecasts for individual countries and regions. Because many data 

sets now exist, this type of data is mentioned without pointing to specific sources. See 

Chapter 8, Section 8.2.2, for additional information and some examples of such data sets. 

Solar forecasting requires improved forecasting of clouds, which is generally a weakness in 

many NWP models, so there have been significant recent efforts to improve cloud and 

radiation modeling, especially within the WRF mesoscale model. This led to the 

development of the WRF-Solar model (Jimenez et al. 2016), which includes significant 

improvements in cloud modeling as well as the capability to compute surface radiation using 

FARMS. 

4.8 Site Adaptation: Merging Measurements and Models 

A major goal of solar resource assessments is to provide high-quality data to evaluate the 

financial viability of solar power plant projects (Moser et al., 2020). This essentially implies 

that accurate data over long time periods are available for conducting these studies. 

Normally, satellite-derived data time series fulfill the requirement for long-term data; 

however, they could be hampered by inherent biases and uncertainty because of the 

following: 

 The information content, quality, and spatial and temporal resolution of the raw satellite 

data 

 The approximations made by the models converting satellite observations into surface 

solar radiation estimates 

 The uncertainty in ancillary information needed by these models 

 The empirical process used to separate the direct and diffuse components. 

As part of a resource assessment study for a new large solar power plant, ground-based 

solar measurements are conducted for a short period of time (nominally approximately 1 

year) and used to validate the satellite data. The main goal is to remove some of the 

uncertainties and bias in modeled data sets. This process has been given various names, 

including “site adaptation,” which is used here for simplification. A review paper by Polo et al. 

(2016) provides a summary of the various methods currently used.  

Note, however, that the ground-based irradiance data need to be of high quality, otherwise 

the correction method could degrade the quality of the modeled time series. High-quality 

ground measurements can be achieved only by using well-calibrated, high-quality 

instruments that have been deployed at well-chosen locations using optimal installation 

methods and regular maintenance, per the best practices described in other sections. 

                                                

 
14

 See https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-
version2-cfsv2.  

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2
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Site-adaptation methods can be separated into two broad categories. The first consists of 

physical methods that attempt to reduce the uncertainty and bias in the data by improving 

the satellite model inputs, such as AOD. The second approach develops statistical correction 

schemes directly comparing the satellite-based irradiance estimates with “unbiased” ground 

observations and uses those functions to correct the satellite-based radiation estimates.  

Various site-adaptation methods have been benchmarked (Polo et al., 2020) within the 

International Energy Agency’s Photovoltaic Power Systems Programme Task 16. In that 

study, 11 different site-adaptation techniques have been used to assess improvements in 

accuracy. Ten different data sets covering both satellite-derived and reanalysis solar 

radiation data were used. The effectiveness of these methods is not found to be universal or 

spatially homogeneous, but in general it can be stated that significant improvements can be 

achieved eventually for most sites and data sets. 

4.8.1 Physical Methods 

Because the highest uncertainty in satellite models is in DNI, the primary goal is to reduce 

errors in DNI by improving the quantification of AOD. Methods such as those proposed by 

Gueymard (2011, 2012) demonstrate how accurate AOD data obtained from ground 

sunphotometric measurements can indeed improve DNI. Nevertheless, the scarcity of such 

high-quality AOD observations implies that other sources should be used. Possible sources 

of AOD with global coverage include retrievals from the MODIS and MISR satellites, data 

assimilation output from CAMS, and NASA’s MERRA-2 data (Gueymard and Yang 2020). In 

parallel, specific methods have been developed by Gueymard and Thevenard (2009) and 

Ruiz-Arias et al. (2013a, 2013b) to correct biases and uncertainties in the satellite- or model-

based AOD data using ground observations. These adjusted AOD data sets have been 

shown to improve the satellite-based solar radiation estimates at various locations. 

4.8.2 Statistical Methods 

Various statistical methods have been developed to use short-term ground measurements to 

directly correct long-term satellite-based data sets. These bias correction methods range 

from linear methods (Cebecauer and Suri 2010; Vindel et al. 2013; Harmsen et al. 2014; 

Polo et al. 2015) to various nonlinear methods, including feature transformation (Schumann 

et al. 2011), polynomial-based corrections (Mieslinger et al. 2014), model output statistics 

corrections (Bender et al. 2011; Gueymard et al. 2012), measure-correlate-predict 

corrections (Thuman et al. 2012), and Fourier-decomposition-based corrections (Vernay et 

al. 2013). Other statistical methods include regional fusion methods of ground observations 

with satellite-based data (Journée et al. 2012; Ruiz-Arias et al. 2015) and improvements to 

the irradiance cumulative distribution function (Cebecauer and Suri 2012; Blanc et al. 2012). 

4.9 Summary 

This chapter provided a brief overview of solar radiation modeling methods with a focus on 

satellite-based models. Since the 1980s, both the technology of operational meteorological 

satellites and models to estimate surface radiation from these satellites have improved in 

their resolution and accuracy. With the recent launch of GOES-16, the world is now mostly 

covered at temporal resolutions of 15 minutes or better and spatial resolutions of 1 km. 

Improvements in computational capabilities have also contributed to improving our ability to 

use increasingly sophisticated models that can use higher volumes of satellite and ancillary 

data sets and ultimately deliver products of increasing resolution and accuracy. 

This chapter also contained a short introduction to NWP modeling because improvements in 

that area can contribute to better irradiance estimates around the globe. This chapter has 
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been kept deliberately short while providing the interested readers with references for more 

detailed reading. Finally, the following appendix provides short descriptions of some 

commonly used satellite-based data sets.  

Appendix: Currently Available Satellite-Based Data Sets 

This section presents examples of currently available operational models. Only a selection of 

models is presented here. Further public, scientific, and commercial operational models exist 

and might also be of interest for solar resource analyses. See also Chapter 6 for additional 

details. 

National Solar Radiation Database Physical Solar Model (2019 Update) 

For many years, the National Renewable Energy Laboratory (NREL) has maintained a 

ground-based solar radiation data set known as the National Solar Radiation Database 

(NSRDB). This data set included both actual in situ ground measurements and the 

METeorolgoical-STATistical model (METSTAT) model (Maxwell et al. 1997) to convert U.S. 

National Weather Surface ground-based sky observations to solar radiation estimates. The 

original NSRDB (1961–1990) (NREL 1992) covered the period from 1961–1990 for 239 

ground stations in the United States. That original version of the NSRDB was subsequently 

updated to cover an extended period (1991–2005), including many more ground stations 

and making use of satellite-based data to correct for some ground-based measurements 

(NREL 2007).  

In collaboration with the University of Wisconsin and the National Oceanic and Atmospheric 

Administration, NREL produced a physics-based satellite-derived solar radiation data set as 

part of a new gridded NSRDB (1998–2019) (Xie and Sengupta 2018). This gridded NSRDB 

(1998–2019) uses the Physical Solar Model (PSM), which produces satellite-based data 

every 30 minutes for 4-km-resolution pixels for North American and South America and is 

freely available from the NSRDB website (https://nsrdb.nrel.gov). The data fields include 

solar radiation and meteorological data. With the availability of the next-generation 

Geostationary Operational Environmental Satellites (GOES-16 and GOES-17), the NSRDB 

is currently producing 5-minute data for most of the Northern Hemisphere and 10- to 15-

minute data for both the Northern Hemisphere and Southern Hemisphere. These data are 

being produced at a 2-km spatial resolution. 

The PSM (currently Version 3) consists of a two-stage scheme that retrieves cloud 

properties and uses those properties in a radiative transfer model to compute surface 

radiation. In the first stage, cloud properties are generated using the Advanced Very High 

Resolution Radiometer (AVHRR) Pathfinder Atmospheres-Extended (PATMOS-x) 

algorithms (Heidinger et al. 2014). In the second stage, global horizontal irradiance (GHI) 

and diffuse horizontal irradiance (DHI) are computed by the Fast All-sky Radiation Model for 

Solar applications (FARMS) model (Xie et al. 2016) using these cloud properties as well as 

additional meteorological parameters as inputs. The FARMS model uses the REST2 model 

(Section 4.5.5) for clear-sky calculations and a fast all-sky model for cloudy-sky calculations 

(Section 4.6.1). The aerosol optical depth (AOD) inputs required for clear-sky calculations 

are obtained from the hourly Modern Era Retrospective analysis for Research and 

Applications, Version 2 (MERRA-2) aerosol products from the National Aeronautics and 

Space Administration (NASA) after scaling and bias reduction using ground AOD 

measurements from the Aerosol Robotic Network (AERONET). Water vapor, temperature, 

wind speed, relative humidity, and dew point data are obtained from NASA’s MERRA-2. 

The NSRDB also provides spectral data sets for 2002 wavelengths. The spectral data are 

produced on demand and use the FARMS-Narrowband Irradiance on Tilted Surface 

(FARMS-NIT) model (Xie and Sengupta 2018; Xie et. al. 2019). 

https://nsrdb.nrel.gov/
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The time-series irradiance data for each pixel are quality-checked to ensure that they are 

within acceptable physical limits, that gaps are filled, and that the Coordinate Universal Time 

stamp is shifted to local standard time. Finally, the GOES-East and GOES-West data sets 

are blended to create a contiguous data set for the period from 1998–2019.  

National Aeronautics and Space Administration/Global Energy and Water 
Cycle Experiment Surface Radiation Budget 

To serve the needs of the World Climate Research Program, Whitlock et al. (1995) 

developed a global Surface Radiation Budget (SRB) data set using cloud information from 

the International Satellite Cloud Climatology Project (ISCCP) C1 data set at a resolution of 

250 km by 250 km (approximately 2.5° x 2.5°) every 3 hours (Schiffer and Rossow 1983; 

Zhang et al. 2004). Information from the ISCCP C1 data set is used as an input into the 

Pinker and Laszlo (1992) model and the Darnell et al. (1988) model. 

The currently available version is the NASA/Global Energy and Water Cycle Experiment 

SRB Release 3.0 data set that contains global 3-hour, daily, monthly/3-hour, and monthly 

averages of surface longwave and shortwave radiative parameters on a 1° x 1° grid. Primary 

inputs to the models include: 

 Visible and infrared radiances and cloud and surface properties inferred from ISCCP 

pixel-level data 

 Temperature and moisture profiles from the GEOS-4 reanalysis product obtained from 

NASA’s Global Modeling and Assimilation Office 

 Column ozone amounts constituted by assimilating various observations. 

The SRB data set is available from multiple sources. The Surface meteorology and Solar 

Energy (SSE) website provided SRB data in a version that was more applicable to 

renewable energy. SSE has recently been replaced by an improved version called 

POWER.15 SRB data sets are also available from the Clouds and the Earth’s Radiant Energy 

System (CERES) project.16 Additionally, the Fast Longwave and Shortwave Radiative Fluxes 

(FLASHFlux) project generates real-time SRB data.17 All these projects use global 

observations from CERES and Moderate Resolution Imaging Spectroradiometer (MODIS) 

instruments onboard polar-orbiting satellites. Table 4-2 shows the estimated bias and root-

mean-square (RMS) error between the original NASA SSE irradiation estimates and 

measured World Meteorological Organization (WMO) Baseline Surface Radiation Network 

(BSRN) monthly averages of the three usual solar radiation components. The NASA 

POWER accuracy and methodology are documented on its website. 

                                                

 
15

 See https://power.larc.nasa.gov/data-access-viewer/. 
16

 See https://asdc.larc.nasa.gov/project/CERES. 
17

 See https://ceres.larc.nasa.gov/data/#fast-longwave-and-shortwave-flux-flashflux. 

https://power.larc.nasa.gov/data-access-viewer/
https://asdc.larc.nasa.gov/project/CERES
https://ceres.larc.nasa.gov/data/#fast-longwave-and-shortwave-flux-flashflux
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Table 4-2. Regression Analysis of NASA SSE Compared to BSRN Bias and RMS Error 

for Monthly Averaged Values from July 1983–June 2006 

Parameter Region Bias (%) RMS (%) 

GHI Global 

60° poleward 

60° equatorward 

-0.01 

-1.18 

0.29 

10.25 

34.37 

8.71 

DHI Global 

60° poleward 

60° equatorward 

7.49 

11.29 

6.86 

29.34 

54.14 

22.78 

DNI Global 

60° poleward 

60° equatorward 

-4.06 

-15.66 

2.40 

22.73 

33.12 

20.93 

German Aerospace Center (DLR)-Irradiance at the Surface Derived from ISCCP 
Cloud Data (ISIS) Model (DLR-ISIS Model) 

Similar to the NASA SSE and POWER data sets, the DLR-ISIS data set18 is a 21-year direct 

normal irradiance (DNI) and GHI data set based on the ISCCP cloud product covering the 

period from July 1983–December 2004. The cloud products are used in a two-stream 

radiative transfer model (Kylling et al. 1995) to evaluate DNI and GHI. The correlated-k 

method from Kato et al. (1999) is used to compute atmospheric absorption in the solar 

spectrum. Scattering and absorption in water clouds are analyzed using the 

parameterization of Hu and Stamnes (1993); ice cloud properties are obtained from Yang et 

al. (2000) and Key et al. (2002). Fixed effective radii of 10 µm and 30 µm are used for water 

and ice clouds, respectively. The radiative transfer algorithm and parameterizations are 

included in the radiative transfer library libRadtran (Mayer and Kylling 2005). 

The complete method for creating the DLR-ISIS data set using the ISCCP cloud products 

and the libRadtran library is outlined in Lohmann et al. (2006). The cloud data used for the 

derivation of the DLR-ISIS data set are taken from the ISCCP FD (global radiative flux data 

product) input data set (Zhang et al. 2004), which is based on ISCCP D1 cloud data. (See 

the ISCCP website for more information about cloud data sets.19) It provides 3-hour cloud 

observations on a 280-km by 280-km equal area grid, which is also the spatiotemporal 

resolution of the DLR-ISIS irradiance product. The whole data set comprises 6,596 grid 

boxes on 72 latitude steps of 2.5°. This grid is maintained for the DLR-ISIS data set. 

ISCCP differentiates among 15 cloud types. The classification includes three intervals of 

optical thickness in three cloud levels: low, middle, and high clouds. Low and middle cloud 

types are further divided into water and ice clouds; high clouds are always ice clouds. 

For DLR-ISIS, optical thickness, cloud top pressure, and cloud phase given in the ISCCP 

data set are processed to generate clouds for the radiative transfer calculations. One 

radiative transfer calculation is carried out for each occurring cloud type assuming 100% 

cloud coverage, plus one calculation for clear sky. For the final result, irradiances are 

weighted with the cloud amount for each cloud type and for clear-sky conditions, 

respectively.  

                                                

 
18

 See http://www.pa.op.dlr.de/ISIS/.  
19

 See http://isccp.giss.nasa.gov.  

http://www.pa.op.dlr.de/ISIS/
http://isccp.giss.nasa.gov/
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HelioClim 

The Heliosat-2 method, which is based on Cano et al. (1986) and modified by Rigollier et al. 

(2004), is used to produce the HelioClim databases20 using Meteosat data. The HelioClim 

databases cover Europe, Africa, the Mediterranean Basin, the Atlantic Ocean, and part of 

the Indian Ocean (latitude and longitude between ±66°). The freely available HelioClim-1 

database established from the Meteosat First Generation (MFG) covers the period from 

1985–2005 and provides daily values of GHI with a spatial resolution of 25 km. Some 

statistical comparison analyses with ground measurements have been provided by Blanc et 

al. (2011). 

The two current versions of the HelioClim-3 database (versions 4 and 5) are based on 

Meteosat Second Generation (MSG) and provide, over its field of view, 15-minute surface 

solar irradiance estimates with a spatial resolution of 3 km at nadir. These databases are 

available for free for the period from February 2004–December 2006. Transvalor, the 

valorization company of MINES ParisTech, commercializes, through their website 

www.soda-pro.com, the two HelioClim-3 databases for 2007 onward. Version 4 of the 

database makes use of the European Solar Radiation Atlas (ESRA) clear-sky irradiance 

model with the climatological database of monthly values of Linke turbidity (Remund et al. 

2003). This database provides surface solar irradiance estimates on a near-real-time basis, 

with a few minutes of delay after the last image acquisition by MSG every 15 minutes. 

Version 5 of HelioClim-3 makes use of the McClear clear-sky irradiance model. 

Ineichen (2016) provided an independent validation of HelioClim-3 versions 4 and 5, using 

irradiance measurements from BSRN stations. 

Solar Energy Mining 

Solar Energy Mining (SOLEMI) is a service from DLR that provides irradiance data 

commercially and for scientific purposes. The data are based on global atmospheric data 

sets (aerosol, water vapor, ozone) from different earth observation sources and climate 

models as well as cloud data from Meteosat. GHI and DNI data sets are available every hour 

at a 2.5-km resolution and cover Europe and Africa (1991–2012) and Asia (1999–2012). 

SOLEMI basically uses the Heliosat-2 method of Rigollier et al. (2004).  

Copernicus Atmosphere Monitoring Service-Radiation Services 

Within the European Commission’s Copernicus program, the European Copernicus 

Atmosphere Monitoring Service (CAMS) provides atmospheric composition as aerosols, 

water vapor, and ozone. By coupling with MSG satellite-based cloud physical parameters in 

the Heliosat-4 method, the CAMS radiation service provides clear-sky and all-sky global, 

direct, diffuse, and direct normal irradiation. The service is jointly provided by DLR, MINES 

ParisTech, and Transvalor with help of the SOlar radiation DAta service.21 

In addition to all-sky irradiation, clear-sky (cloudless) irradiation is provided as the CAMS 

McClear service.22 Both services provide time series with temporal resolutions of 1 minute, 

15 minutes, 1 hour, 1 day, or 1 month at the latitude and longitude requested by the user. 

Time series can be accessed by an interactive user interface or automatically in a scripting 

environment. The data records start in 2004 and last until the present time. Data are 

continuously updated and provided with a delay up to 2 days. The coverage is on the global 

scale for CAMS McClear and limited to Europe, Africa, and the Middle East for the CAMS 

                                                

 
20

 See http://www.soda-is.com/eng/helioclim/heliosat.html. 
21

 See http://www.soda-pro.com/web-services/radiation/cams-radiation-service. 
22

 See http://www.soda-pro.com/web-services/radiation/cams-mcclear. 

http://www.soda-pro.com/
http://www.soda-is.com/eng/helioclim/heliosat.html
http://www.soda-pro.com/web-services/radiation/cams-radiation-service
http://www.soda-pro.com/web-services/radiation/cams-mcclear
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all-sky radiation service. An “expert” mode allows access to all used atmospheric input 

parameters for clouds, aerosols, ozone, water vapor, and surface-reflective properties. 

The European program Copernicus provides environmental information to support 

policymakers, public authorities, and both public and commercial users. Data are provided 

under the Copernicus data policy, which includes free availability for any use, including 

commercial use.  

The preoperational atmosphere service of Copernicus was provided through the EU FP7 

projects MACC and MACC-II. On January 1, 2016, the MACC Radiation Service was 

renamed CAMS Radiation Service once it went operational within CAMS. 

The user’s guide (Schroedter-Homscheidt et al. 2016) describes the data, methods, and 

operations used to deliver time series of solar radiation available at the ground surface in an 

easy-to-read manner. The Heliosat-4 method is based on the decoupling solution proposed 

by Oumbe et al. (2014) and further described in Qu et al. (2016). The clear-sky McClear 

model is described in Lefèvre et al. (2013) and Gschwind et al. (2019) (see Section 4.5.4). 

Table 4-3 shows an overview of the data used in the CAMS Radiation Service. 

Table 4-3. Summary of Data Used in CAMS-RAD 

Variable Data Sources Temporal 
Resolution 

Spatial Resolution 

Aerosol properties and type CAMS 3 hours 40 km 

Cloud properties and type APOLLO (DLR) 15 minutes 3–10 km 

Total column content in ozone  CAMS 3 hours 40 km 

Total column content in water vapor  CAMS 3 hours 40 km 

Ground albedo MODIS (prepared 
by MINES/ 
ParisTech) 

Climatology of 
monthly values 

6 km 

Perez/Clean Power Research 

The Perez et al. (2002) method (herein referred to as the Perez State University of New York 

[Perez SUNY] model) evaluates GHI and DNI based on the concept that the atmospheric 

transmittance is directly proportional to the top-of-atmosphere planetary albedo (Schmetz 

1989). This method is being applied to the GOES satellites and is currently available as the 

SolarAnywhere product from Clean Power Research.23 The concept of using satellite-based 

measurements of radiance assumes that the visible imagery demonstrates cloud cover for 

high levels of brightness and lower levels for clearer conditions (e.g., dark ground cover). 

Readers are referred to Perez et al. (2002) for additional details. 

Vaisala Solar Data Set 

3Tier (now Vaisala) developed a global solar radiation data set for both GHI and DNI. It 

follows the method of Perez et al. (2002) using independently developed algorithms. The 

revised Vaisala algorithms currently use the REST2 clear-sky model and other refinements. 

This data set is available for global locations at a 3-km resolution from 1997.24  

                                                

 
23

 See www.cleanpower.com.  
24

 See 
http://www.vaisala.com/Vaisala%20Documents/Scientific%20papers/3TIER%20Solar%20Dataset%20
Methodology%20and%20Validation.pdf. 

http://www.cleanpower.com/
http://www.vaisala.com/Vaisala%20Documents/Scientific%20papers/3TIER%20Solar%20Dataset%20Methodology%20and%20Validation.pdf
http://www.vaisala.com/Vaisala%20Documents/Scientific%20papers/3TIER%20Solar%20Dataset%20Methodology%20and%20Validation.pdf
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Solargis 

An advanced semi-empirical satellite model for the calculation of global and direct 

irradiances has been developed by Solargis (Cebecauer and Suri 2010) and implemented 

for the region covered by the Meteosat, GOES, and Himawari satellites covering land 

between latitudes 60° N and 50° S. The model philosophy is based on the principles of the 

Heliosat-2 calculation scheme (Hammer et al. 2003) and the model by Perez et al. (2002), 

and it is implemented to operationally process satellite data at a full spatial and temporal 

resolution. Compared to these earlier developments, the Solargis model includes various 

enhancements, such as a downscaling capability to take terrain effects and local variability 

into account. 

EnMetSol Model 

The EnMetSol method25 is a technique for determining the global radiation at ground level by 

using data from a geostationary satellite (Beyer, Costanzo, and Heinemann 1996; Hammer 

et al. 2003). It is used in combination with a clear-sky model to evaluate the three usual 

irradiance components. The key parameter of the method is the cloud index, n, which is 

estimated from the satellite measurements and related to the transmissivity of the 

atmosphere. The method is used for MFG, MSG, and GOES data. The EnMetSol method 

uses the SOLIS model (Müller et al. 2004) in combination with monthly averages of AOD 

(Kinne et al. 2005) and water vapor (Kalnay et al. 1996) as input parameters to calculate DNI 

or spectrally resolved solar irradiance. The DNI and DHI for all-sky conditions are derived 

from GHI with a beam-fraction model (Hammer et al. 2009; Lorenz 2007). 

The method uses the clear-sky model of Dumortier (1998; see also Fontoynont et al. 1998) 

with Remund’s (2009) Meteonorm high-resolution database for the turbidity input. This 

model is also used to obtain near-real-time and forecasts of global tilted irradiance (GTI) as 

inputs for photovoltaic power prediction.  

KNMI Cloud Physical Properties-Surface Insolation under Clear and Cloudy 
Skies and Solar Radiation Data Sets 

KNMI operates a specific service, MSG-Cloud Physical Properties (CPP), by which near-

real-time and historic satellite observations of cloud properties, surface radiation, and 

precipitation are provided to users. The data are retrieved from the Spinning Enhanced 

Visible and InfraRed Imager (SEVIRI) instrument onboard the EUMETSAT MSG satellite, 

and they are particularly attractive because of their high temporal frequency of 15 minutes 

combined with a 3-km by 3-km subsatellite spatial resolution. Retrieval algorithms have been 

developed in EUMETSAT’s Satellite Application Facility on Climate Monitoring (CM SAF) as 

well as other European and national projects. The basic retrieved parameters are cloud 

mask, cloud-top height, cloud thermodynamic phase, COD, particle effective radius, and 

water path. 

The MSG-SEVIRI Surface Insolation under Clear and Cloudy Skies (SICCS) algorithm 

derives surface solar radiation (direct, diffuse, and global irradiance) using cloud physical 

properties. The SICCS products are available since 2004 at a 15-minute time interval. The 

CPP-SICCS products are provided at the SEVIRI pixels for the MSG full disk. The images 

and data can be obtained from the MSG-CPP website in near real time 

(http://msgcpp.knmi.nl/). 

                                                

 
25

 See https://www.uni-
oldenburg.de/fileadmin/user_upload/physik/ag/ehf/enmet/download/EnMetSol.pdf. 

http://msgcpp.knmi.nl/
https://www.uni-oldenburg.de/fileadmin/user_upload/physik/ag/ehf/enmet/download/EnMetSol.pdf
https://www.uni-oldenburg.de/fileadmin/user_upload/physik/ag/ehf/enmet/download/EnMetSol.pdf
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Validation results of hourly mean SEVIRI CPP-SICCS retrievals with observations at eight 

European BSRN stations yield median biases of 7 W/m2 (2%), 6 W/m2 (5%), and 1 W/m2 

(1%) for global, direct, and diffuse irradiance, respectively; and median root mean square 

errors of 65 W/m2 (18%), 69 W/m2 (39%), and 52 W/m2 (34%) for global, direct, and diffuse 

irradiance, respectively. More detailed validation results are presented by Greuell et al. 

(2013). 

Satellite Application Facility on Climate Monitoring Surface Radiation Products 

The EUMETSAT’s CM SAF service and data portal provides various satellite-derived data 

records of cloud properties and surface solar radiation. The surface radiation products are 

part of the Cloud, Albedo, and surface RAdiation data set (CLARA) and the SARAH (Surface 

Radiation Data Set – Heliosat) data records. The global CLARA data record is based on 

polar-orbiting satellites, whereas the SARAH data record is based on geostationary 

Meteosat satellites. The CM SAF surface radiation data records are well documented and 

freely available as gridded netcdf data files; further information is available here: 

https://www.cmsaf.eu/EN/Overview/OurProducts/Surface_Radiation_Albedo/Surface_Radiat

ion_Products_node.html. 

The CM SAF Surface Solar Radiation Data Set - Heliosat Edition 2.1 (SARAH-2.1) includes 

30-minute, daily, and monthly mean data for solar surface irradiance (SIS); two surface 

direct irradiance parameters (SID) (direct horizontal radiation and DNI); sunshine duration 

(SDU) (daily, monthly sum); the spectrally resolved global irradiance (SRI) (monthly mean); 

and the effective cloud albedo (CAL) from 1983–2017 (Pfeifroth et al. 2018). Data are 

provided with a spatial resolution of 0.05° for the full disc of the Meteosat satellites at 0°, i.e., 

they cover Africa, Europe, and parts of South America. An adjusted Heliosat approach and 

the SPECMAGIC clear-sky model are used to estimate the irradiance from the geostationary 

satellite measurements (Müller et al. 2012; 2015).  

For the SARAH-2.1 data, the achieved accuracies of the monthly means as determined by 

comparison with reference measurements from the BSRN for the SIS, SID, and DNI 

parameters are 5.2 W/m2, 7.7 W/m2, and 16.4 W/m2, respectively. The daily accuracies are 

11.7 W/m² for GHI, 17.1 W/m2 for SID, and 33.1 W/m2 for DNI. All values are based on the 

mean absolute difference between the SARAH-2.1 and the BSRN reference data. 

To temporally extend the SARAH-2.1 climate data records, the CM SAF service provides 

consistent surface radiation data (SIS, SID, DNI, SDU) from 2018 onward with a delay of 5 

days as part of the Interim Climate Data Record SARAH ICDR. 

For the SARAH-E climate data record, satellite measurements from the Meteosat satellites 

located at the Indian Ocean Data Coverage have been used to estimate 60-minute, daily, 

and monthly surface irradiance (global and direct) from 1999–2016 (Amillo et al., 2014). The 

data cover most parts of Asia, Africa, and the western part of Australia and are provided with 

a spatial resolution of 0.05°.  

The CLARA-A2 climate data record provides global data of cloud coverage and various 

cloud properties, surface radiation, and surface albedo from 1982–2015 (soon to be 

extended to mid-2019) (Karlsson et al. 2017a, 2017b). The SIS data are derived from the 

AVHRR measurements using a lookup-table approach (Müller et al. 2009) and are provided 

as daily and monthly means with a spatial resolution of 0.25°. The accuracy of the monthly 

and daily surface irradiance has been determined to be 9 W/m2 and 18 W/m2, respectively, 

by comparison with surface reference measurements from the BSRN.  

https://www.cmsaf.eu/EN/Overview/OurProducts/Surface_Radiation_Albedo/Surface_Radiation_Products_node.html
https://www.cmsaf.eu/EN/Overview/OurProducts/Surface_Radiation_Albedo/Surface_Radiation_Products_node.html
http://dx.doi.org/10.5676/EUM_SAF_CM/SARAH/V002_01
https://wui.cmsaf.eu/safira/action/viewICDRDetails?acronym=SARAH_V002_ICDR
https://doi.org/10.5676/DWD/JECD/SARAH_E/V001_01
http://dx.doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V002
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EUMETSAT’s Satellite Application Facility on Climate Monitoring Cloud 
Property Data Sets  

The CM SAF cloud products also include two records: one derived from the polar satellite 

instrument AVHRR and one from Meteosat. Details on the products, retrieval algorithms, and 

quality can be found in the Product User Manuals, the Algorithm Theoretical Basis 

Documents, and the Validation Reports 

(https://www.cmsaf.eu/EN/Overview/OurProducts/CloudProducts/Cloud_Products_node.html

). The products can be ordered via the web user interface.  

Reuniwatt SICLONE Cloud Property Data Set 

Reuniwatt offers SICLONE (Système d'Information pour l'analyse et la prévision des 

Configurations spatio-temporelLes des Occurrences NuageusEs), a cloud property data set 

containing cloud retrieval properties calculated with the Nowcasting Satellite Application 

Facility (NWCSAF) software (http://reuniwatt.com/en/applications/atmospheric-sciences/). 

A comparison of cloud product databases was presented in 2019 at the European 

Meteorological Society conference: https://hal-mines-paristech.archives-ouvertes.fr/hal-

02418087. In that study, the Heliosat-4 method was applied to three different cloud 

properties databases for the estimation of the surface downwelling shortwave irradiance. 

The first is the AVHRR Processing scheme Over cLouds, Land, and Ocean (APOLLO) 

database from the German Aerospace Center (DLR), which is implemented in the framework 

of the CAMS Radiation service. The second is the MSG-CPP product issued by the Royal 

Netherlands Meteorological Institute. The third is the CLAAS-2 data set generated by the 

German DWD in the framework of CM SAF. 

Meteotest's Meteonorm Satellite Irradiation Product 

A model for the calculation of global irradiances was implemented for the region covered by 

the GOES-E, Meteosat, INDOEX, and Himawari satellites covering land between latitudes 

65° N and 65° S. The model is based on the Heliomont method (Stöckli et al. 2013), which is 

itself based on the Heliosat approach. It is implemented to operationally process satellite 

data at a full spatial and temporal resolution. Data are adapted to ground sites with spatially 

interpolated linear regression functions. The model was further improved by Meteotest 

(Müller and Remund, 2018, Schmutz et al. 2020). 
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Solar irradiance is the most important meteorological input parameter for solar energy, but 

additional meteorological parameters are required for accurate performance analysis as well 

as for optimal plant and grid operation and design. The influence of ambient temperature 

and wind on photovoltaic (PV) efficiency is one example. A discussion of the influence of the 

different meteorological parameters on concentrating solar power (CSP) can be found in 

Chhatbar and Meyer (2011). Also for CSP, a guideline for yield assessment, including the 

proper selection and subsequent impact of key meteorological parameters, has been 

prepared by the International Energy Agency (IEA) Solar Power and Chemical Energy 

Systems program (Hirsch 2017). For PV, a similar study was presented in an IEA 

Photovoltaic Power Systems Programme report (Reise et al. 2018; Bonilla Castro 2020). 

Recently, parameters such as soiling have gained interest. Unless specified otherwise, 

modeled data for the duration of the long-term radiation time series and measured data 

accompanying the radiation measurements should be available for the parameters described 

in the following sections.  

5.1 Wind 

Wind speed, gust, and wind direction are important for the design and performance of solar 

power plants and electric grids. Wind speed and direction are often understood as the 

horizontal component of the wind velocity. The gust is the maximum wind speed in a given 

time interval. For many applications, an interval of 3 seconds is adequate (WMO 2018).  

Wind loads, and in particular wind gusts, must be considered for the design of solar 

collectors and overhead lines. In tracked solar collectors, high wind gusts or speed might 

also require moving the collectors to their stow position. Cooling effects are strongly related 

to wind (convection)—they increase the efficiency of PV, but they decrease that of thermal 

collectors because their thermal losses are increased. For some specialized applications in 

CSP testing (e.g., convective receiver losses), the three-dimensional wind velocities are also 

of interest.  

Wind speed and gust can be measured using anemometers. Cup anemometers and 

propeller anemometers consist of a rotor whose frequency of rotation corresponds to the 

wind velocity. Ultrasonic anemometers measure the wind speed, gust, and direction. Many 

ultrasonic anemometers emit an ultrasonic signal over a constant, short distance and 

measure the time the signal needs to reach a detector. Using several measurement paths, 

the wind direction or the three-dimensional wind vector can be derived.  
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Mechanical sensors used to determine the wind direction are called wind vanes. The vane’s 

position is read by, e.g., a potentiometer setup. Propeller anemometers often include a wind 

vane. Recommendations on wind measurements can be found in the Guide to 

Meteorological Instruments and Methods of Observation (WMO 2018), also known as the 

“CIMO guide” (Commission for Instruments and Methods of Observation). In solar power 

applications, it is often impossible to measure the wind velocity solely by following the CIMO 

guide. Because wind measurements at an existing or potential solar power plant site must 

represent the conditions affecting the collectors, measurements might be taken much closer 

to obstacles (buildings, trees, etc.) than required for wind measurements for other purposes. 

For resource assessment, one measurement at 10-m height is considered sufficient, 

whereas in existing power plants with tracked collectors, it is common to monitor the wind at 

different heights and at more than one site in the solar field. 

In addition to measurements, modeled wind data are available based on either historical 

time series or forecasts. Many numerical weather prediction (NWP) models and reanalysis 

data sets provide wind data. Examples are the Modern-Era Retrospective analysis for 

Research and Applications, Version 2 (MERRA-2) from the National Aeronautics and Space 

Administration (Bosilovich Lucchesi, and M. Suarez 2016); the North American Regional 

Reanalysis (Mesinger et al. 2006); the Climate Forecast System Reanalysis from the 

National Centers for Environmental Prediction; and ERA5 from the European Centre for 

Medium-Range Weather Forecasts (see also Chapter 4, Section 4.7.1). A global, albeit 

limited, validation of the wind speed predicted by five reanalyses has shown that their 

accuracy is highly variable and might not be sufficient for demanding applications (Ramon et 

al. 2019). 

The MERRA-2 reanalysis wind data set (time-averaged two-dimensional data, 

tavg1_2d_slv_Nx) contains the U2M and V2M parameters, which represent wind speeds 2 

m eastward and 2 m northward, respectively, in m s-1. To obtain the wind speed magnitude, 

its two components are added in quadrature: 

 𝑊𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 = √𝑈2𝑀2 + 𝑉2𝑀2 (5-1) 

and the wind direction is calculated using:  

 𝑊𝑖𝑛𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑟𝑡𝑐𝑡𝑎𝑛 (
𝑈2𝑀

𝑉2𝑀
) (5-2) 

MERRA-2 is on a coarse grid of 0.5o latitude x 0.625o longitude (approximately 60 km x 60 

km). In general, the spatial and temporal interpolation of reanalysis is coarse compared to 

satellite-derived irradiance data; therefore, upscaling methods are used to increase the 

spatial resolution. Sometimes such reanalysis data are available together with solar radiation 

data sets. The upscaled MERRA-2 wind data, for instance, is disseminated through 

https://nsrdb.nrel.gov, and it is also accessible through the National Renewable Energy 

Laboratory’s (NREL’s) System Advisor model (SAM), which is a techno-economic model 

(Blair et al. 2018). In the latter, wind information is a weather input. 

Similar to MERRA2, ERA5 includes east- and northward components (U and V) of wind 

speed on a 0.25 x 0.25° grid spatial resolution. 

5.2 Ambient Temperature and Relative Humidity 

Air temperature is an important factor needed to calculate the efficiency of solar power 

plants and the maximum load of electric power transmission lines. High temperatures reduce 

the thermal losses of thermal collectors, reduce the efficiency of a thermal plant’s cooling 

system, and reduce the efficiency (of many common types) of PV modules. Transmission 

https://nsrdb.nrel.gov/
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lines expand with increasing temperature, while their resistance increases. Temperature and 

temperature changes are also relevant for the selection of the appropriate materials to be 

used in a power plant, considering aging processes. Air temperature is often called dry-bulb 

temperature, and it is defined as the temperature of air when shielded from radiation and 

moisture. 

Relative humidity has an impact on the cooling processes in thermal power plants and on 

the efficiency of thermal receivers, depending on receiver technology (e.g., air receivers). 

Relative humidity is also involved in soiling processes through the formation of dew and the 

accumulation of particles on solar collectors. Moreover, similarly to temperature, relative 

humidity influences aging processes. Relative humidity is the ratio (usually reported in 

percentage) between the observed vapor pressure and the saturation vapor pressure with 

respect to water at the same temperature and pressure (WMO 2018). The saturation vapor 

pressure is a sole function of ambient temperature, and it can be obtained using one of 

many empirical formulae; see Alduchov and Eskridge (1996) and Gueymard (1993). 

Hygrometers and thermometers are used to measure relative humidity and dry-bulb 

temperature, respectively. Today, temperature-dependent resistors, or bandgap sensors, are 

used in the construction of thermometers. Capacity or resistance changes in the sensor 

material directly correspond to changes in humidity, thus providing the basis for 

measurement. Often, combined sensors (hygro-thermometers) are used. The sensors are 

placed in a radiation shield and can be optionally ventilated.  

Higher accuracies can be reached with more sophisticated measurement methods, but 

these are usually not required in solar energy applications. Recommendations on 

temperature and relative humidity measurements can be found in the CIMO guide (WMO 

2018). 

As in the case of wind, temperature and relative humidity predictions are included in the 

output of many NWP or reanalysis models. Because the resolution of such data might be too 

coarse, upscaling is typically necessary to match that of the satellite radiation data. To that 

end, an elevation correction on temperature and humidity needs to be applied. As an 

example, the upscaling method used in the production of the National Solar Radiation 

Database (NSRDB) is presented. The correction for temperature uses a lapse rate of 6.5°C 

per kilometer, according to Hemond and Fechner (2015): 

 𝐴𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝐶𝑜𝑎𝑟𝑠𝑒 𝑝𝑖𝑥𝑒𝑙 𝑎𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝐸 ∗ (
6.5

1000
) (5-3) 

where E is the location’s elevation (in meters) relative to the upscaled grid. 

To upscale the relative humidity data, a multistep procedure has been devised for the 

NSRDB: the specific humidity is first interpolated using a combination of nearest neighbor 

temporal interpolation and second-degree inverse distance weighting. Additional steps are 

taken to estimate relative humidity from the interpolated specific humidity. In particular, the 

saturation vapor pressure is calculated using the method described in Tetens (1930): 

         𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑝𝑜𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 610.79 ∗ 𝑒𝑥𝑝 (
𝐴𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝐴𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒+238.3
∗ 17.2694) (5-4) 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data  - 3rd Edition 

5-4 

where air temperature is in °C. Then the mixing ratio (w), which is the mass of water vapor per 

mass of dry air, is calculated using the method described in an online document by 

DeCaria26: 

 𝑤 =
ℎ

(1−ℎ)
  (5-5) 

where h is the 2-m specific humidity in kg kg-1, a MERRA-2 output named QV2M. The next 

step is to estimate the saturation mixing ratio (ws) using a method described by DeCaria27 

and the National Weather Service28: 

𝑤𝑠 = 621.97 ∗
(

𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑝𝑜𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
1000⁄ )

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒−(
𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑝𝑜𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

1000⁄ ) 
 . (5-6) 

The surface pressure is also obtained from MERRA-2 and upscaled, as discussed in Section 

5.3. Finally, relative humidity is calculated from29: 

 𝑅𝐻 =  
𝑤

𝑤𝑠
. (5-7) 

In general, it is advised to interpolate dew-point and ambient temperatures separately and 

then calculate relative humidity at the place of interest. 

5.3 Atmospheric Pressure 

Atmospheric pressure has a direct effect on some CSP receiver technologies, particularly on 

the power block efficiency, and on cooling processes in thermal plants. Pressure variations 

influence the aging processes of components with sealed volumes; however, pressure data 

are also used for intermediate calculations in solar resource assessments, such as for the 

accurate calculation of the solar position, atmospheric transmittance, dew point, or relative 

humidity.  

The atmospheric pressure on a given surface is defined as the force per-unit area resulting 

from the weight of the atmosphere aloft (WMO 2018). Atmospheric pressure can be measured 

with mercury barometers, aneroid barometers, hypsometers, or electronic barometers. For 

solar energy applications, electronic barometers are of the most interest. Such barometers use 

piezoelectric materials, an aneroid capsule that changes its form or position depending on 

pressure, or a resonator whose mode of vibration depends on pressure. The displacement of 

the aneroid capsule can be detected using, e.g., capacity or resistance changes. The 

recommendations for pressure measurements made in the CIMO guide (WMO 2018) can be 

used in solar energy applications.  

As mentioned in the previous section, surface pressure can be obtained from NWP and 

reanalysis data such as MERRA-2. Pressure data might also need to be upscaled. For 

example, to upscale the NSRDB data, a combination of linear temporal interpolation and 

second-degree inverse distance weighting is used, as for relative humidity. An elevation 

correction is carried out using the method described in McIntosh (1978) with elevation E in 

m: 

 

                                                

 
26

 See http://snowball.millersville.edu/~adecaria/ESCI241/esci241_lesson06_humidity.pdf.  
27

 See http://snowball.millersville.edu/~adecaria/ESCI241/esci241_lesson06_humidity.pdf.  
28

 See https://www.weather.gov/media/epz/wxcalc/mixingRatio.pdf.  
29

 See https://www.weather.gov/media/epz/wxcalc/mixingRatio.pdf.  

http://snowball.millersville.edu/~adecaria/ESCI241/esci241_lesson06_humidity.pdf
http://snowball.millersville.edu/~adecaria/ESCI241/esci241_lesson06_humidity.pdf
https://www.weather.gov/media/epz/wxcalc/mixingRatio.pdf
https://www.weather.gov/media/epz/wxcalc/mixingRatio.pdf
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𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 

𝐶𝑜𝑎𝑟𝑠𝑒 𝑝𝑖𝑥𝑒𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + [1013.25 ∗ {1 − (1 −
𝐸

44307.69231
)

5.25328

}].  (5-8) 

5.4 Precipitation 

Precipitation is a relevant quantity in solar energy applications. In the form of rain, 

precipitation can wash dirty collectors, but it can also cause efficiency loss resulting from 

droplets on exposed optical surfaces, especially in concentrating technologies. Rain-induced 

cooling effects tend to increase the efficiency of PV modules, but they reduce that of thermal 

plants. Moreover, precipitation can strongly influence aging processes. Hail could damage 

solar collectors and other plant components. If water enters the insulation material of hot 

pipes, a prolonged efficiency loss occurs until the wet insulation is replaced. The effect of 

rain on transmission lines is less important because its cooling effect and the weight 

increase mostly compensate each other. Ice loads on transmission lines can be of 

importance, however, and have even resulted in catastrophic failures in the recent past, 

such as during the January 1998 North American ice storm (Phillips 2002).  

The presence of snow can have either positive or negative effects on solar energy 

production. Snow in the vicinity of a PV installation or flat-plate thermal collectors could 

increase production because of the higher albedo and increased reflected irradiance 

(Andrews, Pollard, and Pearce 2013; Burnham et al. 2019). In some cases, this increase in 

reflected irradiance can combine with cloud enhancement situations and lead to substantial 

spikes in incident irradiance (Gueymard 2017). In turn, these spikes can have negative 

impacts on the normal operation of PV plants (do Nascimento et al. 2019; Järvelä, 

Lappalainen, and Valkealahti 2020). On the other hand, it is more likely that accumulated 

snow on collectors will lead to losses, increased wear and tear, and even pose a danger 

because of the increased load on the supporting structure and snow sliding down onto 

underlying areas (Andenæs et al. 2018). In concentrating systems, no irradiance gains can 

exist because only direct radiation is used. 

Rain is often measured with tipping bucket rain gauges. The raindrops are collected by a 

horizontal aperture of known small area, and they fall on a lever. When the droplets trickle on 

the lever, a signal is produced. Such rain gauges can measure only liquid precipitation (in 

areas where snow is common, heated systems must be considered). In parallel, optical 

pluviometers also exist. The lever of the tipping bucket’s rain gauge can be replaced by a laser 

and an appropriate sensor to detect the droplets. Another optical measurement method for all 

types of precipitation uses an open measurement volume, which directly detects the falling 

raindrops or snowflakes in the air with an optical scattering method. A light source emits light, 

and a sensor detects the scattered light under a specific scattering angle. The number of 

pulses detected by the sensor corresponds to the number of particles, and the pulsing pattern 

helps to determine the size of the droplets and helps to distinguish between snow and rain. 

The CIMO guide (WMO 2018) contains recommendations for precipitation measurements that 

are of interest in solar applications. Precipitation data can also be obtained from NWP or 

reanalysis predictions but with much less accuracy.  

In relation to precipitation, it is of practical importance to know how long raindrops, and even 

more so snow, can remain on the surface of solar collectors; hence, data about snow cover 

is of interest. Examples of global snow cover products include those from the Interactive 

Multisensor Snow and Ice Mapping System (produced by the U.S. National Ice Center), the 

Microwave Integrated Retrieval System, the National Oceanic and Atmospheric 

Administration’s Microwave Surface and Precipitation Products System, and the JAXA 

Satellite Monitoring for Environmental Studies (produced by the Japan Aerospace 

Exploration Agency). Products with a European focus are available from the CryoLand 
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Copernicus Service. Some global snow products have been intercompared recently (Chiu et 

al. 2020). Other options are reanalysis data (e.g., ERA, Copernicus Atmosphere Monitoring 

Service (CAMS) or MERRA-2) and databases with snow depth information from in situ 

measurements, such as the European Climate Assessment & Dataset project.30 More 

detailed data regarding snow conditions might be also available from the national weather 

service of each country. 

When designing installations for snowy regions, precautions should be followed to optimize 

the solar system’s performance—see Andenæs et al. (2018) for architectural considerations. 

In particular, it is recommended to use frameless PV modules and to ensure that there is 

enough clearance between them and the underlying surface so that snow can slide off easily 

(Bogenrieder 2018; Riley et al. 2019). It is good to increase the tilt angle to facilitate this 

process and to arrange the panels in landscape-oriented layouts to prevent the bypass 

diodes from becoming ineffective during periods of partial shading (Gwamuri et al. 2015). 

The possible benefit of mechanically removing snow accumulations depends on location or 

climate. In high-latitude regions characterized by long cloudy winters, snow clearing does not 

seem to be beneficial (Stridh 2012), but it might be of value in sunnier regions where the 

winter potential production is higher (Gwamuri et al. 2015).  

How much loss can be expected because of snow? Existing studies based on a limited 

number of sites have reported annual production losses in the range from 0%–25% and 

monthly losses as high as 100% (Andrews, Pollard, and Pearce 2013; Becker et al. 2008; 

Sugiura et al. 2003; Townsend and Powers 2011). Many models have been developed to 

estimate the snow loss as a function of weather given information about the installation—e.g., 

Townsend and Powers (2011); Lorenz, Heinemann, and Kurz (2012); and Marion et al. (2013). 

Such results are site-specific, so little is known about their general validity; therefore, it is 

difficult to predict the potential impact of snow on the performance of future projects. Because 

of a lack of general snow-loss models, the major PV modeling software products on the 

market do not support such calculations beyond a simple scaling, such as in PVWatts® (Dobos 

2014). Ryberg and Freeman (2017), however, incorporated the snow model from Marion et al. 

(2013) into NREL’s SAM. In a 30-year simulation using NSRDB data for 239 locations across 

the United States, the modeled snow loss varied from 0%–4% in areas with only occasional 

snow to 15–25% in areas with abundant snow. These limited results can be considered 

today’s best practice for snow-loss modeling. 

5.5 Aerosols and Water Vapor 

Some solar energy applications can benefit from the knowledge of spectral aerosol optical 

depth (AOD), single-scattering albedo, asymmetry factor, scattering phase functions, and 

total column water vapor. The latter is often referred to as precipitable water (PW) or 

integrated water vapor (IWV). These parameters can be used to simulate clear-sky 

broadband or spectral irradiance, as explained further in the following sections, and could 

aid in understanding the spatiotemporal variability of the radiation field. Precise knowledge of 

these variables at any site or instant can be used to improve modeled solar radiation data 

sets and to conduct site adaptations. For solar tower power plants, these variables are 

helpful to model the slant-path radiation attenuation between the heliostats and the receiver.  

Sun photometers are typically used to determine these variables. One type of sun 

photometer measures spectral direct normal irradiance (DNI) and the spectral sky radiance 

at several wavelengths (Figure 5-1). Simpler sun photometers sense only the spectral DNI. 

                                                

 
30

 See https://www.ecad.eu/.  

https://www.ecad.eu/
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Both instruments consist of one or more photodetectors positioned behind different spectral 

filters and a collimator system. Additional polarization filters are optionally used. Solid-state 

sensors, such as photodiodes, are used for signal detection. For sun photometers that 

measure only spectral DNI, a tracker is required. For sky radiance measurements, more 

elaborate tracking systems are used.  

 
Figure 5-1. AERONET sun photometric station at CIEMAT’s Plataforma Solar de 

Almería. Photo from DLR 

Because these aerosol properties are highly wavelength dependent, it is necessary to make 

measurements at more than a single wavelength. Sun photometers are primarily used to 

monitor aerosol properties, but they normally have a dedicated channel (near 940 nm) to 

also determine PW. 

The direct-sun irradiance measurements are used to derive basic information on aerosols. 

First, the total atmospheric optical depth is calculated. The AOD is then determined by 

subtracting the optical depths of all other atmospheric constituents, such as molecules, 

water vapor, ozone, or nitrogen dioxide. Most optical depths are obtained from separate 

sources (e.g., satellite retrievals or atmospheric models), whereas the water vapor optical 

depth is derived from the concomitant precipitable water measurement. The Ångström 

exponent can then be derived by fitting the spectral AOD data to the equation describing 

Ångström’s law. In a separate step, the direct-sun measurements can be combined with the 

concomitant sky radiance measurements to derive the aerosol single-scattering albedo, 

asymmetry factor, aerosol phase function, and other parameters using inversion algorithms 

(NASA 2006).  

Note the two main sun photometer networks in the world: the Aerosol Robotic Network 

(AERONET)31 and SKYNET.32 These networks are important for solar resource assessment 

because of the relatively large number of available observing stations and the applied quality 

assurance and calibration methods.  

The proper determination of aerosol properties (most importantly AOD) and water vapor can 

be done only if the solar disk is not obscured by clouds; therefore, cloud-detection algorithms 

are used to post-process the raw data and generate usable data. With AERONET, for 

example, the spectral DNI measurements are taken in direct-sun triplets. In a triplet, three 

series of measurements are made in rapid succession. In each series, all different filters are 

                                                

 
31

 See http://aeronet.gsfc.nasa.gov/new_web/index.html.  
32

 See https://www.skynet-isdc.org/.  

http://aeronet.gsfc.nasa.gov/new_web/index.html
https://www.skynet-isdc.org/
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used. Cloud episodes can be detected by comparing the total optical depth derived from the 

spectral data of the three series to each other and to defined limits (Smirnov et al. 2000; 

Giles et al. 2019). This cloud screening process relies on the higher temporal variability and 

higher value of cloud optical depth compared to AOD.  

Data from measurement networks are available in different levels of quality control. In 

addition to cloud screening, the quality-control procedures involve various other criteria. In 

AERONET, for instance, the best data quality (Level 2) includes manual outlier rejection and 

correction for the change of the calibration constants before and after a measurement period 

of approximately 1 year (Holben et al. 2006). Unfortunately, this regular calibration process, 

as well as other experimental difficulties that might arise in the field, result in data breaks of 

various duration (sometimes of many months) at all stations. Despite this important issue, 

the instrument’s calibration is of central importance for overall data accuracy. When 

available, the highest quality data should be used. 

In practice, it is rare that ground measurements of aerosols and water vapor are available for 

the site or period under scrutiny; hence, it is generally necessary to rely on other sources of 

data. Aerosol data can be retrieved from spaceborne observations, such as those sensed by 

the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard the Terra 

and Aqua satellites (Bright and Gueymard 2019; Wei et al. 2019). Another source of data is 

provided by reanalysis models, such as CAMS or MERRA-2 (Gueymard and Yang 2020; 

Kosmopoulos et al. 2018). Similarly, water vapor information can be retrieved from the 

Global Ozone Monitoring Experiment–2 (GOME-2), the Scanning Imaging Absorption 

Spectrometer for Atmospheric Cartography (SCIAMACHY), and MODIS spaceborne 

instruments (Beirle et al. 2018; Bright et al. 2018), or from reanalysis models (Mishra 2019). 

Although AOD and PW are derived mostly from polar-orbiting satellites, several retrievals 

are developed with geostationary satellites, such as Himawari-8, the Geostationary 

Operational Environmental Satellite (GOES), and Meteosat (Kaufman, Tanré, and Boucher 

2002). For both aerosol and water vapor, more details about the available sources of data 

and their accuracy are provided by Gueymard (2019b). 

For most solar energy projects, aerosol and water vapor data are required only for radiation 

modeling, i.e., as an intermediate step. No strict recommendation is given to systematically 

collect such modeled or measured data; however, aerosol and water vapor data can help to 

answer questions related to the quality of model-derived irradiance data, especially DNI 

data. Moreover, such data are linked to the solar spectrum, which is of interest in PV 

applications (see section 5.6). Further, aerosol data are related to soiling, circumsolar 

radiation, and beam attenuation between the heliostats and the receiver in solar tower power 

plants, as discussed next.  

5.6 Spectral Irradiance 

Most sections in this handbook relate to the solar resource in terms of broadband shortwave 

fluxes. Considering the rapid deployment of new solar technologies and the diversification of 

their physical principles, spectral solar irradiance data and models are sometimes necessary 

to address specific aspects of the solar resource in PV, photobiological, and photochemical 

processes; hence, the demand for spectral information has considerably increased in recent 

decades, at least at the level of high-end research and experimentation. New investigations 

(Lindsay et al. 2020) show that neglecting spectral and angular details can lead to significant 

deviations in PV power modeling. 

Like with broadband irradiance, the need for spectral irradiance data can be fulfilled with 

either measurements or models. As mentioned in Section 2.7.5 (Chapter 2), there are also a 

few reference clear-sky spectra that have been standardized for a potentially large number 
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of applications—most importantly PV. Because cloudy conditions are highly variable and 

extremely difficult to characterize, no equivalent cloudy-sky reference standard spectrum 

exists.  

For solar PV applications in particular, reference spectra are particularly useful to, for 

example, (1) obtain a performance rating following the industry’s best practice, such as 

standard test conditions, which prescribe a reference spectrum (Emery et al. 2013; Taylor 

2010); (2) determine PV spectral mismatch factors when the actual spectral conditions differ 

from the reference spectrum defined by ASTM G173-03 (ASTM 2020a) or the International 

Electrotechnical Commission (IEC) 60904-3 (Braga, do Nascimento, and Rüther 2019; 

Mambrini et al. 2015; Mullejans et al. 2005; Myers and Gueymard 2004); or (3) evaluate how 

well solar simulators agree with a reference spectrum, according to, e.g., IEC 60904-9 (Bliss, 

Betts, and Gottschalg 2010; Meng, Wang, and Zhan 2011; Sarwar et al. 2014). One issue 

with reference spectra is that they are developed for specific atmospheric conditions 

(Gueymard, Myers, and Emery 2002) and thus might not correspond to observable natural 

conditions at all locations of interest or during some periods of the year. To ease this, 

subordinate standard spectra have been proposed (Jessen et al. 2018). These spectra are 

referenced in ISO standard 9060:2018 (ISO 2018) to evaluate spectral mismatch factors or 

spectral errors in radiometers. 

Under natural conditions, the solar spectrum continuously varies in both magnitude and 

relative distribution. It is mostly affected by solar zenith angle (and hence by air mass) and a 

few variable atmospheric constituents, most importantly AOD and PW. An increase in air 

mass or AOD modifies the shape of both direct and global spectra in a way referred to as 

“red shift” because short wavelengths are attenuated more than longer ones, whereas an 

increase in PW does the opposite and results in a “blue shift.” 

Obtaining outdoor accurate solar spectra for experimental PV research or for the validation 

of solar radiation models requires high-quality measurements obtained with carefully 

maintained spectroradiometers. Two different types of instruments now exist, depending on 

their detection method: (1) scanning monochromators and (2) charge-coupled device (CCD) 

arrays. In the field, CCD-array (solid-state) instruments are preferable because they are 

faster, lighter, more compact, and more reliable than scanning (optomechanical) 

instruments. The latter are normally more accurate; hence, they are typically considered 

laboratory instruments for indoor measurements. Like broadband radiometers, field 

spectroradiometers can be deployed for unattended operation because their casing is 

weatherproof. They can be mounted on a sun tracker and equipped with an appropriate 

collimating tube to sense the direct normal spectrum. If mounted horizontally or on a tilt, they 

sense the global horizontal or global tilted spectrum, respectively. Examples of such 

mounting options are shown in Figure 5-2. This figure displays a group of three instruments 

because they cover different spectral bands: one has a silicon-based detector and covers 

the typical spectral range from approximately 350–1100 nm, another covers the ultraviolet 

(UV) (300–400 nm), and the last covers near-infrared in the range from 900–1700 nm. The 

combination makes it possible to sense the spectrum in an extended range—approximately 

300–1700 nm—which might be necessary to investigate some advanced solar cells, for 

instance. 
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Figure 5-2. (Left) Three field spectroradiometers mounted on a solar tracker to sense 

the direct normal spectrum. Photo by NREL. (Right) The same three 

spectroradiometers but mounted horizontally to sense the global horizontal spectrum. 

Photo by Christian Gueymard 

Figure 5-3 displays the direct normal spectra observed (at regular intervals) by a field 

spectroradiometer during a clear summer morning at NREL’s Solar Radiation Research 

Laboratory, in Golden, Colorado, at an elevation of 1829 m. When comparing spectra that 

are observed under contrasting sun positions (high sun versus low sun), the red shift 

mentioned earlier clearly appears. Two strong atmospheric absorption bands—caused by 

oxygen (near 760 nm) and water vapor (near 940 nm)—are also clearly visible.  

Considering the significant costs associated with the deployment, calibration, and 

maintenance of spectroradiometers, only a few solar laboratories in the world can 

continuously operate such instruments for long periods. In most cases, the spectral 

databases thus collected are considered proprietary and can be difficult to obtain. A few 

exceptions exist, such as the public-domain databases offered by NREL33 or the Solar 

Radiation Monitoring Laboratory of the University of Oregon.34 

                                                

 
33

 See https://midcdmz.nrel.gov/apps/spectra.pl?BMS.  
34

 See http://solardat.uoregon.edu/SelectSpectral.html.  

https://midcdmz.nrel.gov/apps/spectra.pl?BMS
http://solardat.uoregon.edu/SelectSpectral.html
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Figure 5-3. Series of DNI spectra measured during a clear summer morning by a field 

spectroradiometer mounted on a sun tracker at NREL. The extraterrestrial spectrum is 

also indicated to exacerbate some important atmospheric absorption bands. 

Because of the lack of measured data, it is convenient to depend on radiative models and 

obtain the solar spectrum at any location and any instant. One early spectral model used in 

solar engineering was SPCTRAL2 (Bird 1984). Its limited resolution, capabilities, and 

performance prompted the development of the Simple Model of the Atmospheric Radiative 

Transfer of Sunshine (SMARTS) model (Gueymard 1995, 2001), which has been thoroughly 

validated (Gueymard 2008, 2019a). It has been used to develop the current reference 

spectra mentioned in Section 2.7.5 (Chapter 2). To operate a spectral radiation model such 

as SMARTS, precise information about atmospheric constituents is necessary, but this is 

essentially the same information as would be needed to obtain only broadband clear-sky 

irradiances with a simpler radiation model. The most accessible sources of data, particularly 

regarding aerosols, are discussed in detail by Gueymard (2019b).  

Many spectral radiation models, such as SMARTS, are limited to the prediction of clear-sky 

spectra. Modeling the spectral radiation under all-sky conditions is a challenge because of 

the need to balance the computational burden and errors attributed to the resolution of the 

spectral bands. As a result, high-spectral-resolution models designed to solve spectral 

radiation based on fundamental physicse.g., the line-by-line model (Clough et al. 

2005)are often time-consuming in computing the absorption coefficients of the molecular 

species in the atmosphere. Adding to the complexity of the radiative transfer calculations is 

the cloud scattering involving highly complex interactions between clouds, the over- and 

underlying atmosphere, and land surface. An efficient solution—implemented in the 

TMYSPEC model (Myers 2012)—is to empirically develop regressions that link numerically 

between long-term observations of broadband and spectral solar radiation. More rigorous 
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models based on the solution of the radiative transfer equation precompute cloud extinction, 

reflection, and emission for possible cloud conditions and incident and outgoing solar 

directions and then integrate the results with the clear-sky solution (Minnis et al. 2011). The 

computational efficiency of those models can be substantially improved when the 

precomputations are parameterized by plain functions of cloud optical and microphysical 

properties (Xie, Sengupta, and Dudhia 2016). On the other hand, the models can be 

extended to cover the computation of spectral irradiance—for example, the Fast All-sky 

Radiation Model for Solar applications with Narrowband Irradiances on Tilted surfaces 

(FARMS-NIT) (Xie and Sengupta 2018; Xie, Sengupta, and Wan 2019) precomputed a cloud 

lookup table using the 32-stream DIScrete Ordinates Radiative Transfer (DISORT) model 

(Stamnes et al. 1988) and the parameterization of cloud optical properties developed by Hu 

and Stamnes (1993) and Baum et al. (2011). The cloud bidirectional reflectance distribution 

function (BRDF) and bidirectional transmittance distribution function (BTDF) are stored in a 

lookup table containing data for 2002 wavelengths within the spectral range from 0.28–4.0 

m. Surface radiances in the spectral bands are analytically solved from the radiative 

transfer equation for five independent photon paths using the optical thickness of the clear-

sky atmosphere provided by SMARTS and the cloud BRDF and BTDF.  

Spectral data are required only for selected solar energy projects. For thermal collectors 

using current technology, spectral information does not need to be collected for each 

individual project, and the application of standard spectra suffices. For large PV plants, 

however, the site-specific spectral effects should be considered to increase accuracy. This 

can be done best if spectral data are available. Because of the high costs of spectral 

measurements, the state of the art is to introduce the spectral effects via modeling 

approaches, such as in PV simulation models. This procedure is generally empirical and can 

be improved; hence, related research is required. Additionally, spectral irradiance data are 

useful in related solar technology developments, and they are also relevant as an 

intermediate product to understand specific effects, such as soiling, beam attenuation near 

the ground, or measurement error of various radiometers.  

5.7 Ultraviolet Irradiance  

Although UV constitutes only a small portion of the solar spectrum, the high energy of the 

photons contained at wavelengths less than 400 nm can cause degradation of materials, 

such as those used in the construction of PV modules. More generally, UV irradiance 

information can be useful in many research-and-development applications, such as PV and 

CSP material degradation, service life prediction, monitoring of lamps in accelerated 

weathering chambers, aging tests in solar simulators, and climate-related research using 

predictions from appropriate models or actual data from weather stations; therefore, high-

quality measured and modeled UV databases are often required for various locations with 

differing climatic conditions. Such data sources typically provide accurate inputs for these 

applications.  

The UV spectral ranges of interest are defined in various standards and publications. ASTM 

G113-16 (ASTM 2016) defines UV irradiance for natural weathering applications as the 

amount of electromagnetic radiation greater than 295 nm and less than the visible 

electromagnetic radiation. According to ASTM G177 (ASTM 2020b), the total UV is defined 

from 280–400 nm, and it is subdivided into UV-A (320–400 nm) and UV-B (280–320 nm). 

The World Health Organization (WHO 2020), however, defines these ranges slightly 

differently, using 315–400 nm for UV-A and 280–315 nm for UV-B. Other definitions can be 

found in the literature or in the specifications of UV radiometers. In weathering and durability 

studies, for instance, radiant UV doses are reported in the ranges from 295–400 nm or 295–

385 nm (Habte et al. 2019).  
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Figure 5-4. UV global spectrum measured with a QASUME II spectroradiometer at the 

PMOD/WRC laboratory under high-sun conditions compared with standards ASTM 

G173 (low UV) and G177 (high UV) in (left) linear scale and (right) logarithmic scale 

The varying definitions that currently exist introduce confusion, especially because the UV 

irradiance magnitude is highly dependent on wavelength. This is shown in Figure 5-4, where 

actual measurements of spectral global horizontal irradiance (GHI) conducted at the 

Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC) 

with a QASUME II spectroradiometer are compared with the reference global tilted 

irradiance spectra promulgated in standards ASTM G173 (for moderate air mass, AM1.5) 

and G177 (for low air mass, AM1.05). As shown, at less than approximately 0.33 µm, the 

irradiance magnitude varies considerably for only small incremental changes in wavelength, 

hence the need for an excellent wavelength calibration of UV radiometers. A consensus on 

the range of UV irradiances applicable for solar energy conversion technologies is desirable, 

but it has not yet been reached. 

Some information disseminated by WHO (WHO 2020) about the UV irradiance distribution is 

valuable because of its relevance to solar energy applications. In particular, note that clean 

snow reflects up to approximately 80% of UV irradiance and that more than approximately 

90% of UV irradiance can be transmitted through thin clouds. Further, WHO emphasizes the 

relationship between site elevation and UV irradiance, stating an increase of 4% in UV 

irradiance for a 300-m increase in altitude. Additionally, most of the daily UV dose is said to 

be received during a 4-hour period centered on local solar noon. 

As stated in Hülsen and Gröbner (2007), spectroradiometers are the best instruments to 

measure UV irradiance, but they are expensive and require high maintenance. High-end 

instruments, called double monochromators, are less sensitive to stray-light issues than 

simpler instruments based on CCD technology, and they are necessary to sense the UV 

accurately at less than approximately 320 nm, but they are also extremely delicate and 

expensive; therefore, in most cases, only broadband UV radiometers are used in 

applications that do not demand spectral information. All UV radiometers can be calibrated 

so that they are traceable to one of the existing National Metrological Institutes through a 

calibrated reference lamp. Further, some institutions, such as the World Meteorological 

Organization (WMO), assist in maintaining traceability through a commonly accepted 

calibration methodology and through regular intercomparisons using standard reference 
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spectroradiometers maintained and operated by the PMOD/WRC. In general, an annual 

calibration interval is recommended because UV radiometers are susceptible to atmospheric 

constituent changes, degradation and stability issues, and other uncertainties (Webb, 

Gröbner, and Blumthaler 2006).  

There are many types of broadband UV radiometers, as described in Hülsen et al. (2020). 

There are also multiwavelength narrowband filter radiometers that measure solar irradiance 

at a few wavelengths in the UV spectrum, but they require an intricate absolute calibration 

process that involves model simulations (Kerr and Fioletov 2008). 

Measuring UV is difficult because it is prone to high measurement uncertainty resulting from 

factors such as stray-light contamination, calibration error, or directional response deviation. 

On the other hand, measured and/or modeled GHI data of fairly low uncertainty is relatively 

abundant for many locations. Many studies have attempted to parameterize the global UV 

irradiance (UV-B and/or UV-A)—for example, by considering the empirical relationship 

between global UV irradiance and other readily available quantities, such as GHI (Krzyścin 

1996; Fioletov, Kerr, and Wardle 1997; McArthur et al. 1999; Schwander et al. 2002; Habte 

et al. 2019). Some studies have used radiative transfer models (Madronich and Flocke 1997; 

Evans 1998; Ricchiazzi and Gautier 1998; Mayer and Kylling 2005; Koepke 2009); whereas 

others have used satellite instruments, such as the Ozone Monitoring Instrument (OMI), to 

estimate the surface UV irradiance (Krotkov et al. 1998; Peeters et al. 1998; Herman et al. 

1999; Levelt et al. 2006; Tanskanen et al. 2006). 

5.7.1 Soiling 

Soiling can greatly reduce the efficiency of solar collectors because of the induced reduction 

of optical transmission through the collector’s glass cover or entrance window or degradation 

of the specular reflectance of mirrors. The soiling loss ratio is defined as the ratio between 

the efficiency of the soiled component and that of the clean component for otherwise 

identical conditions. The soiling loss ratio is also called the “soiling ratio” or “cleanliness.” 

The soiling rate describes the rate of change of cleanliness over time. For mirrors, average 

soiling rates of 2% per day have been reported at some CSP installations. For flat-plate 

panels, soiling rates are approximately 10 times less for the same conditions because the 

forward-scattered light still contributes to the PV or flat-plate collector yield (Bellmann et al. 

2020). Reviews of actual soiling effects on solar power plants can be found in Sarver, Al-

Qaraghuli, and Kazmerski (2013); Ilse et al. (2018); and Maghami et al. (2016). 

The cleanliness can be measured using different techniques. For PV, the short-circuit 

current of soiled reference cells or modules can be compared to that of a clean cell or 

module. In the general case, modules comprise a large number of cells; hence, such a 

measurement can be inaccurate if the module’s surface is not homogeneously soiled. In that 

configuration, either the IV curves of a clean and a soiled module need to be analyzed for an 

accurate estimation of the soiling ratio or the output powers of both modules obtained with 

maximum power point trackers need to be compared. Care must be taken if only one module 

or cell is used for the estimation of the cleanliness by comparing its performance before and 

after cleaning because the external conditions might have changed in the meantime. 

Moreover, the module or cell temperature can be affected by the cleaning process itself. The 

cleaning of the clean reference glass sheet or reference module/cell is of great importance. 

Automatic cleaning of the reference device is complex, whereas manual cleaning is time-

consuming. 
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Figure 5-5. TraCS system for the measurement of mirror soiling. The reflected DNI is 

compared to the incident DNI to obtain the reflectance of the sample mirror. Photo by 

DLR 

For CSP, one option is to use handheld reflectometers and measure the reflectance of 

working mirrors or sample mirrors before and after cleaning. Alternatively, transmissometers 

can be used to monitor soiling effects on CSP entrance windows. These measurements are 

time-consuming and expensive; therefore, automatic methods have been developed for 

reflectance (see Figure 5-5) (Wolfertstetter et al. 2014) and transmittance, respectively. 

Another technique that can be applied to either PV or CSP uses a photodiode behind a glass 

sheet and a detector that senses the scattered radiation. Any soiling on the glass sheet 

increases the latter. The measured signal can be converted into transmittance or reflectance 

reduction. Further, methods based on the analysis of digital pictures of soiled collectors are 

under development. 

 
Figure 5-6. Several cleanliness measurement options for PV and CSP. Photo by DLR 
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Some of the aforementioned measurement options are shown in Figure 5-6. For fixed-tilt and 

tracked reference cells, the orientation of the soiling sensors is crucial and should be as 

close as possible to that of the plant itself. Further, the test material must be similar—or 

ideally identical—to that in the power plant; therefore, two different types of reference cells 

are shown. The TraCS device shown in Figure 5-5 is used here to evaluate the cleanliness 

of four mirrors with different antisoiling coatings that are mounted on a rotating plate. The 

cleanliness thus obtained at regular intervals can be used to derive the soiling rate. Effects 

related to the incidence angle, for example, can cause the soiling rate to change strongly 

throughout the day. Even if the component is not cleaned, positive soiling rates (increase of 

cleanliness) occur, at least momentarily, if the time resolution is too high; therefore, soiling 

rates are reported most frequently at a daily resolution. To properly determine the soiling 

rate, it is important to compare data points collected under similar conditions. For instance, 

the cleanliness measured at noon under clear-sky conditions should not be compared to that 

of the next days if measured under cloudy conditions or at a different sun elevation.  

Modeling the soiling rate is a potential solution to strongly reduce the costs associated with 

experimental soiling data and to rapidly provide long-term data sets at many sites. Soiling 

models are mainly based on particle concentration and precipitation, though other 

meteorological data are also required in general. Existing models (Picotti et al. 2018; Micheli 

and Muller 2017; Wolfertstetter et al. 2019) are currently further enhanced and adapted to 

create soiling maps and soiling forecasts based on atmospheric dust transportation models 

(Micheli, Deceglie, and Muller 2019). 

Several systems are commercially available for the measurement of cleanliness and soiling 

rate. They can be used in feasibility studies or for the optimization of plant operation and 

cleaning intervals. Soiling measurements are recommended during the site selection 

process, especially if no soiling data are available from nearby sites, and they continue to be 

desirable during plant operation. Depending on the soiling levels at a PV plant and the peak 

power of a PV plant, for instance, IEC 61724-1 defines a certain number of required soiling 

measurements. Soiling rate results are typically not in the public domain, and only a few data 

sets are available from data portals—e.g., NREL (2020).  

5.8 Circumsolar Radiation 

As discussed in Chapter 2, Section 2.7.1, circumsolar radiation is the scattered radiation 

received from the angular region close to the sun. Most of the circumsolar radiation is 

included in DNI measurements, but typically only a smaller part of it can be used by focusing 

collectors; therefore, information on circumsolar radiation is important for CSP plant yield 

assessments and the design of any type of concentrating power plant. High circumsolar 

radiation contributions to DNI can reduce the efficiency by 10% or more compared to the 

efficiency for low circumsolar radiation levels, even for DNI greater than 200 W/m². Using 

typical estimates of the average circumsolar radiation conditions can lead to errors of several 

percent in the long-term plant yield—e.g., approximately 2% for an exemplary tower plant in 

the United Arab Emirates (Wilbert 2014). 

Different techniques are available to measure circumsolar radiation. For instance, a method 

based on two commercial instruments exists: a camera-based “sun and aureole 

measurement system” and a sun photometer (Gueymard 2010; Wilbert et al. 2013). Another 

camera-based method is also used in Schrott et al. (2014). A different system uses two 

pyrheliometers with contrasting acceptance angles (Wilbert, Pitz-Paal, and Jaus 2013). 

Kalapatapu et al. (2012) presented a modified rotating shadowband irradiometer (RSI) with a 

slit aperture on top of the RSI sensor. Alternatively, circumsolar radiation can be measured 

with unmodified RSIs (Wilbert et al. 2018). The irradiance signal collected during the rotation 

of the shadowband is analyzed to obtain the circumsolar contribution.  
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Only camera-based systems can measure the sunshape. This quantity (not to be confused 

with the shape of the sun disk itself) is defined as the normalized radially averaged radiance 

profile as a function of the angular distance from the apparent sun center. The other 

radiometric systems can derive the circumsolar contribution to DNI, which can, in turn, be 

used to estimate the sunshape. Because of the high costs, maintenance and calibration 

constraints, and analysis difficulties, so far the existing camera-based systems have been 

limited to high-end scientific studies. In contrast, RSI- and pyrheliometer-based methods are 

already commercially available.  

Obtaining long-term information on circumsolar radiation to help power plant project 

developments at an early stage would require substantial modeling effort. A model for the 

influence of thin ice clouds (cirrus), which considerably increase the circumsolar contribution, 

has been presented (Reinhardt et al. 2013). The effect of aerosols can also be modeled 

(Eissa et al. 2018). More recent work using specialized radiative models to evaluate the 

difference between the true and apparent DNI can be found in Räisänen and Lindfors 

(2019); Sun et al. (2020); and Xie et al. (2020); however, so far modeled circumsolar data 

are not routinely available for site assessment.  

Circumsolar radiation measurements are available for several sites (Bendt and Rabl 1980; 

Noring, Grether, and Hunt 1991; Wilbert 2014; Wilbert, Pitz-Paal, and Guillot 2013). For 

nearby plant projects, or for projects in a similar climate, such measurements might be 

sufficient for plant yield calculations. For other regions and climates, measurement 

campaigns are recommended for site assessment, CSP technology selection, acceptance 

testing, or optimization of plant operation. More research would be necessary, however, 

before the circumsolar contribution can be easily determined by analysts at any location and 

any instant in their practice of solar resource assessments. 

5.9 Beam Attenuation Between Heliostats and Receiver in Tower 
Power Plants 

Among all CSP technologies, tower power plants present a specific challenge because 

atmospheric constituents tend to attenuate the radiation beams along their path from the 

heliostats to the solar receiver on the tower. This attenuation could have a significant impact 

on the efficiency of this technology (Figure 5-7). During clear days, the optical losses over a 

1-km slant range can be less than approximately 5%. Under hazy, humid conditions, 

however, more than 50% can be lost; hence, attenuation data must be available for the plant 

design, plant yield analysis, and plant operation. Under extreme conditions, high extinction 

levels could prevent towers from being an economically feasible technology option.  

   
Figure 5-7. (Left) CIEMAT’s CESA 1 solar tower on a clear day and (right) on a hazy 

day. Photo by DLR 
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Beam attenuation along a slant path can be evaluated with scatterometers or 

transmissiometers (Hanrieder et al. 2015). Camera-based methods also exist (Ballestrín et 

al. 2018), and at least three such options are commercially available. Sengupta and Wagner 

(2012) and Hanrieder et al. (2016, 2020) presented models to derive the attenuation based 

on only conventional DNI measurements. Polo, Ballestrín, and Carra (2016) and Polo et al. 

(2017) estimated the attenuation based on AOD data. Mishra et al. (2020) assessed the 

sensitivity of three existing attenuation models for different atmospheric conditions and have 

evaluated the feasibility of using satellite data as additional inputs.  

The main difficulty resides in the estimation of the vertical profile of the aerosol 

concentration. An overview of measurement and modeling methods and the effect of 

attenuation on CSP plants has been presented (Hanrieder et al. 2017). 

For prefeasibility and feasibility studies, the existing attenuation models should be applied to 

obtain a first idea of the extinction levels at the site(s) of interest. The extinction varies over 

time, depending on aerosol and humidity conditions; hence, the frequencies of high AOD 

and high humidity values become relevant factors to consider. Under clear conditions, the 

existing models can provide sufficient accuracy. Under hazy conditions with insufficient local 

atmospheric data on AOD or humidity, the uncertainties can be quite high. In that case, 

measurements are recommended for reasonable plant yield estimates. For acceptance tests 

and plant operation, particularly at sites that are frequently impacted by hazy conditions, 

measurements are recommended. 

5.10 Surface Albedo 

The ratio of the total irradiance reflected to the total irradiance received by a surface is called 

the “bihemispherical reflectance,” which is also customarily known as “albedo” (ρ). In 

contrast, the term reflectance is used whenever angular properties are significant—for 

instance, in the case of a surface exhibiting specular properties. More discussion on these 

definitions appear in Gueymard et al. (2019). For solar energy applications, the albedo 

definition can be mathematically expressed as the ratio of the reflected horizontal irradiance 

(RHI) emanating from a surface to the GHI that is incident onto it: 

 ρ = RHI/GHI. (5-9) 

This definition holds for either spectral or broadband fluxes. Only the latter case is discussed 

further here because of its predominant interest in solar applications. The albedo’s physical 

possible values range from 0–1 (sometimes expressed in percentage). In nature, most land 

areas not covered by ice or snow have an albedo in the approximate range from 0.15–0.35. 

Water bodies usually have a low albedo, typically near 0.05. At the other extreme, areas 

covered with fresh snow or clean ice have a very high albedo, which could exceed 0.85. One 

difficulty is that albedo is not merely a true constant surface property but rather a property of 

the coupled surface-atmosphere system. In particular, surface albedo is a function of the 

inherent surface characteristics, atmospheric state, and illuminating conditions (Wang et al. 

2015). For that reason, in general albedo presents a high variability both in space (at scales 

from a few centimeters to hundreds of kilometers) and time (at scales from minutes to daily, 

seasonal, and even interannual); e.g., dry regions with sparse vegetation or spots of snow 

cover—see, e.g., Berg et al. (2020) and Gueymard et al. (2019, 2020).  

Figure 5-8 shows an example of the temporal variability of the albedo of a specific site at 

different timescales. Under clear skies, the diurnal albedo evolution is a function of solar 

position because the reflection process is never purely isotropic (Lambertian) in the real 

world. Conversely, albedo tends to be constant under dense overcast conditions because 
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the direct beam component then vanishes and the incident illumination is nearly isotropic. 

Additionally, daily albedo time series vary on a daily, seasonal, and interannual basis.  

 
Figure 5-8. (Top) Example of diurnal variation of albedo (30-minute intervals) for (left) 

cloudy-sky conditions and (right) clear conditions derived from the total incident and 

reflected horizontal irradiances, GHI and RHI, measured at the AmeriFlux radiometric 

station of Walnut Gulch Kendall Grasslands in Arizona, United States. (Bottom) Five 

years of daily mean albedo recorded at the same station, illustrating its seasonal and 

interannual variability 

These variations are typically related to the vegetation’s phenological state, the surface’s 

roughness and wetness, and the presence of snow or ice. Additionally, the albedo’s 

spatiotemporal variability is impacted by both the atmospheric state and the ambient 

illumination conditions through the GHI’s direct and diffuse components. In this respect, it is 

possible and convenient to define two theoretical illumination scenarios. The extreme 

situation in which there is only pure direct-beam illumination—resulting in an ideally black 

sky dome—corresponds to the conceptual case of “directional-hemispherical reflectance,” 

also known as black-sky albedo (BSA). The opposite theoretical situation is that of a 

“bihemispherical reflectance” under purely isotropic diffuse illumination, referred to as white-

sky albedo (WSA). Overall, RHI can be expressed as a combination of these individual 

components as: 

 RHI = BSA·DIR + WSA·DHI  (5-10) 

where DIR and DHI denote the direct and diffuse horizontal irradiances, respectively. 

Assuming that the diffuse illumination is purely isotropic, the actual surface albedo—

sometimes referred to as blue-sky albedo—can be interpolated as a weighted linear 

combination of its components (Lewis and Barnsley 1994; Lucht, Schaaf, and Strahler 2000; 

Roman et al. 2010): 

 ρ = WSA·K + BSA·(1 – K)  (5-11) 

where K is the diffuse fraction, DHI/GHI. Under overcast conditions, usually only the diffuse 

component is present (K1), hence ρWSA. This approximation is convenient and typically 
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used in most solar energy applications because of practical constraints and lack of detailed 

data on BSA. Most often, WSA is considered a constant value over time, such as 0.2. 

Both BSA and WSA can be determined by respective spatial integrations of the surface’s 

BRDF. This is the conceptual foundation to determine the reflectance of the target surface 

according to the geometry of the source-surface-observer directions of radiation. It is a 

function of wavelength (λ) and of the structural and optical properties of the surface. The 

BRDF attempts to describe the behavior of the naturally anisotropic scattering of the solar 

radiation at the surface-air interface. Because of the complexity, diversity, and variability of 

BRDF distributions, mathematical models are used in practice to generate a parametric 

representation of it (Lucht, Schaaf, and Strahler 2000). In addition to the precise 

determination of the angular reflectance in any direction, the BRDF framework is used in a 

large range of applications related to satellite remote sensing. 

In solar energy applications, determining surface albedo is fundamental for various reasons 

(Gueymard et al. 2019). First, radiative transfer models require albedo to account for the 

multiple reflections between the surface and the atmosphere (referred to as the 

backscattering effect) and to ultimately evaluate DHI and GHI (Ruiz-Arias and Gueymard 

2018; Sun et al. 2019; Xie, Sengupta, and Dudhia 2016). Second, in the frequent case when 

the incoming solar irradiance is modeled based on satellite imagery, the surface albedo also 

constitutes a key independent variable to estimate the dynamic range of cloud reflectance 

(Perez, Cebecauer, and Suri 2013). Third, most solar applications involve planar solar 

thermal collectors or PV modules that are tilted with respect to the horizontal, in which case 

the ground-reflected irradiance that is incident on the tilted plane must be determined. This is 

particularly important in increasingly popular bifacial PV technology, which directly exploits 

the reflected irradiance as the primary source of energy for each module’s rear side. This 

makes bifacial PV modules markedly more sensitive to the albedo magnitude and variations 

than monofacial modules; hence, reliable information about the surface albedo has become 

important to determine the most suitable PV technology at any site, to obtain reliable 

simulations of the envisioned system’s energy output, and to assess the economic feasibility 

of any solar power project. Difficulties exist because the calculation of the reflected 

irradiance on a tilted surface is generally performed following several simplifying 

assumptions that do not apply in practice (Gueymard et al. 2019; Kamphuis et al. 2020). 

There are three main sources of data on surface albedo: (1) ground measurements using 

albedometers (two pyranometers placed horizontally in opposite up and down directions, 

measuring GHI and RHI, respectively); (2) satellite estimates based on monitoring the 

reflected radiance emanating from the Earth’s surface-atmosphere system; and (3) 

predictions based on a reanalysis model. All present distinct characteristics with advantages 

and limitations.  

In bifacial PV plants, the in-plane rear-side irradiance (RPOA), must be measured or 

modeled according to IEC 61724-1. Models for the RPOA can use raytracing based on 

horizontal albedo measurements and can optionally also rely on diffuse irradiance 

measurements. The albedo measurement must be as representative for the site as possible. 

If different albedos are expected in a PV plant, several albedo measurements are needed. 

ISO TR 9901 and IEC 61724-1 provide recommendations on albedo measurements. 

Measuring the albedo on a steep slope is prone to error because the GHI measurement 

made with a pyranometer facing up and mounted horizontally then contains part of the 

radiation measured by the downward-facing pyranometer. This can lead to an 

underestimation of the albedo. In this situation, the GHI signal should be measured such that 

the radiation reflected by the ground does not affect it. The height of the albedo 

measurement should be high enough to achieve a sufficient measurement area with low 

shading losses but low enough to allow for easy maintenance access; therefore, heights 
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between 1.5 m and 2 m are recommended if the expected snow heights allow this. In 

contrast, heights of 10 m or more are necessary to evaluate the albedo over a larger ground 

area, with the goal of comparing such data with airborne or spaceborne observations, for 

instance. The area below the downward-facing pyranometer should not be shaded, and 

therefore the instrument’s mounting structure should be oriented toward the nearest pole 

and minimized. Shadows affecting the area below the downward-facing pyranometer caused 

by fences, other instruments, or solar collectors should also be minimized to avoid errors. To 

avoid parasitic specular reflections caused by metallic surfaces around, glare screens might 

also be considered to protect the downward-facing pyranometer.  

Various albedo products have been proposed and cover various geographic areas and 

periods at diverse spatiotemporal resolutions. An exhaustive table of openly accessible 

sources is available in Gueymard et al. (2019), along with their main characteristics. In 

addition, some specialized proprietary databases of surface albedo exist and are accessible 

through service providers.  

When using such databases to evaluate the specific albedo at a site during the design phase 

of a projected solar energy system, some critical questions arise: (1) Will the historical 

albedo at hand be conserved in the future, considering possible changes in the surface 

characteristics caused by the system’s construction (e.g., vegetation removal)? (2) How is 

the albedo of the specific site under scrutiny related to the albedo of the area (e.g., grid cell) 

for which information is available from these databases? The first question must be 

answered on a case-by-case basis by the designer. To address the second question, an 

analysis of the spatial variability of the albedo over the area around the site must be 

conducted. Analyses show that this spatial variability can be high in many cases (Gueymard 

et al. 2020; Wang et al. 2015), which complicates the matter because the use of spatial 

interpolation or extrapolation over inhomogeneous areas could result in incorrect results. 

When dealing with inhomogeneous surfaces at the small scale—for instance, near a solar 

power plant—methods have been proposed to evaluate the angular effects of composite 

surfaces (Ziar et al. 2019). Finally, methods of various complexity are being developed to 

determine the ground-reflected irradiance that is incident on the rear side of bifacial PV 

modules using either spectral or broadband albedo information (Berrian and Libal 2020; 

Chudinzow et al. 2019; Hansen et al. 2017; Monokroussos et al. 2020; Patel et al. 2019; 

Russell et al. 2017; Sun et al. 2018). 
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6.1 Introduction 

Understanding the long-term spatial and temporal variability of available solar resources is 

fundamental to any assessment of solar energy potential. Information derived from historical 

solar resource data can be used to make energy policy decisions, to select optimum energy 

conversion technologies, to design systems for specific locations, and to operate and 

maintain installed solar energy conversion systems. Historical solar resource data can be the 

result of in situ measurement programs, satellite remote-sensing methods, or meteorological 

model outputs. As described in the previous chapters, each type of data has different 

information content and applicability. 

This chapter summarizes historical solar resource data available around the world. It 

provides an inventory of representative sources of solar radiation data and a summary of 

important data characteristics associated with each data source (e.g., period of record, 

temporal and spatial resolutions, available data elements, and estimated uncertainties). 

Some data sets discussed in this chapter are commercial sources and might not be freely 

available. Additionally, some historical data sets that were listed in previous editions are not 

retained in this version because direct links to download them are not available. We 

recommend that users refer to previous versions of this handbook if they are interested in 

references to historical archives with no known direct source of download. 

The authors and other participants in the International Energy Agency’s Photovoltaic Power 

Systems Programme Task 16 have made every effort to make data products that are as 

useful, robust, and representative as possible; however, the responsibility for applying the 

data correctly resides with the user. A thorough understanding of the data sources, how they 

are created, and their limitations remain vital to proper application of the resource data to 

analyses and subsequent decision making. Discussions and examples of the use of several 

of these data sets for solar energy applications are presented here. Users are encouraged to 

read the pertinent sections of this chapter before applying solar resource and meteorological 

data. 

Measured solar irradiance data can provide detailed temporal information for a specific site. 

Because solar radiation measurement stations are challenging to operate and because the 

data collected are not used for routine weather forecasts, their density is low, and they have 

limited data collection records. Some examples in the United States are the National 

Oceanic and Atmospheric Administration’s (NOAA’s) Surface Radiation Budget Network 

(SURFRAD) and SOLRAD networks, the University of Oregon network, stations from the 

U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) program, 

and the National Renewable Energy Laboratory (NREL). The total number of ground stations 

measuring solar irradiance in some form and with a wide range of data quality is now more 

than 3,000 in the United States alone. These stations are operated by several interests 

producing data for varied applications (including agriculture). Links to most of those stations 

are not presented here because there is limited confidence in the data quality. For other 

parts of the world, users are requested to refer to the Baseline Surface Radiation Network 

(BSRN) network (http://bsrn.awi.de/) for high-quality data (e.g., Gueymard and Myers 2008, 

http://bsrn.awi.de/
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2009). Table 6.1 provides more details on sources of measured or partly measured 

databases. (The meteorological services of various countries might operate many 

radiometric stations, so Table 6.1 should not be considered exhaustive; furthermore, some 

of these national services do not release their data in the public domain.) An increasing 

number of photovoltaic (PV) and concentrating solar power installations now collect high-

quality solar radiation data, but those data sets are not publicly available, so they are not 

listed in this chapter.  

Satellite-based observations and mesoscale meteorological models address the needs for 

understanding the spatial variability of solar radiation resources throughout a range of 

distances. Present state-of-the-art models provide estimates for global horizontal irradiance 

(GHI) and direct normal irradiance (DNI) at spatial resolutions of 10 km or less for the United 

States and other parts of the world (see, e.g., CM SAF, the National Solar Radiation 

Database (NSRDB), SolarAnywhere, Meteonorm, PVGIS, and Solargis in Table 6.1). 

Numerical weather models can be used to produce long-term meteorological information 

when they are used by reanalysis models. These reanalysis models have spatially coarser 

resolutions and have higher uncertainty in estimating solar radiation than satellite models or 

ground measurements. Nevertheless, reanalysis data sets such as ERA5, which is the 

European Center for Medium-Range Weather Forecast’s (ECMWF’s) fifth-generation 

atmospheric reanalysis of the global climate,35 or the National Aeronautics and Space 

Administration’s (NASA’s) Modern Era Retrospective analysis for Research and 

Applications, Version 2 (MERRA-2)36 are useful sources of data because they are available 

globally and for periods longer than 30 years. The rapidly growing needs for more accurate 

solar resource information throughout shorter temporal and smaller spatial scales require the 

user to fully appreciate the characteristics of all available data, especially those from 

historical sources. 

6.2 Solar Resource Data Characteristics 

Characterizing the available solar resources for solar energy applications is important for all 

aspects of realizing the full potential of this utility-scale energy source. Energy policy 

decisions, engineering designs, and system deployment considerations require an accurate 

understanding of the relevant historical solar resource data, the ability to assess the 

accuracy of current solar measurement and modeling techniques, and forecasts of the levels 

of solar irradiance for various temporal and spatial scales. 

Measured solar irradiance data can provide information about the temporal variability at a 

specific site. Practical radiometer designs were developed in the early 1900s to determine 

the sun’s energy output based on high-altitude measurements of DNI made with 

pyrheliometers (Hulstrom 1989). To address the needs of agriculture for monitoring such 

quantities as evapotranspiration, in the 1950s the U.S. Weather Bureau (now National 

Weather Service) deployed a national radiometer network to collect GHI. Since then, both 

radiometer design and data acquisition system performance have advanced considerably. 

The earliest records of solar flux measurements were based on thermopile-type pyranometer 

signals recorded and stored on analog strip charts to determine daily amounts of solar flux 

on a horizontal surface. Today, 1-minute (or shorter) digital recordings are available from 

fast-response silicon photodiodes and improved thermopile-type pyranometers and 

                                                

 
35

 See http://climate.copernicus.eu/products/climate-reanalysis.  
36

 See https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/.  

http://climate.copernicus.eu/products/climate-reanalysis
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
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pyrheliometers that are deployed in regional measurement networks to provide solar energy 

resource data for a variety of applications. 

Historically, there have been four radiometer calibration reference scales: the Ångström 

scale (ÅS; created in 1905), the Smithsonian scale (SS; created in 1913), the international 

pyrheliometric scale (IPS; created in 1956), and the World Radiometric Reference (WRR; 

1979). The relative differences among these scales can introduce a data bias on the order of 

2%. The user should be aware of this potential bias in data measured before 1979. A 

correction is necessary to harmonize older data sets to the current scale, according to: 

 WRR = 1.026 (ÅS 1905) 

 WRR = 0.977 (SS 1913) 

 WRR = 1.022 (IPS 1956). 

Modeled solar resource data derived from available surface meteorological observations and 

satellite measurements provide estimates of solar resource potential for locations lacking 

actual measurements. These modeling methods address the needs for improved spatial 

resolution of the resource data. In the United States, the first national effort to model solar 

resources in the 1970s advanced the understanding of solar radiation distributions based on 

the then-available historical measurements at 26 locations to an additional 222 

meteorological observing stations with detailed records of hourly cloud amounts and other 

relevant data (see the entry for SOLMET/ERSATZ in Table 6.1). Today, satellite-based 

observations of clouds are used to model subhourly surface solar fluxes with a 4-km spatial 

resolution over North America and part of South America (Sengupta et al. 2018). Similar 

efforts are conducted over other parts of the world. 

6.3 Long-Term and Typical Meteorological Data Sets 

Understanding the time frame, or period of record, associated with solar resource data and 

related meteorological information is important for conducting useful analyses. These 

weather-driven variables have fluctuations that can range from seconds to years and longer. 

Long-term data can be representative of the climate if the period of record is at least 30 

years. By convention, the meteorological community has deemed that, according to the 

1933 International Meteorological Conference in Warsaw, a 30-year interval is sufficient to 

reflect longer term climatic trends and filter the short-term interannual fluctuations and 

anomalies. Climate “normals” are recomputed each decade to address temperature, 

pressure, precipitation, and other surface meteorological variables. Note that the term 

normal is not equivalent to “average” and has a specific meaning in the meteorological and 

climatological community. Namely, normal refers to the 30-year average of an observed 

parameter that is updated every 10 years (Arguez and Vose 2011); thus, the averaging 

period shifts every 10 years. 

Often, plant project developers require “typical” meteorological information related to a 

potential plant site for prefeasibility studies. A typical meteorological year (TMY) data set 

provides designers and other users with a small-size annual data set that holds 8,760 hourly 

meteorological values that typify conditions at a specific location throughout a longer period, 

such as the 30-year climatic normal. Different types of TMYs exist. Twelve typical 

meteorological months (TMMs) selected based on their similarity of individual cumulative 

frequency distributions for selected data elements comprise the TMY data set. The longer-

term distributions are determined for that month using data from the full period of record. The 

TMMs are then concatenated, essentially without modification, to form a single year with a 

serially complete data record. The resulting TMY data set contains measured and/or 

modeled time series of solar radiation and surface meteorological data, though some hourly 
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records might contain filled or interpolated data for periods when original observations are 

missing from the data archive. Further, there are many methods used to develop TMMs, as 

reviewed in Nielsen et al. (2017) and García et al. (2020). Novel TMY approaches include a 

stochastic method (Remund et al. 2012), the generation of TMYs at high temporal resolution 

(Ernst and Gooday 2019), the preparation of TMYs specifically tailored for PV applications 

(Sengupta and Habte 2019), or even customized TMYs (Sengupta, Habte, and Freeman 

2019).  

TMY data sets are widely used by building designers and others for rough modeling of 

renewable energy conversion systems. Although the TMY data are not designed to provide 

meteorological extremes, they have natural diurnal and seasonal variations and represent a 

year of typical climatic conditions for a location. A TMY data set should not be used to 

predict weather or solar resources for a particular period of time, nor is it an appropriate 

basis for evaluating real-time energy production or detailed power plant design. Rather, a 

TMY data set represents conditions judged to be typical throughout a long period, such as 

30 years. Because it represents typical rather than extreme conditions, it is not suited for 

designing systems and their components to meet the worst-case weather conditions that 

could occur at a location. Additionally, a TMY is not well suited to assess any probability of 

energy yield exceedances because the natural variability is most likely not fully described 

with its correct statistical distribution. 

6.3.1 Key Considerations 

Applying solar and meteorological data from different sources requires attention to these key 

considerations: 

 Period of record. Influenced by many factors, solar resource data vary yearly, 

seasonally, monthly, weekly, daily, and on timescales down to 1 second or so. In 

contrast, the 30-year averaging period involved in the production of climate normals is 

updated (shifted) every 10 years. For instance, the current climate normals span the 

period from 1981–2010, but soon the 1991–2020 normals will become available from 

meteorological services around the world. The normal for one period will not likely be the 

same as a normal for previous or successive periods. Another popular approach is to 

determine a TMY data set from a statistical analysis of multiyear data and eventually 

derive a single year of data that is deemed representative of a longer-term record. 

Comparative analyses must account for any natural differences that result from the 

periods when the data were acquired. 

 Temporal resolution. Solar resource data can range from annually averaged daily 

irradiation, typically used for mapping resource distributions, to 1-second samples of 

irradiance for operational time-series analyses. Other considerations depend on the data 

type.  

 Units. The unit of irradiance is W/m2. The most common unit of irradiation, or integrated 

power, is kWh/m2. The actual Système International unit for irradiation, J/m2, is rarely 

used anymore. The conversion is 1 kWh/m2 = 3.6 MJ/m2. Note that daily average 

irradiation data produced by or for climatologists are most often incorrectly reported with 

a unit of W/m2. Here, a daily irradiation of 1 W/m2 means an average irradiance of 1 

W/m2 over 24 hours, or 24 Wh/m2. Unfortunately, this can create confusion. A daily 

irradiation should be expressed in kWh/m2, not kWh/m2/day, even though this is a 

frequent mistake. 

 Spatial coverage. The area represented by the data can range from a single station, to 

a sample geographic region, to a global (world) perspective. 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data  - 3rd Edition 

6-5 

 Spatial resolution. Ground-based measurements are site specific. Current satellite 

remote-sensing estimates are representative of areas typically spanning 3 km by 3 km to 

10 km by 10 km. The “pixel” size of reanalysis data is significantly larger, at least 30 km 

by 30 km with current products. 

 Data elements and sources of the data. The usefulness of solar resource data might 

depend on the available data elements (e.g., DNI or GHI) and whether the data were 

measured, modeled, or produced from a combination of measurement and models. 

 Time stamp. There are three possible time references: Local Apparent Time (LAT, also 

known as Apparent Solar Time), Local Standard Time (LST), and Universal Time (UT). 

The former is rarely used anymore. Global databases tend to use UT, but there is no 

general rule. Moreover, for comparative purposes, it is also important to consider what 

each time stamp specifically refers to. Depending on database, it can be the start, the 

mid-point, or the end of the time period (for subdaily data). In climatology, the latter is 

standard. For more details, see Polo et al. (2019). 

 Availability. Data are distributed in the public domain, for purchase, or by license. 
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Table 6-1. Inventory of Solar Resource Data Sources, Presented in Alphabetical Order 

Database 
Period of 

Record 

Temporal 

Resolution 

Spatial  

Coverage 

Spatial 

Resolution 

Data Elements  

and Sources 
Availability 

U.S. Department of 

Energy (DOE) 

Atmospheric 

Radiation 

Measurement 

(ARM) Program  

1997–present 

20-second 

instantaneous 

samples and  

1-minute 

averages of  

2-second scans 

Southern Great 

Plains, North Slope of 

Alaska, and tropical 

western Pacific 

32 (active and 

inactive) 

 

11 stations inactive 

(7 at Southern 

Great Plains, 1 at 

North Slope of 

Alaska, and 3 at 

tropical western 

Pacific) 

GHI, DNI, DHI, DIR, UIR, and upwelling 

(reflected) shortwave irradiance. 

Measurements from the Eppley 

Laboratory, Inc., Model PSP (GHI, DHI, 

and upwelling shortwave irradiance), 

Model 8-48 (DHI after 2000), Model NIP 

(DNI), and Model PIR (DIR and UIR) 

radiometers 

DOE, ARM Climate Research 

Facility: http://www.arm.gov 

 

Data sets are labeled SIRS, 

SKYRAD, and GNDRAD. SIRS 

data form the Billings and E13 

locations are also submitted to 

the WRMC-BSRN archives: 

http://www.bsrn.awi.de/. 

Baseline Surface 

Radiation Network 

(BSRN) 

1992–present 

1 minute 

(3 minute for 

SURFRAD 

stations before 

2009) 

Global 

76 (active and 

inactive) radiometric 

stations, 17 of 76 

are either 

decommissioned or 

candidates to 

become BSRN 

stations (as of 

4/17/2020) 

The number and type of measurements 

vary by station. Basic radiation 

measurements include GHI, DNI, DHI, 

downwelling infrared irradiance, upwelling 

infrared irradiance, and upwelling 

(reflected) shortwave irradiance. 

Measurements are from radiometers of 

various manufacturers. Synoptic 

meteorological observations, upper air 

measurements, and numerous expanded 

and supporting measurements are 

available. 

The World Radiation Monitoring 

Center (WRMC) provides web-

based and FTP data access: 

http://www.bsrn.awi.de/en/home/ 

 

Australian Bureau 

of Meteorology 

(BOM) 

One-Minute Solar 

Data 

Varies 1 minute Australia 
21 radiometric 

stations 
GHI, DNI, DHI, DIR, longwave, sunshine 

http://www.bom.gov.au/climate/d

ata/oneminsolar/stations.shtml  

http://www.arm.gov/
http://www.bsrn.awi.de/
http://www.bsrn.awi.de/en/home/
http://www.bom.gov.au/climate/data/oneminsolar/stations.shtml
http://www.bom.gov.au/climate/data/oneminsolar/stations.shtml
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Database 
Period of 

Record 

Temporal 

Resolution 

Spatial  

Coverage 

Spatial 

Resolution 

Data Elements  

and Sources 
Availability 

Copernicus 

Atmospheric 

Monitoring Service 

(CAMS) McClear  

2004–present 

1 minute,  

15 minute,  

1 hour,  

1 day,  

1 month 

Global 

Various input data 

sources with 

different spatial 

resolutions are 

interpolated to the 

location of interest. 

Clear-sky global, direct, direct normal, 

diffuse irradiances; inputs describe 

atmospheric conditions (aerosols, water 

vapor, trace gases, surface reflectivity 

parameters). 

http://www.soda-pro.com/web-

services/radiation/cams-mcclear 

 

CAMS Radiation 

Service 
2004–present 

1 minute,  

15 minute,  

1 hour,  

1 day,  

1 month 

Europe/Africa/Middle 

East/Atlantic 

Ocean/eastern part of 

South America (-66° 

to 66° in both 

latitudes and 

longitudes)  

Various input data 

sources with 

different spatial 

resolutions are 

interpolated to the 

location of interest. 

All-sky GHI, DNI, DIR, DHI, and 

corresponding clear-sky irradiances; 

inputs describe atmospheric conditions 

(aerosols, clouds, water vapor, trace 

gases, surface reflectivity parameters); 

bias-corrected, and non-bias-corrected 

irradiances. 

http://www.soda-pro.com/web-

services/radiation/cams-

radiation-service 

Clean Power 

Research—Solar 

Anywhere 

1998–present 

1 hour, 

30 minute, 

15 minute, 

options for high-

resolution data 

Continental United 

States, 

Hawaii, Canada up to 

60° N, 

South America 

India, parts of the 

Middle East, parts of 

Europe 

1 km 

 

 

2.5 km,  

3 km 

 

 

2.5 km,  

1 km 

GHI, DNI, wind speed, and ambient air 

temperature 

https://www.solaranywhere.com/

solutions/solaranywhere-data/ 

 

https://www.solaranywhere.com/solutions/solaranywhere-data/
https://www.solaranywhere.com/solutions/solaranywhere-data/
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Database 
Period of 

Record 

Temporal 

Resolution 

Spatial  

Coverage 

Spatial 

Resolution 

Data Elements  

and Sources 
Availability 

Clouds and the 

Earth’s Radiant 

Energy System 

(CERES) SYN1deg 

2000–2019 

1 hour 

3 hour 

Global 1°x1° 

GHI, DHI, and DNI based on physical 

modeling and satellite-based cloud 

observations 

https://ceres.larc.nasa.gov/data/ 

 

CM SAF Cloud, 

Albedo and Surface 

Radiation Data Set 

from AVHRR Data, 

Edition 2  

(CLARA-A2) 

1982–2015 
Daily, monthly 

averages 
Global 0.25°x0.25° 

Cloud properties, surface albedo, and 

surface radiation parameters derived from 

the AVHRR sensor onboard polar-orbiting 

NOAA and MetOp satellites 

 

GHI 

https://wui.cmsaf.eu/  

CM SAF Surface 

Solar Radiation 

Data Set - Heliosat 

(SARAH), Edition 

2.1 

1983–2017 
30 minute, daily, 

monthly 

Europe, Africa, parts 

of South America 
0.05° 

Based on MVIRI/SEVIRI instruments 

onboard the Meteosat satellites; 

GHI, DNI, DIR 

https://wui.cmsaf.eu/  

CM SAF 

SARAH-2 ICDR 

2018–present 

15 minute, 

30 minute, daily, 

monthly 

Europe, Africa, parts 

of South America 
0.05° 

Based on SEVIRI instruments onboard the 

MSG satellite;  

GHI, DNI, DIR 

https://wui.cmsaf.eu/  

CM SAF Surface 

Solar Radiation 

Data Set -  

Heliosat - East 

(SARAH-E),  

Edition 1.1 

1999–2016 
1 hour, daily, 

monthly 

Most parts of Asia, 

Africa; western part of 

Australia 

0.05° 

Based on MVIRI instruments onboard the 

Meteosat IODC satellites 

 

GHI, DNI, DIR 

https://wui.cmsaf.eu/  

https://ceres.larc.nasa.gov/data/
https://wui.cmsaf.eu/
https://wui.cmsaf.eu/
https://wui.cmsaf.eu/
https://wui.cmsaf.eu/
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Database 
Period of 

Record 

Temporal 

Resolution 

Spatial  

Coverage 

Spatial 

Resolution 

Data Elements  

and Sources 
Availability 

Daymet 1980–2019 Daily 
Continental United 

States 
1 km 

GHI, air temperature (minimum and 

maximum), vapor pressure, and snow 

water equivalent  

https://daymet.ornl.gov 

DLR ISIS 

July 1983–

December 

2004 

3 hour Global 280 km by 280 km 
DNI and GHI from a radiative transfer 

model using cloud and aerosol inputs 
http://www.pa.op.dlr.de/ISIS/ 

European Center 

for Medium-Range 

Weather Forecasts 

(ECMWF) ERA5 

Reanalysis 

1979–present 1 hour Global 31 km 

Clear-sky and all-sky GHI and DIR 

UV irradiance, 

longwave irradiance, 

surface albedo 

https://cds.climate.copernicus.eu

/cdsapp - !/dataset/reanalysis-

era5-single-levels?tab=form 

EnMetSol 

1995–2019 

(1995–2004 

based on 

Meteosat First 

Generation 

(MFG); 2005–

present based 

on Meteosat 

Second 

Generation  

(MSG) 

30 minute for 

MFG,  

15 minute for 

MSG 

Continental Europe, 

Canary Islands, 

Turkey, and Israel 

2.5 km for MFG,  

1 km for MSG 
GHI, DHI, and DNI 

University of Oldenburg: 

http://www.energiemeteorologie.

de, 

available on request 

European Solar 

Radiation Atlas 

(ESRA) 

1981–1990 

Monthly and 

annual average 

daily totals 

(kWh/m
2
) 

Europe 10 km 

GHI, DNI, and DHI, sunshine duration, air 

temperatures, precipitation, water vapor 

pressure, and air pressure at several 

stations 

Les Presses MINES ParisTech: 

http://www.mines-

paristech.fr/Ecole/Culture-

scientifique/Presses-des-

mines/#54. See also 

http://www.soda-pro.com/home. 

https://daymet.ornl.gov/
http://www.pa.op.dlr.de/ISIS/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
http://www.energiemeteorologie.de/
http://www.energiemeteorologie.de/
http://www.mines-paristech.fr/Ecole/Culture-scientifique/Presses-des-mines/#54
http://www.mines-paristech.fr/Ecole/Culture-scientifique/Presses-des-mines/#54
http://www.mines-paristech.fr/Ecole/Culture-scientifique/Presses-des-mines/#54
http://www.mines-paristech.fr/Ecole/Culture-scientifique/Presses-des-mines/#54
http://www.soda-pro.com/home
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Database 
Period of 

Record 

Temporal 

Resolution 

Spatial  

Coverage 

Spatial 

Resolution 

Data Elements  

and Sources 
Availability 

Green Power Labs: 

SolarSatData 

1995–present 

(Americas) 

 

2000–present 

(Europe) 

 

2005–present 

(Asia, Australia) 

30 minute 
Americas, Asia, 

Australia, Europe 
1–4 km 

GHI, DNI, DHI, GTI, temperature, 

pressure, wind speed, ozone, water vapor, 

total cloud fraction 

 

Irradiance time series for P10, P50, P90, 

and P95 exceedance probabilities 

https://greenpowerlabs.com/ 

HelioClim V2–V5 2004–present 15 minute Europe and Africa 5 km 
Hourly and daily GHI from satellite remote-

sensing mode 

MINES ParisTech Armines 

Center for Energy and 

Processes: http://www.soda-

pro.com/home 

Historically Black 

Colleges and 

Universities Solar 

Measurement 

Network 

1985–1996 5 minute 

Southeastern United 

States: Daytona Beach, 

Florida; Savannah, 

Georgia; Itta Bena, 

Mississippi; Elizabeth 

City, North Carolina; 

Orangeburg, South 

Carolina; and Bluefield, 

West Virginia 

Six radiometric 

stations 

GHI, DNI (at three stations), DHI 

(shadowband) from measurements by the 

Eppley Laboratory, Inc., Model PSP 

pyranometers and Model NIP 

pyrheliometers mounted in automatic solar 

trackers  

(LI-COR Model 2020) 

NREL: 

https://www.nrel.gov/grid/solar-

resource/hbcu.html (includes 

quality-assessed monthly data 

files, monthly summary reports, 

and monthly irradiance plots) 

LSA SAF 2005–present 15 minute 

Europe, Africa, parts of 

Asia and South America 

(no geographic 

subsetting offered) 

≈5 km 
GHI, diffuse fraction, albedo, snow cover, 

vegetation cover 

https://landsaf.ipma.pt/en/data/cat

alogue/  

https://greenpowerlabs.com/
http://www.soda-pro.com/home
http://www.soda-pro.com/home
https://www.nrel.gov/grid/solar-resource/hbcu.html
https://www.nrel.gov/grid/solar-resource/hbcu.html
https://landsaf.ipma.pt/en/data/catalogue/
https://landsaf.ipma.pt/en/data/catalogue/
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Database 
Period of 

Record 

Temporal 

Resolution 

Spatial  

Coverage 

Spatial 

Resolution 

Data Elements  

and Sources 
Availability 

Meteonorm 1996–2015 

1-minute and  

1-hour 

 modeled data, 

 

Global 

Data from 8,350 

meteorological 

stations are 

interpolated using 

satellite data to 

establish weather 

data at any 

specified point. 

Ultimate 

resolution: 

0.0625° x 0.0625° 

Measured: monthly means of GHI, 

temperature, humidity, precipitation, wind 

speed and direction, and bright sunshine 

duration. Modeled typical years: 1-minute 

and hourly typical year radiation 

parameters (GHI, DNI, DHI, GTI, 

downwelling infrared, luminance, and UVA 

and UVB), precipitation, and humidity 

parameters (dew point, relative humidity, 

mixing ratio, psychrometric temperature). 

Radiation data from ground 

measurements blended with satellite-

based long-term averages. 

Meteotest 

https://meteonorm.com/ 

Meteonorm 

time series 

2010 

(depending on 

region) – 

current 

1-hour measured 

data 
Global (62°S to 62°N) 0.0625° x 0.0625° 

Measured time series: 

GHI from satellite, temperature, wind 

speed, humidity, precipitation, and wind 

speed from ERA5T and Swissmetnet 

Meteotest 

https://meteonorm.com/ 

National 

Aeronautics and 

Space 

Administration’s 

(NASA’s) Modern-

Era Retrospective 

Analysis for 

Research and 

Applications, 

Version 2 (MERRA-

1980–present 

1 hour 

 

Global 0.5°x0.625° 

Clear-sky and all-sky GHI, 

detailed information on clouds, 

atmospheric constituents (aerosols, water 

vapor…), weather variables (temperature, 

wind…), and surface albedo 

https://gmao.gsfc.nasa.gov/rean

alysis/MERRA-2/data_access/ 

https://meteonorm.com/
https://meteonorm.com/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
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Database 
Period of 

Record 

Temporal 

Resolution 

Spatial  

Coverage 

Spatial 

Resolution 

Data Elements  

and Sources 
Availability 

2) 

National 

Aeronautics and 

Space 

Administration’s 

(NASA’s) Prediction 

of Worldwide 

Energy Resources 

(POWER) 

July 1983–

June 2005 

Monthly and 

annual average 

daily totals 

(kWh/m
2
) 

Global 0.5x0.5° 

GHI, DNI, and DHI from a satellite remote-

sensing model. Also available: estimates 

of clear-sky GHI, DNI, and DHI and tilted 

surface irradiance, temperature, pressure, 

humidity, precipitation, and wind speed 

https://power.larc.nasa.gov/ 

National Center for 

Environmental 

Protection (NCEP)/ 

National Center for 

Atmospheric 

Research Global 

Reanalysis 

Products  

1948–current 6 hour (W/m2) Global 
2.5° 

(nominal) 

GHI and more than 80 variables, including 

geopotential height, temperature, relative 

humidity, and U and V wind components, 

in several coordinate systems, such as a 

17-pressure-level stack on 2.5 x 2.5° 

grids, 28 sigma-level stacks on 192 x 94 

Gaussian grids, and 11 isentropic-level 

stacks on a 2.5 x 2.5° grid 

University Center for 

Atmospheric Research, 

Computational and Information 

Systems Laboratory Research 

Data Archive: 

http://rda.ucar.edu/datasets/ds0

90.0/ 

National Oceanic 

and Atmospheric 

Administration’s 

(NOAA) Global 

Monitoring 

Laboratory 

(GML)/Earth 

System Research 

Laboratory (ESRL) 

Baseline Network 

Varies 1 minute Global 

Five stations: 

Hawaii, Alaska, 

California, 

Greenland, 

American Samoa 

GHI, DNI, DHI, downwelling infrared 

irradiance 

https://esrl.noaa.gov/gmd/dv/site

/index.php?program=grad  

https://power.larc.nasa.gov/
http://rda.ucar.edu/datasets/ds090.0/
http://rda.ucar.edu/datasets/ds090.0/
https://esrl.noaa.gov/gmd/dv/site/index.php?program=grad
https://esrl.noaa.gov/gmd/dv/site/index.php?program=grad
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Database 
Period of 

Record 

Temporal 

Resolution 

Spatial  

Coverage 

Spatial 

Resolution 

Data Elements  

and Sources 
Availability 

National Oceanic 

and Atmospheric 

Administration’s 

(NOAA) SOLRAD 

Network 

1995–present 

1 minute 

(15 minute before 

2001) 

Continental United 

States 

Nine stations: New 

Mexico, North 

Dakota, California, 

Wisconsin, 

Tennessee, 

Washington, Utah, 

Virginia, and Florida 

GHI, DNI, DHI, and global UVB 

NOAA, Earth Systems Research 

Laboratory, Global Monitoring 

Division, Boulder, Colorado: 

https://www.esrl.noaa.gov/gmd/g

rad/solrad/index.html 

 

Data available from: 

ftp://aftp.cmdl.noaa.gov/data/rad

iation/solrad  

National Oceanic 

and Atmospheric 

Administration’s 

(NOAA) Surface 

Radiation Budget 

Network 

(SURFRAD) 

1993–present 

Data are reported 

as  

3-minute 

averages of  

1-second 

samples before 

January 1, 2009, 

and  

1-minute 

averages on and 

after January 1, 

2009. 

Continental United 

States 

Seven permanent 

stations: Montana, 

Colorado, Illinois, 

Mississippi, 

Pennsylvania, 

Nevada, and 

South Dakota 

 

Four temporary 

stations: 

Arizona, 

Colorado, 

Oregon, and 

Vermont 

GHI, DNI, DHI, downwelling infrared 

irradiance, upwelling infrared irradiance, 

and upwelling (reflected) shortwave 

irradiance. Photosynthetically active 

radiation, solar net radiation, infrared net 

radiation, air temperature, relative 

humidity, wind speed and direction (10-m 

AGL), and all-sky images 

NOAA, Earth Systems Research 

Laboratory, Global Monitoring 

Division, in Boulder, Colorado: 

https://www.esrl.noaa.gov/gmd/gr

ad/surfrad/sitepage.html 

 

Data available from: 

ftp://aftp.cmdl.noaa.gov/data/radia

tion/surfrad/ 

 

SURFRAD data from permanent 

stations are also submitted to the 

BSRN archives: 

www.bsrn.awi.de/.  

https://www.esrl.noaa.gov/gmd/grad/solrad/index.html
https://www.esrl.noaa.gov/gmd/grad/solrad/index.html
ftp://aftp.cmdl.noaa.gov/data/radiation/solrad
ftp://aftp.cmdl.noaa.gov/data/radiation/solrad
https://www.esrl.noaa.gov/gmd/grad/surfrad/sitepage.html
https://www.esrl.noaa.gov/gmd/grad/surfrad/sitepage.html
ftp://aftp.cmdl.noaa.gov/data/radiation/surfrad/
ftp://aftp.cmdl.noaa.gov/data/radiation/surfrad/
http://www.bsrn.awi.de/
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Database 
Period of 

Record 

Temporal 

Resolution 

Spatial  

Coverage 

Spatial 

Resolution 

Data Elements  

and Sources 
Availability 

National 

Renewable Energy 

Laboratory (NREL) 

Solar Radiation 

Research 

Laboratory (SRRL) 

Measurement and 

Instrumentation 

Data Center (MIDC) 

1981–present 

5 minute 

(beginning July 

15, 1981),  

1 minute 

(beginning 

January 13, 

1999) 

Golden, Colorado 
One radiometric 

station 

GHI, DNI, DHI (from shadowband and 

tracking disk), global on tilted surfaces, 

reflected solar irradiance, UV, infrared 

(upwelling and downwelling), photometric 

and spectral radiometers, sky imagery, 

and surface meteorological conditions 

(temperature, relative humidity, barometric 

pressure, precipitation, snow cover, and 

wind speed and direction at multiple 

levels) 

http://www.nrel.gov/midc/srrl_bm

s/ 

National Solar 

Radiation Database 

(NSRDB) 1961–

1990 

1961–1990 

1 hour 

 

United States and 

territories 

239 stations (56 

stations have 

some radiation 

measurements) 

Hourly GHI, DNI, DHI, ETR, direct normal 

ETR, total sky cover, opaque sky cover, 

ceiling height, dry-bulb temperature, dew-

point temperature, relative humidity, 

atmospheric pressure, horizontal visibility, 

wind speed, wind direction, present 

weather, AOD, total precipitable water, 

snow depth, and number of days since 

last snowfall 

NREL: 

https://nsrdb.nrel.gov/data-

sets/archives.html 

National Solar 

Radiation Database 

(NSRDB) 1991–

2005 

1991–2005 

1 hour 

 

United States 

1,454 locations 

and 10-km by 10-

km grid (1998–

2005) 

Computed or modeled data: ETR on 

surfaces horizontal and normal to the sun, 

GHI, DNI, and DHI. Measured or observed 

data: total sky cover, opaque sky cover, 

dry-bulb temperature, dew-point 

temperature, relative humidity, station 

pressure, wind speed and direction, 

horizontal visibility, ceiling height, 

precipitable water, AOD, surface albedo, 

and precipitation 

NSRDB: 

https://www.ncdc.noaa.gov/data-

access/land-based-station-

data/land-based-datasets/solar-

radiation 

Data available from: 

ftp://ftp.ncdc.noaa.gov/pub/data/

nsrdb-solar/  

and https://nsrdb.nrel.gov/data-

sets/archives.html. 

http://www.nrel.gov/midc/srrl_bms/
http://www.nrel.gov/midc/srrl_bms/
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/solar-radiation
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/solar-radiation
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/solar-radiation
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/solar-radiation
ftp://ftp.ncdc.noaa.gov/pub/data/nsrdb-solar/
ftp://ftp.ncdc.noaa.gov/pub/data/nsrdb-solar/
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Database 
Period of 

Record 

Temporal 

Resolution 

Spatial  

Coverage 

Spatial 

Resolution 

Data Elements  

and Sources 
Availability 

National Solar 

Radiation Database 

(NSRDB) 1991–

2010 

1991–2010 

1 hour 

 

United States 

1,454 locations 

and 10-km by 10-

km grid (1998–

2009) 

Computed or modeled data: ETR on 

surfaces horizontal and normal to the sun, 

GHI, DNI, and DHI. Measured or observed 

data: total sky cover, opaque sky cover, 

dry-bulb temperature, dew-point 

temperature, relative humidity, station 

pressure, wind speed and direction, 

horizontal visibility, ceiling height, 

precipitable water, AOD, surface albedo, 

and precipitation 

NSRDB User’s Manual: 

http://www.nrel.gov/docs/fy12ost

i/54824.pdf 

 

Data available upon request 

from NREL. 

National Solar 

Radiation Database 

(NSRDB) 

1998–2019 

(updated 

annually) 

5 minute from 

2018 

 

Half-hourly 

Southern Canada, 

United States, and 

parts of South America 

(longitude:  

-25° E to -175° W, 

latitude:  

-21° S to 60° N). 

India 2000–2014 

4 km; 

2 km from 2018 

GHI, DNI, DHI, clear-sky DHI, clear-sky 

DNI, clear-sky GHI, cloud type, dew point, 

surface air temperature, surface pressure, 

surface relative humidity, solar zenith 

angle, total precipitable water, wind 

direction, wind speed, surface albedo 

https://nsrdb.nrel.gov 

European 

Organisation for the 

Exploitation of 

Meteorological 

Satellites 

(EUMETSAT) 

Ocean and Sea Ice 

Satellite Application 

Facility (OSI-SAF) 

2001–present 

1 hour 

 

Africa, Americas, 

Europe, western Asia 
0.05°x0.05° GHI, longwave infrared irradiance 

http://www.osi-

saf.org/?q=content/radiative-

fluxes-products 

http://www.nrel.gov/docs/fy12osti/54824.pdf
http://www.nrel.gov/docs/fy12osti/54824.pdf
https://nsrdb.nrel.gov/
http://www.osi-saf.org/?q=content/radiative-fluxes-products
http://www.osi-saf.org/?q=content/radiative-fluxes-products
http://www.osi-saf.org/?q=content/radiative-fluxes-products
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Database 
Period of 

Record 

Temporal 

Resolution 

Spatial  

Coverage 

Spatial 

Resolution 

Data Elements  

and Sources 
Availability 

Pacific Northwest 

Solar Radiation 

Data Network 

1975–present 

1 minute to 1 

hour, 

 depending on 

station and date 

Oregon, Idaho, 

Washington, Utah, 

Wyoming, Montana 

39 stations 

Varies by site and date—GHI, DNI, DHI, 

GTI, spectral irradiance, surface 

meteorological data (temperature, relative 

humidity barometric pressure, 

precipitation, precipitable water vapor), PV 

output 

http://solardat.uoregon.edu/Sola

rData.html 

Photovoltaic 

Geographical 

Information System 

(PVGIS) 

2005–2016 

1 hour 

 

Europe, Africa and 

most parts of Asia 

and America 

1-km aggregated 

to 3 arc-minutes  

(~5 km) 

 

GHI, DNI, DHI, and GTI, based on the 

CM-SAF, COSMO, NREL, and ECMWF 

databases, optional terrain shadowing. 

Also TMY data sets 

European Commission Joint 

Research Centre, Directorate for 

Energy, Transport and Climate; 

Energy Efficiency and 

Renewables Unit: 

https://ec.europa.eu/jrc/en/pvgis 

Reuniwatt—SunSat 

2004 

(depending on 

region)–

present 

10/15 minute,  

1 hour 

 

Worldwide between 

latitudes 60° N and 

60° S 

500 m to  

3 km depending 

on location 

GHI, DNI, DHI, BHI, GTI and 

corresponding clear-sky irradiance, cloud 

index, meteorological conditions 

(temperature, relative humidity, wind 

speed, pressure, aerosol optical depth, 

precipitable water, total column water 

vapor, etc.) 

https://reuniwatt.com 

Southern African 

Universities 

Radiometric 

Network (SAURAN) 

Varies 1 minute 
Botswana, Namibia, 

and South Africa 

23 radiometric 

stations 
GHI, DNI, and DHI; meteorological data https://sauran.ac.za/  

Solar Data 

Warehouse 

Varies from 5–

25 years ago to 

the present 

1 hour 

 and daily 

Continental United 

States 

More than 3,000 

radiometric 

stations 

GHI 
http://www.solardatawarehouse.

net  

Solar Energy and 

Meteorological 

1979–1983 1 minute Fairbanks, Alaska; 

Atlanta, Georgia; 

Four radiometric 

stations 

GHI, DNI, and DHI; GTI on various surfaces, 

infrared irradiances, UV and other spectral 

NREL: 

https://www.nrel.gov/grid/solar-

http://solardat.uoregon.edu/SolarData.html
http://solardat.uoregon.edu/SolarData.html
https://ec.europa.eu/jrc/en/pvgis
https://reuniwatt.com/
https://sauran.ac.za/
http://www.solardatawarehouse.net/
http://www.solardatawarehouse.net/
https://www.nrel.gov/grid/solar-resource/semrts.html
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Database 
Period of 

Record 

Temporal 

Resolution 

Spatial  

Coverage 

Spatial 

Resolution 

Data Elements  

and Sources 
Availability 

Research Training 

Sites 

Albany, New York; 

San Antonio, Texas 

irradiance (varies), and surface 

meteorological conditions (temperature, 

relative humidity, pressure, visibility, wind 

speed, and direction at 10 m, precipitation, 

etc.) 

resource/semrts.html 

Solcast 2007–present 

1, 5, 10, 15, or 30 

minute and  

1 hour 

 

Global, except polar 

areas 

1–2 km cloud 

index, scaled to 

150 m using DEM 

GHI, DNI, EBH, DIF/DHI, GTI, cloud 

opacity, solar zenith angle, solar azimuth 

angle, temperature, wind speed, wind 

direction, relative humidity, surface 

pressure, precipitable water, snow depth, 

dew point, albedo. 

Data available as time series, typical year 

with P50, P75, P90, P95, or Pxx 

exceedance probabilities, and monthly 

and annual averages 

https://solcast.com/ 

Solargis 

1994, 1999, 

2007 - present 

(depends on 

satellite region)  

1, 5, 10, 15, 30 

and 60 minute  

Global, land and 

coastal waters, 

between latitudes 65° 

N and 55° S  

Solar parameters 

at 2 to 3 km (at 

the Equator) 

enhanced to ~90 

m and ~250 m 

using SRTM-3 

DEM; Meteo 

parameters at 1 

km and coarser  

DNI, GHI, DHI (DIF), GTI, UVA, UVB, air 

temperature, dew point and wet bulb 

temperature, wind speed and direction, 

wind gust, relative humidity, air pressure, 

ground albedo, precipitable water, 

precipitation, snow depth, snow fall rate. 

Accessible as time series, TMY Pxx and 

long-term statistics 

https://solargis.com  

Solar Energy 

Mining (SOLEMI) 
1991–present 30 minute 

Europe, Africa, South 

America, Western 

Asia, Western 

Australia 

2.5 km GHI, DNI 

DLR: 

http://www.dlr.de/tt/en/desktopd

efault.aspx/tabid-

2885/4422_read-6581/ 

 

Data available upon request. 

https://www.nrel.gov/grid/solar-resource/semrts.html
https://solcast.com/
http://www.dlr.de/tt/en/desktopdefault.aspx/tabid-2885/4422_read-6581/
http://www.dlr.de/tt/en/desktopdefault.aspx/tabid-2885/4422_read-6581/
http://www.dlr.de/tt/en/desktopdefault.aspx/tabid-2885/4422_read-6581/
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Database 
Period of 

Record 

Temporal 

Resolution 

Spatial  

Coverage 

Spatial 

Resolution 

Data Elements  

and Sources 
Availability 

TMY 98-19 1998–2019 

1 hour 

 

Southern Canada, 

United States, and parts 

of South America 

(longitude:  

-25° E to -175° W, 

latitude: -20° S to 60° N) 

4 km 

GHI, DNI, DHI, cloud type, dew point, 

surface air temperature, surface pressure, 

wind direction, wind speed 

https://nsrdb.nrel.gov 

TMY2 

One year 

representative 

of the 1961–

1990 NSRDB 

data period 

1 hour 
United States and 

territories 

239 stations 

representing the 

1961–1990 NSRDB 

Same as NSRDB 1961–1991 

NREL: 

https://nsrdb.nrel.gov/data-

sets/archives.html  

TMY3 1991–2005 1 hour 
United States and 

territories 
1,020 locations 

Computed or modeled data: ETR on 

surfaces horizontal and normal to the sun, 

GHI and illuminance, DNI and illuminance, 

DHI and illuminance, zenith luminance. 

Measured or observed data: total sky cover, 

opaque sky cover, dry-bulb temperature, 

dew-point temperature, relative humidity, 

station pressure, wind speed and direction, 

horizontal visibility, ceiling height, 

precipitable water, AOD, surface albedo, and 

precipitation 

NREL: 

https://nsrdb.nrel.gov/data-

sets/archives.html 

Vaisala (formerly 

3Tier)  

Solar Time Series 

January 1997–

present 

Approx.  

30-minute 

instantaneous 

and  

1-hour averages 

Global 2 arc-min (~3 km) 

GHI, DNI, and DHI from model estimates 

based on satellite remote-sensing input 

data, temperature, wind speed and 

direction, atmospheric pressure, 

precipitable water or relative humidity 

https://www.vaisala.com/en/digit

al-and-data-services/renewable-

energy  

https://nsrdb.nrel.gov/
https://nsrdb.nrel.gov/data-sets/archives.html
https://nsrdb.nrel.gov/data-sets/archives.html
https://nsrdb.nrel.gov/data-sets/archives.html
https://nsrdb.nrel.gov/data-sets/archives.html
https://www.vaisala.com/en/digital-and-data-services/renewable-energy
https://www.vaisala.com/en/digital-and-data-services/renewable-energy
https://www.vaisala.com/en/digital-and-data-services/renewable-energy
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Database 
Period of 

Record 

Temporal 

Resolution 

Spatial  

Coverage 

Spatial 

Resolution 

Data Elements  

and Sources 
Availability 

Vortex 

 

GOES 

SARAH 

 

 

SARAH-E  

 

Himawari 

Two periods: 

2010–present; 

1995–2015 

 

 

 

1999–2015; 

 

2012–2018 

1 hour 

 

 

 

 

 

1 hour 

Americas 

Europe, Africa, 

Middle East-East 

Europe-West 

 

 

 Asia 

 

Asia-Oceania  

4–5 km 

 

 

4–5 km 

 

 

4–5 km 

 

2 km 

Only GHI, DNI derived from GHI 

 

GHI, DNI, DHI 

 

 

 

GHI, DNI, DHI 

 

GHI, DNI, DHI 

https://vortexfdc.com/ 

Western Energy 

Supply and 

Transmission 

(WEST) Associates 

Solar Monitoring 

Network 

1976–1980 15 minute 

Arizona, California, 

Colorado, Nevada, 

New Mexico, and 

Wyoming 

52 radiometric 

stations 

GHI, DNI, and dry-bulb temperature 

measured with pyranometers (Eppley 

Black and White, Eppley PSP, and the 

Spectrolab Spectrosun SR75) and 

pyrheliometers (Eppley NIP) in automatic 

solar trackers 

NREL: 

https://www.nrel.gov/grid/solar-

resource/west-manual.html 

World 

Meteorological 

Organization 

(WMO) World 

Radiation Data 

Center (WRDC) 

1964–present 

Daily totals with 

some  

1-hour 

measurements at 

a few sites 

Global 

More than 1,000 

radiometric 

stations 

Primarily daily total GHI, radiation balance, 

and sunshine duration, but some DHI and 

DNI. Some hourly measurements are 

available from a few sites. 

http://wrdc.mgo.rssi.ru  

 

https://vortexfdc.com/
https://www.nrel.gov/grid/solar-resource/west-manual.html
https://www.nrel.gov/grid/solar-resource/west-manual.html
http://wrdc.mgo.rssi.ru/
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7 SOLAR IRRADIANCE UNCERTAINTY AND DATA 
QUALITY ASSESSMENT 

Aron Habte,1 Daryl Myers,2 Stephen Wilcox,3 Stefan Wilbert,4 Christian Gueymard,5 
Marcel Šúri,6 Manajit Sengupta,1 Thomas Stoffel,3 and Frank Vignola7 

1 National Renewable Energy Laboratory 
2 National Renewable Energy Laboratory, retired 
3 Solar Resource Solutions, LLC 
4 German Aerospace Center (DLR) 
5 Solar Consulting Services 
6 Solargis 
7 University of Oregon 

 

7.1 Introduction 

A clear statement of uncertainty should accompany any comprehensive measured or 

modeled solar radiation data set to provide the necessary context to understand the 

reliability of the analysis performed using the data.  

For example, a full characterization of uncertainty provides a basis to assess confidence in 

the predicted output of a planned solar conversion system and is thus a key factor when 

determining the bankability of the project. Uncertainty is a way to specify the confidence in 

the data. It is important to determine the uncertainty using a standard methodology to 

provide authoritative results that can be relied on for analysis and comparisons. The Guide 

to the Expression of Uncertainty in Measurements (GUM) (ISO 2008) is an example of how 

to determine the uncertainty in measurements. GUM has been formalized by several 

organizations, including the International Bureau of Weights and Measurements (French 

acronym: BIPM), and published by the International Standards Organization (ISO). 

This chapter discusses the uncertainties associated with the measured or modeled solar 

resource data along with the limits on the validation of physical or empirical models that use 

such data. Precise measurement or modeling of the solar resource is complicated by the 

rapidity with which the solar irradiance can change, the changing spectral composition of the 

irradiance, and the varied environment conditions experienced during measurements. 

Even with improving instrumentation and radiation models, the measurement or modeling of 

incident irradiance can have large uncertainties, depending on circumstances. The uncertainty 

in modeled values is typically obtained by comparison with reference measurements and is 

affected by the uncertainty in the measurements. Section 7.1 summarizes the GUM 

methodology for quantifying the uncertainty for measured irradiance. Afterward, the 

uncertainty of modeled data is discussed in sections 7.2 to 7.5. Note that the uncertainty in the 

modeled data is typically obtained by comparison with reference measurements, which is why 

the section on measurements comes first. Section 7.6 addresses the automatic irradiance data 

quality assessment.  

7.2 Measurement Uncertainty 

To characterize a quantity, referred to in the GUM terminology as the measurand, it is 

necessary to provide a measure of the quantity. This characterization of the measurand is 

incomplete without supplying a quantitative statement of the associated uncertainty. This 

uncertainty provides an estimate of how well the value of the measurand is known and 
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provides a range of values that will result from measurements taken under similar 

circumstances with similar instruments. In general, the measurand has four general sources 

of uncertainty: the act of measurement, the instrument doing the measurement, the device 

recording the measurement, and the environment in which the measurements take place. 

Any measurement only approximates the quantity being measured. Each element of a 

measurement system contributes to the final uncertainty of the data. The accuracy of solar 

radiation measurements made at ground stations depends on the radiometer specifications, 

proper installation and maintenance, data acquisition method and accuracy, calibration 

method and frequency, location, environmental conditions, and possible real-time or a 

posteriori adjustments to the data. A large portion of this overview of uncertainty in 

measurements of solar radiation made at ground stations is based on Habte et al. (2014, 

2016b), Reda et al. (2011), Wilcox and Myers (2008), Myers et al. (2002), Stoffel et al. 

(2000), and Gueymard and Myers (2008a). 

7.2.1 Estimation of Calibration and Field Measurement Uncertainty  

The method to estimate uncertainty has changed significantly during the last few decades. 

The general adaptation to the current methodology takes time; hence, some outdated 

terminology and methods still appear in the literature and might be in use. Even though 

using the outdated methodologies are discouraged, short descriptions are provided to help 

users understand and correctly use uncertainty data based on older methodologies. 

Historically, uncertainty analysis treated sources of uncertainty in terms of random and bias 

error types. Random sources were related to the standard deviation or variance of measured 

data sets. Biases were estimates of deviations from a “true value” primarily based on 

engineering judgments of the measurement system performance. Total uncertainty (UTold) 

was computed as the square root of the sum of the squares for these two error types: 

 UTold = [Σ (Bias)
2
 + Σ(2·Random)

2
]
1/2 

(7-1) 

Factor 2 in the random term was necessary to “inflate” the random component and ultimately 

provide an approximate 95% confidence interval for the computed value of UTold. Factor 2 is 

equivalent to the coverage factor k in the current GUM terminology, where k≈2 for an infinite 

degree of freedom. This value assumes that the data points are normally distributed. Based 

on advancement in metrology science, the more comprehensive GUM model replaces this 

simple method. 

GUM is currently the accepted guide for measurement uncertainty (ISO 2008). Similarly, the 

method provides the expanded uncertainty for an approximate 95% confidence interval by 

multiplying the combined uncertainty by the coverage factor k (k = 1.96 for a Gaussian 

distribution for infinite degrees of freedom; it is often approximated as 2). GUM defines Type 

A uncertainty values as derived from statistical methods and Type B sources as evaluated 

by other means, such as scientific judgment, experience, specifications, comparisons, and 

calibration data. GUM defines the concept of a standard uncertainty (ustd) for each 

uncertainty type, which is an estimate of an equivalent standard deviation (of a specified 

distribution) of the source of uncertainty. To appropriately combine the various uncertainties, 

the GUM methodology uses a sensitivity coefficient (c) that is calculated from the 

measurement equation using partial derivatives with respect to each input variable in the 

equation. The combined uncertainty (uc) is computed from the Type A and Type B standard 

uncertainties summed under quadrature—the square root of the sum of the squares. GUM 

removes the historical factor of 2 and introduces the coverage factor k (which depends on 
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the known or assumed statistical distribution of uncertainties),37 which is applied to both 

types of uncertainty to compute the expanded uncertainty (UE) as:  

UE = k· uc = k· [Σ (Type B)2 + Σ (Type A)2]1/2  (7-2) 

As shown in Figure 7-1, the GUM procedure can be summarized in six steps (Habte et al. 

2016b; Reda 2011): 

1. Define the measurement equation for the calibration and/or measurement system. 
This consists of a mathematical description of the relation between sensor voltage as 
well as any other independent variables and the desired output (calibration response 
or engineering units for measurements). The two example equations used to quantify 
radiometric measurement are: 

 𝐸 =
(𝑉−𝑅𝑛𝑒𝑡∗𝑊𝑛𝑒𝑡)

𝑅
     or        𝐸 =  

𝑉

𝑅
 (7-3) 

where: 

o E = irradiance, in W m-2 (global horizontal irradiance [GHI], global tilted irradiance 

[GTI], diffuse horizontal irradiance [DHI], or direct normal irradiance [DNI]); for DNI, 

Rnet ≈0, resulting in the simplified equation on the right. 

o R = responsivity of the radiometer in μV/ (W m-2)  

o V = sensor output voltage of the radiometer in μV 

o Rnet = net infrared responsivity of the radiometer in μV/(W m−2) 

o Wnet = effective net infrared irradiance measured by a collocated pyrgeometer in 

W m−2. 

In the case of GHI, the closure equation applies: 𝐸 = DNI ∗ cos(𝑍) + DHI, where: 

o DNI = beam irradiance measured by a primary or standard reference standard 

pyrheliometer in W m−2  

o Z = solar zenith angle (SZA), in degrees or radians 

o DHI = diffuse horizontal irradiance, measured by a shaded pyranometer (W m-2). 

2. Determine the sources of uncertainty. Most sources of uncertainty are obtained from 
statistical calculations, specifications from manufacturers, and previously published 
reports on radiometric data uncertainty or professional experience. Some common 
sources of uncertainty are associated with SZA response, spectral response, 
nonlinearity, temperature response, thermal loss, data logger accuracy, soiling, and 
calibration, including the drift of the calibration constant(s). 

                                                

 
37

 k is 1.96 for a Gaussian distribution for a 95% confidence level. Generally, a 95% confidence level 
means that 95% of the values will be within the statistical limits defined by the uncertainty. 
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Figure 7-1. Measurement uncertainty estimation flowchart. Image from Habte et al. 

(2016b) 

3. Calculate the standard uncertainty, u. In this step, an individual u for each variable in 
the measurement equation is calculated using either a statistical method (Type A 
uncertainty component) or other methods (Type B uncertainty component, such as 
manufacturer specifications, calibration results, and experimental or engineering 
experience). In the GUM method, the standard uncertainties are calculated by 
dividing the expanded uncertainty of each source by the corresponding statistical 
distribution (ASTM 2017). 

A. Type A uncertainty: 

i. Type A standard uncertainty is calculated by taking repeated 
measurements of the input quantity value, from which the sample 
mean and sample standard deviation (SD) can be calculated. The 
Type A standard uncertainty (u) can then be estimated by: 

SD = √ ∑ (𝑋𝑖−𝑋 𝑛
𝑖=1 )2

𝑛−1
   (7-4) 

where n is the number of measurements, Xi is the measured value, and 𝑋  is 
the average. 

B. Type B uncertainty: 

Type B uncertainties are often provided as an expanded uncertainty (U). To 
be consistent with Type A uncertainties, the standard Type B uncertainties, u, 
are calculated from the expanded uncertainties, U. 

i. Equation for unknown statistical distribution (common assumption: 

rectangular distribution): u= U/√3, where U is the expanded 
uncertainty of a variable 
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ii. Normal distribution: u= U/k, where k is a coverage factor of 2 or, more 
exactly, 1.96 (ISO 2008) 

iii. For other statistical distributions, the applicable values for k are used. 

4. Compute the sensitivity coefficient, c. To appropriately combine the various 
uncertainties in the next step, the uncertainties must be weighed. The GUM method 
does this by calculating the sensitivity coefficients (c) of the variables in a 
measurement equation. These coefficients affect the contribution of each input factor 
to the combined uncertainty of the irradiance value; therefore, the sensitivity 
coefficient for each input is calculated by partial differentiation with respect to each 
input variable in the measurement equation. Table 7-1 shows the sensitivity 
coefficients applicable to radiation measurements. 

The sensitivity equations given in Table 7-1 are for two distinct situations. The 
calibration sensitivity is for calibrations when the reference GHI is calculated from 
reference DNI and DHI measurements. The second column is for GHI measurements 
in the field. The calibration sensitivities are related to the inverse of the GHI value, 
whereas the field sensitivities are related to the inverse of the responsivity.  

Table 7-1. Example of Computing Sensitivity Coefficients for GHI Pyranometer 

Calibration and Measurement Using Partial Derivatives 

Calibration Sensitivity Equations Field Measurement Sensitivity Equations 

𝑐𝑉 =
𝜕𝑅

𝜕𝑉
=

1

DNI cos(𝑍) + DHI
 cR=

∂GHI

∂R
=

–(V–𝑅𝑛𝑒𝑡 𝑊𝑛𝑒𝑡)

R
2

 

𝑐𝑅𝑛𝑒𝑡 =
𝜕𝑅

𝜕𝑅𝑛𝑒𝑡

=
−𝑊𝑛𝑒𝑡

DNI cos(𝑍) + DHI
 c𝑅𝑛𝑒𝑡

=
∂GHI

∂𝑅𝑛𝑒𝑡

=
–𝑊𝑛𝑒𝑡

R
 

𝑐𝑊𝑛𝑒𝑡 =
𝜕𝑅

𝜕𝑊𝑛𝑒𝑡

=
−Rnet

DNI cos(𝑍) + DHI
 c𝑊𝑛𝑒𝑡

=
∂GHI

∂𝑊𝑛𝑒𝑡

=
–𝑅𝑛𝑒𝑡

R
 

𝑐𝐷𝑁𝐼 =
𝜕𝑅

𝜕DNI
=

−(𝑉 − 𝑅𝑛𝑒𝑡  𝑊𝑛𝑒𝑡)cos(𝑍)

( DNI cos(𝑍) + DHI)2
 c𝑉=

∂GHI

∂V
=

1

R
 

𝑐𝑆𝑍𝐴 =
𝜕𝑅

𝜕𝑍
=

DNI sin(𝑍) (𝑉 − 𝑅𝑛𝑒𝑡  𝑊𝑛𝑒𝑡)

( DNI cos(𝑍) + DHI)2
  

𝑐𝐷 =
𝜕𝑅

𝜕DHI
=

−(𝑉 − 𝑅𝑛𝑒𝑡 𝑊𝑛𝑒𝑡)

( DNI cos(𝑍) + DHI)2
  

5. Calculate the combined standard uncertainty, uc. This is the combined standard 
uncertainty using the propagation of errors formula and quadrature (square root sum 
of squares) method. It is applicable to both Type A and Type B sources of 
uncertainty. Standard uncertainties (u) in Step 3 multiplied by their sensitivity factors 
(c) in Step 4 are combined in quadrature to give the combined standard uncertainty, 
uc:  







1

0

2
* )(

n

j

c cuu

 

where n is the number of uncertain variables that are used to calculate the combined 
uncertainty. 

(7-5) 
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6. Calculate the expanded uncertainty (U95). The expanded uncertainty is calculated by 
multiplying the combined standard uncertainty by the coverage factor, typically by 
applying the Student’s t-analysis to determine the appropriate value of k (typically 
1.96 for 95% and 3 for 98% confidence, respectively, for large data sets assuming a 
Gaussian distribution): 

𝑈95 = 𝑘 ∗ 𝑢𝑐. (7-6) 

These six steps, also described in Figure 7-1, demonstrate that the uncertainty quantification 

is a cycle. This means that one can use the expanded uncertainty in Step 6 as an input to a 

measurement equation. This would be the case, for example, in calculations of the 

performance ratio of solar conversion systems: to calculate the ratio of system output/solar 

input, the expanded uncertainty in Step 6 is used as an input to evaluate the denominator 

(solar input), and the cycle continues to ultimately quantify the expanded uncertainty of the 

performance ratio. 

Further, these steps are applicable to the quantification of the uncertainty in both calibration 

and field measurements. Uncertainty in measurements begins with the uncertainty in 

calibration references, calibration processes, and sensor design characteristics. For 

example, for thermopile sensors, a calibration constant is required to convert the output 

voltage to the required irradiance, as discussed in Chapter 3. The resulting uncertainty in 

calibration factors must then be combined with the influence of additional sources of 

uncertainty in the field measurement instrumentation, installation methods, data acquisition, 

and operation-and-maintenance processes (Reda 2011). Overall, note that estimates of 

uncertainties for the magnitudes of values (e.g., voltage, Rnet) need some (documented) 

experimental, theoretical, or other (specifications) source. These are the magnitudes 

adjusted in these steps—for example, in the sensitivity coefficients calculation. Such 

example data are presented in several references (Reda 2011; Habte et al. 2014; Jörgen 

and Habte 2016; ASTM 2017). Further, users need to pay close attention to the source of 

uncertainties. For instance, the SZA uncertainty includes sources of error such as accuracy 

in latitude and longitude, air pressure (for refraction corrections), or timekeeping (clock 

accuracy). The units of these variables must be treated carefully and consistently, whether 

they are percentages (such as of full scale or reading) or absolute units (such as volts, 

degrees, or Watts per square meter). Additionally, it is essential to consider the symmetry of 

the sources of uncertainty. In this section, all sources of uncertainty are considered 

symmetric (+/-); however, some other sources could be asymmetric or one-sided. For 

example, Jörgen and Habte (2016) considered nonstability and zero offset as two one-sided 

sources of uncertainty. 

The measurement of terrestrial solar radiation is traceable to the internationally accepted 

World Radiometric Reference (WRR) (ISO 2018), discussed in Chapter 3. This 

internationally recognized measurement reference is a detector-based standard maintained 

by a group of electrically self-calibrating absolute cavity radiometers. The present accepted 

inherent expanded uncertainty in the WRR is ±0.30% (Finsterle 2011). Reference cavity 

radiometers used as national and institutional standards are calibrated by comparison to the 

World Standard Group of absolute cavity pyrheliometers. The transfer of calibrations from 

the WRR to national standards results in an expanded uncertainty for these measurement 

standards of ±0.45% (Reda, Dooraghi, and Habte 2013).  

Applying the GUM procedure to the case of pyrheliometer and pyranometer calibration, 

Table 7-2 summarizes the estimated uncertainties that are typically found in practice. In 

addition, Table 7-2 identifies the typical sources of uncertainty considered for the overall 

uncertainty analysis of irradiance measurements from two types of radiometers: radiometers 

with thermopile detector and photodiode radiometers with silicon detector before the 
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application of correction functions for systematic errors. Note that the contribution to 

uncertainty caused by insufficient maintenance (alignment, leveling, cleaning, etc.) can be 

much greater than the combined uncertainties for well-maintained instruments. As explained 

in Chapter 3, instruments with clear optics (such as most thermopile radiometers) are more 

strongly affected by soiling; hence, the uncertainty related to their operation in the field 

depends on the regularity and quality of their maintenance over time. 

Table 7-2. Example of Estimated Expanded Uncertainties of Responsivities of Field 

Pyranometers and Pyrheliometers. Modified from Reda (2011) 

Type B Uncertainty 

Source 

Thermopile 

Pyranometer (%) 

Photodiode 

Pyranometer 

(%) 

Thermopile 

Pyrheliometer 

(%) 

Photodiode 

Pyrheliometer 

(%) 

Calibration
a
 3 5 2 3 

Zenith response
b
 2 2 0.5 1 

Azimuth response 1 1 0 0 

Spectral response 1 5 1.5 8 

Tilt
c
 0.2 0.2 0 0 

Nonlinearity 0.5 1 0.5 1 

Temperature response 1 1 1 1 

Aging per year 0.2 0.5 0.1 0.5 

U95  4.1 8.0 2.7 8.9 

a 
Includes zenith angle responses from 30° to 60° 

b 
Includes zenith angle responses from 0°

 
to 30°

 
and from 60°

 
to 90° 

c
 This uncertainty is set to zero for untilted radiometers. 

Detailed uncertainty analyses for high-quality field pyrheliometers can be found in Michalsky 

et al. (2011); the study in Vuilleumier et al. (2014) is similar, but it also includes field 

pyranometers. These studies show that the uncertainty of the calibration is the most 

important contribution to the overall uncertainty for well-maintained high-quality instruments. 

The calibration stability of the present commercially available pyrheliometers and 

pyranometers is generally satisfactory, as revealed by only a slight change in responsivity 

(Rs)—less than 0.1% and 0.2% per year, respectively. When finally deployed in the field, 

factors such as accuracy of solar tracking and/or leveling, data logger accuracy, cleanliness 

of the windows, and frequency of recalibration could contribute more sources of uncertainty. 

Even if these effects are kept low by following measurement best practices, expanded 

uncertainties of ±2.0%–±2.5% in field DNI measurements and ±3.0%–±5% in field GHI 

measurements have been found from a high-quality measurement system (Reda 2011). 

For rotating shadowband irradiometers (RSI) and photodiode pyranometers, one of the most 

crucial impacts on uncertainty is the spectral irradiance error. This is because silicon 

photodiode sensors detect only visible and near-infrared radiation in a limited range, 300–

1200 nm at most, and have a spectral response that varies strongly within this wavelength 

interval. Further, the role of using algorithms to reduce systematic effects and the uncertainty 

introduced by imperfect shading must be considered. A more detailed uncertainty analysis 

for RSIs following GUM can be found in Wilbert et al. (2016). The study defines a method for 

the derivation of the spectral error and spectral uncertainties and presents quantitative 

values of the spectral and overall uncertainties. The results of this detailed analysis and 

other studies such as (Wilcox and Myers 2008) indicated lower overall uncertainties than 

those presented in Table 7-2 for silicon photodiode pyranometers because the uncertainty 

for the silicon pyranometer described in Table 7-2 does not include any rigorous adjustment 
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methodology. The expanded measurement uncertainty for subhourly DNI measurements is 

approximately ±5% for a photodiode radiometer with state-of-the-art correction functions for 

systematic errors. For RSIs, GHI was found to be affected by slightly lower uncertainties 

than DNI (4%, k = 2, after application of state-of-the-art adjustment functions). Moreover, 

advanced adjustment functions were found to significantly reduce the uncertainty. 

The typical shade/unshade calibration uncertainty for any thermopile pyranometer with 

respect to a WRR reference cavity radiometer is ≈0.5% at any very narrow range (±2°–±5°) of 

SZA (Reda, Myers, and Stoffel 2008). Typically, Rs is selected as an average responsivity for a 

specified SZA (usually 45°); however, the irradiance is collected for a wide range of SZAs (0°–

90°), and the measurement uncertainty over the whole range is larger. As shown in Chapter 3, 

for some pyranometers, Rs can vary by ±3%–±10% or even more over this zenith angle 

interval. These effects then need to be combined with the field measurement influences, the 

same as with the DNI measurement uncertainty estimate (e.g., including pyranometer 

installation, data logger accuracy, cleanliness, spectral dependency, or temperature 

sensitivity). 

If only one Rs is used for a wide range of solar angles, that value is often derived for relatively 

low SZAs. The variation of responsivity with SZA and azimuth angles is typically greater for high 

SZAs; hence, large uncertainties usually occur at high SZAs. These high-SZA-related 

uncertainties occur throughout parts of the day (early morning and late afternoon) when the 

available solar resource is much smaller than typical midday values and/or when SZAs are 

smaller. Because the minimum SZAs vary throughout the year (except close to the equator), 

the uncertainty in hemispherical radiation data will vary as well. This effect is especially 

important for latitudes beyond ±45°, when SZA is rarely greater than or equal to the SZA at 

which the responsivity of the pyranometer was determined.  

Even when good measurement conditions exist, such as near midday under clear-sky 

conditions, the uncertainty in hemispherical field measurements is typically two to three times 

that of direct-beam measurements, or ±4%–±5% throughout a year, primarily because of 

seasonal variations in uncertainty. Better instrumentation design and careful applications of 

correction factors as a function of SZA are ways to improve (reduce) the uncertainty in GHI 

measurements. The alternative is to use high-quality DNI and DHI measurements using a 

tracking shading disk/ball to derive GHI from the closure equation (Michalsky et al. 1999). The 

expanded uncertainty for this calculated GHI then approaches that of DNI (±2%) for clear-sky 

measurements. One limitation of this method, however, is that it assumes “perfect” operating 

condition such as tracking for both DNI and DHI. Slight misalignment of tracking and complete 

tracker failures do happen in practice, and large errors in all three components result, unless 

they are properly detected during the quality control procedure—which is difficult in practice. 

Figure 7-2 shows the calibration traceability for pyrheliometers used to measure DNI and for 

pyranometers used to measure GHI or DHI. The figure indicates how uncertainties accumulate 

from calibration to field deployment. Broad arrow boxes show the accumulated expanded 

uncertainty at each phase of the process. The resulting uncertainty in field deployment for 

pyrheliometers is ±2.0%–±2.5% in this example, assuming regular and high-quality 

maintenance. Measurement uncertainties for pyranometers used to measure GHI in the field 

range from ±3.0%–±5% for SZAs between 30° and 60° but are higher for angles greater than 

60°, again assuming regular and high-quality maintenance. 

Calibrations of pyranometers are normally performed on the horizontal (GHI) but can also be 

performed at tilt (GTI). Pyranometers measuring GHI are calibrated on the horizontal using 

either a reference GHI or from DNI and DHI measurements. Calibration of a tilted pyranometer 

is done using a reference pyranometer under the same tilt. Tilting a pyranometer for GTI 

measurements typically alters its responsivity because of, for example, changes in convection 

patterns inside the dome or changes in thermal offset. This typically affects the calibration 
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uncertainty of GTI measurements. Some thermopile pyranometers are not designed for tilted 

measurements, and at certain times of day, direct sunlight can strike their unshaded body, 

affecting measurements. Proper shielding of the instrument’s body can reduce or eliminate this 

problem. To help evaluate the uncertainty in GTI data, the metadata of such data sets should 

include shielding information. This caveat also holds for the measurement of upwelling 

irradiance using a down-facing pyranometer. (This measurement is necessary to obtain the 

surface albedo by dividing it by GHI.) 

The calibration and assessment of calibration and field uncertainties for pyrheliometers and 

pyranometers are described in detail in national and international standards, including the 

ASTM International G167-15,38 ASTM E816-15,39 ASTM E824 - 10(2018)e1,40 ASTM G183-

15,41 ISO 9059,42 ISO 9846,43 and ISO 9847.44 

  
Figure 7-2. Calibration traceability and accumulation of measurement uncertainty for 

pyrheliometers and pyranometers (coverage factor k = 2). Image by NREL 

                                                

 
38

 See https://www.astm.org/Standards/G167.htm. 
39

 See https://www.astm.org/Standards/E816.htm.  
40

 See https://www.astm.org/Standards/E824.htm.  
41

 See https://www.astm.org/Standards/G183.htm.  
42

 See https://www.iso.org/standard/16628.html?browse=tc.  
43

 See https://www.iso.org/standard/17724.html?browse=tc.  
44

 See https://www.iso.org/standard/17725.html?browse=tc.  

https://www.astm.org/Standards/G167.htm
https://www.astm.org/Standards/E816.htm
https://www.astm.org/Standards/E824.htm
https://www.astm.org/Standards/G183.htm
https://www.iso.org/standard/16628.html?browse=tc
https://www.iso.org/standard/17724.html?browse=tc
https://www.iso.org/standard/17725.html?browse=tc
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7.3 Uncertainty Quantification of Solar Resource Estimates 

Solar radiation can be modeled in many different ways, depending on the available inputs, 

origin (ground-based or satellite-based), application requirements (e.g., clear-sky or all-sky 

conditions), and degree of detail (broadband or spectral irradiance). 

Satellite-based models estimating solar radiation can use a physics-based approach relying 

on radiative transfer modeling, an empirical or semiempirical approach relating the reflected 

radiance sensed by the satellite sensor directly to surface radiation, or a mix of both.  

Models derived using empirical or semiempirical correlations between ground-based 

irradiance measurements and reflected radiance observations from satellite sensors 

inherently carry the uncertainty of all these measurements. This uncertainty is embedded in 

the ultimate model accuracy, along with the uncertainties associated with the satellite 

sensors and the modeling process. Models based on ground-based irradiance 

measurements with 2%, 5%, or 10% uncertainty cannot have a lower uncertainty than the 

data used to derive and/or validate the model. Similarly, models based on the first principles 

of physics and radiation transfer cannot be validated or verified to a level of accuracy greater 

than that of the ground-based irradiance measurements. A thoroughly documented 

uncertainty analysis of these measurements (Gueymard and Myers 2008b, 2009; Habte et 

al. 2016a; Vuilleumier et al. 2014) is necessary to ascertain the validity of model accuracy 

claims. The effect of biases in ground-based irradiance measurements should be part of any 

model analysis. 

An understanding of the differences between the perspectives of satellite-derived irradiance 

values and ground-based measurements is essential when ground-based data are used to 

derive and validate satellite-derived irradiance values. Observations of a specific pixel (or 

grid cell) by a spaceborne radiometer ultimately provide (after substantial modeling) an 

estimate of surface radiation based on the estimated properties of those clouds and other 

atmospheric constituents spread throughout that pixel or a larger area. In contrast, surface 

irradiance observations are made by an instrument viewing the sky from a specific point. If 

the satellite pixel size is small enough, parallax errors enter into the comparison. Conversely, 

if it is too large, the radiation field over the pixel might not be homogenous enough for a 

correct comparison. Terrain effects could also influence a comparison in which cloudiness, 

elevation, and/or topographic shading could vary within a short distance. Often the data 

available for satellite modeling lack the exactitude for differentiating fine variations seen by 

ground-based measurements. This can be compounded by the fact that ground 

measurements represent an average irradiance value calculated over a fixed time interval 

(e.g., 1 min or 10 min), whereas satellite-based model predictions solely rely on snapshots 

(instantaneous observations) taken at different intervals (e.g., every 30 min). 

7.4 Historical Uncertainty Quantification Approach of Solar 
Resource Estimates from Models 

This section presents the historical uncertainty quantification approach of radiation models. 

This provides an overview of progress in satellite-based data quality. To alleviate the 

absence of any standardized method for accuracy assessment, many possible statistical 

metrics used in the literature have been reviewed (Gueymard 2014). Still, most authors 

report only the root-mean-square deviation and bias (absolute or relative). As an example, 

the model of Darnell et al. (1988) was used to evaluate surface radiation using cloud 

information from the International Satellite Cloud Climatology Project C1 cloud database. 

The results were then compared to surface observations collected by the World Radiation 

Data Center by Darnell and Staylor (1992). The root-mean-square error (RMSE) from this 

comparison was approximately 16 W m-2, and the bias (also known as mean bias error, 
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MBE) was ≈4 W m-2. Note that the interpretation of the reported source of uncertainties 

depends on the spatial and temporal resolution of the data being compared (random errors 

tend to decrease rapidly with increasing averaging period) and that the relative uncertainties 

in the modeled DNI are always greater than in GHI—opposite to what occurs with high-

quality measurements. 

According to Perez et al. (1987), satellite-based retrievals of hourly DNI were “accurate” to 

10%–12%. Later, Renné et al. (1999) and Zelenka et al. (1999) found that the target-specific 

comparison to ground-based observations had a relative RMSE of at least 20%; the time-

specific pixel-wide accuracy was 10%–12% on an hourly basis at the sites under scrutiny. 

Most uncertainties contain values that are proportional to the measured values (percentage), 

given that the measured values are within a certain range and specifications are related to a 

fixed value in W m-2. The validation of satellite-based irradiance predictions is sometimes 

performed on a daily (instead of hourly or subhourly) timescale. This might not always be 

appropriate, particularly in areas where strong morning/afternoon cloudiness asymmetries 

exist (Salazar et al. 2019). 

7.5 Current Uncertainty Quantification Approach of Solar Resource 
Estimates from Models 

To improve modeled data integrity, a comprehensive representation of the model uncertainty 

method is required. The assessment of model uncertainty attempts to replicate the 

developments made for measurement uncertainty, as detailed in Section 7.1, with the caveat 

that an equivalent of the GUM, specifically addressing modeled estimates, does not exist 

yet. It is essential to use measurements of solar radiation made at ground stations from 

regions in various climates (or even microclimates) with the goal to perform a detailed 

evaluation of the modeled data set; however, measurements of solar radiation made at 

ground stations are temporally and spatially sparse, and they are expensive to operate and 

maintain. Further, to perform an accurate evaluation of the model’s predictions, it is critical 

that these ground-based irradiance measurements be of high quality and rely on low-

uncertainty radiometers that follow the best practices for collection, operation, maintenance, 

and quality assurance. 

An important distinction between measurements and model estimates is that the latter 

actually include two separate sources of uncertainty, which in principle would need to be 

decoupled. These sources are (1) the intrinsic model’s uncertainty (caused by inadequacies 

in the model’s functions, which do not perfectly describe the physical radiation transport 

processes in the atmosphere) and (2) the error propagation uncertainty (caused by 

unavoidable imperfections in the model’s inputs, which make their way to the model’s 

outputs)]. The model itself is perfectly repeatable, but its inputs are not—all the more that a 

specific model can be used with different sets of inputs, depending on availability, location, 

period, model operator, etc. Additionally, the distinction introduced above clearly indicates 

that the term model uncertainty should not be confused with prediction uncertainty because 

the latter includes the two sources of uncertainty just described. (Hence, the prediction 

uncertainty is necessarily larger than the intrinsic model uncertainty.) Whereas the former 

can be evaluated using a reproducible theoretical approach (ideally by comparison with a 

“perfect” physical model), the latter is more difficult to establish.  

The error propagation effects can be evaluated by analyzing the model’s sensitivity to 

variations in its inputs (of supposedly known uncertainty), with an approach that has already 

been demonstrated for clear-sky radiation models (Gueymard 2003). In practice, however, 

the quality of irradiance predictions is evaluated against ground measurements that are not 

perfect and have uncertainty themselves, as discussed in Section 7.1. Hence, the prediction 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data  - 3rd Edition   

7-12 

uncertainty needs to take the measurement uncertainty into account, resulting in what could 

be called effective prediction uncertainty, which is necessarily larger than the raw prediction 

uncertainty just described. It is important to consider that the latter is not necessarily 

independent from the measurement uncertainty, which complicates the picture, as 

demonstrated by the following example. Suppose that the predictions from two models, M1 

and M2, are compared against GHI measurements obtained with a high-quality pyranometer 

of assumed 5% uncertainty (from Section 7.1). Unbeknownst to the analyst, however, that 

specific instrument is incorrectly calibrated, resulting in a systematic bias of +3% in the 

measurements. Unbeknownst to the analyst as well, M1 and M2 behave the same in terms 

of introducing randomness in their outputs, but M1 happens to be perfectly centered (no 

bias), whereas M2 is biased +3% for the specific inputs used at that specific location. The 

comparison with ground measurements would lead the analyst to the incorrect conclusion 

that M2 is better than M1 and that the latter’s uncertainty is larger than the former’s. 

Studies such as those by Habte, Sengupta, and Lopez (2017); Šúri and Cebecauer (2014); 

Wilcox (2012); Gueymard (2014); Thevenard and Pelland (2013); and Cebecauer, Perez, 

and Šúri (2011) discussed quantification methods aimed at a comprehensive representation 

of prediction uncertainty using different interpretations of the GUM method. Various error 

statistics (bias, random error metrics) can be used to evaluate the effective uncertainty of 

modeled data when also considering the uncertainty in the ground-based irradiance 

measurements.  

In the absence of a specific standard for the evaluation of prediction uncertainty, the National 

Renewable Energy Laboratory (NREL) developed a way to include these sources and derive 

the uncertainty estimate for a 95% confidence interval representing two standard deviations 

(coverage factor of ≈2): 

 𝑈95 = 𝑘 ∗ √(
𝑈𝑚𝑒𝑎𝑠

𝑘
)

2

+ (
𝑏𝑖𝑎𝑠

𝑘
)

2

+ (
RMSE

𝑘
)

2

    

where Umeas is the expanded (95% level of confidence) estimated uncertainty in ground-

based irradiance measurements (“ground truth”), and both bias and RMSE are derived from 

the model’s validation analyses. As described in Section 7.1.1, these three statistics are 

divided by k (≈2 assuming normal distribution). In this conservative approach, the resulting 

U95 might be pessimistic because RMSE includes the bias error, which is thus counted twice; 

therefore, the authors of this handbook are investigating to find statistic metrics that assist in 

quantifying the overall uncertainty, which they will report in the next edition. 

Habte, Sengupta, and Lopez (2017) determined the method of estimating the overall 

uncertainty of the modeled irradiance data in the National Solar Radiation Database 

(NSRDB) Physical Solar Model (PSM) Version 2 (1998–2015). This method was applicable 

for hourly averages, daily totals, monthly means of daily totals, and annual differences. 

Varying the time interval helps capture the temporal uncertainty of the specific modeled solar 

resource data required for each phase of a solar energy project. For instance, the annual (or 

seasonal) data uncertainty estimate is important for financial analysts during the conceptual 

phase of a project, whereas the uncertainty in hourly data is essential during the engineering 

design phase and due-diligence studies. Using the same method, Figure 7-3 shows the 

overall uncertainty of the NSRDB PSM Version 3 (1998–2017). 

As shown in Figure 7-3, an uncertainty of 5% was assumed for the measurements (red 

dashed line) and kept constant throughout the averaging time because, for radiometers, the 

main source of uncertainty does not normally change with averaging time (Habte, Sengupta, 

and Lopez 2017; Reda 2011); however, one can substitute the estimated 5% with any other 

measurement uncertainty value that would be specifically determined using the GUM 

method. It is also essential to estimate any possible systematic bias in the measurements 

(7-7) 
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because this would directly affect the model validation process, as discussed above. 

Systematic biases can be caused by the lack of repeatability of a radiometer, calibration 

error, data logger issues, etc. Such systematic errors are assumed negligible in the following 

results. 

The relative GHI bias and RMSE associated with Figure 7-3 are shown in Figure 7-4. It is 

obvious that both bias and RMSE might vary depending on the radiative climate of the 

location, among other factors. 

 
Figure 7-3. Overall uncertainty estimation at the 95% confidence interval (CI; k≈2) for 

the modeled GHI for NSRDB PSM Version 3 and under various time averages at seven 

NOAA SURFRAD locations. The Version 3 data used in this figure are from 1998–2017. 

Note: The red dashed line is the assumed uncertainty in the measurement data. Image 

by NREL 
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Figure 7-4. (Top) Relative GHI bias and (bottom) RMSE comparison results of hourly 

modeled data from the NSRDB PSM Version 3 (1998–2017) relative to irradiance 

measurements made at seven stations from the NOAA SURFRAD network 

In contrast with NREL’s Eq. 7-7, Solargis implemented a slightly different approach to 

determine uncertainty in their satellite-derived data sets by incorporating the model 

uncertainty, the uncertainty of the ground-based irradiance measurements, and the 

interannual irradiance variability:  

 𝑢combined = ±√(𝑈𝑚𝑒𝑎𝑠)2 + (𝑈𝑚𝑜𝑑𝑒𝑙)2 + (𝑈𝑖𝑛𝑡𝑒𝑟𝑎𝑛𝑛𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)2 (7-8) 

The annual solar resource is thus allowed to vary from the long-term averages. A detailed 

discussion about the relative importance of these uncertainties is provided in Cebecauer, 

Perez, and Šúri (2011). 

Following Gueymard and Wilcox (2011), Habte, Sengupta, and Lopez (2017) formalized an 

interannual variability metric as follows: 

 SD = √( 
1

𝑛
∑  𝑛

𝑖=1 (𝑎𝑖 − â)2)   (7-9) 

𝑈𝑖𝑛𝑡𝑒𝑟−𝑎𝑛𝑛𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦(%) = COV(%) =  
SD

â
∗ 100 (7-10)   

where SD is the standard deviation, and 𝑎𝑖 is the average irradiance of the ith year of the 

considered period of n years. The mean irradiance during the selected long-term period is 

represented by â. 

In parallel, the accuracy of satellite-derived modeled data can be determined using various 

other statistical indicators, such as the mean absolute error or the Kolmogorov-Smirnov test 

(Massey 1951). The Kolmogorov-Smirnov test is a rigorous nonparametric method that is 

used for benchmarking satellite-retrieved GHI and DNI against ground-based observations 

(Espinar et al. 2009; Gueymard 2014). Many methods are described in Beyer et al. (2009), 
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such as the Kolmogorov-Smirnov integral (KSI), which calculates the area differences 

between two Cumulative Distribution Frequencies to determine the deviation, for example, 

between satellite-derived data and ground measurement data. Another is the OVER method, 

which assimilates the original KSI and attempts to find values that are above a critical value. 

Unlike MBE and RMSE, OVER provides a relative frequency of exceedance situations when 

the normalized distribution of predictions exceeds the critical limit that would make it 

statistically undistinguishable from the reference distribution (Gueymard 2014). This test has 

the advantage of being nonparametric and is therefore not distribution dependent. It 

compares the two distributions of irradiance to evaluate their resemblance. In the future, it 

can be expected that more elaborate methods, such as those used in the meteorological 

community to quantify the performance of weather forecasts (Murphy 1993), will be adopted 

more often in large-scale solar resource assessment studies.  

7.6 Modeled Data Uncertainty Estimation Challenges 

Satellite-derived irradiance data sets have various embedded sources of uncertainty 

(Cebecauer, Perez, and Šúri 2011; Cebecauer, Šúri, and Gueymard 2011; Perez, 

Cebecauer, and Šúri 2013). Most importantly, irradiance values obtained from satellite-

based models use satellite observations of clouds. The satellite pixel represents a certain 

area, typically 1–100 km2. Depending on that size, some subpixel variability and cloud-

induced parallax effects could contribute to higher random errors in both GHI and DNI, as 

suggested by previous studies, e.g., Habte, Sengupta, and Lopez (2017); Cebecauer, Perez, 

and Šúri (2011); and Zelenka et al. (1999). In intermittent cloud situations, the resolution of 

satellite images has limited ability to adequately describe properties of small and scattered 

clouds. This problem can be exacerbated when a physical retrieval method is used to first 

characterize the cloud optical properties for a given pixel, which can result in actual partly 

cloudy periods being classified as cloudless, thus yielding significant positive bias in DNI, for 

instance (Salazar et al. 2019).  

In tropical rainforest climates, it is often challenging to find cloudless situations for 

characterizing the surface albedo, which is often used as a reference based on which the 

pixel’s overall cloudiness characteristics can be eventually quantified. For geostationary 

satellites at high latitudes, the low satellite viewing angles introduce errors in the detection of 

cloud position and properties (the satellite sensor most often sees clouds from the side 

rather than from the top). For intermittent cloud situations, the major part of the observed 

random errors (evaluated by RMSE statistics) is driven by inadequacies in the cloud-related 

portions of the radiative transfer algorithms. 

Adequate specification of aerosols is another area of concern (Cebecauer, Šúri, and 

Gueymard 2011). Aerosols tend to affect DNI three to four times more than GHI, depending 

on the relative proportions of absorption and scattering for the specific aerosol mixture of the 

moment and location (Gueymard 2012). For example, mineral dust is mostly scattering, 

whereas black carbon is partly absorbing. At any instant, the aerosol optical depth (AOD) 

varies spectrally, so the common use of a single broadband AOD could result in additional 

uncertainties. (See Section 5.5 in Chapter 5 for more information on AOD.) When monthly 

(or “climatological”) AOD averages are used, they could introduce significant errors in long-

term DNI estimates (Ruiz-Arias et al. 2016). This is more likely to happen over areas of 

biomass burning, urban air pollution, and dust storms, where an aerosol climatology tends to 

smooth out episodic high-AOD events; therefore, it is advantageous to use AOD data with 

daily or subdaily resolution in advanced modeling approaches (Cebecauer, Šúri, and 

Gueymard 2011; Gueymard, Habte, and Sengupta 2018). 

In regions with variable or complex landscape patterns (e.g., high spatial variability caused 

by land/water mosaics, complex urbanization, or mountains), the surface reflectance 
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properties change rapidly, both over the space and time domains and even over distances 

that are shorter than the satellite’s spatial resolution. (See Chapter 5, Section 5.11, for more 

information on this topic.) Compared to neighboring rural or natural landscapes, large urban 

or industrial areas have much higher and temporarily changing concentrations of aerosols 

and water vapor. Over mountains, rapid changes in elevation also induce rapid changes in 

the concentration of key atmospheric constituents and in cloud properties. In addition, 3D 

effects and terrain shading are local complexities that need to be considered and 

approximated by the solar radiation models. 

Another difficulty inherent to satellite-derived data sets is the poor discrimination between 

clouds and snow-covered surfaces when using only the visible imagery. This is because 

both situations have a high reflectance in the visible spectrum; hence, a clear-sky scene 

over snowy ground might look like an overcast sky, resulting in a strong overestimation or 

underestimation of both GHI and DNI, depending on the situation (Vignola and Perez 2002; 

Perez et al. 2002). One such adverse situation is known as the “Eugene syndrome” 

(Gueymard and Wilcox 2011). The use of multiple channels in the visible and infrared can 

solve this issue. 

Finally, specular reflections of significant intensity, especially from sandy deserts or 

snowy/icy surfaces during certain times of the day, could result in interpreting the satellite 

image as temporarily cloudy and thus in an underestimation of both GHI and DNI. 

Theoretically, this issue can be resolved by estimating the probability of specular reflection 

for such areas and factoring that into the calculation of surface radiation. 

7.6.1 Indicative Uncertainty of Modern Satellite-Based Models 

As an example, experience based on more than 200 validation sites shows that state-of the-

art semiempirical satellite models can estimate the annual GHI with bias ranging from ±4% 

when normalized to daytime irradiation (Cebecauer and Šúri 2012). This bias value depends 

on topography and climate. It can be higher (up to at least ±8%) in complex tropical regions; 

in areas with high atmospheric pollution, high latitudes, high mountains, and complex terrain; 

and in regions with low sun angles and the occurrence of snow. Typical bias for DNI 

estimates at a specific site is approximately twice that of GHI.  

Regarding random errors, the main sources of increased uncertainty are clouds and, to a 

lesser extent, changes in snow cover and increased dynamics of aerosols. Over arid and 

semiarid areas or during sunny seasons, the RMSE of hourly GHI values normally range 

from 7%–20%. In more cloudy regions with more intricate weather patterns, higher dynamics 

of atmospheric constituents, complex landscapes, or middle latitudes, the hourly RMSE 

increases to 15%–30%. Over high mountains, high latitudes, or during seasons with low sun 

angles and frequent occurrences of snow, the relative RMSE for GHI can be 25%–35% or 

more. Similar patterns of RMSE exist for the hourly DNI but with approximately twice the 

errors mentioned for GHI. In arid and semiarid zones, which are of the highest interest for 

concentrating solar energy technologies, RMSE for the hourly DNI ranging from 18%–30% is 

typical. In more cloudy regions, with significant dynamics exhibited by aerosols, RMSE can 

reach 25%–45%. Finally, at high latitudes and over mountains, RMSE could exceed 45%. 

With continuous progress in satellite sensors and radiation models, it can be expected that 

the accuracy in satellite-derived databases will continue to improve, as suggested by recent 

validation results (Babar, Gaversen, and Boström 2018, 2019; Bright 2019; Kamath and 

Srinivasan 2020; Shi et al. 2018; Urraca et al. 2018). In Urraca et al. (2017), satellite data 

are used to test ground measurements using the positive-quality aspects of satellite-based 

irradiance data. 
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7.7 Methods of Automated Data Quality Evaluation 

Data quality assessment is a method by which data quality can be judged based on criteria 

for a particular application. Several particular errors of meteorological data can be detected 

by automatic screening algorithms. Corresponding tests for radiation data are documented in 

a number of publications, including Espinar et al. (2011); Journée and Bertrand (2011); Long 

and Shi (2008); Longman, Giambelluca, and Nulle 2013; Maxwell, Wilcox, and Rymes 

(1993); Perez-Astudillo, Bachour, and Pomares (2016); Urraca et al. (2017); and Wilcox and 

McCormack (2011). Auxiliary data of direct interest can also be tested, as explained in 

Geuder et al. (2015). The main parameters discussed there are data logger and battery 

voltage; logger temperature; speed of ventilation units; and meteorological measurands, 

such as wind speed and pressure. Data can be compared to certain physical limits that have 

been determined to be reasonable, with redundant or complementary measurements, or with 

physical or empirical models—all of which will provide some degree of independent measure 

for a quality judgment.  

Moreover, one common method for evaluating the quality of DNI, GHI, and DHI is a three-

component closure test. The measurements of DNI and DHI can be combined 

mathematically to derive GHI, as described in Eq. 2-2a. When all three components are 

measured, measurement redundancy is apparent because any one component can be 

derived from the other two; hence, in the context of quality assurance, the expected values 

of each component can be calculated from any other two. This method helps quantify the 

relative deviation among the three components, although it does not automatically determine 

strictly which specific measurement—or measurements—increases the deviation. Even 

though one, two, or all three value(s) could be responsible for the mismatch, the magnitude 

of the mismatch could indicate the presence of a problem in the data. Moreover, operational 

knowledge of the instruments and trackers can provide valuable insight into likely problems. 

A frequent problem is caused by malfunction of the tracker. If the pyrheliometer does not 

point at the sun, DNI is ≈0 and DHI≈GHI. This situation could last for hours and can be 

incorrectly interpreted as the signature of an overcast sky. Similarly, a slightly misaligned 

tracker would cause a too low DNI and too high DHI. With this information, combined with 

the visual detection of trends in the magnitude of flagging, a data quality expert can quickly 

spot common operational problems. For example, one can visually inspect the data by 

plotting the difference between the measured and derived GHI as a function of SZA. Any 

deviation from the true cosine response of the pyranometer would become apparent and 

would be cause for concern. Based on this discussion, it is clear that the independent 

measurement of the three redundant components is a significant and important tool for data 

quality analysis, which should be strongly considered when specifying instrumentation for a 

station.45 

The three-component method is generally more reliable than a simple clear-sky data 

analysis in which some conclusions are drawn based on modeled or other expected values 

of clear-sky data. Significant day-to-day variations in clear-sky data can occur because of 

variations in atmospheric constituents, such as aerosols or water vapor; thus, such natural 

variations can make it difficult to draw conclusions about possible instrument problems 

without specific information regarding other critical atmospheric components. 

The following sections summarize two methods of automated quality checks for solar 

measurement data. In addition to the quality-control checks described here, partly similar 

                                                

 
45

 Note that even though RSIs provide three components, they measure only two of them per se—
hence preventing them access to this procedure.  

https://www.researchgate.net/researcher/2049299180_Dunia_Bachour?_iepl%5BviewId%5D=2KZLs9RlhxbXUQpADvGf15w1&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A310796513&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Luis_Martin_Pomares?_iepl%5BviewId%5D=2KZLs9RlhxbXUQpADvGf15w1&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A310796513&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
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checks must be applied during the data acquisition of measured radiation data. These 

checks are described in Chapter 3, Section 3.4.2.  

There are many other data quality-control and assessment methods as well, such as the 

Baseline Surface Radiation Network (BSRN), Management and Exploitation of Solar 

Resource Knowledge (MESOR), ENergy DOwnstReam Services (ENDORSE), 

Meteorological Data Management System (MDMS), and Copernicus Atmosphere Monitoring 

System (CAMS). It is anticipated that the next editions of this handbook will include detailed 

discussions of these and other methods. 

7.7.1 SERI QC 

The SERI QC software package was developed by the Solar Energy Research Institute 

(SERI, now NREL) to address the need for performing quality assessment on large sets of 

solar measurement data (Maxwell, Wilcox, and Rymes 1993). SERI QC and associated 

programs are available from https://www.osti.gov/biblio/1231498-seri-qc-solar-data-quality-

assessment-software.  

At the time of development, in the late 1980s, measured solar data were not common, 

although some entities recognized the need for conducting solar resource assessments, and 

some significant measurement programs were underway. SERI QC was developed largely 

using hourly measurement data from the SOLMET network established by the U.S. National 

Weather Service and the National Oceanic and Atmospheric Administration (NOAA). 

SOLMET data were collected with an hourly time step, and other smaller data sets of 5-

minute and 1-minute time steps were also used during the SERI QC development. 

SERI QC was envisioned to provide data quality assessment for one-, two-, or three-

component solar data with time resolutions from 1 minute to 1 hour. That software is not a 

stand-alone program but rather a function in the C programming language (and earlier, the 

Fortran language) that evaluates only one record of data at a single point in time (e.g., a 

single set of one-, two- or three-component measurements). The function is provided for 

users to write an analytic program that ingests the data, calls the SERI QC function, and 

then reports or otherwise uses the flags returned from the function. The SERI QC software 

package includes a sample program and a benchmarking data file. 

For three-component data, SERI QC performs the three-component closure test in the realm 

of normalized indices (i.e., Kt, Kn, and Kd). This analysis is performed in K-space to remove 

the SZA effect. Thus, in K-space, Eq. 2-2a translates into: 

 Kt = Kn + Kd (7-11) 

Or, rearranged, the deviation from this equation of component closure can be quantified as 

the residual error and represented by: 

 Ɛ = Kt – Kn – Kd (7-12) 

Perfect component closure would result in Kt – Kn – Kd = 0; hence, any nonzero value 

indicates some disagreement among the instruments, and a flag is assigned based on the 

magnitude of the disagreement. This method does not reveal which component or 

components have problems, however; it reveals only that there is some disagreement. 

Further, compensations of random deviations or systematic biases can result in a “false” 

zero value. This is the case when, for instance, the tracker is completely misaligned.  

To achieve a quality test for two-component data, a scheme was developed to exploit the 

relationship between Kn and Kt. The two values are not independent; in fact, they correlate to 

some degree because Kn is a subset of Kt (Eq. 7-11). Figure 7-5 shows this relationship by 

plotting Kn against Kt. For every value of Kt (x axis), there exists a range of valid values for Kn 

https://www.osti.gov/biblio/1231498-seri-qc-solar-data-quality-assessment-software
https://www.osti.gov/biblio/1231498-seri-qc-solar-data-quality-assessment-software


Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data  - 3rd Edition   

7-19 

(y axis). This scheme significantly narrows the range of valid combinations of Kt and Kn. (In 

the figure, three subsets of data are evaluated based on air mass.) When two measured 

components include Kd rather than either Kt or Kn, the missing value is calculated for this Kt-

Kn analysis using Eq. 7-11. 

Thus, by determining the range boundaries on the relationship, which is site specific, 

suspect data can be identified, although not with the same precision as three-component 

closure, where there is only one zero-residual solution to the equation. 

The SERI QC package includes a stand-alone executable for the Windows operating system 

called QCFIT (Figure 7-5), which uses historic data from a site to fit the bounds on expected 

values for two-component data. The QCFIT program also includes various analytic 

capabilities to investigate errant or anomalous data. 

 
Figure 7-5. Display from QCFIT program to aid in the setting boundaries for SERI QC. 

Image from NREL 

SERI QC can also perform rudimentary quality checks on one-component data by virtue of 

maximum and minimum limits set according to historical data. 

The SERI QC flagging scheme provides information about the magnitude of the error, the 

direction of the error (high or low), and what test (one-, two-, or three-component) produced 

the flag. With this information, a program that calls the SERI QC function can generate a 

report with enough information for an expert, or data quality analyst, to formulate a likely 

failure mode in the equipment (Wilcox and McCormack, 2011). Figure 7-6 shows SERI QC 

flags in the leftmost panel in gradation by severity from dark blue (low error) to red (high 

error). Plots have hour of day on the x-axis and day of month on the y-axis, allowing for an 

inspection of an entire month of data. The right three panels show the corresponding K-

space solar values for global (Kt), direct (Kn), and diffuse (Kd) to aid in identifying periods 

corresponding with the flags. 
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Figure 7-6. Example of data quality-assurance reporting using SERI-QC flags. Image 

by NREL 

7.7.2 QCRad 

The QCRad data quality software (Long and Shi 2006, 2008) aids the data quality 

assessment of large amounts of solar data from the U.S. Department of Energy’s 

Atmospheric Radiation Measurement (ARM) program. The measurements support climate 

research, and in addition to a comprehensive complement of meteorological parameters, 

they include a superset of radiation measurements beyond those typically used in renewable 

energy solar resource assessment. With many other collocated measurements available, the 

method can establish more refined physical limits for measurements. In some cases, the 

results provide diagnostics beyond the ambiguous results from the three-component closure 

test described above (which cannot determine the exact cause of disagreement).  

QCRad uses surface climate analyses and historic data to establish the probable maximum 

and minimum limits on a measurement. These tests include limits established for quality 

checks for the BSRN data (Long and Dutton 2002), and other tests rely on site-specific 

parameters that can be fine-tuned for each station. Each measurement might undergo a series 

of preliminary tests before being used in a multiple-parameter test. Different limits for GHI are 

established based on historical preponderance, physically possible, and a modeled clear-sky 

value. The diffuse measurement (DIF in ARM nomenclature) is checked for values less than 

theoretical limits, and if necessary, a correction is applied to both the diffuse and global 

measurements. If these and other tests are passed, then QCRad applies a modified three-

component closure test. Using Eq. 7-11 to calculate Kt = Kn + Kd, the Kt derived from the global 

measurement is ratioed with the calculated Kt. A ratio of 1.0 represents perfect agreement 

among the instruments, and any other value indicates some disagreement. Long and Shi 

(2008) established boundaries for that closure ratio. 

Some tests comparing global and diffuse can give information indicating the likelihood of a 

tracker failure that allows part or all the direct beam component to bypass the diffuse 
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shading apparatus and irradiate the diffuse instrument. Moreover, a few tests typically 

require a preliminary climatological analysis to establish the site-dependent coefficients to 

define reasonable limits and to identify incorrect and/or suspect reading. 

QCRad can be run at the end of each day. The program scans the whole daily time series 

and makes adjustments to the initial clear-sky irradiance estimates to account for the specific 

atmospheric conditions of that day. ARM runs QCRad in a batch processing mode on a daily 

interval once the complete data set is available from the previous day. Many QCRad tests 

produce two-tiered flag results, providing not only a qualification of severity but also in some 

cases an indication of high or low values. In the ARM processes, the flags are used to 

generate reports for the entire network, allowing an analyst to quickly scan the results and 

direct attention to stations with malfunctioning equipment. Other reports with a longer 

timescale can be used to identify errors from instrument drift or other slowly developing 

failure conditions. 

QCRad is not available by software distribution, but the algorithms and inputs are 

summarized in Long and Shi (2006, 2008). 
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8.1 Introduction 

Solar resource forecasting is critical for the operation and management of solar power plants 

and electric grids. Solar radiation is highly variable because it is driven mainly by synoptic 

and local weather patterns. This high variability presents challenges to meeting power 

production and demand curves, notably in the case of solar photovoltaic (PV) power plants, 

which have little or no storage capacity. For concentrating solar power (CSP) plants, 

variability issues are partially mitigated by the thermal inertia of the plant, including its heat 

transfer fluid, heat exchangers, turbines, and potentially coupling with a heat storage facility; 

however, temporally and spatially varying irradiance introduces thermal stress in critical 

system components and plant management issues that can result in the degradation of the 

overall system’s performance and reduction of the plant’s lifetime. The variability can also 

result in lower plant efficiencies than those that occur under operation in stable conditions 

because optimally operating the plant under variable conditions is significantly more 

challenging. For PV power plants that have battery storage, forecasts are helpful for 

scheduling the charging process of the batteries at the most appropriate time, optimizing the 

fractions of electricity delivered and stored at any instant, and thus avoiding the loss of 

usable energy. 

Solar radiation forecasting anticipates the solar radiation transients and the power 

production of solar energy systems, allowing for the setup of contingency mechanisms to 

mitigate any deviation from the required production.  

With the expected integration of increasing shares of solar power into the electric grid, 

reliable predictions of solar power production are becoming increasingly important. PV 

power represents one of the main shares of the total renewable energy, along with wind 

power generation (IRENA 2019). High penetrations of PV power generation pose several 

challenges for the stability of the electric grid because of the stochastic variability of the 

residual electric load (i.e., the difference between the energy need—or load—and the 
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distributed PV power generation, depending on meteorological conditions and sun position); 

therefore, accurate forecasting of PV power generation is required for energy scheduling and 

for balancing demand and supply. This information is essential for distribution system 

operators and transmission system operators (TSOs) as well as for aggregators and energy 

traders (Pierro et al. 2017).  

Today, PV power prediction systems are an essential part of electric grid management in 

countries that have substantial shares of solar power generation, among which Germany is 

a paradigmatic case. For example, in 2020, Germany had an installed PV power capacity of 

more than 50 GWpeak, supplying more than 50% of the total load on sunny summer days at 

noon. In this context, and according to the German Renewable Energy Sources Act,46 TSOs 

are in charge of marketing and balancing the overall fluctuating PV power feed-in, which 

requires the use of regional forecasts for the designated control areas. Additionally, optional 

direct marketing of PV power is based on forecasts for the PV power plant’s output. 

PV power is first offered on the day-ahead auction at the European Power Exchange. 

Subsequently, amendments based on updated forecasts can be made on the intraday 

market, when electricity can be traded until 30 minutes before delivery begins. Remaining 

deviations between scheduled and needed power are adjusted using balancing power. 

A similar procedure for California’s electricity market was described by Mathiesen, Kleissl, 

and Collier (2013). Also, Kleissl (2013) described the stakeholder needs from the 

perspective of independent system operators and energy traders. Hence, accurate PV 

power forecasts at different spatial and temporal scales are extremely important for cost-

efficient grid integration because large errors in the day-ahead forecast can cause either 

very high or negative prices on the intraday market, and intraday forecast errors determine 

the need for costly balancing power. 

Several studies have evaluated the added value of solar irradiance forecasting for solar 

energy applications. For example, Dumortier (2009) gave a preliminary overview of such 

applications. Many other authors have detailed specific use cases and benefits of solar 

power forecasting. The following is a nonexhaustive list: 

 In the realm of electric grids, Perez et al. (2007) evaluated the operational accuracy of 

end-use forecasts and their ability to predict the effective capacity of grid-connected PV 

power plants. 

 Kaur et al. (2016) described the benefits of solar forecasting for energy imbalance 

markets. 

 The specific needs of solar forecasting for the real-time electricity market and forecasting 

requirements from the California Independent System Operator have been examined by 

Yang, Wu, and Kleissl (2019), showing that hourly forecasts could be appropriately 

downscaled to the contemplated 15-minute resolution. 

 Rikos et al. (2008), Diagné et al. (2013), and Simoglou et al. (2014) examined the solar 

power forecasting requirements to support microgrid and island systems with respect to 

stability and power quality. More specifically, Martinez-Anido et al. (2016) evaluated the 

value of solar forecast improvements for the Independent System Operator – New 

England. 

                                                

 
46

 The German Renewable Energy Sources Act is a set of laws aimed at promoting renewable energy 
in Germany See “Renewable Energy,” Federal Ministry for Economic Affairs and Energy, 
https://www.bmwi.de/Redaktion/EN/Dossier/renewable-energy.html, accessed May 2017. 

https://www.bmwi.de/Redaktion/EN/Dossier/renewable-energy.html
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 At the power plant level, Marcos et al. (2013) described the benefits of power prediction 

to optimize a storage system that attenuates power fluctuations in large PV power plants. 

 Almeida, Perpiñán, and Narvarte (2015) explored the skill of a nonparametric method to 

predict the AC power output of PV power plants. 

 Wittmann et al. (2008) and Kraas, Schroedter-Homscheidt, and Madlener et al. (2013) 

used case studies to show the economic benefit of supplying direct normal irradiance 

(DNI) forecasts for the optimized operation strategies of CSP plants. 

 Schroedter-Homscheidt et al. (2013) evaluated the aerosol forecasting requirements for 

forecasts of concentrating solar electricity production. 

 Law et al. (2014) reviewed different DNI forecasting methods and their applications to 

yield forecasting of CSP plants. In a later publication, Law, Kay, and Taylor (2016) 

reviewed the benefits of short-term DNI forecasts for the CSP technology. 

 Hirsch et al. (2014) specifically evaluated the use of 6-hour forecasts (nowcasting) to 

operate CSP plants.  

In a broader context, different solar radiation forecasting approaches, targeted at various 

time horizons, have been developed using different input data and data processing methods. 

In the IEA PVPS context, the state of the art of solar forecasting has been addressed in a 

report for Task 14 (Pelland et al. 2013). A nonexhaustive list includes methods based on: 

 Statistical inference on ground-observed time-series (Huang et al. 2013; Lonij et al. 

2013; Voyant et al. 2014; Boland and Soubdhan 2015; Graditi, Ferlito, and Adinolfi 2016) 

 Use of cloud motion vectors (CMVs) and other cloud advection techniques on data from 

all-sky cameras and satellite imagery (Hammer et al. 1999; Perez et al. 2010; Chow et 

al. 2011; Marquez and Coimbra 2013; Quesada-Ruiz et al. 2014; Schmidt et al. 2016; 

Lee et al. 2017; Arbizu-Barrena et al. 2017; Miller et al. 2018) 

 Forecasts based on numerical weather prediction (NWP) models (Mathiesen and Kleissl 

2011; Lara-Fanego et al. 2012; Pelland, Galanis, and Kallos 2013; Ohtake et al. 2013; 

Perez et al. 2013; Jimenez et al. 2016a; Jimenez et al. 2016b) or even hybrid techniques 

(Marquez and Coimbra 2011; Marquez, Pedro, and Coimbra 2013; Perez et al. 2014; 

Dambreville et al. 2014; Wolff et al. 2016; Mazorra Aguiar et al. 2016). 

This chapter provides an overview of basic concepts of solar irradiance forecasting by 

referring to selected examples and operational models rather than reviewing the state of the 

art because such reviews can be found elsewhere, including in Lorenz and Heinemann 

(2012); Inman, Pedro, and Coimbra (2013); Kleissl, Schroedter-Homscheidt, and Madlener 

(2013), and, for PV applications, in Antonanzas et al. (2016). The evaluations and 

comparisons of different irradiance forecasting approaches focus on global horizontal 

irradiance (GHI), with DNI being discussed in less detail. Nevertheless, forecasting and, in 

particular, evaluation methods apply to DNI to some extent. A focus on DNI forecasting can 

be found in Schroedter-Homscheidt and Wilbert (2017). The selected examples presented 

below have been investigated in the context of the International Energy Agency (IEA) Solar 

Heating and Cooling Programme (SHC) Task 36 and Task 46, and Photovoltaic Power 

Systems Programme (PVPS) Task 16. 

Irradiance is a key driver for solar power output, but other environmental factors—including 

ambient temperature, air humidity, wind speed, and wind direction—have a nonnegligible 

impact on the final power yield of the plant. Ambient temperature, for instance, affects the 

PV efficiency and the thermal regime of CST plants. Humidity might also have some impact 

on CSP systems. Similarly, wind speed and especially wind gust prediction are important for 

preventing strong mechanical loads in tracking systems; therefore, the forecasting of such 
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other ancillary factors will provide tangible benefits for the effective operation of power 

plants. Forecasts of these ancillary variables, however, are not discussed here. 

8.1.1 Overview of Solar Irradiance Forecasting Methods  

Depending on the specific application and requirements regarding forecast horizon and 

spatiotemporal resolution, different forecasting methods are customarily used. From short to 

long forecasting horizons, the most important solar forecasting methods are the following: 

 Intrahour forecasts with high spatial and temporal resolution: These require on-site 

observations of irradiance and/or cloud conditions that are processed using statistical 

methods and, more recently, artificial intelligence and machine learning models, such as 

neural networks, as discussed in Section 8.3. Those that are based on solar irradiance 

measurements and, for instance, conventional autoregressive techniques might provide 

meaningful forecasts even up to a few hours ahead under relatively stable sky 

conditions; however, these methods rarely have good skill under variable sky conditions, 

given the chaotic behavior of the cloud system and the limited information contained in 

point-wise observations. In these cases, the local distribution of clouds, as gathered by 

one or more ground-based sky imagers, might enhance the forecast skill. This cloud-

related information allows for the generation of solar irradiance forecasts with a temporal 

resolution on the order of a few minutes and a spatial resolution from 10–100 m covering 

a few square kilometers around the sky imagers. The typical forecast horizon of these 

systems is from 10–20 minutes, depending on the cloud height and speed. 

 Forecasts up to 4 hours ahead: These are conventionally derived by extrapolating the 

cloud locations into the future using CMV techniques based on satellite imagery, and 

they are often referred to as nowcasts. The typical spatial resolution is from 1–5 km for 

the current generation of geostationary satellites, with forecast updates every 10–30 

minutes; see Section 8.2.1. 

 Intraday and day-ahead forecasts: These are based on NWP models, which typically 

offer higher performance for forecast horizons more than several hours and up to several 

days ahead. These models predict the evolution of the atmospheric system, including the 

formation, advection, diffusion, and dissipation of clouds. They are based on a physical 

description of the dynamic processes occurring in the atmosphere by solving and 

parameterizing the governing system of equations, and they depend on an observed set 

of initial conditions; see Section 8.2.2 for details. Current global NWP models cover the 

Earth with a spatial resolution from approximately 0.1–0.5° and a temporal resolution 

from 1–3 hours. Regional models, which are sometimes referred to as limited area 

models or mesoscale models, have a spatial resolution of a few kilometers and an 

intrahour temporal resolution in the area of interest. 

An illustration of these different forecasting methods for various spatial and and temporal 

scales is given in Figure 8-1. 

In addition to this broad classification, when historical or near-real-time on-site solar 

irradiance or PV yield observations are available, these methods can be further improved by 

combination with machine learning (hybrid methods). For NWP-based methods, particularly, 

model output statistics (MOS) techniques are often applied; see, e.g., Yang (2019a) and 

Yagli, Yang and Srinivasan (2020). These techniques are sometimes referred to as 
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statistical downscaling techniques.47 These methods learn error patterns by comparing 

forecasts and observations and use them to reduce the error of the final prediction. 

 
Figure 8-1. Illustration of different forecasting methods for various spatial and 

temporal scales. The y-axis shows the spatial resolution, and the x-axis shows the 

forecast horizon intended for the different forecasting techniques. CM-SI: cloud 

motion forecast based on sky imagers; CM-sat: cloud motion forecast based on 

satellite imagery. Statistical models apply to all forecast horizons. 

8.2 Empirical and Physical Solar Irradiance Forecasting Methods  

This section presents empirical and physical solar forecasting methods. Solar irradiance 

forecasting methods using statistical approaches and machine learning are described in 

Section 8.3. The empirical methods introduced here rely on the correlation between the 

cloud structures, atmospheric conditions, and solar irradiance. When using satellite data to 

calculate solar irradiance with radiative transfer models, wind fields from NWP models are 

used for cloud advection. For physical solar irradiance forecasting methods, various NWP 

models are discussed.  

8.2.1 Irradiance Forecasting with Cloud Motion Vectors 

At timescales from a few minutes to a few hours, horizontal advection has a strong influence 

on the temporal evolution of cloud patterns, with the shape of clouds often remaining quite 

stable. Here, the spatial scale is also extremely important because small-scale cloud 

structures change faster than larger structures. In these situations, techniques for detecting 

clouds and their motion trajectories, referred to as CMV techniques, are used to provide 

valuable information for irradiance forecasting. Obviously, the performance of these 

forecasting methods degrades as the importance of local processes of cloud formation and 

dissipation, such as strong thermally driven convection, increases. 

CMV-based techniques consist of the following basic steps: 

                                                

 
47

 The application of regional NWP models to global model output is known as a dynamic 
downscaling technique. 
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 Images with cloud information are derived from satellite- or ground-based sky-imager 

measurements. 

 Assuming stable cloud structures and optical properties, the CMVs are determined by 

identifying matching cloud structures in consecutive cloud images.  

 To predict future cloud conditions, the CMVs are applied to the latest available cloud 

image assuming cloud speed persistence. 

 Solar irradiance forecasts are calculated from the predicted cloud structures. 

 

 
Figure 8-2. Cloud information from ASI: (upper left) original image; (upper right), 

cloud decision map; and (bottom), shadow map with irradiance measurements. Sky 

image and irradiance measurements were taken in Jülich, Germany, on April 9, 2013, 

at 12:59 UTC in the framework of the HD(CP)2 Observational Prototype Experiment 

(HOPE) campaign (Macke and HOPE-Team 2014). Images from the University of 

Oldenburg 
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8.2.1.1 Forecasting Using Ground-Based All-Sky Imagers 

Solar irradiance forecasts at subhourly scales with high temporal and spatial resolutions can 

be derived from ground-based all-sky imagers (ASIs). Such cameras are installed 

horizontally and photograph the whole sky above them (see Figure 8-2, upper left image). 

ASIs are at times also called whole-sky imagers or sky imagers. The word imager is 

sometimes replaced by the term camera, even though they are not strictly identical. In the 

IEA PVPS Task 16, the term ASI is normally used. 

ASIs can capture sudden changes in irradiance, which are often referred to as ramps, at 

temporal scales from seconds to minutes (Figure 8-3). Cloud fields sensed from ASIs or 

from an assembly of ASIs can be resolved in high detail (e.g., 10 x 10-m resolution), allowing 

the partial cloud cover on large PV installations to be modeled and forecasted (see Figure 8-

2). The maximum predictable horizon strongly depends on cloud conditions (i.e., cloud 

height and velocity), and it is constrained by the cloud speed and the field of view of the 

ASIs. This forecast horizon is typically in the range of 10 minutes, but it can reach 30 

minutes in some cases. 

 
Figure 8-3. Example of 5-minute-ahead GHI forecast using a sky imager. Location: 

University of California, San Diego, November 14, 2012. Image from the University of 

California, San Diego, Center for Energy Research 

Currently, there is no defined standard for sky-imaging hardware, camera calibration, or 

image-processing techniques. Systems in use include commercially available, low-cost, 

webcams or surveillance cameras and systems developed specifically for sky imaging; e.g., 

Urquhart et al. (2015). Most systems use digital RGB (red-green-blue) cameras with fish-eye 

lenses and therefore consider visible radiation, although some systems rather work with 

infrared cameras, which are more expensive. In particular, older RGB systems and some 

infrared cameras use a downward-looking camera that takes photos of an image of the sky 

that appears on a roughly spherical upward-looking mirror. (This is where the term imager 

comes from.) This concept—unlike the smaller lens or dome of fish-eye cameras—has the 

disadvantage that the whole mirror must be cleaned. Moreover, some older systems use 

sun-tracked “shadowbands” to prevent the direct sunlight from reaching the camera. This 

can reduce lens flare-induced saturated areas in the photos, but the shadowband also 

covers a noticeable part of the image. Because the required tracking of the shadowband 

entails higher costs and can lead to system failures, shaded devices have been uncommon 

in recent years.  
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The operation of all ASI-based forecasts typically involves these five steps: 

1. Take images of the sky and detect which pixels show clouds and which do not. 

2. Detect the cloud motion in image series. 

3. Geolocate the clouds, including cloud height (if irradiance maps are forecasted). 

4. Project the shadow on the ground or determine whether a shadow is at the location 
of the sky imager (for the current and future cloud positions).  

5. Estimate the radiative effect of the clouds on the ideal cloudless DNI, GHI, or GTI 
(global tilted irradiance). 

Machine learning methods are used in some ASI systems for these individual tasks. Some 

ASI systems do not follow these steps and instead use machine learning methods to directly 

connect image series to the current and future GHI at the site of the camera (Pierer and 

Remund 2019).  

Cloud detection (which is often also referred to as cloud segmentation) from ASI 

observations is performed by evaluating different image properties. The red-to-blue ratio 

(RBR) or multicolor criteria (Kazantzidis et al. 2012) have been used as a main indicator for 

clouds because of their different spectral-scattering properties (high RBR) compared to 

clear-sky (low RBR) conditions (Shields, Johnson, and Koehler 1993; Long and DeLuisi 

1998). Binary cloud decision maps (Figure 8-2, top right) can be derived based on threshold 

procedures. Evaluating the RBR in relation to a clear-sky library (Chow et al. 2011; Shaffery 

et al. 2020) has proven helpful to account for a nonuniform clear-sky signal over the sky 

hemisphere that depends on the position of the sun and the turbidity of the atmosphere 

(Ghonima et al. 2012). Cloud detection is particularly difficult in the circumsolar and solar 

disk regions because of saturated pixel information that have high RBR values for not only 

cloudy but also clear-sky conditions. High potential has been seen in machine learning-

based segmentation (Hasenbalg et al. 2020). 

Detecting cloud motion is the next step to derive irradiance forecasts. For instance, Chow et 

al. (2011) identified cloud motion based on a normalized cross-correlation procedure—in 

other words, by maximizing the cross-correlation between shifted areas in two consecutive 

images. In contrast, Quesada-Ruiz et al. (2014) proposed a discretization method (the sector 

method) of the cloud image that helps to derive both the direction and speed of clouds. 

Alternatively, cloud movement can be analyzed by applying optical flow techniques to 

subsequent images (Lucas and Kanade 1981; Wood-Bradley, Zapata, and Pye 2012). The 

derived CMVs are then used to cast the observed cloud scenes into the future. For point-

wise forecasts at the sky-imager location, information about cloud height is not required 

because the cloud movement can be parameterized in terms of “pixels per second.” In 

contrast, for applications requiring mapping cloud shadows, the cloud speed derived using 

CMVs needs to be expressed in meters per second; this requires knowing the cloud height, 

which cannot be derived using a single ASI.  

The multiple options to determine cloud height include the application of two or more ASIs, 

ceilometers, distributed radiometers, satellite methods, and NWP data. In particular, the 

most accurate information on cloud-base height directly above the instrument is currently 

obtained using ceilometers (Arbizu-Barrena et al. 2015), which are typically employed at 

airport weather stations; however, the different clouds seen in a sky image can have 

different cloud heights, and the ceilometer measures only the cloud height directly above it. 

Thus, the applicability of ceilometers for this purpose strongly depends on the particular 

cloud arrangement. Retrieving the cloud-top height from satellite images gives spatially 

continuous information but shows large uncertainties. Different methods to determine cloud 

height using combined information from more than one ASI are described by Nguyen and 
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Kleissl (2014) and Wang, Kurtz, and Kleissl (2016). Some of these methods allow deriving 

different cloud heights for the individual clouds seen in the sky image (Peng et al. 2015). 

Additionally, the combination of one ASI’s CMV in pixels per second with another device’s 

absolute CMV in meters per second can be used to determine the cloud height. Spatially 

distributed radiometers can be used to derive CMVs in meters per second, as described by 

Wang, Kurtz, and Kleissl (2016) and Kuhn et al. (2017a). A system using two ASIs can 

achieve higher accuracy than the application of NWP and distributed radiometers (Kuhn et 

al. 2018). 

Cloud shadow maps at the surface (see Figure 8-2, bottom) are produced by projecting the 

forecasted cloud scenes with their assigned height using information about the position of 

the sun and a digital elevation model. The impact of the projection method on solar forecast 

accuracy can be large. Local irradiance or PV power measurements can be used to estimate 

the effect of the clouds on irradiance or PV power. Urquhart et al. (2013) analyzed the 

frequency distributions of PV power normalized to clear-sky conditions to determine a clear 

and a cloudy mode and to assign them to shaded and unshaded cells, respectively. Schmidt 

et al. (2016) used the clear-sky index derived from pyranometer measurements to determine 

the forecasted all-sky GHI. Similarly, Blanc et al. (2017) used the beam clear-sky index 

determined from the last 30 minutes of pyrheliometer measurements to derive the cloud 

transmittance. Additional information on cloud type in the monitored scene indicates cloud 

optical thickness and cloud height and can be obtained with cloud classification algorithms or 

by using infrared and thermographic sky imagers. Ghonima et al. (2012) proposed a method 

to differentiate thin and thick clouds for various atmospheric conditions using a clear-sky 

library. Gauchet et al. (2012) proposed using a regression model in combination with a clear-

sky model to estimate the surface solar irradiance from segmented sky images with 

information about clear-sky areas; bright and dark clouds; circumsolar area; and solar disk. 

This specific segmentation is made to optimally accommodate various luminance thresholds. 

Instead of using only one or a few ASI systems, networks of approximately 10 or more ASIs 

can be created to increase the spatial coverage, the forecast horizon, and the accuracy of 

observations. The combination of several ASIs can provide a more accurate 3D 

reconstruction of the cloud field (Mejia et al. 2018). Also, the combination of several ASI-

derived irradiance maps or intermediate results (e.g., segmentation and cloud height) can be 

used to improve the nowcasts (Blum et al. 2019). In addition to irradiance nowcasting, ASIs 

have many other applications that are relevant to meteorology and solar energy. Deriving 

GHI and/or DNI from sky images is discussed by Schmidt et al. (2016), Chauvin et al. 

(2018), Kurtz and Kleissl (2017), and Gauchet et al. (2012). Estimating the sky radiance 

distribution is also possible (Chauvin et al. 2015). Further, the aerosol optical depth (AOD) 

can be retrieved from ASIs as well (e.g., Olmo et al. 2008 and Kazantzidis et al. 2017). 

Another camera-based nowcasting method uses so-called shadow cameras installed at 

elevated positions, such as on towers or mountains, that take images of the ground around 

their position (Kuhn et al. 2017a). In such photos, cloud shadows can be detected, and the 

brightness of the pixels contains information on the irradiance at the pixel of interest. Unlike 

ASIs, these systems have the advantage that no modeling of the clouds is required to obtain 

irradiance maps; however, the development of shadow-camera systems is still in an early 

phase compared to ASI systems. 

8.2.1.2 Satellite-Based Forecasts 

Forecasts up to approximately 6 hours ahead require wide-area observations of cloud fields. 

For example, assuming a maximum cloud velocity of 160 km/h, a region of approximately 

2,000 km by 2,000 km would need to be monitored if the goal is to track any arriving cloud 6 

hours ahead. Satellite data with broad coverage are appropriate sources for these horizons. 
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Cloud and irradiance information from satellite images can be derived by a variety of 

methods (see Chapter 4). In principle, all of them can be applied to cloud predictions using 

CMVs to obtain forecasts of solar irradiance. In addition, multiple methods exist to derive 

CMVs, as described in Section 8.2.1.1 for ASIs. Methods to calculate CMVs from satellite 

images have also been developed and are routinely used in operational weather forecasting, 

where CMVs are used to describe wind fields at upper levels in the atmosphere in NWP 

models. 

Satellite-based nowcasting schemes for solar irradiance forecasts have been developed 

mostly in the past decade based on CMVs or sectoral cloud tracking (Hammer et al. 2003; 

Schroedter-Homscheidt and Pulvermüller 2011). The satellite-based forecasting scheme 

from the University of Oldenburg in Germany (Lorenz, Hammer, and Heinemann 2004; 

Kühnert, Lorenz, and Heineman 2013) is introduced here as an example of such a system. It 

uses images of the geostationary Meteosat Second Generation (MSG) satellites (see 

Chapter 4). The semiempirical HELIOSAT method (Hammer et al. 2003) is applied to obtain 

information about clouds and irradiance. A characteristic feature of the method is the 

dimensionless cloud index, which provides information about cloud transmittance. 

CMVs are derived by identifying corresponding cloud patterns in two consecutive images 

(Figure 8-4). Rectangular areas—the “target areas”—are defined with an approximate size of 

90 km by 90 km. This is large enough to contain information about temporally stable cloud 

structures and small enough that cloud motion for this area can be described by a single 

vector. Mean square pixel differences among target areas in consecutive images (n0 and n-1) 

are calculated for displacements in all directions (Figure 8-4, a–c). The maximum possible 

displacement (“search area”) is determined by the maximum wind speeds at typical cloud 

heights. The displacement that yields the minimum mean square pixel difference for a given 

target area is assigned as a motion vector (Figure 8-4, d). The derived motion vectors are 

applied to the cloud index image, n0, to predict future cloud conditions. A smoothing filter is 

applied to the predicted cloud index image to eliminate randomly varying small-scale 

structures that are hardly predictable. Finally, solar irradiance is derived from the predicted 

cloud index images using the HELIOSAT method (see Chapter 4). 

The SolarAnywhere short-term forecasting scheme (Perez and Hoff 2013) for the United 

States is based on Geostationary Operational Environmental Satellite (GOES) imagery and 

follows a similar approach to detect cloud motion. It is also based on a semiempirical cloud 

index method (see Chapter 4). In parallel, Solargis has developed a CMV short-term 

forecasting scheme that is run under the principles just described but incorporates a 

multiresolution treatment of cloud structures. Another method—presented by Schroedter-

Homscheidt and Pulvermüller (2011)—discriminates between tracking optically thin cirrus 

and tracking optically thick cumulus or stratus with respect to the need for increased 

accuracy in direct irradiance nowcasting aimed at concentrating technologies. 

Müller and Remund (2014) proposed a method that combines cloud index values retrieved 

from MSG satellites with wind fields from a NWP model. The wind fields are predicted with 

the Weather Research and Forecasting (WRF) model (Skamarock et al. 2005) with hourly 

resolution and are applied to the forward propagation of the observed cloud patterns from 

the satellite imagery. Information about the height of the monitored clouds is needed to 

determine the corresponding NWP model’s pressure level. Müller and Remund (2014) 

assumed fixed cloud heights for this purpose. An advantage of the application of NWP wind 

fields over satellite-derived CMVs is the potential to describe changes in the direction and 

speed of cloud movement during the extrapolation process. 
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Figure 8-4. Schematic representation of the CMV derivation using satellite images. 

Images reproduced from Kühnert et al. (2013) 

A method for satellite-based short-term forecasting using a physical cloud and irradiance 

retrieval scheme was introduced by Miller, Heidinger, and Sengupta (2013) and Miller et al. 

(2018). The method processes GOES satellite observations with the National Oceanic and 

Atmospheric Administration (NOAA) Pathfinder Atmospheres Extended (PATMOS-x) 

retrieval package (Heidinger et al. 2014), which is a stand-alone radiative transfer code, and 

combines them with wind field data from the Global Forecast System (GFS) model. Cloud 

properties are retrieved with PATMOS-x in a first step. Next, the cloud fields are advected 

using GFS winds at the vertical level matching the cloud-top height as retrieved from 

PATMOS-x. Finally, solar irradiance at the surface is calculated with radiative transfer 

calculations using predicted cloud properties and additional atmospheric parameters. 

Another satellite-based irradiance scheme that is based on cloud physical properties (CPPs) 

is the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) CPP method, which uses 

the SEVIRI instrument onboard the MSG satellites. The method is based on advecting the 

cloud properties and is used to forecast both GHI and DNI. Details about the CPP surface 

solar forecasting algorithm and its evaluation are presented by Wang et al. (2019). The 

forecast horizon of this method is from 0–4 hours at a 15-minute temporal resolution. The 

forecast has been tested over the Netherlands at a spatial resolution of approximately 

4 km by 6 km. CMVs are derived from three cloud properties (cloud top height, cloud optical 

thickness, and particle effective radius) with a method adapted from the weather radar 

precipitation forecast system of the Royal Netherlands Meteorological Institute (KNMI). The 

advected cloud properties are used as input for the CPP-SICCS (Surface Insolation under 

Clear and Cloudy skies derived from SEVIRI imagery) algorithm to calculate the surface 

solar irradiance.  

8.2.2 Irradiance Forecasting with Numerical Weather Prediction 

NWP models are routinely operated by weather services to forecast the state of the 

atmosphere. Starting from initial conditions that are derived from routine Earth observations 

from worldwide networks of ground, airborne, and spaceborne sensors, the temporal 

evolution of the atmosphere is simulated by solving the equations that describe the physical 
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processes occurring in the atmosphere. Such physical modeling is the only feasible 

approach when there is little correlation between the actual observations and the forecasted 

values, which is typically the case for time horizons longer than approximately 5 hours 

ahead. A comprehensive overview of NWP modeling was given by Kalnay (2003). 

Global NWP models predict the future state of the atmosphere worldwide. To determine the 

initial state from which an NWP model is run, data assimilation techniques are applied to 

make efficient use of worldwide meteorological observations (Jones and Fletcher 2013). 

These include observations from ground-based weather stations, buoys, and spaceborne 

sensors (i.e., satellites). The simulation with NWP models involves spatial and temporal 

discretization, and the resolution of this discretization determines the computational cost of 

the simulation. In addition, many physical processes occur on spatial scales much smaller 

than the grid size—including, for example, condensation, convection, turbulence, as well 

as scattering and absorption of shortwave and longwave radiation. The effect of these 

unresolved processes on the mean flow at the model’s grid size is evaluated with the so-

called parameterizations of atmospheric physics. They include interactions of the land and 

ocean with the atmosphere, vertical and temporal development of the planetary boundary 

layer, cumulus triggering and cloud microphysics, as well as shortwave and longwave 

radiation. The physical parameterizations are a key component of the prediction with NWP 

models. They bridge the small-scale and large-scale processes, and they make possible the 

convergence of the numerical routines that solve the physical equations. Today, global NWP 

models are run by approximately 15 national and international weather services, and their 

resolutions range from approximately 10 km to approximately 50 km. The temporal 

resolution of the global model outputs is typically 1 or 3 hours, and their forecasts are 

normally updated every 6 or 12 hours.  

Mesoscale or regional models cover only a limited area of the Earth. They take the initial 

and lateral boundary conditions from a previous global NWP model run and bring the spatial 

and temporal grid of the global NWP model down to a finer resolution. Weather services 

typically operate mesoscale models with a spatial resolution ranging from 1–10 km, and they 

provide hourly forecasts, though higher resolutions are feasible. Compared to global models, 

the higher spatial resolution of mesoscale models allows for explicit modeling of small-scale 

atmospheric phenomena. 

For irradiance forecasting, the parameterizations of radiation transfer and cloud properties 

are of special importance. Larson (2013) compared the respective model configurations with 

respect to GHI for four operational NWP models, including the Integrated Forecast System 

(IFS) of the European Center for Medium-Range Weather Forecasts (ECMWF) and the 

Global Forecast System (GFS) run by NOAA. In particular, Larson (2013) discussed deep 

and shallow cumulus parameterizations, turbulent transport, stratiform microphysics and 

prognosed hydrometeors, cloud fraction and overlap assumptions, aerosols, and the 

shortwave radiative transfer schemes. But Larson (2013) emphasized that “because of the 

strong feedback and interactions of physical processes in the atmosphere,” other processes 

might have a significant impact on irradiance forecasting. 

Today, most NWP models offer GHI as direct model output, and some also provide forecasts 

of direct and diffuse irradiance. Although in principle direct model output can be used for 

solar energy applications, in practice additional post-processing is customarily applied to 

improve forecast accuracy. 

8.2.2.1 Examples of Operational Numerical Weather Prediction Models 

This section describes some examples of NWP models enumerated together with their 

spatial resolutions and output time intervals. In particular, it highlights cloud fraction 

parameterizations and radiation schemes. Additionally, specific references are provided with 
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respect to the application and evaluation of irradiance forecasts in the context of solar 

energy applications. A comparison of GHI forecasts based on these models was described 

by Lorenz et al. (2016) for Europe and by Perez et al. (2013) for the United States, Canada, 

and Europe. It should be emphasized that the sample of operational models and applications 

given here is non-exhaustive; it simply summarizes the research experience and lessons 

learned from some research completed within the frameworks of the IEA SHC Task 36 and 

Task 46 and the IEA PVPS Task 16. 

The IFS of the ECMWF is a global model currently being operated with a horizontal grid 

spacing of approximately 12 km and 137 vertical levels for high-resolution deterministic 

forecasts. Operational output is available with a temporal resolution of 3 hours and up to 6 

days ahead, with a higher resolution of 1 hour being accessible in the framework of research 

projects. The model is cycled every 12 hours. The radiation code is based on a version of the 

Rapid Radiation Transfer Model for General Circulation Models (RRTMG) that has been 

specially developed for use in NWP models (Mlawer et al. 1997; Iacono et al. 2008). Cloud-

radiation interactions are taken into account in detail by using the values of cloud fraction and 

liquid, ice, and snow water content from the cloud scheme using the Monte Carlo Independent 

Column Approximation (McICA) method (Pincus, Barker, and Morcrette 2003; Morcrette et al. 

2008). McICA uses a stochastic approach to infer the cloud extinction of shortwave and 

longwave solar radiation from only a random selection of calculations. The prognostic scheme 

for clouds and large-scale precipitation is based on Tiedtke (1993). The ECMWF irradiance 

forecasts were analyzed by Lorenz et al. (2009) with respect to different relevant properties for 

PV power prediction applications. In addition, Lorenz et al. (2011) proposed and evaluated an 

approach based on the ECMWF forecasts for regional PV power prediction for improved 

electric grid integration.  

NOAA’s GFS is currently being operated at a spatial resolution of approximately 13 km and 

64 vertical levels; however, the outputs are provided in a regular latitude/longitude grid with a 

resolution of 0.25º and 46 levels, with hourly resolution up to 120 hours ahead and 3-hour 

resolution up to 240 hours ahead. The model is cycled every 6 hours. Model physics related 

to clouds and radiation were summarized by Larson (2013). Note that cloud fraction is a 

diagnostic variable in the GFS model in contrast to the IFS model. Mathiesen and Kleissl 

(2011) compared intraday GHI forecasts of the GFS and IFS forecasts from the ECMWF and 

the North American Model. 

Environment Canada’s Canadian Meteorological Centre operates the Global Environmental 

Multiscale (GEM) model. It is run in different configurations, including a regional deterministic 

configuration (Mailhot et al. 2006) that generates forecasts up to 48 hours ahead at a 7.5-

minute time step and with a spatial resolution of approximately 15 km centered at the grid. 

Pelland, Galanis, and Kallos (2013) investigated solar irradiance and PV power forecasting 

with post-processing applied to the high-resolution GEM forecasts.  

The mesoscale (or regional) WRF model (Skamarock et al. 2005) was developed in the 

framework of a long-term collaborative effort of several institutes led by the National Center 

for Atmospheric Research (NCAR) in the United States. Now it is a community model, 

meaning it is publicly and freely available and can receive contributions from all participants. 

The WRF model is nonhydrostatic, has multiple nesting capabilities, and offers several 

schemes for each different parameterization of the atmospheric physical processes. This 

allows the WRF model to be adapted to widely different climate conditions and different 

applications over virtually any region of interest. The shortwave radiation parameterization 

usually runs the Dudhia (1989) scheme; however, the latest version of the WRF model 

includes up to eight different shortwave parameterization schemes (v. 3.9, 2017). This 

includes the RRTMG radiative scheme already mentioned for the ECMWF’s IFS model but 

also other advanced and research-class radiative models, such as the New Goddard 
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shortwave radiation scheme of the WRF model (Chou and Suarez 1999), the NCAR 

Community Atmosphere Model (Collins et al. 2004), the Fu-Liou-Gu model (Gu et al. 2011), 

and the Fast All-sky Radiation Model for Solar applications (FARMS) model (Xie, Sengupta, 

and Dudhia 2016). The user can select any of these schemes. The current WRF model’s 

cloud fraction schemes are diagnostic. The impact of the resolved topography on the 

downward solar radiation can be optionally included in the computations. The direct aerosol 

impact can also be modeled using built-in climatologies or inputs from the user. 

The ability of the WRF model and its precursor, the fifth generation of the Penn State 

University/NCAR Mesoscale Model (MM5), to produce solar radiation forecasts have been 

evaluated (Guichard et al. 2003; Zamora et al. 2003; Zamora et al. 2005; Ruiz-Arias et al. 

2008; Wen et al. 2011). More recently, and mostly toward solar energy applications, the 

WRF model has been extensively evaluated. For instance, within the framework of the IEA 

SHC Task 36 and Task 46, Lara-Fanego et al. (2012) evaluated 3-day-ahead hourly and 10-

minute WRF model forecasts of GHI and DNI in Spain. Perez and Hoff (2013) conducted a 

benchmarking study of multiple NWP models, including the WRF model, at a number of 

European and North American radiometric sites. Lorenz et al. (2016) compared the GHI 

predictions of multiple models, including the WRF model, and various model configurations 

against irradiance measurements in Europe. Many other studies from the last few years 

have evaluated the model over different worldwide regions, including Isvoranu and Badescu 

(2015) in Romania; Zempila et al. (2016) in Greece; Aryaputera, Yang, and Walsh (2015) in 

Singapore; He, Yuan, and Yang (2016) in China; Lima et al. (2016) in Brazil; Gueymard and 

Jimenez (2018) in Kuwait; and Sosa-Tinoco et al. (2016) in Mexico. 

Other studies have analyzed the causes of model errors, and some studies have proposed 

improvements. For instance, Mathiesen, Collier, and Kleissl (2013) proposed a direct cloud 

assimilation technique tailored for the WRF model to improve its representation of clouds 

along the California coastline for improved solar radiation forecasts. Ruiz-Arias et al. (2013) 

performed surface clear-sky shortwave radiative closure intercomparisons of various 

shortwave radiation schemes, including the RRTMG, Goddard, and Dudhia models, in which 

RRTMG showed the highest performance, whereas some deficiencies were found in the 

Goddard radiative scheme. A correction for these deficiencies was proposed by Zhong, Ruiz-

Arias, and Kleissl (2016). Ruiz-Arias, Dudhia, and Gueymard (2014) proposed a 

parameterization of the shortwave aerosol optical properties for surface direct and diffuse 

irradiances assessment. And Ruiz-Arias et al. (2015) described problems with WRF when 

simulating convective clouds in the Iberian Peninsula and highlighted the need for a dedicated 

shallow cumulus scheme to reduce model biases. 

An important milestone in the use of the WRF model for solar radiation applications has been 

the recent development of WRF-Solar, a dedicated suite of WRF model parameterizations for 

solar radiation forecasting (Deng et al. 2014; Ruiz-Arias, Dudhia, and Gueymard 2014; 

Thompson and Eidhammer 2014) within the U.S. Department of Energy’s Sun4Cast project 

(Haupt et al. 2016). Some of these improvements, and others, have been summarized by 

Jimenez et al. (2016b). Moreover, the Sun4Cast project has contributed to the development of 

the Multisensor Advection Diffusion nowCast (MADCast) system (Descombes et al. 2014), 

which is a particular configuration of the WRF model for fast assimilation of satellite reflectance 

images. That configuration can be used to obtain a proxy field to cloud fraction that can be 

subsequently advected in WRF and used to compute solar radiation nowcasts. Lee et al. 

(2017) presented a comparative evaluation of WRF-Solar, MADCast, and satellite-based 

forecasts and found that WRF-Solar performed generally well at predicting GHI under 

challenging situations in California. 

The WRF model is operated for solar irradiance forecasting at several public and private 

entities, including Solargis (Slovakia); Meteotest (Switzerland); GL-Garrad Hassan 
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(Mathiesen, Kleissl, and Collier 2013); the Atmospheric Sciences Research Center of the 

University of Albany as part of the operational air quality forecasting program; and AWS 

Truepower, a UL company in the United States. 

The High Resolution Limited Area Model (HIRLAM)48 is a hydrostatic regional NWP model 

operated by several national meteorological services in Europe, including the Spanish 

National Weather Service and the Danish Meteorological Institute. The Spanish National 

Weather Service runs HIRLAM four times daily in three spatial configurations (one covering 

Europe at a resolution of 16 km and two covering Spain and the Canary Islands at a 

resolution of 5 km) with 40 vertical levels. The Danish Meteorological Institute runs its 

highest-resolution HIRLAM model, “SKA,” for an area covering Northwestern Europe with a 

grid size of 0.03° (≈3 km) and 65 vertical levels. HIRLAM uses the clear-sky irradiance 

scheme of Savijärvi (1990) and the cloud scheme of Wyser, Rontu, and Savijärvi (1999). 

The nonhydrostatic HIRLAM ALADIN Regional Mesoscale Operational NWP In Europe 

(HARMONIE) regional model is being run experimentally by the Spanish National Weather 

Service daily over Spain and the Balearic Islands at a resolution of 2.5 km, with 65 vertical 

levels. Closely related to HARMONIE and HIRLAM is the STRÅNG mesoscale model,49 

which provides hourly nowcasts of GHI, DNI, erythemal ultraviolet, photosynthetically active 

radiation, and sunshine over Scandinavia at 2.5-km resolution. 

The German Weather Service (Deutscher Wetterdienst, or DWD) has an operational model 

chain consisting of the global model ICON (ICOsahedral Nonhydrostatic); the ICON-EU, 

which is the nested European regional model; and the regional model for Germany called 

COSMO-D2. The horizontal resolution of the ICON model is 13 km, and it has 90 model 

layers extending to 75 km (Zängl et al. 2014). The ICON-EU is nested via a two-way 

interaction. It has a horizontal model resolution of approximately 7 km and 60 model layers 

up to a height of 22.5 km. The third model is the regional nonhydrostatic COSMO-D2 model, 

which has a horizontal resolution of 2.2 km and 65 vertical levels. The COSMO model was 

developed by the Consortium for Small-scale Modeling (COSMO), which consists of the 

national meteorological services of Germany, Greece, Italy, Poland, Romania, Russia, and 

Switzerland. The COSMO-D2 (Baldauf et al. 2011) is a model for short-term forecasts of +27 

hours, except for the 03:00 UTC run, which has a forecast length of +45 hours. The radiation 

scheme in the ICON and ICON-EU is currently called once per hour; however, the radiative 

transfer scheme of Ritter and Geleyn (1992) is called every 15 minutes within COSMO-D2. 

Thus, the direct and diffuse radiation predictions are available every 15 minutes via direct 

model output. Using the regional COSMO model, DWD performed a statistical analysis to 

detect those days with the highest forecast error in Germany, and they identified that NWP 

forecasts have frequent errors in the presence of low stratus. To address those situations, 

they proposed a low stratus-detection method that operationally uses post-production. 

Another example is NOAA’s High-Resolution Rapid Refresh (HRRR) model for the United 

States, which provides forecasts at 3-km by 3-km resolution with hourly updates. 

Finally, the “SKIRON” regional weather forecasting system (Kallos 1997) is operated for 

solar energy applications at the National Renewable Energy Centre of Spain (Gastón et al. 

2009). 

                                                

 
48

 See http://www.hirlam.org.  
49

 See http://strang.smhi.se/.  

http://www.hirlam.org/
http://strang.smhi.se/
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8.3 Irradiance Forecasting Based on Irradiance Time Series 
and Post-Processing with Statistical and Machine 
Learning Methods 

Statistical learning models are widely used for solar irradiance and power forecasting. 

The dependence between input variables (predictors) and forecast values (predictands) is 

established in a training phase by learning from historical data, assuming that patterns in 

the historical data sets are repeated in the future and thus might be exploited for forecasting. 

Statistical methods include classical regression methods, such as autoregressive and 

autoregressive integrated moving average models as well as machine learning or artificial 

intelligence techniques, such as artificial neural networks (ANNs), k-nearest neighbors, or 

support vector regression. Coimbra and Pedro (2013a), Diagné et al. (2013), and Yang et al. 

(2018) provided an overview of different statistical approaches used for solar irradiance 

forecasting. Voyant et al. (2017) and Sobri et al. (2018) reviewed the topic with a heavy 

focus on the use of machine learning methods for solar radiation or power forecasting as 

well as for post-processing. 

Statistical and machine leaning models are applied for different purposes in irradiance and 

PV power forecasting. Pure time-series approaches aim to derive solar irradiance or power 

forecasts based solely on local measurements without involving any physical modeling (i.e., 

time-series approaches with no exogenous input). They are suitable for forecast horizons 

from several minutes to several hours ahead. 

Statistical and machine learning methods also play an important role in enhancing the output 

of NWP models and CMV forecasts. Regardless of the physics-based forecasting model 

used, errors that are partly stochastic and partly systematic will always remain. These errors 

can be reduced with statistical learning based on historical data sets of predicted and 

measured irradiance or PV power. Further, statistical learning methods can be employed to 

derive quantities not included in the native model output. Different terminology is used for 

this combination of statistical and physical forecasting methods, depending on the 

perspective of the researchers. The community of statistical modeling and artificial 

intelligence refers to these models as statistical models with exogenous input. 

Meteorologists commonly use the terms statistical post-processing or, more specifically, 

model output statistics (MOS) in the context of NWP, which is the terminology adopted here.  

Section 8.3.1 provides an overview of selected machine learning models, and Section 8.3.2 

addresses pure time-series models based on irradiance measurements. Finally, Section 

8.3.3 describes the application of statistical and machine learning models for post-

processing. 

8.3.1 Examples of Machine Learning Models Applied for Forecasting 

The use of state-of-the-art machine learning models is popular in irradiance as well as in PV 

power forecasting. This section lists several approaches discussed by Winter et al. (2019). 

8.3.1.1 Artificial Neural Networks 

ANNs constitute one of the most versatile machine learning methods and are known for their 

use in complex tasks such as image or speech recognition (LeCun et al. 1989; Sak and 

Beaufays 2014).  

As described by Bishop (1995), an ANN consists of a fixed number of nodes, called units, 

that can take on numerical values and are arranged in several layers. The input layer 

contains one unit for each feature of the data set, whereas the output layer, in case of a 

single regression problem, is only one unit. The layers between the input and output layers 
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are referred to as hidden layers. The key task is to establish a connection between the 

nodes by assigning to each unit in one layer the weighted sum of the previous layer’s units, 

and to then apply a nonlinear activation function. In the case of a regression problem, a 

linear activation function is applied to the weighted sum of the output unit. 

By training an ANN on a given set of input and output data, all its weights are adjusted to 

minimize an error function, typically the mean square error (MSE). This is usually done by 

back-propagation, an iterative process for calculating the gradient of the error function with 

respect to each weight (Rumelhart, Hinton, and Williams 1986). In each step, the weights get 

updated by using a gradient descent optimization algorithm. An alternative option is the 

method of adaptive moment estimation, or “Adam,” as described by Kingma and Ba (2015). 

Instead of calculating the gradient of the error function with respect to the full data set, in 

each step the weights can be updated only with respect to a subset of the data set (see 

Bottou 1998; Ruder 2016). The weights can be initialized using a common heuristic 

described by Glorot and Bengio (2010). 

To enable an ANN to learn nonlinear relationships between input and output, a nonlinear 

activation function must be chosen. For example, the leaky rectified linear unit activation 

function can be used (Maas, Hannun, and Ng 2013). 

8.3.1.2 Extreme Learning Machines 

An extreme learning machine, as proposed by Huang, Zhu, and Siew (2006), is an ANN with 

a single hidden layer between the input and output layers. Its learning method does not rely 

on gradient descent. Instead, the weights between the input and hidden layers are chosen 

randomly. In this way, only the weights between the hidden and output layers need to be 

determined. Because this is just a linear regression problem, an analytic solution exists, 

which can be calculated directly without an iterative optimization algorithm. Hence, training 

the model is considerably faster while maintaining good performance of the model. 

8.3.1.3 Gradient Boosted Regression Trees 

Gradient boosted regression trees are an ensemble technique using multiple classification 

and regression trees (CART) (Breiman et al. 1984). The CART algorithm creates binary 

decision trees, which means that at each new node the data is split into two parts according 

to a threshold value. Starting with a root node, which in general contains all training data, the 

tree grows until some stop condition is reached. The last nodes form the tree’s leaves. Each 

splitting leads to either another node or a leaf. The leaf contains the class to be predicted. In 

the case of regression, a leaf returns the mean value of the training samples it contains. 

The principle of boosting is described by Friedman (2001). Starting with a single CART tree 

that is fit to minimize the MSE on the training data, the following trees are trained 

consecutively so that each new tree predicts the residual error. This residual error is 

proportional to the gradient of the MSE. By scaling the new tree’s prediction with a step size 

between 0 and 1 and by adding it to the current ensemble, every new tree aims to further 

reduce the MSE of the ensemble’s prediction. 

8.3.1.4 Random Forest 

A random forest is another technique based on ensembles of CARTs and is presented by 

Breiman (2001). The ensemble’s prediction is the average over all single tree predictions. 

Each tree is trained on a bootstrap data set generated by randomly drawn samples with 

replacement from the original data set (Efron 1979). Further, for each node split, only 

a random subset of features is considered. By omitting data randomly, the resulting trees 

become less correlated. This lowered correlation of single trees has been observed to 

reduce the model error. 
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8.3.2 Time-Series Models Based on Measurements  

Intrahour or hours-ahead solar irradiance and PV power forecasting with time-series models 

use recent measurements of irradiance or PV power as a basic input, possibly 

complemented by measurements of other variables. Examples are the application of a 

coupled autoregressive and dynamic system model for forecasting solar radiation on an 

hourly timescale, as described by Huang et al. (2013); the comparison of ANN and classical 

time-series models. as described by Reikard (2009); and the short-term PV power prediction 

approach of Bacher, Madsen, and Nielsen (2009). Through their review of machine learning 

methods, Voyant et al. (2017) concluded that although ANN and autoregression-style 

methods still dominate statistical forecasting, other methods (e.g., support vector regression, 

regression tree, random forest, and gradient boosting) are increasingly being used. Although 

the ranking of such methods is complicated by many factors, it generally holds that a multi-

model approach results in improvement in forecasting performance (Zemouri, Bouzgou, and 

Gueymard 2019). 

For any statistical model, the selection and availability of appropriate input variables as well as 

the optimized preprocessing of the data is of critical importance for good forecast 

performance. Also, the choice of the model configuration (e.g., the ANN architecture or the 

selection of hyperparameters in machine learning models) is essential. Finally, the setup of the 

training sample (e.g., the number of days and sites used for the training) has a noteworthy 

influence on the forecast accuracy. Coimbra and Pedro (2013a) showed the benefits of the 

application of a generic algorithm to identify the most suitable ANN architecture, preprocessing 

scheme, and training data.  

The advantages and limits of purely statistical approaches are discussed next. High-quality 

measurements of the actual surface solar irradiance or PV power are the best possible 

starting point for any forecast. In comparison, the assessment of the initial irradiance 

conditions (i.e., the irradiance analysis) with an empirical or physical forecasting model 

shows considerably higher uncertainties. Any physics-based forecasting model has an 

inherent uncertainty, regardless of the forecast horizon, that is caused by limits in spatial and 

temporal resolution, uncertainty in input parameters, and simplifying assumptions within the 

model. Time-series models exploit the autocorrelation in time series of solar irradiance, 

cloud cover and, possibly, other explanatory variables. For very short-term forecast horizons, 

forecasts based on accurate on-site measurements and statistical methods reach forecast 

errors that are smaller than even the NWP analysis errors or the initial errors of irradiances 

derived from satellite images. 

Given the inherent chaotic nature of weather phenomena, any existing autocorrelation 

decreases as the time lag between time-series instances increases. Hence, the performance 

of these models is (1) strongly determined by the underlying autocorrelation of each 

particular weather condition and (2) decreases as forecast lead time increases. For longer 

forecast horizons, wide-area observations (e.g., those from satellites) or physical models 

(e.g., NWP models) are required to meet the forecast skill requirements.  

Pure time-series approaches are typically applied to forecast horizons ranging from several 

minutes to a few hours ahead. Evidently, their performance in comparison to other methods 

strongly depends on the prevailing climate and weather conditions (e.g., the stability of the sky 

situation), the spatiotemporal resolution of the forecasts, and the models to which they are 

compared. 

In this context, Bacher, Madsen, and Nielsen (2009) compared an autoregressive model for 

hourly solar power forecasting combined with and without exogenous inputs from a diverse 

origin. The study was based on PV plants in Denmark, and the authors found that ground-

observed data are the most important class of inputs up to approximately 2 hours ahead, 
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whereas the NWP forecast parameters are adequate for next-day horizons. A comparison of 

pure time-series models with satellite-based CMV forecasts was given by Wolff et al. (2016) 

for PV systems in Germany. The authors found that CMV forecasts outperformed the time-

series approach for forecast horizons more than 30 minutes ahead for single sites and for 

forecast horizons of more than 2 hours ahead for the German average.  

Further, sky camera imagery-based forecasting methods were demonstrated to be valuable 

for short-term high-resolution forecasting. Pedro et al. (2018) and Huang et al. (2019) 

assessed intrahour hybrid forecasting models that combine statistical (or machine learning) 

methods with information extracted from sky imagery and found substantial improvements. 

Huang et al. (2019) proposed the conditional autoregressive method of clear-sky index, 

which can separate and model characteristic weather events through the identification of key 

condition variables. Based on high-frequency data measured in Australia, it was shown that 

by adding exogenous forecasts derived from sky imagery, their hybrid model could produce 

accurate forecasts seamlessly across timescales from 10 seconds to 10 minutes ahead. 

8.3.3 Statistical Post-Processing Methods 

Statistical post-processing (or machine learning with exogenous input) plays an important 

role in irradiance and PV power forecasting. Post-processing methods are applied to: 

 Reduce model errors by considering unaccounted or partially accounted local and 

regional effects (e.g., topography and aerosols) 

 Combine the outputs of different models  

 Derive quantities that are not direct model outputs. 

In what follows, various statistical post-processing methods are summarized for the possible 

applications enumerated. 

8.3.3.1 Model Output Statistics to Reduce Forecast Errors 

MOS are widely used to refine the output of NWP models, primarily to account for local 

variations in weather and surface conditions (Glahn and Lowry 1972). They use 

measurements and/or climatology for specific locations as a basis to adapt the forecasts. 

For example, MOS techniques constitute a powerful tool to adapt the results from NWP or 

satellite-based models to site-specific conditions (Gueymard et al. 2012). For solar 

irradiance forecasting, satellite-derived values might be used in lieu of ground 

measurements. The set of predictors consists of NWP output and might be extended by 

including any relevant information—for example, prior observations or climatological values.  

Originally, the term model output statistics was associated with the use of regression equations; 

however, a generalization of this concept now involves other statistical approaches. Lorenz et al. 

(2009) applied a bias correction MOS based on solar elevation and clear-sky index to ECMWF 

irradiance forecasts. Kalman filters have also been proposed by Pelland, Galanis, and Kallos 

(2013) to improve irradiance forecasts of the Canadian GEM model and by Diagné et al. (2014) 

in the case of WRF model solar irradiance forecasts. Marquez and Coimbra (2011) investigated 

the application of ANNs to predicted variables from a weather forecasting database, and Gastón 

et al. (2009) used a machine learning algorithm to enhance SKIRON solar irradiance forecasts. 

Pierro et al. (2015) proposed a MOS technique to correct WRF-based GHI forecasts by coupling 

two intermediate MOS consisting of correlations with relative humidity and ANNs, respectively. 

Other powerful post-processing approaches have been thoroughly reviewed by Yang and van 

der Meer (2021). 
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8.3.3.2 Combination of Forecast Model Outputs 

Combining the output of different models can considerably increase the forecast accuracy. 

First, simple averaging is beneficial for models with similar accuracy, exploiting the fact that 

forecast errors of different models are usually not perfectly correlated (Perez et al. 2013; 

Lorenz et al. 2016). 

Combining methods using more advanced techniques might also account for strengths and 

weaknesses of the different models for certain situations—for example, by adapting the 

contribution of each model depending on the weather situation. In particular, they might be 

applied to establish a forecast consensus covering horizons from several minutes to several 

days ahead by integrating measurements, climate monitoring, and NWP forecasts. Various 

approaches to this aim have been proposed. For instance, Lorenz and Heinemann (2012) 

used a weighted average with weights optimized for each forecast horizon. Sanfilippo et al. 

(2016) applied a multi-model approach to solar forecasting that uses supervised 

classification of forecasting evaluation results to select the best predictions from persistence, 

support vector regression, and diverse stochastic models. Wolff et al. (2016) and Mazorra 

Aguiar et al. (2016) combined forecasts based on support vector regression machines and 

ANNs respectively. Yang et al. (2017) used a hierarchical scheme and minimization of the 

trace of the forecast error covariance matrix. Within the context of the Sun4Cast project, 

NCAR’s DICast system (Myers et al. 2011, 2012) has been applied to blend multiple solar 

radiation forecasts. This system—which has already been applied in other forecasting areas, 

such as transportation, agriculture, and wind energy—consists of a two-step process: (1) a 

statistical bias correction process using a dynamic MOS and (2) optimization of the model 

blending weights for each lead time (Haupt et al. 2016).  

8.3.3.3 Post-Processing to Derive Additional Quantities 

Not all quantities of interest in the context of irradiance forecasting (i.e., GTI, DNI or PV 

power) are always available as direct NWP output or as a result of CMV forecasts. Post-

processing can be applied to derive these quantities. To that aim, statistical or machine 

learning methods are typically employed, but empirical or physical models are also 

frequently used to derive the desired quantity from the direct output of the forecasting model.  

Although GHI has become a standard output of most NWP models, this was not the case 

when the field of solar forecasting started to emerge. For example, Perez et al. (2007) 

proposed an empirical solar radiation forecast model relating sky-cover predictions from the 

National Digital Forecast Database to the clear-sky index to derive GHI forecasts. 

The irradiance components (DHI and DNI) are still not provided as direct output from many 

irradiance forecasting systems. To derive them from GHI forecasts, several empirical diffuse 

or direct fraction models can be used, many of which were originally developed for 

application to measurements or satellite data (see also Section 4.2 in Chapter 4). These 

models are also being used in DNI forecasting systems that are based on a GHI forecast 

(e.g., Schroedter-Homscheidt, Benedetti, and Killius 2016). For DNI forecasts, several 

physical post-processing approaches have also been proposed, specifically for better 

consideration of aerosols. Breitkreuz et al. (2009) proposed a forecasting approach for direct 

and diffuse irradiance based on the combination of a chemistry transport model and an NWP 

model in which forecasts of AOD are directly collected from the chemistry transport model 

outputs. Similarly, Gueymard and Jimenez (2018) used WRF-Solar with hourly inputs of 

aerosol forecasts from NASA’s Goddard Earth Observing System Model 5 (GEOS-5) 

atmospheric analysis model. Such aerosol forecasts, together with other remote sensing 

data (ground albedo and ozone) and NWP parameters (water vapor and clouds), are used 

as input to radiation transfer calculations to derive the irradiance forecasts. A similar 

approach was used by Lara-Fanego et al. (2012) to derive DNI from WRF output using 
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aerosol observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

onboard the Terra satellite. 

In the context of PV applications, deriving GTI (or plane-of-array [POA]) forecasts is also of 

interest (see Section 8.4.1.1). 

8.4 PV Power Forecasting and Regional Upscaling  

PV power forecasts for a given location or region are important for plant operators, grid 

operators, and the marketing of produced energy. They are derived from irradiance 

predictions with physics-based or statistical methods or a combination of both (see Figure 8-

5). The exceptions are time-series approaches for very short-term forecast horizons that are 

solely based on PV power measurements.  

 

Figure 8-5. Overview of basic modeling steps in PV power prediction.  

Irradiance prediction: Different forecasting models for different forecast horizons 

(e.g., cloud-motion sky imager and satellite data, NWP) and combination with 

statistical learning approaches for optimized site-specific predictions. 

PV power prediction: Conversion of irradiance to PV power with parametric PV 

simulation models and/or statistical learning approaches; regional PV power 

prediction requires upscaling as a last step. Image reproduced from Lorenz (2018) 

Physics-based parametric modeling involves transposing GHI to GTI (POA) irradiance 

(Section 8.4.1.1) and then applying a PV simulation model (Section 8.4.1.2). For this, 

information on the characteristics of the PV system configuration is required in addition 

to the meteorological input data; this includes information on nominal power, tilt, and 
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orientation of a PV system as well as characterization of the module efficiency as a function 

of irradiance and temperature. Alternatively, the relationship between PV power output and 

irradiance forecasts and other input variables can be directly established with statistical 

or machine learning on the basis of historical data sets including measured PV power. 

In practice, the approaches are often combined, and statistical post-processing using 

measured PV power data is applied to improve predictions with parametric simulation 

models (Section 8.4.1.3). PV power prediction for grid operators requires forecasts of the 

aggregated PV power generation for a specified area (i.e., regional forecasts instead of 

single-site forecasts). These regional predictions are typically obtained by upscaling 

methods (see Section 8.4.2). 

8.4.1 Simulation of PV Power Plant Production 

The simplest way to forecast the production of a PV power plant is to apply a PV power 

simulation model to the forecast of the relevant predicting variables (primarily irradiance, but 

also environmental temperature and wind speed). Physics-based models explicitly require 

specific inputs. ANNs or other machine learning models might be more flexible and benefit 

from a more extensive set of input variables. 

8.4.1.1 Estimating Plane-of-Array or PV Power from Irradiance Forecast 

Because empirical PV simulation models use irradiance or the POA as key inputs, the 

transposition of GHI into GTI to obtain the POA irradiance (see also Chapter 4, Section 4.2) 

is the first modeling step. For example, the PV power forecasting approaches presented by 

Lorenz et al. (2011) and Pelland, Galanis, and Kallos (2013) involve empirical models to 

derive the POA irradiance as input for PV simulation models. Unless DNI and DHI are 

explicitly provided by the forecast model, this first step requires splitting GHI into its direct 

and diffuse irradiance components. For that purpose, many empirical diffuse or direct 

fraction models that were originally developed for application to measurements or satellite 

data can be used (see also Section 4.2). Gueymard and Ruiz-Arias (2015) and Aler et al. 

(2017) presented an unprecedented worldwide evaluation of 140 of these separation models 

proposed during the last 60 years. 

Next, the direct and diffuse components are projected or “transposed” to the POA (see 

Chapter 4, Section 4.3). The transposition of the direct irradiance is straightforward, subject 

only to geometric considerations. The transposition of the diffuse irradiance requires, again, 

an empirical model for the directional distribution of radiance over the sky, describing 

anisotropic effects such as horizon brightening and circumsolar irradiance (Perez et al. 1987; 

Gueymard 1987; Hay 1979). Validation studies of these transposition models are provided 

by Behr (1997); David, Lauret, and Boland (2013); Gueymard (2009); Ineichen (2011); and 

Kambezidis et al. (1994). The validation of combined separation and transposition models 

has been undertaken by Gueymard (2009); Orehounig, Dervishi, and Mahdavi (2014); Lave 

et al. (2015); and Yang (2016). 

8.4.1.2 PV Power Simulation 

In the next step, the POA irradiance is converted to PV output power. Most simple PV 

simulation models use only the global tilted irradiance on the POA as input and scale it with 

the PV module array area and efficiency: 

𝑃𝑃𝑉  [𝑘𝑊] = 𝐼𝑃𝑂𝐴 [
𝑘𝑊

𝑚2] ∗ 𝐴𝑃𝑉[𝑚2] ∗
𝜂𝑚𝑜𝑑[%]

100
∗ 𝑓𝐿𝑜𝑠𝑠 (8-1) 

with: 

 𝐼𝑃𝑂𝐴 [
𝑘𝑊

𝑚2], irradiance on the module’s POA 
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 𝐴𝑃𝑉[𝑚2], the PV array module area 

 𝜂𝑚𝑜𝑑[%], the efficiency of the PV modules 

 𝑓𝐿𝑜𝑠𝑠, a factor accounting for additional deviations (e.g., deviations that are due 

to electrical, optical, or thermal losses). 

State-of-the-art PV simulation models consider additional influencing factors. Because of 

optical losses on the module surface, the effective irradiance is lower than the incoming POA 

irradiance (e.g., Martin and Ruiz 2001). The DC module efficiency depends on the POA 

irradiance and decreases with increasing temperature. It is secondarily also affected by wind 

speed and direction (e.g., Beyer et al. 2004). The spectral distribution of irradiance is 

another influencing factor. Moreover, the conversion efficiency of DC-to-AC inverters is not 

constant and should be also modeled (e.g., Schmidt and Sauer 1996). 

A deeper insight into the modeling of PV power and corresponding variables can be 

achieved with the tools provided by pvlib, a software package for modeling PV systems 

(Andrews et al. 2014) (see also Section 9.4). The choice of input parameters is an issue for 

using such a model. A natural approach is to use the metadata available for the PV system 

(e.g., module and inverter specifications, orientation, and peak power); however, this 

information is frequently missing or erroneous, especially for smaller PV systems. An 

alternative is learning the parameters from historical data. Here, it is emphasized that 

measurement issues, plant outages, or shading can impact the estimation of these 

parameters. Failures of technical components are likely to have large impacts, but the same 

is true with grid codes, consumption, and curtailments, which are caused by grid operation or 

electricity market price. To overcome these issues, a robust training method has been 

proposed by Saint-Drenan et al. (2015). 

8.4.1.3 Statistical and Machine Learning Methods for PV Power Forecasting Based on PV 
Power or Irradiance Measurements 

When PV power measurements are available, the output of a forecast derived with PV 

power simulation is often adapted to PV power measurements with statistical or machine 

learning methods to improve the predictions (e.g., Kühnert 2015). When aiming to fit a time 

series of measured PV power plant feed-in, one needs to account for external effects 

reducing the production, as described in Section 8.4.2.  

Recently, the direct simulation of PV power with statistical or machine learning models (see 

Section 8.3.1) has also gained popularity. This forecasting technique is based on historical 

data, either by means of a statistical analysis of the different input variables (e.g., 

autoregressive moving average or autoregressive integrated moving average) or by using 

machine learning algorithms that can also handle nonlinear and nonstationary data patterns 

(Das, Tey and Seydmahmoudia 2018; Ulbricht 2013). 

8.4.2 Estimation and Forecasting of Regional PV Power Feed-In 

A very large number of PV systems contribute to the overall PV power generation in a 

control area or a country. TSOs and utilities require forecasts and estimates of this overall 

PV power (e.g., as a basis for energy trading).  

For many small PV systems, which contribute a large share of the overall feed-in, PV power 

is not measured with sufficient resolution (e.g., 15-minute or hourly) in many countries; only 

annual energy totals are available. Consequently, the actual overall PV power feed-in must 

be estimated using other available data. These estimates of regionally aggregated PV power 

are important as a starting point for the shortest-term forecasting in real time and as a 

reference for the statistical training of regional forecasts as well as for evaluations. 
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Regional PV power feed-in can be estimated using the following data: 

 Measurements of the output of PV plants  

 Meteorological data (irradiance and temperature) 

 Information on the fleet of PV system: coordinates and installed capacity (along with tilt 

and orientation if available). 

An approach frequently applied for both the estimation and the forecasting of regional PV 

power feed-in is upscaling from a representative set of PV systems in combination with 

information on the PV fleet. Another approach combines meteorological information (e.g., 

real-time irradiance from satellite data or irradiance forecasts) with PV simulation using 

information of the characteristics of the PV fleet. This information is available at different 

levels in various countries but remains difficult to obtain on a regular basis. Killinger et al. 

(2018) addressed this issue by collecting the data and applying the method at several 

thousands of PV system characteristics. As a first step, this approach does not rely on PV 

measurements, but in practice some-post processing is often applied.  

With respect to forecasting of regional PV power, there are additional options. In principle, 

it would be possible to predict the PV power output for each PV plant in a region (even if PV 

power measurements were unavailable), and subsequently aggregating the predictions for 

the whole area (i.e., a “bottom-up” or accumulation approach). This method, however, is 

characterized by a high computational burden and requires a detailed knowledge of every 

plant in the area; therefore, it is difficult to achieve, especially for large areas. Nonetheless, 

two examples of PV-system-based forecasts have been published (Vaz et al. 2016; Carillo et 

al. 2020).  

Finally, if an estimated time series of regional PV power time series is given, forecast 

providers can also train their models directly to this PV power time series without requiring 

detailed information of the PV fleet (i.e., a “models input average” approach). 

These approaches are introduced in sections 8.4.2.1, 8.4.2.1, and 8.4.2.3. 

8.4.2.1 Upscaling Based on Representative PV Systems  

One option for upscaling is to rescale the output of the reference plants to the overall 

installed capacity in a given region (Lorenz et al. 2011; Kühnert 2015). This approach 

exploits the strong correlation of the power output of nearby PV systems and allows for the 

estimation and the prediction of PV power with good accuracy given a sufficient number of 

reference plants and given that the representative set reflects the basic properties of the 

total data set (Kühnert 2015; Saint-Drenan et al. 2016). Representation of the spatial 

distribution of the nominal power and of the PV systems’ tilt and orientation is most important 

in this approach. In operational PV power prediction systems based on this approach, the 

upscaling is typically performed for small subregions (e.g., down to postal codes) and 

potentially also for different classes of PV system size in a first step. Then, the estimates for 

the different subregions and classes are aggregated to the region of interest. 

Another approach for upscaling based on representative PV systems uses spatial 

interpolation methods. Starting with a set of reference power plants, one can interpolate the 

(measured or predicted) power to any other power plant, assuming that at least the exact 

coordinates of reference as well as target locations are known. Geosciences offer several 

methods to conduct that task; see the review by Li and Heap (2014). The most popular of 

these methods are the simple but robust inverse distance weighting (IDW), and some 

authors apply the more complex kriging method, at least to interpolate irradiation data 

(Jamaly and Kleissl 2017; Yang et al. 2013). Because irradiance is the most important 
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variable for PV power production, methods are likely to apply to both measured and 

predicted power. 

One key difference of the two mentioned methods is the feature of convexity: the IDW 

method is convex and therefore generates interpolated values only in the range from the min 

to the max input values; on the other hand, kriging is a nonconvex method that can produce 

results outside the range of input measurements. Considering the aim to estimate many 

local PV power production values based on a set of measurements from different locations, 

it seems reasonable to rely on a set of references that is as large as possible when using the 

IDW method. 

Because this robust method is one of the most commonly implemented methods, as 

exemplified by Saint-Drenan (2011) and Bright et al. (2018), it is briefly described here. The 

PV power, Pj, for power plant, j, is the weighted sum of n surrounding power plants, i, where 

the weights, wij, are calculated based on the inverse of distance, d, between j and i, so that 

the sum of all weights equals one. The exponent, u, is typically optimized and found to be 

approximately 1.7–2.0. 

𝑃𝑗(𝑡) = ∑ 𝑤𝑖𝑗 𝑃𝑖(𝑡)
𝑛

𝑖=1
  (8-2) 

𝑤𝑖𝑗 =
𝑑(𝑖,𝑗)−𝑢

∑ 𝑑(𝑘,𝑗)−𝑢𝑛
𝑘=1

, 𝑢 > 0  (8-3) 

The targets, j, can alternatively be seen as the center of all installed capacity of an area of 

interest; however, assuming similar characteristics (e.g., orientation angles) between 

references and targets is needed for this. Improvements have been observed by accounting 

for known orientations (e.g., Killinger et al. 2016). Last, an important step is the aggregation 

of all relevant targets (power plants or areas) for a region of interest. When it comes to 

unknown or dynamically changing electric grid connections, a new source of uncertainty 

becomes important. An extensive investigation of more general uncertainties can be found in 

Saint-Drenan et al. (2016). 

8.4.2.2 Regional Model Based on Statistical Analysis of the Fleet of PV Systems 

As mentioned, simulating each single plant installed in a region is not realistic because of the 

very high computational costs. As shown by Saint-Drenan, Good, and Braun (2017), a 

realistic alternative is to group all plants with similar characteristics (i.e., orientation angles) 

and simulate this limited number of groups. It can easily be shown that this computational 

technique allows for speeding up the calculation without losing information, making this 

approach viable. This type of implementation requires determining the share of each group 

of plants—in other words, the share of installed capacity for each class of orientation must 

be assessed. Several approaches can be followed to obtain this information.  

The first approach, which is described by Saint-Drenan et al. (2017), involves conducting a 

statistical analysis on a subset of the installed PV plants (see Figure 8-6). The risk here is 

that the selected samples are not representative of the actual PV system. To address this 

issue, it is possible to train the distribution of the different classes of PV plants; this option 

was demonstrated by Saint-Drenan et al. (2019), where a Bayesian approach was used to 

regularize the training approach. This statistical approach has also been employed in the 

Copernicus Climate Change Service to generate regional PV power for each region in 

Europe using the ERA5 reanalysis data set. As described by Saint-Drenan et al. (2018), the 

parameters of the statistical regional model have been derived from the optimal tilt angle, 

allowing this model to be implemented anywhere in Europe without the need for a training 

data set. A comparison of the model output with the European Network of TSOs for 

Electricity data showed that this approach is well accepted. Note that estimates of the 
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regional power production for each European Union country is calculated operationally each 

month with this method. The data can be found on the Copernicus Data Store.50 

 
Figure 8-6. Distribution of the tilt angle of German PV systems for different classes of 

peak power. Image from Saint-Drenan et al. (2017) 

8.4.2.3 Forecasting Regional PV Power Based on Averaged Model Inputs 

The direct approach, called “model inputs average,” is based on the spatial smoothing of the 

input features. In this case, the PV power generation of the area is considered to be a virtual 

power plant, and prediction is made directly at the regional level by using a historical data 

set of regional PV power (measured or estimated) and input meteorological forecasts 

aggregated at a smaller spatial scale than the region of interest. The main advantage of this 

approach is the possibility of obtaining a reliable power forecast without additional details 

about the installations beyond the total installed capacity of the whole area. The relationship 

between meteorological forecasts and PV power time series is typically established with 

machine learning approaches. An overview of the relationship is given by Betti et al. (2020). 

A prerequisite of this approach is the availability of a time series of actual PV power feed-in, 

which can be estimated by the upscaling models described in Section 8.4.2.1. In many 

countries, estimates of the regional PV power feed-in are published, for example, by grid 

operators, and they are available to forecast data providers as a basis for training. 

8.5 Evaluation of Irradiance and PV Power Forecasts 

The evaluation of solar irradiance forecasts provides users with the necessary information 

about forecast accuracy and helps them choose different forecasting products or assess the 

risk when using a particular forecast as a basis for decisions. An extensive overview of 

forecast verification methods was given by Jolliffe and Stephenson (2011). This section 

addresses the evaluation of deterministic irradiance forecasts that provides an overall 

indication of the uncertainty of a specific forecast model. Probabilistic solar forecasts 

                                                

 
50

 See https://cds.climate.copernicus.eu/#!/home.  

https://cds.climate.copernicus.eu/#!/home
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assigning uncertainty estimates to each individual forecast value are described in Section 

8.6. 

The quality of forecasts is evaluated by assessing their similarity to reference data. Most 

often, irradiance measurements are used as reference data, which are commonly referred to 

as ground truth data. Nevertheless, reference data are always affected by a certain degree 

of uncertainty (see Chapter 7). Alternatively, satellite-retrieved irradiance values or the 

output of a detailed physical model might serve as a reference. 

The choice of appropriate metrics and concepts for the evaluation of solar irradiance 

and power forecasts is the subject of ongoing discussions within the solar forecasting 

community; see, e.g., Hoff et al. (2012a) and Marquez and Coimbra (2013). Recently, 

Yang et al. (2020) proposed applying the well-established Murphy-Winkler framework for 

distribution-oriented forecast verification as a standard practice to analyze and compare 

solar forecasts. 

Here, the most standard evaluation methods are outlined, including (1) statistical error 

measures (Section 8.5.1.1); (2) comparison to reference models using the skill score 

parameter (Section 8.5.1.2); and (3) other important considerations, such as the 

representation of the observed frequency distribution and the forecast “goodness” as a 

function of solar position, hour of the day, cloud variability, or even spatiotemporal averaging 

(Sections 8.5.2–8.5.4). These concepts are introduced using examples from an 

observational data set of hourly pyranometer measurements from 18 weather stations of the 

German Weather Service from March 2013 to February 2014 (Lorenz et al. 2016) and 

forecasts from two NWP models, including the: 

 High-resolution deterministic global IFS model, operated at the ECMWF, with spatial 

resolution of 0.125°, 3-hourly outputs, and forecast horizon of 24 hours issued every day 

at 00:00 UTC 

 High-resolution regional HIRLAM SKA model, operated at the Danish Meteorological 

Institute, with spatial resolution of 3 km, hourly outputs, and forecast horizons from 4–9 

hours ahead, issued daily at 00:00 UTC, 06:00 UTC, 12:00 UTC, and 18:00 UTC. 

In addition, Section 8.5.5 addresses the evaluation of regional PV power forecasts in a case 

study in Italy. Finally, Section 8.5.6 introduces the concept of “firm power forecasts” as an 

effective model validation metric to account for the economic value of solar forecasts. 

8.5.1 Error Measures  

Statistical error measures and skill scores are applied for quantitative forecast evaluation. 

8.5.1.1 Statistical Error Measures 

Here, the most commonly used error measures based on first-order statistics are presented. 

The error of a single measurement is given as:  

 εi =Ipred,i−Imeas,i ,  (8-4) 

where Ipred,i denotes a predicted irradiance value (GHI or DNI), and Imeas,i is the corresponding 

measured value.  

To evaluate the forecast accuracy of the solar power predictions, the root mean square error 

(RMSE) is commonly used:  

 RMSE =
1

√𝑁
√∑ 𝜀𝑖

2𝑁
𝑖=1   (8-5) 
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where N is the number of data pairs. The mean square error, MSE = RMSE2, is also 

commonly used. Typically, only daytime values are considered for the evaluation. Relative 

errors for the irradiance forecast are generally derived by normalization with respect to mean 

measured irradiance of a given time interval. In contrast, relative errors of PV power 

forecasts for utility applications are often normalized to the installed power rather than the 

mean measured value (e.g., Lorenz et al. 2011). 

The RMSE can be split into two components: systematic (1) or bias error and (2) stochastic 

error or standard deviation. The bias is the difference between the mean of the predicted 

and measured values (systematic error): 

 



N

i

i
N

bias
1

1
   (8-6) 

A positive bias means the predicted values exceed the measurements on average. 

The standard deviation of the errors, stderr, is defined as: 
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The stderr provides information on the spread of the errors around their mean value and 

might be further decomposed into one part related to the error amplitude [σ(Ipred) – σ(Imeas)] 

and another part related to the correlation coefficient, r, of the time series, which is defined 

as: 
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Overall, the complete decomposition of RMSE yields: 

 RMSE
2
 = bias

2
 + (σ(Ipred) – σ(Imeas))

2
 + 2σ(Imeas) σ(Ipred) (1 – r) (8-9a) 

or, equivalently, and more simply: 

 RMSE
2
 = bias

2
 + stderr

2
. (8-9b) 

Another common measure to assess forecast accuracy is the mean absolute error (MAE): 

 
1

1
MAE | |

N

i

iN




    (8-10) 

which is recommended by Hoff et al. (2012a) as a preferred measure, in particular for 

reporting relative errors. 

From a user’s point of view, the choice of the most suitable error measure will be based on 

the impact of forecast errors on their application. MAE is appropriate for applications with 

linear cost functions (i.e., when the costs caused by inaccurate forecast are proportional to 

the forecast error). The RMSE is more sensitive to large forecast errors and hence suitable 

when small errors are more tolerable and larger errors cause disproportionately high costs, 

which is the case for many applications in the energy market and for grid management 

issues.  

In addition to the computation of these error measures, at least some basic visual analysis is 

strongly recommended. A direct comparison of measurements and forecasts in scatter plots 
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or 2D histograms and time series is helpful to develop a better understanding of forecast 

performance. 

8.5.1.2 Skill Score and Persistence Forecast Model 

Skill score (also referred to as forecast skill) is used to quantify the forecast performance 

relative to a reference model. The RMSE is normally used for this comparison; other scores 

such as MAE or MSE are also often used. The skill score is defined as the difference 

between the score of the reference model and the forecast model divided by the difference 

between the score of the reference model and a perfect model; note that a perfect model 

yields zero RMSE. For RMSE, the skill score, ssRMSE, is calculated as: 

   ssRMSE =
RMSEref −RMSE

RMSEref
,  (8-11) 

where RMSEref refers to the reference model, and RMSE refers to the investigated 

forecasting algorithm (Coimbra and Pedro 2013a). The skill score’s value of 1 hence 

indicates a perfect forecast, and a skill score of 0 means that the investigated algorithm has 

the same RMSE as the reference forecast. A negative value indicates performance that is 

worse than the reference. Skill scores might be applied for comparisons to a simple 

reference model and also for intercomparisons of different forecasting approaches (i.e., 

improvement scores). 

In solar radiation forecasting, persistence is the simplest and most widely used forecast 

reference model. The persistence model is a trivial model that assumes that the current 

situation does not change during the forecasted lead time. Several definitions of persistence 

exist, including simple persistence; scaled persistence, which accounts for solar geometry 

changes; and more-advanced concepts, such as smart persistence. The most widely used 

definitions are presented next. 

For day-ahead forecasts, the simplest approach is to assume that irradiance, I (GHI or DNI), 

persists during a period of 24 hours, that is: 

 𝐼per,24h(𝑡) = 𝐼meas(𝑡 − 24h). (8-12) 

A more elaborate option for GHI, which produces higher accuracy forecasts, is to separate 

the clear and cloudy contributions to solar radiation and assume that only the cloudy 

component (i.e., the random component of GHI) persists during the forecast lead time. The 

clear component is strongly influenced by the deterministic solar geometry and can be 

described with reasonable accuracy using a clear-sky radiation model. In such a modeling 

approach, the persisting magnitude is the clear-sky index, Kc, calculated from the measured 

GHI. For forecast horizons of several hours (t) ahead, persistence GHIper,t for time t is then 

defined as: 

 GHIper Kc,∆t(𝑡) = GHIclear(𝑡) 𝐾𝑐(𝑡 − ∆𝑡). (8-13) 

For DNI, a similar approach can be used based on the beam clear-sky index or the Linke 

turbidity factor (Kuhn et al. 2017b).  

In the context of the IEA Task 46 (IEA 2015), the so-called “smart persistence” has been 

proposed. It consists of increasing the integration time that defines the current conditions 

commensurately to the forecast time horizon ∆t: 

                  𝐺𝐻𝐼𝑝𝑒𝑟 𝑠𝑚𝑎𝑟𝑡,∆𝑡(t) =  𝐺𝐻𝐼𝑐𝑙𝑒𝑎𝑟(t)
1

∆𝑡
∫ 𝐾𝑐(𝑡′)𝑑𝑡′𝑡−∆𝑡

𝑡−2∗∆𝑡
   (8-14) 

Or, for measurements available in discrete time interval ∆𝑡𝑚𝑒𝑎𝑠 : 
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               𝐺𝐻𝐼𝑝𝑒𝑟 𝑠𝑚𝑎𝑟𝑡,∆𝑡(t) =  𝐺𝐻𝐼𝑐𝑙𝑒𝑎𝑟(t)
1

𝑁
∑ 𝐾𝑐(𝑡 − ∆𝑡 (1 +

𝑖

𝑁
)),𝑁

𝑖=1    (8-15) 

with 𝑁 =  
∆𝑡

∆𝑡𝑚𝑒𝑎𝑠
. 

Another less-used reference model is based on climatological mean values. Alternatively, 

combinations of climatology and persistence can be applied as a reference, as 

recommended by Yang et al. (2020). Further discussion on forecast benchmarking using the 

skill score and clear-sky persistence is provided by Yang (2019b). 

 
Figure 8-7. Clear-sky index (here noted as kt*) forecast error as a function of (left) 

cosine of solar zenith angle and (right) hour of the day for the forecasts issued by the 

IFS and SKA NWP models (blue and red lines, respectively). Solid lines show RMSE, 

and dashed lines show mean bias error. The evaluated period is from March 1, 2013–

February 28, 2014. 

8.5.2 Analysis of Forecast Error with Respect to Solar Elevation 

A special feature of solar irradiance is its very strong deterministic component, which results 

from the daily and seasonal course of the sun. This deterministic signal strongly influences 

the forecast error signal. Hence, to investigate the solar irradiance forecast errors, it is 

sometimes advisable to evaluate only the nondeterministic part of solar radiation, which is 

primarily caused by errors in the representation of clouds. To this aim, the analyzed variable 

is often the clear-sky index forecast error instead of GHI forecast errors.  

Figure 8-7 shows the RMSE and bias of the clear-sky index, Kc, as a function of the cosine 

of the solar zenith angle (Figure 8-7, left) and the time of day (Figure 8-7, right) for two 

different NWP model forecasts (IFS and SKA). The two models show similar behavior: 

RMSE increases with low SZA or, equivalently, during morning and evening hours, as is also 

the case with the magnitude of bias. This error pattern is very often caused by deficient 

modeling of the atmospheric transport of radiation for low solar altitudes. This limitation is a 

well-known flaw of the two-stream schemes used in most NWP models. Other model 

limitations also exist, such as 3D effects and atmospheric refraction issues whose impact is 

enhanced for low solar altitudes. 
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Figure 8-8. RMSE of various versions of the SKA forecasts as a function of the 

standard deviation of measurement-based clear-sky index (here noted as kt*) (red) 

SKA.  

Dark blue: Nearest grid point, SKA20 x 20 averaged throughout 20 by 20 grid points. 

Light blue: SKAav 5-hour sliding mean of the clear-sky index of the forecasts of the 

average throughout 20 by 20 grid points. Green: SKAav, LR.kt*: linear regression of 

the clear-sky index of the forecasts applied to SKAav. The evaluated period is from 

April 3, 2013–February 28, 2014. Training set: Last 30 days, all 18 DWD sites 

8.5.3 Analysis of Forecast Error with Respect to Cloud Variability and 
Spatiotemporal Averaging 

Forecasts generally show good agreement with measurements for clear-sky periods or even 

completely overcast days, which basically have a quasi-constant clear-sky index; however, 

cloud variability strongly impacts solar forecasting accuracy. Hence, considerable deviations 

from the measurements are typically observed for days with variable cloudiness. An 

evaluation of the SKA forecast errors as a function of the measurement-derived Kc 

variability, here represented by the standard deviation of Kc throughout 5 hours, is shown in 

Figure 8-8. The evaluation also shows this dependence for multiple spatial and temporal 

averaging configurations of the SKA forecasts. Overall, Figure 8-8 shows: 

1. The forecast error increases with enhanced cloud variability. 

2. Spatial and temporal forecast averages result in reduced RMSE values, going from 
negligible reductions for very stable conditions to large reductions for highly 
variable conditions. 

Regarding the first point, the solar radiation forecast error shows a clear dependency with 

respect to cloud variability and, more generally, with respect to the cloud conditions. 

Combining the error trend in the dependence of cloud conditions and the solar elevation has 

been proposed as an efficient method to reduce the systematic error in NWP model 

forecasts using a post-processing MOS. In particular, Lorenz et al. (2009) used a polynomial 

function with cos(SZA) and Kc as independent variables to parameterize the forecast bias 

error from historical forecasts relative to observations and ultimately to subtract the 

parameterized error from operational forecasts. This approach has also been adapted and 

evaluated for other NWP models and different climates. Mathiesen and Kleissl (2011) 

found improved accuracies when applying that approach to three different NWP models—

GFS, North American Model, and IFS—for stations in the continental United States. Pelland, 
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Galanis, and Kallos (2013) did the same for the Canadian GEM model, and Müller and 

Remund (2010) for the WRF model forecasts in Switzerland. 

Regarding the second point, the rationale of the RMSE decreases when an averaging 

scheme is applied, and this is explained by the existence of small correlations among the 

pixels over which the averaging scheme is applied. This leads to random error cancellations 

during the averaging process. In contrast, for stable conditions, when the correlation among 

neighboring pixels is very high, the cancellation of random errors is small. 

The optimal region size and time interval for RMSE reduction using averaging depends on 

the correlation structure among neighboring forecasts, both in time and space. Multiple 

studies have been conducted on this topic. For instance, a detailed evaluation of irradiance 

forecasts from the Canadian GEM model resulted in a reduction of forecast errors in the 

range from 10% to 15% when the model outputs were averaged throughout several hundred 

kilometers (Pelland, Galanis, and Kallos 2013). A similar improvement was achieved with 

WRF forecasts provided by Meteotest using averages over an area of 50 km by 50 km 

(Müller and Remund 2010). In parallel, Mathiesen and Kleissl (2011) reported an averaging 

area of 100 km by 100 km as suitable for irradiance forecasts using the GFS and North 

American Mesoscale forecast system models. The benefit of horizon-dependent smoothing 

filters for CMV forecasts was also shown by Lorenz, Hammer, and Heinemann (2004) and 

by Kühnert, Lorenz, and Heineman (2013). 

The reduction of RMSE by spatial and temporal averaging can be extrapolated to the 

particular case in which the forecasting model performance is evaluated throughout multiple 

sites across a wide region (also referred to as regional forecast) or for coarser temporal 

granularities, such as monthly or yearly. In these cases, there is a reduction of random 

errors with respect to point-wise evaluations that make regional forecasting more accurate 

than point-wise forecasting. Again, the extent of the reduction depends on the particular 

correlation levels among the aggregated values in each case. An analysis of regional 

forecast errors for different region sizes and different forecast models was given by Lorenz 

et al. (2009); Kühnert, Lorenz, and Heineman (2013); and Lorenz and Heinemann (2012). 

Temporal and spatial averaging can be also considered for ASI-based forecasts. It has been 

found that in a nowcasting system with four sky imagers during days with many transient 

clouds, the DNI RMSE for forecasts that are 10 minutes ahead is reduced from 13.0% to 

6.5% using averages of 4 km2 and 15 minutes with respect to pixel-wise forecasts (Kuhn et 

al. 2017c). 

Despite the positive impact of spatiotemporal averaging on reducing the RMSE of a forecast, 

there is a negative effect that adversely impacts the frequency distribution of forecasted data 

because averaging reduces extreme forecasted values and distorts the original frequency 

distribution of the forecast data. Consequently, forecast averages should be used only when 

the forecast frequency distribution is not critical. 

8.5.4 Analysis of the Frequency Distributions of Forecasted Values 

The ability of a model to reproduce the observed frequency distribution of both solar 

irradiance and clear-sky index is a required property for some applications. In addition, 

it can provide insights about potential problems in the forecast model. 

Figure 8-9 shows the probability density function (PDF) of the clear-sky index, Kc, for 

forecasts issued by the SKA and IFS NWP models, as in Figure 8-7, and the actual PDF 

obtained from observations. These plots show that the SKA model systematically 

overpredicts clear-sky situations and underpredicts overcast conditions. Consequently, 

intermediate situations are underrepresented. On the other hand, the IFS model 

underrepresents very clear and very cloudy conditions and overrepresents intermediate 
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situations. Although this gives insightful information about the forecast performance, the 

similarity of the distribution functions of measurements and forecasts does not guarantee an 

accurate forecast because it does not include information regarding the correct timing of the 

modeled events.  

 
Figure 8-9. PDF of the clear-sky index (here noted as kt*) derived from measurements 

(gray), SKA model forecasts (red), and IFS model forecasts (blue). The evaluated 

period is from March 1, 2013–February 28, 2014; cos(SZA) > 0.1. 

A quantitative evaluation of the agreement between the observed and forecasted distribution 

functions can be done using the Kolmogorov-Smirnov integral (Espinar et al. 2008; 

Gueymard 2014), which is usually applied to distribution functions of GHI or DNI rather than 

to Kc (Beyer et al. 2009; Perez and Hoff 2013). 

8.5.5 Analysis of Regional Forecasts 

Regionally aggregated forecasts of PV power, typically derived through upscaling (see 

Section 8.4.2), are required by grid operators. Regional forecasts show much lower 

uncertainties than single-site forecasts. By enlarging the footprint of the forecast region of 

interest, forecast errors are reduced (Hoff and Perez 2012; Lorenz et al. 2009, 2011; 

Fonseca et al. 2014; David et al. 2016; Saint-Drenan et al. 2016). This phenomenon, which 

is called the smoothing effect, is related to the correlation between the forecast errors at 

different locations. The larger the region, the more locations with different irradiance 

variability are included, and thus solar forecast errors of the different sites are less 

correlated. This subsequently leads to a higher accuracy of the regional PV power forecasts.  

An example is shown in Figure 8-10, which depicts the day-ahead forecast accuracy that 

can be reached in Italy by predicting the PV generation of different control areas: The 

adopted model corresponds to an upscaling method using averaged model inputs and 

forecasting the power generation at market zone level directly (Betti et al. 2020). 

In addition, a measure of PV power variability is displayed in Figure 8-10. With 𝑃(𝑡) denoting 

the PV power output at time t, the change in PV power for a given time step, ∆𝑡, is defined 

as: 

                                 ∆𝑃∆𝑡 = 𝑃(𝑡) − 𝑃(𝑡 − ∆𝑡).  (8-16) 

Hourly values and a time step ∆𝑡 of 24 hours are specifically considered in Figure 8-10.  
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Figure 8-10. Smoothing effect over Italy: RMSE of regional forecasts (circles) and 

persistence (triangles) as a function of the area size for the market zones in Italy (full 

circles/triangles) and for areas merging several adjacent market zones (empty 

circles/triangles). 

PV power variability in each zone is defined as the standard deviation, 𝜎(∆𝑃∆𝑡), as proposed 

by Perez et al. (2016), which is equivalent to the RMSE of the persistence of PV power (see 

also equations 8.5 and 8.12) 

                             𝑅𝑀𝑆𝐸𝑝𝑒𝑟 =  
1

√𝑁
√∑ (∆𝑃∆𝑡)2𝑁

𝑖=1 =  𝜎(∆𝑃∆𝑡).   (8-17) 

Here, it is commonly assumed that the average of ∆𝑃∆𝑡 should be zero. 

Both the variability and the forecast errors decrease with an increase in the size of the region 

and the number of PV systems considered. They can be well fitted either by a hyperbolic 

function, similar to one proposed by Perez et al. (2016), or by an exponential function, 

similar to the one proposed by Lorenz et al. (2009). As shown in Figure 8-10, by enlarging 

the footprint of the forecast region from the prediction of the PV generation in each market 

zone in Italy to the prediction of the PV generation over all of Italy, the RMSE can decrease 

from 5.5% (market zones average) to 3.6% (countrywide). 

To summarize, expanding the transmission grid to manage the power generation in large 

areas (e.g., entire countries instead of market zones) not only reduces congestion and 

constraints on production capacity but also increases the forecast accuracy, as shown with 

the Italy example.  

8.5.6 Effective Model Validation Benchmarking: Operationally Firm 
Solar Forecasts 

When validating solar forecasts, the classical error metrics (e.g., RMSE and MAE) 

introduced in Section 8.5.1 are commonly used. With continuous development in technology 

and changes in the energy market, the need arises for new validation measures that account 

for the economic value of solar forecasts. Thus, the firm power forecast (FPF or “perfect 

forecast”) concept was developed and introduced in a recent series of publications by Perez 

et al. (2019a, 2019b) and Pierro et al. (2020a). This forecast is both an effective model 

validation metric and an operational strategy to integrate increasing amounts of variable 

solar generation on electric grids (see also Section 9.7.3). The costs incurred in transforming 

imperfect forecasts into firm predictions define the new metric: These include the costs of 
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energy storage and output curtailment needed to make up for any over- or underprediction 

situations. It was shown by Perez et al. (2019a, 2019b) and Pierro et al. (2020a) that 

delivering firm predictions (i.e., fully eliminating grid operator renewable supply-side 

uncertainty and, incidentally, the need to characterize forecasts probabilistically) could be 

achieved at a modest operational cost.  

Although other recent publications have focused on standardizing error metrics and forecast 

model validation practice (e.g., Hoff et al. 2012a; Yang et al. 2020), the choice of possible 

references as well as the possible definitions of persistence constitute sources of ambiguity 

when evaluating results from different studies, particularly reports emanating from the 

industry. In addition, the standard metrics, however “standardized,” are not directly 

exploitable by grid operators for estimating operational costs incurred by forecast errors. 

The FPF metric is defined as the optimum (i.e., minimum possible) capital cost of PV plant 

oversizing and storage that is sufficient to make up for all instances of over- and 

underforecasts. This minimum is a function of the assumed capital costs for PV and storage 

and, of course, of the quality of the forecast. This metric bypasses both the ambiguity of 

standard metrics and their exploitability by grid operators because the metric is (1) a tangible 

hardware cost and (2) an indirect measure of operational costs resulting from solar supply-

side uncertainty, because applying firm forecasts would entirely eliminate the said 

uncertainty. 

Figure 8-11 compares the MAE and FPF metrics for GHI forecasts at 1-, 3-, and 24-hour 

forecast horizons. Results stem from the analysis of time series at the seven NOAA Surface 

Radiation Budget Network (SURFRAD) sites for a period of 1 year. The forecast models 

include smart persistence (Section 8.5.1.2), SUNY (also known as SolarAnywhere; 

SolarAnywhere 2019), and its underlying NWP components: IFS, GFS, National Digital 

Forecast Database, and the HRRR. In this example, the hardware costs quantifying the FPF 

metric amount to $1,200 per kW for PV oversizing and $200 per kWh for storage. 

A noticeable difference between the two metrics is the performance of smart persistence 

relative to the other models, especially for short-term horizons. Persistence turns out to be 

operationally more robust than generally assumed because, whereas its dispersion can be 

large (i.e., large MAE and RMSE), this dispersion tends to be well balanced around the 1:1 

diagonal, with fewer instances of the prolonged over/underestimations that are operationally 

costly.  

 

Figure 8-11. Comparison of forecast model performance at 1-, 3-, and 24-hour 

horizons for all SURFRAD stations using (left) the MAE metric and (right) the FPF 

metric. 
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8.6 Probabilistic Solar Forecasts 

A forecast is inherently uncertain and a proper assessment of its associated uncertainty 

offers the grid operator a more informed decision-making framework. For example, a 

deterministic forecast that includes predictions intervals is of genuine added value and, if 

appropriately incorporated in grid operations, might permit an increase in the value of solar 

power generation (Morales et al. 2014).  

This section is restricted to the univariate51 context that corresponds to probabilistic 

forecasts that do not consider the spatiotemporal dependencies generated by stochastic 

processes such as solar power generation. Two types of solar52 probabilistic forecasts are 

considered here: quantile forecasts and ensemble forecasts (i.e., those using the Ensemble 

Prediction System, or EPS). Quantile forecasts are quite versatile probabilistic models and 

as such might address different forecasting time horizons, whereas EPS forecasts generally 

provide day-ahead probabilistic forecasts. Further, a verification framework is considered for 

evaluating the quality of solar probabilistic forecasts. The evaluation framework is based on 

visual diagnostic tools and a set of scores mostly originating from the weather forecast 

verification community (Wilks 2014). What follows provides an overview of the basic 

concepts related to solar probabilistic forecasting methods with an emphasis on the specific 

associated verification metrics. Comprehensive overviews regarding forecasting methods 

and the verification of solar probabilistic forecasts metrics can be found in van der Meer, 

Widén, and Munkhammar (2018); Antonanzas et al. (2016); and Lauret, David, and Pinson 

(2019).  

8.6.1 Nature of Probabilistic Forecasts of Continuous Variables 

In contrast to deterministic forecasts, probabilistic forecasts provide additional information 

about the inherent uncertainty embodied in NWP. The probabilistic forecast of a continuous 

variable, such as solar power generation or solar irradiance, takes the form of either a 

cumulative distribution function (CDF), 𝐹(𝑌), or a PDF, 𝑓(𝑌), of the random variable of 

interest, 𝑌 (e.g., GHI).  

The CDF of a random variable Y is given as: 

                                                 𝐹(𝑦) = 𝑃(𝑌 ≤ 𝑦)    (8-18) 

where 𝑃(𝑌 ≤ 𝑦) represents the probability that this random variable is less or equal to 𝑦. 

The predictive distribution can be summarized by a set of quantiles. The quantile, qτ, at 

probability level τ ∈  [0,1] is defined as follows: 

                   𝑞𝜏 = 𝐹−1(𝜏), (8.19) 

where 𝐹−1 is the so-called quantile function. A quantile, 𝑞𝜏, corresponds to the threshold 

value below which an event, y, materializes with a probability level, τ. 

Prediction intervals (also called interval forecasts) can be inferred from the set of quantiles. 

Prediction intervals define the range of values within which the observation is expected to be 

with a certain probability (i.e., its nominal coverage rate) (Pinson et al. 2007). For example, a 

central prediction interval with a coverage rate of 95% is estimated by using the quantile 

                                                

 
51

 Future work (see Chapter 10) will be devoted to multivariate probabilistic models capable of 
capturing the spatiotemporal correlations present in irradiance and PV forecasts.  
52

 The term solar forecast encompasses solar irradiance forecasts and PV power forecasts. 
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𝑞𝜏=0.025 as the lower bound and 𝑞𝜏=0.975 as the upper bound. Figure 8-12 shows an example 

of the probabilistic forecasts of solar irradiance where prediction intervals have been 

computed for nominal coverage rates ranging from 20% to 80%.  

 
Figure 8-12. Example of probabilistic solar irradiance forecasts: two days of measured 

GHI at Le Tampon, France, and associated 1-hour ahead forecasts with prediction 

intervals (yellow) generated with the quantile regression forest model. 

8.6.2 Quantile Forecasts 

Two approaches are commonly used in the community to generate quantile forecasts 

(see Figure 8-13) addressing different forecast horizons. As input, they use past ground 

observations and satellite images for intraday forecasting or NWP deterministic forecasts 

that are more effective for day-ahead forecasting. The first approach (Bacher, Madsen, and 

Nielsen 2009; Pedro et al. 2018) involves directly generating the quantiles of the predictive 

distribution of the variable of interest (e.g., GHI, DNI, or PV power). The second approach 

(Lorenz et al. 2009; David et al. 2016; Grantham, Gel, and Boland 2016; Pierro et al. 2020b) 

produces the interval forecasts from the combination of a deterministic (point) forecast and 

quantiles of the prediction error.  

For both approaches, quantiles can be estimated either by assuming a parametric law for 

the predictive distribution or by nonparametric methods, which make no assumptions about 

the shape of the predictive distribution.  

 
Figure 8-13. The two typical workflows used to generate quantile forecasts from 

recent past observations and/or deterministic NWP forecasts 
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8.6.2.1 Parametric Methods 

Parametric models assume that the variable of interest or the prediction error follows a 

known law of distribution (e.g., a doubly truncated Gaussian for GHI or a Gaussian for the 

error distribution). Only a few parameters (e.g., mean and variance) are needed to fully 

characterize the predictive distribution. Consequently, this approach is particularly 

interesting in an operational context because it requires a low computational effort.  

 
Figure 8-14. PDF of the normalized error (zero mean and unit variance) of the hourly 

profile of day-ahead forecasts of the clear-sky index provided by ECMWF-HRES for 

three different sky conditions and for the site of Saint-Pierre (21.34°S, 55.49°E), 

Reunion, France, in 2012. The red dashed line represents the fitted standard normal 

PDF. Image from David and Lauret (2018) 

In the solar forecasting community, it is very common to fit a Gaussian distribution to the 

errors even though errors derived from deterministic forecasts of solar irradiance and of 

clear-sky index do not follow a Gaussian distribution (see Figure 8-14). For instance, Lorenz 

et al. (2009) developed the first operational PV forecasting model in Germany by assuming 

a Gaussian distribution of the error of the deterministic GHI forecasts generated by the IFS. 

More precisely, the predictive CDF was a Gaussian distribution with a mean corresponding 

to the point forecast and a standard deviation derived from a fourth-degree polynomial 

function for different classes of cloud index and solar elevation. For intrahour and intraday 

solar irradiance probabilistic forecasts, David et al. (2016) assumed a Gaussian error 

distribution of the deterministic forecast to generate a predictive CDF with a Generalized 

AutoRegressive Conditional Heteroskedasticity (GARCH) model. Instead of fitting a 

parametric PDF to the error distribution, Fatemi et al. (2018) proposed a framework for 

parametric probabilistic forecast of solar irradiance using the beta distribution and standard 

two-sided power distribution. 

8.6.2.2 Nonparametric Methods 

To avoid making assumptions about the shape of the predictive distribution, numerous 

nonparametric methods have been proposed in the literature (van der Meer, Widén, and 

Munkhammar 2018). Examples are techniques such as bootstrapping (Efron 1979; 

Grantham, Gel, and Boland 2016), kernel density estimation (Parzen 1962), or k-nearest 

neighbor (Pedro et al. 2018). Here, two prominent and simple nonparametric methods are 

discussed briefly: the quantile regression and analog ensemble techniques.  
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Quantile regression models relate quantiles of the variable of interest (predictand) to a set 

of explanatory variables (predictors). Statistical or machine learning techniques—such as 

linear quantile regression, quantile regression forest, or gradient boosting (David and Lauret 

2018; van der Meer, Widén, and Munkhammar 2018)—are commonly used to produce the 

set of quantiles with probability levels spanning the unit interval. 

The following summarizes the linear quantile regression method first proposed by Koenker 

and Bassett (1978). See David, Luis, and Lauret (2018) for details about the implementation 

of other regression methods, including other variants of the linear quantile regression, 

quantile regression forest, quantile regression neural network, or boosting.  

The linear quantile regression technique estimates a set of quantiles of the cumulative 

distribution function, 𝐹, of some response variable, 𝑌 (the predictand), by assuming a linear 

relationship between the quantiles of 𝑌 (𝑞𝜏) and a set of explanatory variables, 𝑋 (the 

predictors): 

𝑞𝜏 = 𝛽𝜏𝑋 + 𝜖, (8-20) 

where 𝛽𝜏 is a vector of the parameters to be optimized at each probability level, 𝜏, and 𝜖 

represents a random error term (Koenker and Bassett 1978).  

Numerous implementations of the linear quantile regression technique (and of its related 

variants) have been proposed in the literature to generate quantile forecasts for different 

forecast horizons and using different types of predictors, 𝑋. See, e.g., Bacher, Madsen, and 

Nielsen (2009); Zamo et al. (2014); Lauret, David, and Pedro (2017); van der Meer, Widén, 

and Munkhammar 2018; and Bakker et al. (2019).  

The analog ensemble (AnEn) method (Delle Monache et al. 2013) is a simple nonparametric 

technique used to build the predictive distributions. The aim is to search for similar 

forecasted conditions in the historical data and to create a probability distribution with the 

corresponding observations. Alessandrini et al. (2015) applied an AnEn approach to a set of 

predicted meteorological variables (e.g., GHI, cloud cover, and air temperature) generated 

by the Regional Atmospheric Modeling System (RAMS). Note that the AnEn technique is 

mostly employed for day-ahead forecasts and generates the predictive distribution using 

NWP deterministic forecasts.  

8.6.3 Ensemble Prediction System 

8.6.3.1 Definition  

The EPS corresponds to a perturbed set of forecasts generated by slightly changing the 

initial conditions of the control run and of the modeling of unresolved phenomena 

(Leutbecher and Palmer 2008). Figure 8-15 shows a schematic representation of an 

ensemble forecast generated by an NWP model. The trajectories of the perturbed forecasts 

(blue lines) can differ strongly from the control run (red line). The spread of the resulting 

members (blue stain) represents the forecast uncertainty. For example, the ECMWF 

provides an ensemble forecast from the IFS model. It consists of 1 control run and 50 

“perturbed” members. 

Though members of the ensemble are not directly linked to the notion of quantiles, they can 

be seen as discrete estimates of a CDF when they are sorted in ascending order. Lauret, 

David, and Pinson (2019) proposed different ways to associate these sorted members to a 

CDF. 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data  - 3rd Edition   

8-40 

 
Figure 8-15. A schematic illustration of an ensemble forecast generated with an NWP 

model. Image from Met Office, © British Crown copyright (2021) 

8.6.3.2 Post-Processing of the Ensemble Prediction System 

Global and regional NWPs are designed to forecast a large variety of meteorological 

variables (but mainly precipitation and temperature) and have not previously focused on the 

accurate generation of the different components of solar radiation. Consequently, raw 

ensembles provided by meteorological centers suffer from a lack of accuracy, a lack 

of calibration, or both (Leutbecher and Palmer 2008). Additionally, see, e.g., Yang et al. 

(2020) for definitions and discussions about the specific meaning of accuracy, calibration, 

and other specialized terms in the field of forecasting—some of which appearing in the 

following. Overall, raw ensemble forecasts are systematically refined by post-processing 

techniques (also called calibration techniques) to further improve their quality.  

The aim of post-processing is to apply a statistical calibration to the PDF drawn by the raw 

initial ensemble forecasts to optimize a specific metric (e.g., the continuous ranked 

probability score [CRPS] described in Section 8.6.4) used to assess the quality of 

probabilistic forecasts. Indeed, as well as having a coarse spatial resolution, the ensemble 

forecasts from NWPs are known to be underdispersive; in other words, they exhibit a lack of 

spread (Leutbecher and Palmer 2008). To address this, Sperati, Alessandrini, and Delle 

Monache (2016) proposed two different methods already used in the realm of wind 

forecasting: The variance deficit method designed by Buizza et al. (2003) and the ensemble 

model output statistic (MOS) method proposed by Gneiting et al. (2005). Even if these 

methods cannot be considered to be parametric, they are based on the characteristics of a 

normal distribution. Indeed, such a distribution is appealing because it can be assessed with 

only two parameters: the mean and the standard deviation, which are related to the average 

bias and the spread of the ensemble, respectively. 

Another method of calibration is based on the rank histogram (see Section 8.6.4); it was 

initially proposed by Hamill and Colucci (1997) for precipitation forecasts. Zamo et al. (2014) 

applied this method to the Météo France’s EPS, called PEARP, to generate probabilistic 

solar forecasts. The aim of this method is to build a calibrated CDF from the rank histogram 

derived from past forecasts and observations. Other techniques of EPS calibration exist, but 

they have not been used for solar forecasting. For example, Pinson (2012) and Pinson and 
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Madsen (2009) suggested a framework for the calibration of wind ensemble forecasts. Junk, 

Delle Monache, and Alessandrini (2015) proposed an original calibration model for wind-

speed forecasting applied to ECMWF-EPS based on the combination of nonhomogeneous 

Gaussian regression and AnEn models. Likewise, Hamill and Whitaker (2006) suggested an 

adaptation of the AnEn technique for the calibration of ensemble precipitation forecasts 

using the statistical moments of the distribution, such as the mean and spread of the 

members as predictors. See Wilks (2018) for a thorough review of univariate ensemble 

postprocessing methods. 

8.6.4 Verification of Solar Probabilistic Forecasts 

8.6.4.1 Properties Required for a Skillful Probabilistic System 

Several attributes characterize the quality53 of probabilistic forecasts (Jolliffe and 

Stephenson 2011; Wilks 2014), but two main properties (reliability and resolution) are used 

to assess the quality of the forecasts. 

The reliability or calibration refers to the statistical consistency between forecasts and 

observations; in other words, a forecast system has a high reliability if the forecast 

probability and observed frequency agree. The reliability property is an important 

prerequisite because nonreliable forecasts would lead to a systematic bias in subsequent 

decision-making processes (Pinson et al. 2007). 

The resolution measures the ability of a forecasting model to generate predictive 

distributions that depend on forecast conditions. Put differently, the more distinct the 

observed frequency distributions for various forecast situations are from the full 

climatological distribution, the more resolution the forecast system has. Climatological 

forecasts are perfectly reliable but have no resolution. Consequently, a skillful probabilistic 

forecasting system should issue reliable forecasts and should exhibit high resolution. 

Sharpness, which refers to the concentration of predictive distributions, can be measured by 

the average width of the prediction intervals. Unlike reliability and resolution, sharpness is a 

function of only the forecasts and does not depend on the observations. Consequently, 

a forecasting system can produce sharp forecasts yet be useless if the probabilistic 

forecasts are unreliable.  

8.6.4.2 Probabilistic Verification Tools 

The evaluation framework is based on visual diagnostic tools and numerical scores.  

8.6.4.2.1 Visual Diagnostic Tools 

Table 8-1 lists the diagnostic tools for which Lauret, David, and Pinson (2019) provided pros 

and cons as well as detailed information about their implementation. Note that some tools 

were initially designed for a specific type of forecast (i.e., an ensemble or quantile forecast) 

and that there is apparently no visual diagnostic tool to assess the resolution property. 

  

                                                

 
53

 Quality refers to the correspondence between forecasts and the observations. 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data  - 3rd Edition   

8-42 

Table 8-1. Visual Diagnostic Tools 

Diagnostic Tool Remarks 

Reliability diagram Initially designed for the reliability assessment of quantile forecasts 

Can be used for ensemble forecasts if members are assigned specific probability 
levels (see Lauret, David, and Pinson [2019]) 

Rank histogram  Initially designed for the reliability assessment of ensemble forecasts 

Can be extended to quantile forecasts if quantiles are evenly spaced 

Probability integral 
transform histogram 

Represents a reliability assessment of quantile forecasts  

Sharpness diagram Plots the average width of the prediction intervals for different nominal coverage 
rates 

Sharpness can only contribute to a qualitative evaluation of the 
probabilistic forecasts.  

Even if narrow prediction intervals are preferred, sharpness cannot be seen as a 
property to verify the quality of probabilistic forecasts but is more like the 
consequence of a high resolution. 

Table 8-2. Forecast Metrics 

Forecast Metric Remarks  

Continuous ranked probability 
score (CRPS) 

Can be normalized to define a skill score (CRPS skill score) 

Can be further partitioned into the two main attributes: reliability and 
resolution 

Ignorance score Local score (i.e., the score depends only on the value of the 
predictive distribution at the observation) 

Cannot be normalized 

Interval score  Specifically designed for interval forecasts 

Quantile score  Forecast performance of specific quantiles 

8.6.4.2.2 Numerical Scores 

Numerical scores provide summary measures for the evaluation of the quality of probabilistic 

forecasts. Table 8-2 enumerates the main scoring rules for evaluating the quality of 

probabilistic forecasts of a continuous variable. All the scores listed in the table are proper 

scoring rules (Gneiting and Raftery 2007), hence ensuring that perfect forecasts are given 

the best score value. Lauret, David, and Pinson (2019) gave a detailed definition of each 

score.  

8.6.4.3 Presentation of Some Tools and Scores 

This section describes in detail some diagnostic tools and numerical scores. See Lauret, 

David, and Pinson (2019) and Yang et al. (2020) for descriptions of other metrics. 
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8.6.4.3.1 Reliability Diagram 

A reliability diagram is a graphical verification display used to assess the reliability attribute 

of quantile forecasts. Quantile forecasts are evaluated one by one, and their observed 

frequencies are reported versus their forecast probabilities (see Figure 8-16). Such a 

representation is appealing because the deviations from perfect reliability (the diagonal) can 

be visually assessed (Pinson, McSharry, and Madsen 2010); however, because of both the 

finite number of pairs of observation/forecast and also possible serial correlation in the 

sequence of forecast-verification pairs, observed proportions are not expected to lie exactly 

along the diagonal, even if the density forecasts are perfectly reliable. Pinson, McSharry, 

and Madsen (2010) proposed a method to add consistency bars to the reliability diagram. 

This adding of consistency bars to the reliability diagrams can help users gain more 

confidence in their (possibly subjective) judgment regarding the reliability of the different 

models. Figure 8-16 shows an example of reliability diagram with consistency bars. In this 

example, the forecasts cannot be considered reliable because the line corresponding to the 

forecasts falls outside the consistency bars. More elaborate reliability diagrams are proposed 

by Yang (2019a, 2019c).  

 
Figure 8-16. Example of a reliability diagram. Consistency bars for a 90% confidence 

level around the ideal line are individually computed for each nominal forecast 

probability. 

8.6.4.3.2 Rank Histogram 

A rank histogram is a graphical display initially designed for assessing the reliability of 

ensemble forecasts (Wilks 2014). Rank histograms permit users to visually assess the 

statistical consistency of the ensemble—that is, if the observation can be seen statistically 

like another member of the ensemble (Wilks 2014). A flat rank histogram is a necessary 

condition for ensemble consistency and shows an appropriate degree of dispersion of the 

ensemble. An underdispersed or overdispersed ensemble leads to U-shaped or hump-

shaped rank histogram; see Figure 8-17. 

In addition, some unconditional biases can be revealed by asymmetric (triangle-shaped) 

rank histograms. It must be stressed that one should be cautious when analyzing rank 

histograms. As shown by Hamill (2001), a perfectly flat rank histogram does not mean that 

the corresponding forecast is reliable. Further, when the number of observations is limited, 

consistency bars can also be calculated with the procedure proposed by Bröcker and Smith 

(2007). 
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Figure 8-17. Illustrative examples of rank histograms for an ensemble of M = 9 

members. The horizontal solid blue line denotes the statistical consistency of the 

ensemble. The dashed-dotted lines represent the consistency bars. Figure inspired 

from Wilks (2014) 

8.6.4.3.3 Overall Skill Assessment with the Continuous Ranked Probability Score 

The most common skill score for evaluating the quality of predictive densities of continuous 

variable is the CRPS, whose formulation is: 

𝐶𝑅𝑃𝑆 =
1

𝑁
∑ ∫  [�̂�𝑓𝑐𝑠𝑡

𝑖 (𝑦) − 𝐹𝑦𝑜𝑏𝑠
𝑖 (𝑦)]

2
+∞

−∞

𝑁

𝑖=1

𝑑𝑦, (8-21) 

where �̂�𝑓𝑐𝑠𝑡
𝑖 (𝑦) is the predictive CDF of the variable of interest, x (e.g., GHI), and 𝐹𝑦𝑜𝑏𝑠

𝑖 (𝑦) is 

a CDF of the observation (i.e., a step function that jumps from 0 to 1 at the point where the 

forecast variable, 𝑦, equals the observation, 𝑦𝑜𝑏𝑠). The squared difference between the two 

CDFs is averaged over the N forecast/observation pairs. Note that the CRPS is negatively 

oriented (smaller values are better) and has the same dimension as the forecasted variable.  

Figure 8-18(a) shows three hypothetical predictive PDFs, and Figure 8-18(b) plots the 

corresponding predictive CDFs. The black thick line in Figure 8-18(b) represents the CDF 

of the observation, 𝐹𝑦𝑜𝑏𝑠
𝑖 (𝑦). Because CRPS represents the integrated squared difference 

between the two CDFs, the pair of observation/forecast indicated by 1 will be assigned the 

best score. Conversely, forecasts indicated by 2 and 3 will lead to a higher CRPS. Indeed, 

although it has the same degree of sharpness as Forecast 1, Forecast 2 is not centered on 

the observation (i.e., this is a biased forecast). Regarding Forecast 3, even though it is 

centered on the observation, it is less sharp than forecasts 1 and 2. In summary, CRPS 

rewards the concentration of probability around the step function located at the observed 

value (Hersbach 2000). 
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Figure 8-18. Schematic of the CRPS skill score. Three forecast PDFs are shown in 

relation to the observed variable in (a). The corresponding CDFs are shown in (b), 

together with the step function CDF for the observation (black heavy line). Forecast 

PDF 1 would produce a small (i.e., good) CRPS. This would not be the case for 

Forecast 2 or Forecast 3. Illustration inspired from Wilks (2014) 

The CRPS can be further partitioned into the two main attributes of probabilistic forecasts 

described: reliability and resolution. The decomposition of the CRPS leads to:  

𝐶𝑅𝑃𝑆 = RELIABILITY –  RESOLUTION + UNCERTAINTY.  (8-22) 

The uncertainty54 term cannot be modified by the forecast system and depends only on the 

observation’s variability (Wilks 2014). Because the CRPS is negatively oriented, the goal of 

a forecast system is to minimize the reliability term and maximize the resolution term as 

much as possible. Hersbach (2000) and Lauret, David, and Pinson (2019) detail the 

procedures for calculating the different terms (reliability and resolution, respectively) for 

ensemble and quantile forecasts.  

It must be stressed that the decomposition of the CRPS provides quantitative overall 

measures of reliability and resolution, hence providing additional and valuable insight into 

the performance of a forecasting system.  

Similarly, to obtain skill scores used for evaluating deterministic forecasts (Coimbra et al. 

2013b), a CRPS skill score (CRPSS) can be derived to quantify the improvement brought by 

a new method over a reference easy-to-implement (or “baseline”) model, such as: 

𝐶𝑅𝑃𝑆𝑆 = 1 −
𝐶𝑅𝑃𝑆𝑛𝑒𝑤 𝑚𝑒𝑡ℎ𝑜𝑑

𝐶𝑅𝑃𝑆𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
. (8-23) 

Negative values of CRPSS indicate that the new proposed method fails to outperform the 

reference baseline model, and positive values of CRPSS mean that the new method 

outperforms the reference model. Further, the higher the CRPSS, the better the 

                                                

 
54

 Note that the term uncertainty defined in this framework is not the same as the “uncertainty for 
measurements and models” defined in Chapter 7. 
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improvement. Note that the uncertainty part of the decomposition of the CRPS (which 

corresponds to the score of the climatology) can be used as a reference baseline model. 

CRPSS and a mean-normalized CRPS are also discussed by Yang (2020). 

8.6.4.3.4 Interval Score 

The interval score (IS) specifically assesses the quality of interval forecasts. As shown by 

Eq. 8-24 the interval score rewards narrow prediction intervals but penalizes (with a penalty 

term that increases with increasing nominal coverage rate) the forecasts for which the 

observation, 𝑥𝑜𝑏𝑠, is outside the interval. For a (1 − 𝛼) × 100% nominal coverage rate, the 

interval score reads as: 

      IS𝛼 =
1

𝑁
∑(𝑈𝑖 − 𝐿𝑖)

𝑁

𝑖=1

+
2

𝛼
(𝐿𝑖 − 𝑥𝑜𝑏𝑠

𝑖 )𝐼
𝑥𝑜𝑏𝑠

𝑖 <𝐿𝑖 +
2

𝛼
(𝑥𝑜𝑏𝑠

𝑖 − 𝑈𝑖)𝐼
𝑥𝑜𝑏𝑠

𝑖 >𝑈𝑖 

(8-24) 

 

 

where 𝐼𝑢 is the indicator function (𝐼𝑢=1 if U is true and 0 otherwise). 𝑈𝑖 and 𝐿𝑖 represent the 

upper (𝜏 = 1 −
𝛼

2
) and lower (𝜏 =

𝛼

2
) quantiles, respectively.  

A plot of interval scores for different nominal coverage rates might offer a consistent 

evaluation of the quality of interval forecasts. Consequently, such a plot could 

advantageously replace the sharpness diagram. 

8.6.4.4 Benchmark Probabilistic Models 

This section describes the benchmark probabilistic models used to gauge the performance 

of new proposed probabilistic methods using skill scores such as the CRPSS. By analogy 

with the deterministic approach, persistence ensemble (PeEn) models based on GHI 

(Alessandrini et al. 2015) and on clear-sky index (David et al. 2016) have been proposed. 

The empirical CDF of a PeEn forecast is simply built with the most recent 𝑘 past 

measurements of solar irradiance. Considering an infinite number of past measurements, 

the PeEn turns to be the climatology. In numerous other fields of meteorology, climatology is 

often considered to be a reference that can be used to test the performance of probabilistic 

models (Wilks 2014). Indeed, the climatology is perfectly reliable, but it has no resolution. 

Also, an advanced climatology, called the complete-history persistence ensemble, was 

proposed by Yang (2019b); this reference model corresponds to a conditional climatology 

where the time of the day is used as a predictor. In addition, for ensemble forecasts, the 

CRPS of the raw ensemble can serve as a benchmark. 

8.7 Summary and Recommendations for Irradiance Forecasting 

Solar power forecasting is essential for the reliable and cost-effective system integration of 

solar energy. It is used for a variety of applications with their specific requirements with 

respect to forecast horizon and spatiotemporal resolution. To meet these needs, different 

solar irradiance and power forecasting methods have been developed, including physical 

and empirical models as well as statistical and machine learning approaches. Based on 

these developments, a number of forecasting services of good quality is available for users 

today. In the following, a summary of different forecasting methods and their applicability for 

different tasks is given, along with criteria that determine model performance as well as 

recommendations for forecast evaluation.  

 Different empirical and physical models are suitable for different forecast horizons. 

Generally, the spatiotemporal resolution of irradiance forecasts decreases with 

increasing forecast horizon. 
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 Short-term irradiance forecasts from 10–20 minutes ahead resolving irradiance ramps 

with a temporal resolution of minutes or even less can be derived from ASIs using cloud 

motion-based methodologies. 

 Irradiance forecasts up to several hours ahead with typical resolutions from 10–15 

minutes can be derived from satellite data covering large areas, also using cloud motion-

based methodologies. 

 Irradiance forecasting from several hours to days ahead essentially relies on NWP 

models, with their capability to describe complex atmospheric dynamics, including 

advection as well as the formation and dissipation of clouds. 

The performance of the different forecast models depends on multiple factors that have 

different impacts depending on the forecast horizons: 

 The capability of the models to predict changes in clouds and irradiance 

 The performance of the models for irradiance retrieval/analysis  

 The capability of the models to predict AOD, especially for DNI forecasting in arid regions 

 Input data to the model (parameters as well as the area covered by the input data) 

 Time for a model run (run-time determines a lower limit for the delay of observations at 

the time of forecast delivery)  

 Spatiotemporal resolution. 

Complementing empirical and physical models, statistical and machine learning methods are 

widely used in solar irradiance and power forecasting: 

 For time-series models and post-processing, which require reference values for training, 

the availability of irradiance and/or PV power measurements is crucial, as is proper 

quality control of the data. Satellite-derived data can also be used for training on 

irradiance. 

 Short-term forecasting up to approximately 1 hour ahead benefits greatly from the use of 

local online irradiance or PV power measurements as input; however, pure time-series 

approaches based on local measurements only are outperformed by approaches 

integrating empirical and/or physical model forecasts from a few minutes to hours 

onward, depending on the spatiotemporal scale of the forecasts and the climatic 

conditions of the forecast location. 

 Statistical and machine learning approaches are applied effectively for improving 

forecasts with empirical or physical models (post-processing). They can reduce 

systematic meteorological forecast errors. Training to PV power measurements in 

addition allows adaptation to the specifics of a given PV plant or to replace PV simulation 

models. 

 Machine learning models are increasingly applied to replace parts of empirical models, 

e.g., algorithms to compute optical flow in cloud motion approaches. 

State-of-the-art solar irradiance or PV power forecasting services do not rely on a single 

forecasting model but integrate and optimize different tools and data, with prominent 

examples given here: 

 High-resolution intrahour forecasting systems combine the use of local measurements 

and ASI data with empirical and machine learning approaches. 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data  - 3rd Edition   

8-48 

 Forecasting systems for the intraday energy market up to several hours ahead integrate 

online measurements, satellite-based forecasts, and NWP model-based forecasts with 

statistical and/or machine learning approaches. 

 Forecasting systems from several hours to several days ahead use different NWP 

models as input in combination with statistical and/or machine learning approaches. 

Besides forecasting for single PV power plants, the estimation and forecasting of regionally 

aggregated PV power is important for grid operators. It involves the same modeling 

approaches described. Here, an additional challenge is that information on all the PV power 

plants contributing to the overall feed-in is often incomplete. Also, PV power is not measured 

at a sufficient resolution for most plants in many countries; therefore, upscaling approaches 

have been developed and are applied effectively to derive and forecast regionally 

aggregated PV power. Because of spatial smoothing effects, forecast errors of regionally 

aggregated PV power (normalized to the installed power) are much smaller than for single 

PV plants, depending on the size of the region and the set of PV plants contributing. 

Forecast evaluations provide users with necessary information on forecast accuracy, 

assisting them in choosing between different forecasting services or assessing the risk when 

a forecast is used as a basis for decisions. The assessment of forecast accuracy should 

combine visual diagnostics (e.g., scatter plots or 2D histograms of forecasts and 

observations) and quantitative error measures (e.g., RMSE and skill in comparison to 

persistence). In addition to the model used, forecast accuracy depends on different factors, 

including the climatic conditions and the spatiotemporal scale; therefore, specific evaluation 

for a given application considering these factors is recommended—i.e., an evaluation for 

sites in a similar climate and with similar spatiotemporal resolutions. 

Beyond general information on the overall accuracy of a deterministic forecast, probabilistic 

forecasts provide specific uncertainty information for each forecast value, depending on the 

weather conditions. Probabilistic forecasts take the form of CDFs or PDFs. They are 

summarized by quantiles from which prediction intervals can be inferred. Quantiles can be 

estimated using either a parametric or a nonparametric approach. In the latter case, 

statistical or machine learning techniques can be used to estimate the quantiles. Although 

NWP ensemble members are not directly linked to the notion of quantiles, different 

propositions exist to infer a CDF from an ensemble. As an example, for deterministic 

forecasting, the assessment of the quality of the probabilistic forecasts is based on visual 

diagnostic and proper scoring rules. In particular, the CRPS seems to have all the features 

needed to evaluate a probabilistic forecasting system and, as such, could become a 

standard for verifying probabilistic forecasts of solar irradiance and power.  

Finally, forecasting solar irradiance should be evaluated in the context of strategies for the 

system integration of solar power, which aim to provide the necessary power to cover 

demand at any time. These strategies include spatial smoothing for grid-integrated PV and 

increasingly also the use of storage (batteries) and curtailment as well as in combination with 

other variable renewable energy sources, especially wind power. Applying these strategies 

reduces the variability of solar power as well as forecast errors. 
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9.1 Introduction and Background 

As discussed in previous chapters, solar resource evaluation covers a wide range of topics 

and applications. Most applications are related to projects involving solar radiation energy 

conversion. In this section, these are referred to as “solar energy projects,” and they include 

electricity production applications (photovoltaics [PV], solar thermal electricity), solar heating 

applications (central solar heating for district heating, local domestic heating and cooling), 

water and air applications (disinfection, desalination, decontamination), and energy 

conservation (for building applications). 

 

Figure 9-1. (Left) Different solar radiation products or evaluation methodologies 

described in previous chapters can be applied to (right) solar energy projects. Image 

by L. Ramirez 

The overall goal in applying solar resource data to solar energy projects is to help the project 

developer or investor identify the best estimates or methodologies to obtain the optimal solar 
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resource and weather information to address each project stage; hence, this chapter 

summarizes available information and provides guidance on the types and uses of solar 

resource data that are relevant at various stages in the project development. In addition, 

some information about how to generate data sets for energy simulations is also provided. 

Sections 9.2–9.5 discuss an idealized project development pathway, corresponding to what 

is shown in Figure 9-2. Section 9.6 includes special needs of solar resource data for different 

types of solar projects. Finally, Section 9.7 provides a summary for further reference. 

 
Figure 9-2. Solar radiation needs at four typical stages of a hypothetical solar power 

project: (1) Google Earth view; (2) CSP Services measurement station of low-

maintenance requirements; (3) Gemasolar concentrating solar power (CSP), 20 MW, 

15 hours of storage capacity, under construction; (4) Copper Mountain PV, 552 MW. 

Image by L. Ramirez 

The exact needs for solar resource data for a project depend on the project characteristics 

and how it is financed. Typically, a large solar power project requires several years of high-

quality modeled data and at least 1 year of on-site measured data during the final stages of 

the project execution. The on-site data need to be collected using the measurement 

procedures described in Chapter 3 and in formats directly relevant to the type of technology 

being considered. The modeled radiation data can be obtained from the methodologies 

described in Chapter 4, and further meteorological parameters can be obtained as described 

in Chapter 5. 

For the first stages of the project execution, project developers can rely on several 

information sources. In most countries, solar radiation data sources include limited on-site 

information of varying quality, such as: 

 Nearby measurements that might or might not be precisely applicable to the site 

because of spatial and temporal variability 

 Satellite-derived irradiance estimates 

 Estimations from reanalysis of numerical weather prediction (NWP) models.  
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Assuming that no high-quality on-site data are available during the site screening and 

prefeasibility stages, energy estimates must be derived from these three sources or from 

improved data sets from commercial vendors. During feasibility assessments, including 

engineering analysis and due diligence, some period (1 year or more) of high-quality 

measurements are assumed to be available at the site; however, these relative short-term 

measurements must be used by the solar resource provider and combined with long-term 

modeled data to ultimately derive a long-term record that removes the bias in the original 

modeled time series while capturing seasonal trends and the interannual variability of solar 

resources for the site. This merging process is usually referred to as “site adaptation,” and it 

is described in Chapter 4, Section 4.8. During the project’s operation, on-site, high-quality, 

ground-based measurements are normally necessary to evaluate how well the system is 

performing in real time compared with its theoretical output. These on-site measurements 

can be supplemented to some extent, or in some cases replaced, by ongoing estimations, 

such as satellite-derived data sets for the region or for the specific site. 

Figure 9-3 provides a generalized view of solar radiation data requirements throughout 

various conceptual stages of a project’s life cycle. In a solar power project, some questions 

must be addressed at each stage, as presented in the following sections. Sections 9.1.1–

9.1.4 provide some specific information that could help in the interpretation of Figure 9-

3Fehler! Verweisquelle konnte nicht gefunden werden. and also present topics that are 

addressed in sections 9.2–9.5. 

 
Figure 9-3. Flowchart of the solar radiation data needs (in green) for a hypothetical 

(large) solar power project. Image by L. Ramirez 

9.1.1 Site Selection for Solar Energy Projects 

During the first stages of a project, some questions related to its exact location might still be 

open:  

 What proposed site location(s) need(s) to be evaluated? 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data  - 3rd Edition   

9-4 

 Has a single site been chosen?  

 Is the developer making a choice from among two or more sites or still “prospecting” from 

a wider area?  

If choosing from among multiple sites, the developer would benefit from using a geographic 

information system (GIS), maps, and other graphic techniques to evaluate the estimated 

resource as well as its variability and uncertainty. 

 What temporal and spatial characteristics of the data sources are available to the 

developer, and how do these characteristics influence the evaluation of system 

performance?  

Regarding temporal characteristics, measured solar data apply to a specific location and are 

usually recorded at short time intervals (1–10 minutes); then they are averaged to the 

desired time interval (often hourly in the early project phase). Modeled data, such as 

satellite-derived data, usually represent snapshots in time because of the scanning 

characteristics of spaceborne radiometers, and they are typically considered to represent 

averages from 5–60 minutes.  

For most modeled gridded databases derived from geosynchronous satellite imagery, the 

individual pixel (or cell) size ranges from 1–10 km, but it depends on the specific model 

configuration, the specific instrument, and the pixel’s geographic location. In some cases, 

data providers might aggregate several pixels into one grid cell, so the user needs to 

determine the exact spatial resolution based on the information associated with the chosen 

data set. 

9.1.2 Predicted Plant Output Throughout the Project Life 

Important questions that need to be addressed throughout the plant’s operational phase 

include the following: 

 What will be the energy produced during specified time periods (based on the project’s 

financing and revenue generation schemes) throughout the project’s life? 

 How is the appropriate time series of solar radiation data generated to address the 

required energy simulation of a specific project? 

 How can data sets provide the required projections throughout the next 20–30 years so 

that the cash flow (revenue minus expenses) can be evaluated throughout the life of the 

project? 

Use of a typical meteorological year (TMY) (Wilcox and Marion 2008; Cebecauer and Šúri 

2015) has traditionally been a popular method for solar system simulation. Much of the 

energy simulation software in the commercial and public domain still relies on TMYs to 

describe the hourly characteristics of the local solar resource. By design, however, a TMY 

represents only average or median (P50) conditions, and thus it does not provide information 

about the real variability or possible extremes throughout the system lifetime. Moreover, the 

degree of interannual variability can differ at different locations (Habte et al. 2020). Also, 

decadal variability of the solar resource occurs, and since the last half of the 20th century at 

least, it has been dominated by variations in man-made aerosol emissions (Wild 2016). In 

regions where such pollution is being reduced, TMY data based on data from the previous 

decades will underestimate the future solar resource—and vice versa in regions with 

increasing pollution. Typically, on-site measured data are not available for more than 1 year 

at the final stage of project preparation. Time series of satellite-derived modeled data 

covering the last 15–25 years are available from various (mostly commercial) providers. 

Longer term (up to 55 years) modeled irradiance data sets might be available from specific 

sites, such as from the earlier versions of the National Solar Radiation Database (NSRDB) in 
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the United States.55 Long measured time series covering many decades also exist but for 

only a few stations around the world (Wild et al. 2017). Various aspects of variability are 

discussed in sections 9.2.5, 9.2.6, 9.3.2, and 9.6. 

9.1.3 Solar Radiation Needs During Plant Financing, Construction, and Due 
Diligence Processes 

Solar radiation information is necessary to answer key questions relevant to financing solar 

projects: 

 How reliable is the plant output prediction? (This is important for addressing financing 

risks.) 

 What is the expected uncertainty of the solar radiation estimations? 

 What is the margin of error in the annual (or monthly) cash flow estimate? 

Once the plant is under construction, different situations can occur. For example, in cases 

where the developer is not the final owner or is not in charge of the operation and 

maintenance, an independent due diligence of expected project performance is included in 

the evaluation process. Independent solar energy consulting services will likely be requested 

by financial investors to perform due diligence. Previous predictions of plant output should 

be updated as new solar radiation data (measurements or modeled estimates) become 

available through these due diligence activities. Even if the developer is the final owner, the 

uncertainty in the production results should be updated as improved data become available. 

All solar resource predictions that were obtained from different sources must be compared, 

and the corresponding uncertainties must be reconciled. 

9.1.4 Data Requirements for System Operations and Performance Evaluations 

During system operations, the following questions must be addressed: 

 What kind of irradiance data are required to conduct studies on grid integration, load 

matching, or system intermittency? 

In this case, daily, hourly, or subhourly data are typically needed for a specific time period, 

which cannot be provided by TMY data. 

 How does the temporal variability and intermittency in the solar resource affect the 

plant’s performance? 

Most large solar energy projects are designed to provide electricity to the electric grid. In 

many cases, utilities buy electricity from producers at different rates during the day, 

depending on their load pattern, which can also vary seasonally; thus, it is in the interest of 

the solar power plant owners and operators to maximize electricity production when its value 

is largest and to minimize curtailment, which can occur during times of low load and high 

solar output. Maximizing output at times of high prices and minimizing curtailment is made 

possible by using energy storage systems. Optimizing the revenue from solar power plants 

under these conditions requires much more information than the estimate of the annual 

average production based on a TMY. For example, if a solar power plant includes significant 

storage capacity, a complex daily analysis—including measured on-site irradiance and 

forecasts—is needed to determine when the system will fill storage, and to which level, 

versus when it will provide power directly to the grid during daylight hours. Storage greatly 

mitigates the effect of system intermittency, but accurate, real-time, on-site measurements 

                                                

 
55

 See https://nsrdb.nrel.gov.  

http://rredc.nrel.gov/solar/old_data/nsrdb/
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are needed to make the best decisions under these operating conditions. Further, to 

anticipate how solar output can best match projected load in ways that optimize revenue, 

accurate solar forecasts up to 1 day ahead, continuously improved by real-time data, 

constitute the main tool to guide system operations. Forecasts for more than 1 day ahead 

are also required for electricity market participation and maintenance scheduling. Case by 

case, the system operator or local electric utility might need to disrupt the normal production 

schedule of solar power plants and ask their operators to increase (if the plant is equipped 

with storage) or decrease (curtail) production to avoid grid instability. Again, this situation 

requires high-quality, real-time irradiance measurements and solar forecasts. 

9.2 Data Applications for Site Screening and Performance 
Assessment 

9.2.1 Site Screening  

In the early stages of project development, a prefeasibility assessment of possible sites is 

typically undertaken. A desired outcome at this stage is the estimated annual energy 

production that could be expected from the solar energy system in various proposed 

locations. Historical solar resource data sets are generally used at this stage, often in the 

form of maps or from publicly available or commercial gridded data, such as those discussed 

in Chapter 4 and Chapter 6. These data sets use a fairly consistent methodology to reliably 

identify the regions of highest solar potential. Depending on the type of technology used for 

the solar installation, this potential can refer to global horizontal irradiance (GHI), global tilted 

irradiance (GTI), or direct normal irradiance (DNI). The maps should be used to make a 

preliminary assessment of the solar resource, assuming a relatively large potential for error 

(up to approximately 10%–12 % for GHI or GTI and significantly larger for DNI), depending 

on the data provider and region; thus, if a desirable level of solar resource for a solar power 

plant project is a daily mean of 7.0 kWh/m2, sites with mapped resource values down to 

approximately 6.0 kWh/m2 should be considered. In some cases, a project developer could 

first attempt to build a plant based on concentrating solar technologies (CST); if the DNI 

resource turns out to be insufficient, a PV project could be considered instead and still be 

profitable.  

A “first-order” prefeasibility assessment includes the analysis of potential for various 

technologies. For example, studies were conducted for the southwestern United States by 

the National Renewable Energy Laboratory’s (NREL’s) Concentrating Solar Power (CSP) 

Program (Mehos and Perez 2005)56 to identify the most optimal sites for CSP installations. 

Using GIS screening techniques, resource maps were developed that highlighted regions 

potentially suitable for project development after considering various land-use constraints, 

such as protected land areas, sloping terrain, and distance from transmission lines (Figure 9-

4). The results of these studies show that even with these constraints, vast areas in the 

southwestern United States are potentially suitable for CSP development. Maps such as 

these are valuable to project developers to highlight specific regions where various levels of 

site prospecting and prefeasibility analysis can take place.  

Other studies are being done by various groups to evaluate the solar potential of PV 

installations on building roofs at the scale of a specific city. Such studies require GIS data at 

a very high resolution (better than 1 m), which are usually provided by lidar techniques and 

sophisticated shading analyses (Huang et al. 2015; Jakubiec and Reinhart 2013; Le et al. 

                                                

 

56
 See www.nrel.gov/csp/data-tools.html.  

http://www.nrel.gov/csp/data-tools.html
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2016; Martínez-Rubio et al. 2016; Mohajeri et al. 2016; Santos et al. 2014; Tooke et al. 

2012). 

 
Figure 9-4. CSP prospects of the southwestern United States. GIS analysis for 

available site selection using the DNI resource, land use, and 3% terrain slope. Image 

by NREL (Mehos and Perez 2005) 

Navarro et al. (2016) compared CSP potential assessment methodologies and showed the 

need for providing intercomparable results while also noting the importance of constraints 

such as terrain slope. A methodology called land constraints, radiation, and slope (LRS) 

considerations was proposed, harmonizing the treatment of these three main inputs. Figure 

9-5 shows how the slope consideration (1%, 2%, or 3% of maximum slope) affects the site 

selection for what became a real CSP power plant in Spain. Only after accepting a maximum 

slope of 3%, the whole power plant was developed in a suitable area. 

With the introduction of powerful, easy-to-use software tools and web pages—such as the 

System Advisor Model (SAM),57 Greenius,58 RETScreen,59 or Global Atlas for Renewable 

Energy60—many analysts now expect to use maps and time-dependent modeling of their 

prospective solar systems as part of the preliminary analysis. Considerable care must be 

taken to choose the correct irradiance data sets for input to the model. Experts recommend 

multiple years of at least hourly input data, rather than data from only 1 year or from TMYs, 

to assess the effects of interannual variability of the solar resource on year-to-year system 

performance. Each hourly data set should be evaluated at a minimum to determine whether 

the monthly mean values from hourly data match the best estimate of the monthly mean 

values at the proposed site (Meyer et al. 2008). In most cases, the bankability of large 

projects requires on-site measurements during at least 1 year to validate the long-term 

                                                

 
57

 See https://sam.nrel.gov/. 
58

 See http://freegreenius.dlr.de/. 
59

 See http://www.nrcan.gc.ca/energy/software-tools/7465. 
60

 See https://irena.masdar.ac.ae/gallery/#gallery. 

https://sam.nrel.gov/
http://freegreenius.dlr.de/
http://www.nrcan.gc.ca/energy/software-tools/7465
https://irena.masdar.ac.ae/gallery/#gallery
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modeled time series and to correct them, if needed, using an appropriate site adaptation 

technique (see Chapter 4, Section 4.8). 

  

  

Figure 9-5. Buffer around the Orellana solar thermal energy plant (Spain) (upper left) and the 
suitable areas by the (upper right) LRS1, (bottom left) LRS2, and (bottom right) LRS3 

methodologies with maximum slopes of 1%, 2%, and 3%, respectively. Suitable zones are 
shown in green. Images from Navarro et al. (2016) 

9.2.2 Influence of Aerosols 

For solar energy projects, a key step in site screening is to implement a concept called clean 

air prospecting. This is of special importance for CST, including solar thermal energy and 

other concentrating technology options, such as concentrating PV, because DNI is more 

strongly affected by the aerosol optical depth (AOD) than GHI or GTI are. AOD is a unitless 

optical characteristic of particles that summarizes their potential attenuation effect through 

scattering and absorption along a vertical atmospheric column. It is most usually reported at 

a wavelength of 550 nm, but it is sometimes also reported at 500 nm or 1000 nm, depending 

on the data source. Converting AOD from one wavelength to another is possible if the 

Ångström wavelength exponent is known (Gueymard 2019; Sun et al. 2021). Under an ideal 

aerosol-free atmosphere, AOD would be 0. At the other extreme, the sun disc would be 

obscured behind a thick aerosol layer when its AOD reaches approximately 5–7. In deserts 

and other areas with high solar resource, most sites have low annual average cloud cover, 

but dry conditions might favor a somewhat permanent suspension of dust in the air; thus, 

over these areas, the annual average DNI is strongly influenced by AOD. Understanding the 

AOD characteristics is vital to assessing the solar resource and the performance of CST 

installations.  

AOD is a measure of the optical attenuation effects caused by various types of particles in 

the atmosphere, collectively called “aerosols.” These include vegetation exudates, dust and 

sand particulates, air pollution, smoke from wildfires or agricultural burning, and sea salt 

(near coastlines). Over arid or desert areas, the average AOD could be sufficiently low for 
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CST plants, even if dust events occur on an infrequent basis. Note, however, that the higher 

the annual average AOD, the higher its temporal variability (Gueymard 2012), which can be 

an issue for CST projects. 

The analyst should consider the following questions about the site: 

 What are the sources of potential aerosols? These could include:  

o Dust storms 

o Air pollution 

o Fires 

o Proximity to urban areas 

o Proximity to dirt roads with heavy traffic or to areas where biomass burning is frequent 

o Proximity to fossil fuel power plants, mining facilities, etc. 

 Does the area have good visibility most of the time? Are distant hills or features visible 

without the effects of haze? 

o No visible haze would indicate that the AOD is low, and therefore the irradiance is 

likely to be well represented by modeled map values. 

o If the area is known to frequently have some form of visible haze, aerosols are likely to 

have an influence on the irradiation at the site. Further research or measurements 

might be necessary. 

Typically, higher uncertainty in AOD can exist over mountainous areas, coastlines, deserts, 

or near urban areas. Because such areas could be good candidates for solar energy for 

economic and infrastructure reasons, additional measurements (of AOD and/or irradiance) 

might be necessary to resolve whether a site is sufficiently protected from sources of 

aerosols. In addition to decreasing the solar resource, aerosols can also deposit on solar 

collectors or mirrors and negatively impact the production of solar power. In such cases, a 

soiling analysis might be necessary. 

Aerosol data sources are varied and have been reviewed (Gueymard 2019; Gueymard et al. 

2018). In summary, the best source of data is from a local ground-based sunphotometer, but 

stations equipped with such instrumentation are scarce in many areas of the world. Gridded 

sources of data at the continental or global scale are provided by spaceborne sensors or 

reanalysis databases. The downside is that their AOD retrievals or predictions are typically 

biased (Bright and Gueymard 2019; Gueymard and Yang 2020; Petrenko and Ichoku 2013; 

Ruiz-Arias et al. 2015). When using AOD as an input to a radiation model to evaluate DNI, a 

simple rule of thumb is that an error of 0.1 AOD unit in the input induces an error of 

approximately 10% of opposite sign in the DNI output (Gueymard 2012). This can explain 

the bias that is sometimes found in DNI modeled databases (Gueymard 2011). Reducing the 

AOD bias is a technique used for the effective site adaptation of modeled DNI data 

(Gueymard et al. 2012; Polo et al. 2016); see also Chapter 5. 

9.2.3 Volcanic Aerosols in the Stratosphere 

Debris from volcanic eruptions affect the solar resource over large areas (at the country, 

continental, or global scale) and have radiative effects that can last up to a few years, 

depending on the eruption’s strength and location. The main impact of volcanic aerosols on 

the solar resource arises when significant amounts of sulfur dioxide (SO2) are ejected into 

the stably stratified stratosphere. Smaller volcanic eruptions do not reach the stratosphere, 

and thus they have only short-lived, local effects. SO2 is converted into sulfuric acid aerosol 

droplets that scatter solar irradiance very efficiently. These droplets turn into aerosols, thus 
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increasing the total AOD and affecting DNI more than GHI. The AOD of the droplets decays 

exponentially with a decay time from 1–2 years (Crowley and Unterman 2013; Robock 

2000). Overall, the droplets and volcanic aerosols can stay in suspension for several years 

after an eruption. For instance, El Chichón (1982) and Pinatubo (1991) impacted the solar 

resource globally for up to approximately 3 years. 

Most solar resource data sets do not extend that far in the past and thus do not cover any 

large volcanic event. One exception is the NSRDB (Wilcox 2007), whose data can be used 

to estimate the effect the Pinatubo eruption had on the solar resource (Vignola et al. 2013). 

The reduction in DNI reached up to approximately 20% at midlatitude sites in the Northern 

Hemisphere a few months after the eruption, which in turn had an even larger negative 

impact on the electricity production of CST plants (Michalsky et al. 1994). The probability of 

a volcanic eruption as strong or stronger than Pinatubo (stratospheric AOD ≥0.2) is 

significant on a decadal basis (Hyde and Crowley 2000). 

9.2.4 Choosing Modeled Irradiation Resource Data  

During the first stages of a solar project, solar radiation information might be available from 

different sources, as discussed in Chapter 4 and Chapter 6. Having many sources of 

irradiance data is better than having none, but the question of selecting the best possible 

source then arises. This can be done through detailed comparisons between them and 

validations against high-quality ground measurements. Some concepts related to such tasks 

are stated in the following. The proposed definitions of variability and error can aid in better 

understanding the observed differences among databases, though these definitions are not 

always agreed upon by all analysts or applicable to all possible applications. In addition to 

these concepts, detailed discussions on uncertainty definition, characterization, and 

calculation are provided in Chapter 7. 

9.2.4.1 Variability 

Variability is the expected or actual dispersion of a variable during a specific period of time 

(temporal variability) or over a specific area (spatial variability). It is often expressed as the 

coefficient of variation (COV) for variables having a normal distribution (Calif and Soubdhan 

2016), as the variance for any other known statistical distribution, or as the interquartile 

range when the distribution is unknown. COV is obtained by dividing the standard deviation 

by the mean of the population or sample. Temporal variability can be analyzed at various 

timescales (Bengulescu et al. 2018). 

Variability relates to the analyzed time period (e.g., yearly variability of daily GHI, long-term 

variability of DNI) or to a given geographic area (e.g., spatial variability of DNI over an area 

of 50 km by 50 km). See detailed information in Section 9.2.5. 

9.2.4.2 Error 

Error is the difference (or deviation) between a measured or estimated value versus the 

“true” value of the measurand/quantity. Because the latter value cannot be determined, in 

practice a true conventional value must be measured or estimated by an adequate 

procedure using specialized and well-maintained instruments, harmonized protocols, or 

international standards. The individual error at instant i can be expressed as: 

 𝑒𝑦𝑖
=  𝑦𝑖 − 𝑥𝑖 (9-1) 

where 𝑒𝑦𝑖
is the error of the estimate 𝑦𝑖, and 𝑥𝑖 is the value of the quantity. 

Common error expressions are mean bias error, mean absolute error, mean square error, 

and root mean square error. When the most probable value is uncertain itself (which is the 
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most general case), the error should be referred to as a difference or a deviation; then the 

letter e is replaced by d without any change in the calculation (Gueymard 2014). 

Typically, some individual errors or differences are of a higher magnitude than all 

uncertainties. (See detailed information in Chapter 7.) In general, the accuracy of modeled 

data is reported in terms of the conventional error statistics mentioned. In addition, Espinar 

et al. (2009) proposed a new statistical indicator, called the Kolmogorov-Smirnov integral. It 

evaluates the area between the distribution functions from the two tested samples. 

Gueymard (2014) reviewed this and many other statistical indicators for solar radiation 

series comparisons and applied them to the performance evaluation of a variety of clear-sky 

radiation models. 

A study conducted by the Management and Exploitation of Solar Resource Knowledge 

project in Europe (Beyer et al. 2008) provided insights into the spatial distribution of 

irradiance variability by cross-comparing five different data sources. Inherent differences 

were found between databases based on in situ (ground) measurement interpolations and 

those based on satellite observations as well as in the methods used to process such data. 

The databases relying on the interpolation of ground observations were sensitive to the 

quality and completeness of ground measurements and to the density of the measurement 

network. Terrain effects (e.g., shadowing by surrounding terrain) played a role in solar 

radiation modeling over hilly and mountainous regions. The spatial resolution of the input 

data and the selected digital elevation model were identified as factors with direct impact on 

the accuracy of the estimates. Finally, to compare modeled data properly, particularly under 

clear-sky conditions, it is important to consider how each model deals with cloud 

identification and AOD characterization (Ruiz-Arias et al. 2016). This is particularly important 

for DNI because of its higher sensitivity to AOD than GHI (Ruiz-Arias et al. 2019). 

The quality and spatial detail of satellite-derived or numerical databases are determined by 

the specific input data used in the models. As can be expected, the main parameters 

describe the cloud properties and the optical transparency of the atmosphere in relation to 

aerosols and water vapor (Ineichen and Perez 2002; Ruiz-Arias et al. 2016). Regarding DNI 

more specifically, AOD is the most important variable under clear-sky conditions (Gueymard 

and George 2005). (See also Section 9.2.2.) Cebecauer, Šúri, and Gueymard (2011) 

provided a comprehensive and qualitative review of the different factors (including terrain) 

affecting the accuracy of DNI modeling. 

The studies conducted so far provide only a preliminary outline of the state of the art of 

current knowledge in irradiance modeling. These studies still do not fully address the needs 

of the solar energy industry, so further work is needed to improve knowledge and decrease 

uncertainties. In most cases, similar studies must be performed for the sites of interest within 

an individual project. (See Section 9.1.1 and Section 9.2.1.) 

9.2.5 Variability of the Solar Resource 

Variability is a wide-ranging term that can characterize the solar resource in many ways, 

either from a spatial or temporal perspective. In the latter case, all temporal scales can be 

considered, depending on context, from the subsecond to multiyear scales. Temporal 

variability, if well characterized for a climate region, can be useful to determine the suitability of a 

short-term data set to produce valid long-term statistics. For instance, the term can be applied to 

refer to the interannual variability of the resource. The example in Figure 9-6 shows the 

interannual variability in monthly DNI at Daggett, California, in terms of monthly average 

daily total irradiation. 
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As mentioned above, the long-term dispersion of the solar resource is often characterized by 

the COV, which is the unitless ratio between the standard deviation and mean (Habte et al. 

2020; Calif and Soubdhan 2016; Gueymard and Wilcox 2011): 

  𝜎𝑡 =  √[
1

𝑛
∑ (𝑌𝑟𝑖𝑟𝑟𝑛

− 𝑌𝑟𝑖𝑟𝑟
̅̅ ̅̅ ̅̅ )

2𝑖=𝑛
𝑖=1 ] (9-2) 

  COV =
𝜎𝑡

𝑌𝑟𝑖𝑟𝑟̅̅ ̅̅ ̅̅ ̅
 . (9-3) 

where 𝑌𝑟𝑖𝑟𝑟𝑛
 is the annual irradiance of the individual n years, and 𝑌𝑟𝑖𝑟𝑟

̅̅ ̅̅ ̅̅  is the mean of 

irradiance of all years. 

Long-term oscillations in GHI and DNI are also important because of the succession of 

periods known as “dimming” and “brightening” that affect both climate change and the 

extrapolation of the historical solar resource into the future (Müller et al. 2014; Wild et al. 

2015). Further, it is important to consider these sources of variability in the context of solar 

performance forecasting.  

 
Figure 9-6. Example of direct-beam monthly average daily total (kWh/m2) illustrating 

interannual and seasonal variability from 1961–2018 in Daggett, California. Image by 

NREL 

The term variability is also used to describe the spatial variability of the resource in a 

climatological context. Spatial variability can help determine the applicability of a particular 

data set for a nearby location, possibly saving the need for additional measurements. In this 

case, variability characterizes microclimatic features and regional resource gradients. An 

example is provided in Figure 9-7, which shows the climatological GHI resource distribution 

over the Island of Oahu, Hawaii. Similarly, Figure 9-8 shows the spatial variability of DNI and 
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GTI over areas 50 by 50 km throughout the United States in terms of COV (Gueymard and 

Wilcox 2011).61 

 
Figure 9-7. Example of microclimatic spatial variability for the Island of Oahu. The 1-

km resolution map displays mean hourly GHI in W/m2. Image from SolarAnywhere 

V3.0 (2015) 

 
Figure 9-8. Spatial variability in (left) DNI and (right) GTI over the continental United 

States in terms of percentage of COV. Images from NREL 

From a resource assessment perspective, the term variability is associated with the 

time/space impact of weather and with the cycle of days and seasons on the output of solar 

systems. This output can vary from zero to full power, and it is outside the control of plant 

operators. Understanding the solar resource’s variability is key to optimally integrating the 

power output of solar electric systems into electric grids. This is discussed further in Section 

9.6. 

                                                

 
61

 Such spatial and temporal variability maps are available from https://www.nrel.gov/grid/solar-
resource/variability.html. 

https://www.nrel.gov/grid/solar-resource/variability.html
https://www.nrel.gov/grid/solar-resource/variability.html
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Space/time variability has two causes: one is fully predictable and is the result of the 

apparent seasonal and daily motion of the sun in the sky and the sun-Earth distance; and 

the other results from the motion of clouds and, to a lesser extent, of aerosols in relation to 

weather systems. It is useful to first consider the temporal and spatial scales involved and 

how they impact the available solar resource. 

9.2.5.1 Temporal Scale  

Beginning with an intuitive example (Figure 9-9), a single location on a partly cloudy day will 

experience a high degree of temporal variability because of changes in the sun’s position 

and the motion of clouds; however, the solar energy accumulated during several days at that 

same location exhibits less variability. Variability in GHI becomes small as the temporal 

integration increases to 1 year and more, but that in DNI or even GTI can still be significant 

(Gueymard and Wilcox 2011). In addition, investigating intra-seasonal variability can provide 

insightful information. In some areas, for example, summers might exhibit less variability 

than winters, e.g., if there are typically only a few cloudy days in summer and not-too-

dissimilar numbers of cloudy and sunny days in winter. Adding or subtracting a sunny day 

during the summer does not significantly affect the monthly average in this case, contrary to 

what can happen in winter. In many temperate areas, on the other hand, low variability 

caused by consistently cloudy conditions is typical in winter, whereas a succession of clear 

and cloudy days is typical in summer (high variability). 

Figure 9-10 shows a representation of interannual variability over the Americas, 

demonstrating some geographic dependence as a result of microclimate or long-term 

climatic fluctuations. Studies of GHI and DNI distributions in the United States show that 

GHI’s interannual variability typically ranges from 2%–6% in terms of COV, whereas the 

variability of DNI is between 5% and 15%, about twice as much (Habte et al., 2020; 

Gueymard and Wilcox 2011). A single year can deviate much more from the long-term 

average. Gueymard and Wilcox (2009) analyzed the long-term data from four stations with 

continuous high-quality measurements spanning more than approximately 25 years to 

examine how many individual years would be required to converge to the long-term mean 

and whether the interannual irradiance variability changes significantly from one site to 

another. Sorting the data from the most exceptional years (largest anomalies) to the most 

typical years (smallest anomalies), the results showed that, first, there is much lower 

interannual variability in GHI than in DNI. In the examined stations in the United States, GHI 

is almost always within ±5% of the true long-term mean after only 1 year of measurements 

(see Fig. 9-11). The situation is quite different for DNI. After only 1 year of measurements, 

the study showed that the estimate of the average DNI is no better than ±10%–±20% of the 

true long-term mean. Note, however, that the worst years were associated with strong 

volcanic activity, which significantly impacts DNI. 

Another interesting question is whether it is likely that good years with high irradiation occur 

in groups or are independent from the previous year’s irradiation. Tomson, Russak, and 

Kallis (2008) showed that the mean annual GHI in any year is virtually independent from that 

of the previous year. 

9.2.5.2 Spatial Scale  

Increasing the solar generation footprint from a single location to a region, and even to a 

continent, considerably reduces intermittency. Increasing this footprint to the entire planet 

eliminates it almost entirely (Figure 9-12). This spatial integration effect is often referred to 

as the (geographic) “smoothing effect,” which is discussed next. 
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Figure 9-9. Variability of global irradiance time series at a North American location 

shown as a function of integration time. The figure includes 1 day of 1-minute data, 4 

days of hourly data, 26 weeks of weekly data, and 16 years of yearly integrated data. 

Image from Perez et al. (2016) 

 
    

Figure 9-10. Interannual variability in (left) GHI and (right) DNI using the 1998‒2017 

NSRDB data expressed in terms of percentage of COV. Images from NREL 
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Figure 9-11. Number of years to stabilize DNI and GHI at (clockwise from upper left) 

Burns, Oregon; Eugene, Oregon; Hermiston, Oregon; and Golden, Colorado. Specific 

sorting (along the X-axis) from the most exceptional years (largest anomalies) to the 

most typical years (smallest anomalies). Images from Gueymard and Wilcox (2009) 

 
Figure 9-12. Variability of daily global irradiance time series for 1 year as a function of 

the considered footprint. Image from Perez et al. (2016) 

Variability Impacts 

Both the temporal variability and the spatial variability are specific to a site (or area) and 

period. Temporal variability could change seasonally, as mentioned. The two types of 

variability directly affect solar resource analyses for various reasons, including: 

 Measured data sets often contain data gaps due to instrument failure or various 

problems, such as dew or snow on instruments. To avoid any discontinuity in the time 

series, analysts are typically tempted to use some form of temporal interpolation to fill the 

gaps. This is convenient but can significantly increase the overall uncertainty. The 
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magnitude of the overall uncertainty depends on the time period, the method used to fill 

the gaps, and the data used to fill the gaps. Moreover, replacing extended data breaks 

with climatological average values tends to underestimate the actual temporal variability. 

 If no on-site measurements exist at the project’s site but some exist at one or more 

“nearby” sites some distance away, analysts are tempted to extrapolate or average the 

data from those alternate sites. Depending on the distance and spatial variability over 

that region, this might or might not introduce significant errors. 

Interannual and long-term variability (decadal oscillations) need to be considered to correctly 

project the measurements or modeled data of the past into the future for design and 

bankability purposes. These considerations explain why an evaluation of variability is an 

important step for accurate solar resource assessment at any location of interest. Further, 

the expected variability in the very near future (minutes to days) is also essential information 

for the correct operation and profitability of existing solar power plants. This can be 

estimated with appropriate solar forecasts (see Section 9.5.3). 

Various studies have analyzed the spatial or temporal variability of the solar resource at the 

country or continental scale—e.g., Habte et al. (2020), Castillejo-Cuberos and Escobar 

(2020), Badosa et al. (2013), Davy and Troccoli (2012), Gueymard and Wilcox (2011), 

Lohmann et al. (2006), and Perez-Astudillo and Bachour (2015). A general finding is that the 

spatiotemporal variability of DNI is larger than that of GHI for a given location. 

From an application perspective, the solar resource variability translates into power 

production variability, which could impact the stability of electric grids or the economics of 

the facility. One important question that has received specific attention is: How much is the 

temporal variability at one power plant site correlated with that of another site some distance 

away? This is discussed further in Section 9.6. 

Predicting the behavior of existing or future solar systems assumes that the temporal and 

spatial irradiance variability can be adequately characterized with measurements and/or 

modeled data. It is easy to take care of the deterministic variability caused by location, date, 

and time of day. What matters most is the variability (temporal or spatial) in weather and 

climate. 

With some knowledge about the interannual irradiance variability at a specific site, users 

can, in principle, select a particular experimental period to adequately characterize the solar 

resource. Ideally, such on-site measurement campaigns should last many years; however, in 

most cases, practical reasons limit them to 1 year or less, which increases the uncertainty in 

the long-term estimates. Likewise, with knowledge of the spatial variability over the area 

around a measurement station, users can evaluate the applicability of those measurements 

to a location some distance away using the appropriate extrapolation or interpolation 

methods. Knowledge of variability then becomes valuable when deciding how long to make 

measurements at a particular location and whether the characteristics of the solar resource 

at that location can be extrapolated to other nearby locations. 

With such variability maps or statistics, users can better understand the extent of 

measurements required to best characterize the solar resource for a particular application. In 

areas with low interannual variability, a shorter measurement period could suffice. In areas 

with low spatial variability, a measurement station could represent the solar resource at 

nearby locations (e.g., within 10–50 km), avoiding the need for additional measurements. An 

analyst can use this information to build better confidence in a data set as being sufficient for 

an analysis and can use these data to understand the consistency of future solar power 

plant performance and how that relates to the economic viability of a particular location. 
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One remaining question is whether solar resource data of past decades can represent that 

of the future, considering that the power production of solar installations needs to be 

predicted up to 20 years into the future. To that end, the long-term trends in GHI and DNI 

need to be investigated in relation with climate cycles known as dimming and brightening 

(Müller et al. 2014; Pfeifroth et al. 2018) because of their impact on the yield predictions of 

solar installations (Müller et al. 2015). 

Some statistics that are commonly used to describe the temporal variability of irradiance 

components assume that their distribution is Gaussian, which is a typical assumption 

(Cebecauer and Šúri 2015). Fernández-Peruchena et al. (2016) tested that assumption in 

annual GHI and in DNI time series. Regarding GHI, results from two normality tests indicated 

that the Gaussian assumption cannot be rejected at all 10 tested locations. In the case of 

DNI, five tests were applied to the annual DNI series for evaluating the Weibull goodness of 

fit at six locations, and the results suggested that such a distribution is more appropriate than 

a Gaussian distribution. Considering all these results, the temporal variability needs to be 

further analyzed to be able to clarify whether annual, monthly, or seasonal solar radiation 

values can be properly assumed (1) as independent; (2) as only random samples of the 

same population; or, conversely, (3) as representative of different probabilistic models 

having, for example, a stationary behavior. 

As mentioned in Section 9.1.2, TMYs eliminate all interannual variability by design. 

Nevertheless, they can be used to investigate the spatial variability of the solar resource 

wherever gridded TMY databases are available (Habte et al. 2014). 

9.3 Solar Radiation Data Requirements for Feasibility Assessments  

In addition to selecting one or more candidate sites for an engineering feasibility 

assessment, solar power plant project developers need to ensure that they have 

meteorological data sets, including solar radiation and other meteorological variables, that 

can guarantee a reliable estimate of the system performance during the project life. There 

are different possible situations depending on the availability of measured data sets and/or 

of other modeled data sources. Because long-term, high quality ground measurements of 

solar radiation are rarely available, at least one whole year of local ground measurements 

and 10 years of modeled data are required to guarantee the bankability of large solar energy 

projects (Ramírez et al. 2012).  

Solar system simulations often use an annual meteorological data set intended to be 

representative of the long-term average meteorological conditions of the project site, usually 

referred to as TMY or typical reference year (TRY). Such TMYs are discussed in Section 

6.3. Additionally, it is common practice to use other meteorological annual series 

representing adverse conditions (e.g., P90; see Section 9.3.2) to test the project’s revenue 

and financial stress under quasi-worst-case scenario conditions. The following sections 

provide a review of the current methodologies and possible improvements for the generation 

of these data sets. Section 9.3.3 provides a view of post-processing and site adaptation 

methodologies for reducing uncertainty in the data sets used for generating the series for 

simulation. 

9.3.1 Utilization of Typical Meteorological Data for Solar Energy System 
Simulations 

Typical meteorological data sets are used as the standard input to a wide range of solar 

energy system simulation software to obtain estimates of the average annual solar energy 

system yield during the project lifetime. Such data sets consist of annual time series of 

hourly or subhourly values of solar radiation and other meteorological variables specifically 
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constructed to be representative of the long-term time-series (usually 10–30 years) typical 

values. 

TMY data sets are still widely used by building designers and solar energy engineers for 

basic modeling of renewable energy conversion systems and their preliminary design. These 

data have natural diurnal and seasonal variations and represent a year of typical climatic 

conditions for a location and can be useful for such basic tasks. TMYs do not, however, 

provide all solar resource data needed for solar energy, as discussed in more detail in 

Section 6.3. For example, TMYs do not contain information on interannual variability or 

meteorological extremes; therefore, TMYs should not be used to predict weather or solar 

resources for a particular time, for preparing the project’s final design, or for evaluating real-

time energy production. Because a TMY represents “typical” conditions over a long period, 

such as 30 years, it is not suited to analyze the system’s response to worst-case weather 

conditions that could occur in the future. 

9.3.2 Interannual Variability and Probabilities of Exceedance 

In the case of large solar energy projects, bankability requirements are stringent; hence, 

reliable profitability and annual payback assessments need to be performed, and thus 

probabilistic information about the energy output is needed. This must be based on 

probabilistic solar resource time series that correctly account for extreme situations, which 

obviously require the statistical examination of long-term time series. 

A preliminary step is to first determine the minimum duration of the radiation data set that is 

needed to capture the true long-term mean. The interannual variabilities, as discussed in 

Section 9.2.5.1, and trends in the resource must be considered. A consequence of the high 

interannual variability of DNI is that CST projects necessarily require scrutiny about the risk 

of bias in the DNI resource, which can be addressed by using long-term satellite data sets 

and site adaptation techniques. In general, PV projects are less at risk of bias in the GTI 

resource. Exceptions can occur over regions where the uncertainty in satellite-derived 

irradiance data is significant and/or in the case of PV installations using tracking systems, 

which attempt to maximize the DNI fraction of GTI. 

Because long-term on-site measurements are the exception more than the rule, these 

results underline the importance of relying on an independent long-term data set, which, in 

practice, means a modeled data set derived from satellite images or reanalysis of NWP 

results. This is necessary to reduce the uncertainty in the long-term average DNI estimates 

for a proposed CST site, most particularly, and to provide reasonable due diligence of a 

plant’s estimated performance throughout the life of the project. This and additional concepts 

related to the development of specialized TMYs or annual series for energy simulation are 

described by Vignola et al. (2012). 

A common way to address the risks associated with the uncertainty of the long-term 

estimates of the mean annual GHI or DNI values is to consider the annual probability of 

exceedance (POE). POE, which is also denoted by “P,” is the complementary value of a 

percentile value. In the case of P50, its value matches the 50th percentile and is the result of 

achieving an annual energy production based on the long-term median resource value. For 

this value, the probability of reaching a higher energy value is 50%. For example, TMYs are 

meant to represent the P50 value. In contrast, for P90, the risk that an annual energy value 

is not reached is 10% (90% of all values in a distribution exceed the P90 value). P90 

corresponds to the 10th percentile. Depending on a project’s size and the practices of the 

financial institution involved, the solar resource’s “bad years” can be examined using various 

Ps—from relatively lax (P75), to stringent (P90 or P95), to very stringent (P99).  
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Although irradiance is the largest source of uncertainty in P estimates, the estimates must 

also include other sources of uncertainty, including modeling uncertainty, uncertainty in the 

system parameters, and reliability uncertainty. High uncertainty is always an issue, even if 

the P results appear favorable. The combination of probabilistic performance modeling and 

the uncertainty inherent in various components of the system (including the solar resource) 

requires specialized developments (Ho, Khalsa, and Kolb 2011; Ho and Kolb 2010). 

Figure 9-13, taken from a study by Moody’s Investors Services (2010) and reproduced in 

Renné (2016), demonstrates conceptually how improving our knowledge of the true long-

term solar resource at a site serves to reduce financial risk. By assuming that a long-term 

annual data set follows a Gaussian or normal distribution (which is not necessarily the case), 

Figure 9-13 shows that the standard deviation of the true long-term mean based on only 1 

year of data is expected to be much higher than that with 10 years of data because a 10-

year data set contains much more actual information regarding the interannual variability at 

the site. Assuming that the median value (P50) of the distributions is the same for both the 1-

year and the 10-year distribution curves, the P90 value increases with the additional 

knowledge (higher confidence) associated with having a 10-year data set. A 10-year P90 

value reduces the financial risk of the project (or, in other words, is more bankable) because 

the yield estimates will be higher when more data are available. In addition to the uncertainty 

due to interannual variability, the uncertainty in the irradiance estimates (from modeling or 

measurement) must also be considered and corrected, if necessary, to evaluate the 

uncertainty in P. 

 

Figure 9-13. The uncertainty of the value of the true long-term mean is much higher 

with only 1 year of data (green curve) than with 10 years of data (blue curve). Image 

from Moody’s Investors Services (2010) as presented in Renné (2016) 

The statistical calculations of P values often assume that long-term irradiance data follow a 

normal (or Gaussian) distribution. As mentioned earlier, however, this assumption might not 

be correct. For example, Dobos, Gilman, and Kasberg (2012) considered long-term 

measured and modeled updated NSRDB GHI and DNI data for Phoenix, Arizona (Wilcox 

2007), and produced cumulative distribution functions (CDFs) based on 30 separate annual 

data sets to illustrate the concept of P50 and P90. Figure 9-14 shows that if the annual 

Phoenix data were fit to a normal distribution (solid line) at CDF = 0.1 (which corresponds to 

the P90 value), an annual GHI of 1.96 MWh/m2 would be exceeded 90% of the years (or, 

conversely, the solar resource would fall below this value 10% of the years). Similarly, for 

DNI, the annual solar resource exceeds 2.2 MWh/m2 for 90% of the years. For Phoenix, 

however, the long-term solar data do not appear to follow a normal distribution, but other 

types of distribution (such as Weibull) have not been assessed for the study. Figure 9-14 

shows that the P90 value is somewhat less in Phoenix when determined from an empirical 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data  - 3rd Edition   

9-21 

instead of a normal distribution. Further discussion on these points can be found in Section 

9.2.6 and in Renné (2016; 2017). 

As discussed by Pavón et al. (2016) and Ramírez et al. (2017), there are several issues 

related to a P estimate. The first is the assumption that, for instance, an irradiance at the 

P90 level is proportional to the P90 of the solar system energy output, or yield, which 

constitutes only an approximation. Additional elements are thus needed (1) to identify the 

most appropriate P value and (2) to construct a specific time series for that P using hourly or 

subhourly data during a year whose sum is that specified P value. A statistically based 

estimation of the P value depends on the assumed probability distribution. This probability 

distribution can be approximated with the normal distribution in the case of annual GHI. For 

DNI, however, there is no evidence that a normal, a log-normal, or a Weibull distribution 

would always be the best choice. When 10 (or preferably more than 20) whole years of local 

measurements or modeled estimates are available, methodologies based on the cumulative 

distribution function should be used, such as those proposed by Peruchena et al. (2016). In 

addition, new techniques are developed to construct meteorological years for bankability 

scenarios that correspond to P90—for example, Cebecauer and Šúri (2015), Lara-Fanego et 

al. (2016), and Fernández-Peruchena et al. (2018). 

 

Figure 9-14. Annual (left) GHI and (right) DNI data fitted to a normal distribution (solid 

line) for Phoenix, Arizona. Note that each gray circle covers a marker (+). 

An additional issue is the resolution of the data time series used for energy simulations. For 

CST projects, for instance, the yield and probabilistic predictions obtained with hourly data 

could differ substantially from those using 1-minute or 5-minute data (Hirsch et al. 2010; 

Meybodi et al. 2017). Satellite-derived irradiance time series are typically not available at a 

temporal resolution better than 15 minutes. Some stochastic methods have been proposed 

to derive 1-minute or 5-minute irradiance from data at a coarser resolution (Buster et al. 

2021; Grantham et al. 2017; Hofmann et al. 2014), which can be helpful. 

Instead of using a limited number of yearly data sets for simulation, Nielsen et al. (2017) 

proposed using Monte Carlo methodologies to generate an unlimited number of yearly 

series. This methodology allows the solar resource assessment—and thus the energy output 

calculation—to be performed in a way that is similar to that currently used for estimating 

other essential variables in the economic assessment of solar power plants. The generation 

of hundreds of such plausible years has been demonstrated by Larrañeta et al. (2019), 

Fernández-Peruchena et al. (2015), and Meybodi et al. (2017). Other authors—e.g., Ho, 

Khalsa, Kolb (2011) and Ho and Kolb (2010)—have found issues with the Monte Carlo 

approach and suggested the Latin hypercube sampling method instead. 
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Note that including long-term trends derived from the effect of climate change and other local 

or regional singularities (such as the increase of atmospheric aerosols derived from 

pollution) on solar radiation could improve the value of the solar power plant yield prediction 

(i.e., during the complete solar facility lifetime). For instance, the Meteonorm62 software 

includes the effect of climate change estimated from the Intergovernmental Panel on 
Climate Change models for three different scenarios. Aerosol pollution scenarios are also 

important for the future GHI and DNI resource. For instance, a decrease in the solar 

resource has occurred in many Asian countries during the recent past, and this trend could 

continue into the foreseeable future. 

9.3.3 Combining Data Sets: Site Adaptation to Improve Data Quality and 
Completeness 

Long-term solar resource data sets always have uncertainty. If its magnitude can be 

precisely evaluated, investors can derive the risk of the project and evaluate whether the 

performance of the system could be lower than desired. Reducing uncertainty in solar 

resource data is thus a key step toward bankable projects. Combining modeled data sets 

with site observations are called post-processing techniques (Janotte et al. 2017). These 

cover a wide variety of methodologies that are applied to improve direct model or retrieval 

outputs and reduce uncertainty. A detailed description of these methods is given in Chapter 

4, Section 4.8. 

9.4 Solar Radiation Data Requirements for Yield Estimation 

This section provides a summary of general approaches to using solar resource data (as 

described in chapters 1–5) to estimate the yield of solar energy systems. The used resource 

data include not only solar radiation but also other meteorological parameters (such as wind 

speed and temperature) that were discussed in Chapter 5. First, PV systems are discussed, 

followed by CST systems. 

9.4.1 Yield Estimation of Nonconcentrating Photovoltaic Projects 

The value of electricity generated by a PV plant depends on the amount of electricity 

generated and on the grid’s need for that electricity at the time it is generated (i.e., its load 

curve). A quantitative understanding of the specific solar resource for the intended location 

and orientation of the PV array is essential to evaluate the first quantity. The relevant solar 

input for yield calculation is the irradiance incident on the plane of array (POA) (i.e., GTI), 

although other parameters (particularly ambient temperature, wind, and soiling) also impact 

the system’s output. This section provides a high-level overview; more detailed descriptions 

of PV system modeling can be found in Ellis, Behnke, and Barker (2011). Three general 

approaches exist to estimating a PV system’s yield. These are presented in order of 

increasing accuracy. 

9.4.1.1 Performance Ratio Method 

The output of a PV plant can be characterized by the performance ratio (PR) metric, which is 

the ratio of the electricity generated by the plant relative to its theoretical output during the 

same period. 

When using this method, the first step is to determine the theoretical annual output of the 

system. The nameplate rating for PV systems refers to the system power output evaluated 

                                                

 
62

 See http://www.meteonorm.com/. 

http://www.meteonorm.com/
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under standard test conditions (GTI of 1000 W/m2 at 25°C), and it is primarily a function of 

the efficiency, η, and area, A, of the PV module to convert incoming solar radiation to DC 

power output. The rated power, P0, of the system is given by: 

 P0 [kWp] = A [m²] · 1000 [W/m
2
] · η. (9-4) 

The reference yield, YR, of the module is then determined from the actual annual GTI 

[kWh/m2-yr] at the site: 

 YR [kWh] = P0 [kW] · GTI [kWh/m
2
-yr] / 1000 [W/m

2
]. (9-5) 

The performance ratio is then applied to Eq. (9-5) to determine the actual energy produced 

by the solar system, also called the final yield, YF, which is typically less than its theoretical 

energy because of a variety of factors, as described in the following: 

 YF [kWh] = PR · YR [kWh] (9-6) 

where the PV plant size is derived from the sum of each module’s nameplate rating. The 

specific yield, yF [kWh/kWp] = YF / P0, is the normalized final yield of the system. In practice, 

deviations from this estimate can be expected because of the interannual variability of the 

solar resource and the variability of the performance ratio (van Sark et al. 2012). 

Typically, for most recent solar power plants, PR ranges from 0.8–0.9. Factors contributing 

to lower performance ratios include: 

 Shading losses 

 Soiling or snow-coverage losses 

 Nonideal system orientation 

 Wiring losses 

 Lower module efficiencies under high-temperature operations 

 Undersized inverters, making them “clip” the plant’s output part of the time 

 Older plants that have experienced module degradation  

 Modules whose performance is less than expected because of incorrect nameplate 

information. (Many manufacturers now bin modules so that the actual performance is 

equal to or greater than the nameplate value. In past years, however, manufacturers 

often placed modules in the bin with the larger nameplate value.) Only measurements of 

the PV module power corrected to standard test conditions can provide correct values of 

the performance ratio. 

Some factors that contribute to high observed performance ratios include: 

 Operation in a cold climate 

 Modules with low temperature coefficients. (Typically, CdTe, CIGS, and high-efficiency 

silicon modules tend to have the lowest temperature coefficients.) In the case of PV 

modules with low temperature coefficients, the power output degrades less when 

temperature rises; hence, the modules will produce a higher energy yield. Such modules 

are the preferred option at high-temperature locations. 

 Modules that generate power above the nameplate rating (based on 1000 W/m²) as a 

result of high atmospheric transparency, cloud enhancement, and/or high ground 

reflection. 
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 Soiling or miscalibration of the radiation sensor, making it underestimate the incident 

irradiance and overestimate the performance ratio; therefore, regular cleaning and 

maintenance of the sensor is very important. 

Other impacts on the performance ratio are the choice of the irradiation sensor (pyranometer 

versus reference cell) and the methodology of how the PV system power is determined 

(nameplate power, manufacturer flasher measurement, and/or on-site measurements). 

The performance ratio method is simple, but it might not be accurate in all cases. For 

instance, van Sark et al. (2012) found a few older PV systems with performance ratios 

surprisingly less than 50%. The method is particularly useful, however, to compare the 

performance of existing systems or to quickly use solar resource data that might not be 

available to the alternate performance models, which are presented in the next sections. 

Otherwise, using a more sophisticated performance model is most likely the better approach.  

9.4.1.2 Simple Photovoltaic Performance Models 

Among other simple models, NREL’s PVWatts® or the European Commission’s Joint 

Research Centre Photovoltaic Geographical Information System (PVGIS) are free online 

tools that provide estimates of the electric energy production of roof- or ground-mounted PV 

systems based on a few simple inputs.63, 64 The user needs to enter a street address or the 

geographic coordinates of the system’s location and specify the main characteristics, such 

as installed power (kWp), array inclination and orientation, or the module technology type. 

Both tools also allow modeling of tracking PV systems, and PVGIS also provides estimates 

for off-grid systems. As output, both tools provide hourly and yearly estimates of energy 

incident on the PV installation and of the corresponding electricity production. The monetary 

value of the produced electricity can also be calculated, for which the user needs to provide 

information about the system’s cost and the grid electricity consumer price.  

By default, for locations in the United States, PVWatts uses a TMY created from the NREL 

NSRDB Physical Solar Model Version 3 data set (e.g., labeled “tmy-2018,” where the year 

corresponds to the latest year in the data set); TMY2, which was created from NSRDB 

Meteorological Statistical Model (MTS) 1 (1961–1990); or TMY3, which was created from 

NSRDB MTS 2 (1991–2005 data). Other solar resource data options are available for world 

locations, but in most cases some spatial extrapolation is implied. Advanced users can 

change the default assumptions for losses caused by shading, soiling, and other factors. Full 

details about the underlying PVWatts algorithms can be found in Dobos (2014). 

PVGIS provides hourly values of solar resource data and PV performance estimates for 

different technologies and system configurations based on averages of hourly calculations 

for time periods of more than 10 years. The effects of the irradiance spectral content, angle-

of-incidence reflectance, and PV efficiency at low-irradiance or high-temperature conditions 

are considered, as are other general losses.65 PVGIS uses automatically derived horizon 

profiles by default, which can be adapted by the user to the case of interest. PVGIS was 

originally developed for Europe, but it has been extended to Africa, and at present it offers 

data for most of Asia and America as well, thanks to the Joint Research Centre’s 

collaboration with EUMETSTAT’s Satellite Application Facility on Climate Monitoring and 

NREL. PVGIS also offers TMY data following the International Organization for 
Standardization 15927-4 methodology. 

                                                

 
63

 See http://pvwatts.nrel.gov.  
64

 See https://ec.europa.eu/jrc/en/pvgis . 
65

 See https://ec.europa.eu/jrc/en/PVGIS/docs/methods. 

http://pvwatts.nrel.gov/
https://ec.europa.eu/jrc/en/pvgis
https://ec.europa.eu/jrc/en/PVGIS/docs/methods
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These simple tools provide a very convenient and more accurate analysis method than the 

performance ratio described in the previous section, so they are recommended when a quick 

estimate is needed. 

9.4.1.3 Detailed Photovoltaic System Performance Models 

More accurate estimates of PV system performance can be obtained by setting up a detailed 

model of the PV plant that includes choosing specific modules and inverters, an array layout, 

detailed losses, and shading analysis. An increasing number of public and commercial tools 

are available to perform these detailed analyses. These elaborate models allow the user to 

have more control over the many submodels necessary to go from irradiance to power 

output. These tools usually include options for: 

 Specifying irradiance and meteorological data sources 

 Transposing the irradiance data from horizontal to the POA 

 Modeling the impact of shading from both external objects and interrow (self-) shading 

 Modeling or specifying loss percentages for soiling and snow cover 

 Modeling the impact of the irradiance’s spectral distribution on PV technologies 

 Modeling reflections from the cover of the PV module 

 Modeling the temperature of the PV module 

 Modeling the power output from the PV module based on the effective irradiance 

reaching the PV cells and the module temperature 

 Modeling or specifying losses resulting from a mismatch between modules and DC 

wiring 

 Modeling the inverter’s conversion of power from DC to AC 

 Modeling or specifying AC wiring losses and transformer losses 

 Specifying losses for planned or unplanned system maintenance and outages. 

Examples of freely available programs that include such detailed PV performance models 

are NREL’s SAM,66 First Solar’s PlantPredict,67 RETScreen,68 and Greenius.69 Some popular 

commercially available options include PVsyst,70 PV*SOL,71 Aurora Solar,72 HelioScope,73 

and archelios Pro.74 Some programs are desktop tools, whereas others are web tools 

performing cloud-based applications. For software programmers, SAM, PlantPredict, and 

PVWatts include options for accessing calculations from various programming languages via 

an application programming interface, and SAM’s code is open source, allowing interested 

parties to examine the underlying algorithms in great detail. 

                                                

 
66

 See https://sam.nrel.gov/.  
67

 See https://plantpredict.com/. 
68

 See https://www.nrcan.gc.ca/maps-tools-publications/tools/data-analysis-software-
modelling/retscreen/7465.  
69

 See https://www.dlr.de/sf/en/desktopdefault.aspx/tabid-11688/20442_read-44865/.   
70

 See https://www.pvsyst.com/. 
71

 See https://valentin-software.com/en/products/pvsol-premium/. 
72

 See https://www.aurorasolar.com/. 
73

 See https://www.helioscope.com/. 
74

 See https://www.trace-software.com/archelios-pro/solar-pv-design-software/.  

https://sam.nrel.gov/
https://plantpredict.com/
https://www.nrcan.gc.ca/maps-tools-publications/tools/data-analysis-software-modelling/retscreen/7465
https://www.nrcan.gc.ca/maps-tools-publications/tools/data-analysis-software-modelling/retscreen/7465
https://www.dlr.de/sf/en/desktopdefault.aspx/tabid-11688/20442_read-44865/
https://www.pvsyst.com/
https://valentin-software.com/en/products/pvsol-premium/
https://www.aurorasolar.com/
https://www.helioscope.com/
https://www.trace-software.com/archelios-pro/solar-pv-design-software/
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As described in Chapter 5, all detailed PV modeling tools require not only irradiance but also 

meteorological parameters (most importantly ambient temperature and wind speed) to 

evaluate the power output. Because irradiance uncertainty is one of the biggest sources of 

uncertainty in the final modeled power output, care should be taken to minimize uncertainty 

in the irradiance resource data selected for PV modeling. Additional considerations for 

choosing the most appropriate input irradiance data can depend on the PV technology. For 

example, thin-film PV modules respond to a different (and smaller) part of the irradiance 

spectrum than crystalline modules (see Figure 3-22), making spectral corrections important 

for accurately modeling thin-film technologies.  

Evolving module technologies make it hard for modeling software to keep up with 

technological advancements. For example, when modeling thin-film CdTe modules, optimal 

results might not be obtained from conventional modeling software packages. PlantPredict 

has specifically focused on properly modeling thin-film CdTe modules, but it is not limited to 

the CdTe technology; it can also be used to model mono-passivated emitter and rear cell, 

bifacial, and other thin-film module technologies. 

The accuracy of predictions from these detailed PV modeling tools is very important to 

system feasibility and financing. Freeman et al. (2014) compared predicted outputs from 

multiple PV modeling tools to measured outputs for nine different systems. In parallel, 

Axaopoulos, Fylladitakis, and Gkarakis (2014) performed the same kind of comparison—but 

using a different set of modeling tools and measured data—for only one PV system. 

9.4.2 Yield Estimation of Concentrating Solar Technology Projects 

Yield estimation models for CST plants cover the calculation of the concentrating optics 

performance; the conversion of concentrated light to electricity, process heat, or chemical 

energy; and the management of the storage systems, if included. 

In general, DNI is by far the most critical solar input for yield calculation in concentrating 

technologies. Other meteorological variables are also usually required: dry air temperature, 

relative humidity (or, alternatively, wet-bulb temperature), and wind speed. Wind direction, 

precipitation, and snow height are also recommended to better characterize local conditions 

(Hirsch et al. 2017). 

Following are brief descriptions of the available types of optical performance models oriented 

to yield calculation. Some models are integrated with others for conversion into electricity, 

including storage, or with additional specialized modules for cost calculations (e.g., SAM, 

Greenius). Optical performance models can be separated into different categories: ray-

tracing tools, analytical optical performance models, and models that determine the optical 

performance with lookup tables. 

9.4.2.1 Monte Carlo Ray-Tracing Tools 

The incident solar irradiance can be described as a multitude of solar rays transmitted from 

the sun to the concentrators and finally to the receiver. Although ray-tracing tools can 

provide highly accurate results, they are also highly demanding in terms of computing 

resources; thus, their use is usually limited to detailed design calculations (for example, 

calculation of the flux distribution on the receiver surfaces in central receiver systems) or to 

the elaboration of lookup tables or incidence angle modifiers for line-concentrating 

technologies. 

Ray-tracing tools—such as STRAL (Belhomme et al. 2009), SolTRACE (Wendelin 2003), 

MIRVAL (Leary and Hankins 1979), SPRAY (Buck 2010), Tonatiuh (Blanco et al. 2009), and 

Heliosim (Potter et al. 2018)— calculate the path of the sun’s rays from the sun’s disk and 
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the circumsolar region to the target by application of physical laws. Monte Carlo techniques 

are often implemented to allow for reasonable calculation times. 

For illustration, one method of ray tracing that is available in SPRAY is explained here. The 

method selects one concentrator element after another and traces a given number of rays 

from the current element. After calculating the vector to the center of the sun, the appropriate 

sunshape is included. (For details, see Chapter 2, Section 2.7.1, and Chapter 5, Section 5.9, 

respectively.) The specific ray under scrutiny is then related to a power calculated as the 

product of the incident DNI and the projected area of the current concentrator element 

divided by the number of rays per element. Then the path of the ray is followed until it 

reaches the receiver. This ray-tracing method can be based on actual measurements of the 

concentrator geometry or on its design geometry affected by typical optical errors. 

9.4.2.2 Analytical Optical Performance Models 

Analytical optical performance models are generally based on cone optics convolution 

methods. One example of a calculation method that uses an analytical approach is the 

Bendt-Rabl model (Bendt et al. 1979; Bendt and Rabl 1981). To accelerate calculations, 

analytical equations are derived and solved to describe the ray’s path throughout the optical 

system. For example, the model can be used for parabolic troughs and solar dishes. In a first 

step, an angular acceptance function is determined from the design geometry. The angular 

acceptance function is defined by the fraction of rays incident on the aperture at a specific 

angle that ultimately reach the receiver. The second step consists of determining an effective 

source that includes both the user-defined sunshape and any possible deviation from the 

design geometry. The optical errors of concentrators are described as Gaussian-distributed 

independent uncertainties. Their combination is also a Gaussian distribution with a standard 

deviation, which is often called an optical error. The function that describes the optical errors 

is then combined with the sunshape using convolution. For line-focusing systems, such as 

parabolic troughs, a further integration step is required because the effect of circumsolar 

radiation on the incident irradiance depends strongly on angle. Finally, the intercepted 

radiation can be determined by summing the product of the effective source and the 

acceptance function over all angles. Similar analytical methods are used in HELIOS (Vittitoe 

and Biggs 1981), DELSOL (Kistler 1986), HFLCAL (Schwarzbözl et al. 2009), and 

SolarPILOT (Wagner and Wendelin 2018). 

9.4.2.3 Lookup Table-Based Optical Performance Models 

The fastest way to determine the optical performance of a CST collector uses only 

parameterizations or lookup tables that describe the change in the optical performance with 

solar position. The necessary parameters can be derived from experimental data, analytical 

performance models, or ray-tracing tools. Such lookup tables or parameterizations are used 

in some SAM submodels (Blair et al. 2014) and in Greenius (Dersch, Schwarzbözl, and 

Richert 2011; Quaschning et al. 2001).  

9.5 Solar Resource Data for Plant Operations 

This section discusses a variety of approaches for monitoring the solar resource at an 

existing solar power plant to better understand its performance. The performance of a solar 

energy system is directly linked to the meteorological conditions. For flat-plate thermal 

collectors and PV, the production is roughly proportional to the incident GTI; for 

concentrating technologies, the incident DNI is the driving input. In all cases, additional 

meteorological variables need to be monitored because they play a modulating role. In 

summary, the real-time monitoring of meteorological conditions at the system’s location is 

important to:  
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 Evaluate a performance guarantee (acceptance testing) 

 Assess the power plant’s performance to improve yield predictions and to gain 

knowledge toward improvements in future plants  

 Identify conditions of poor performance, including evidence of soiling, shading, hardware 

malfunction, or degradation, which could lead to warranty replacement, etc. 

9.5.1 Performance Guarantee 

Different methods exist to evaluate a plant’s performance guarantee. In all cases, data 

recorded from on-site measurements of the solar resource are necessary. In the case of 

concentrating technologies, data sets derived from good-quality, on-site DNI measurements 

are usually required as inputs to the models used for performance guarantee. For flat-plate 

thermal collectors and PV, the yield prediction is generally based on GHI (even though the 

actual resource corresponds to GTI); hence, it is also common for a performance guarantee 

to use GHI as the basis for determining whether a plant has performed as promised. Some 

companies, however, have noted that the performance characterization of a PV plant can be 

accomplished with a lower uncertainty by using GTI instead. (That is because this approach 

reduces the uncertainty inherent to the approximate transposition procedure that transforms 

GHI into GTI.) Moreover, specific irradiance sensors (such as reference cells or reference 

modules that closely match the PV module response) can be chosen to match the expected 

response of the PV modules (thus reducing angle-of-incidence and spectral effects). 

Specifying GHI remains the best option if, for instance, a PV system comprises different 

sections with POAs of different tilts or azimuths, which might be the case over complex 

terrain. If the performance guarantee is specified in terms of GTI, the plant efficiency 

characterized during the performance guarantee evaluation could differ from the efficiency 

estimated in an earlier step with a model rather than using historical GHI data. Also, the 

placement of all sensors must (1) be in the correct plane (which is easy to confirm when the 

sensor is in the horizontal plane but not as easy for other orientations) and (2) experience 

the expected local conditions (ground albedo and shading) if the sensor is not in the 

horizontal plane (Kurtz et al. 2014). 

Additional meteorological variables must be measured (see also Chapter 5), as discussed 

for yield predictions. Depending on the size of the solar system, more than one 

measurement point must be considered if the evaluation takes place during partly cloudy 

conditions. Acceptance tests for CST systems are discussed in Janotte, Lüpfert, and Pitz-

Paal (2012) and Kearney (2009, 2014). 

9.5.2 Power Plant Performance Monitoring 

During power plant operation, knowledge of the current meteorological conditions and of the 

real-time status of the plant are of high importance. In addition, the future meteorological 

conditions are useful; therefore, both solar resource measurements and forecasts are 

essential parts of many large solar systems. Real-time DNI, wind, and temperature data are 

essential for the operation of CST plants, and thus they need to be continuously monitored. 

Although many PV plants can operate successfully with only episodic intervention, 

measurements and forecasts can also be advantageous. Cleaning a PV array as a function 

of meteorological conditions (e.g., frequency of recent precipitation) has benefits. Moreover, 

equipment malfunctions can be detected more quickly if the PV plant output is being 

continually compared to the expected output based on actual meteorological conditions. 

There is wide agreement that a well-maintained reference cell in the POA is the best choice 

when the goal is to identify the need for power plant maintenance. For a thorough PV power 

plant performance assessment, a calibrated, well-maintained, and regularly cleaned POA 
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pyranometer is required. More details about solar radiation measurement and maintenance 

of instrumentation are provided in Chapter 3. 

9.5.3 Solar Radiation Forecasting Needs for Solar Power Project Operations 
and Maintenance 

Forecasting the production of a solar power plant can considerably improve its profitability 

(Ramírez and Vindel 2017). Accurate predictions of the plant’s average solar resource are 

needed for both solar thermal and PV power plants. The most important parameter to 

forecast is GHI in the case of flat PV plants and DNI in the case of concentrating systems.  

Detailed explanations on solar radiation forecasting methodologies and the current state of 

the art are provided in Chapter 8. The specific forecasting needs depend on the intended 

application. Essentially, solar radiation forecasts can be used for either planning 

maintenance downtime or for optimizing operations. 

9.5.3.1 Planning Maintenance  

Maintenance work is needed in all types of solar power plants. Examples include technical 

closure, replacing defective components, cleaning modules or mirrors, or even conducting 

characterization tests. Depending on the expected duration of the maintenance work, the 

required forecasts correspond to different time horizons. Usually, a technical plant closure 

must be planned ahead of time and occurs on a fixed date based on the long-term 

forecasting on a monthly basis, whereas minor maintenance work is decided based on day-

ahead forecasts. 

9.5.3.2 Optimizing Operation and Revenue  

To optimize operation, forecasting knowledge will help improve electricity sales by better 

matching production with demand if the plant is equipped with storage, particularly in the 

case of CST projects. In that case, the plant’s annual revenue is conditioned by the quality of 

the solar forecasts (Ferretti et al. 2016); thus, especially when subject to a fluctuating 

electricity market, the plant’s revenue can be maximized if production can be predicted 

appropriately. If there are ramp rate limitations defined by the grid operator, the yield of a PV 

plant with batteries can be improved by storing excess PV energy during positive ramps and 

using energy from the batteries during negative ramps. Forecasts can help manage the 

battery storage for this application and help limit the required storage capacity. Figure 9-15 

shows the role of meteorological variables in demand and energy generation.  

  
Figure 9-15. Importance of weather variables in forecasted demand and energy 

production. Image from Ramirez and Vindel (2017) 
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9.6 Variability of Solar Energy Production 

From an application perspective, the solar resource variability (see Section 9.2.6) translates 

into power production variability, which could impact the stability of electric grids or the 

economics of the facility. One important question that has received specific attention is: How 

much is the temporal variability at one solar power plant site correlated with that of another 

site some distance away? A high correlation would tend to destabilize the grid and thus 

needs to be addressed in detail. 

9.6.1 Photovoltaic Applications 

Based on extensive studies (Hoff and Perez 2012a), it appears that the output’s variability of 

a fleet of N PV plants over a given region will be reduced by the inverse of the square root of 

N if the plants’ output variability is uncorrelated and if the plants experience similar natural 

variability. This is a consequence of the spatial smoothing effect noted by many (e.g., 

Marcos et al. 2012; Murata, Yamaguchi, and Otani 2009; Woyte et al. 2007; Wiemken et al. 

2001). This result means that nearby locations are highly correlated, experiencing the same 

ramp rates at nearly the same time and varying in sync. In contrast, the time series from 

distant locations are uncorrelated. Partial correlation exists between these two extremes. 

Hoff and Perez (2012b) used 10-km, hourly, satellite-derived irradiances over the continental 

United States. They observed a similar asymptotic decay with distance and a predictable 

dependence of this decay upon t for time intervals of 1, 2, and 3 hours. They also noted 

that the rate of decrease of correlation with distance was different for various U.S. regions 

and attributed these differences to prevailing regional cloud speeds, as confirmed by Hoff 

and Norris (2010). Perez, Hoff, and Kivalov (2011) analyzed high-resolution, high-frequency, 

satellite-derived irradiances (1 km, 1 minute) in climatically distinct regions of North America 

and Hawaii to investigate the site-pair correlation decay as a function of distance, timescale, 

and mean monthly regional cloud speed (see Figure 9-16), itself independently derived from 

satellite cloud-motion vectors. Interestingly, as shown in Figure 9-16 for various areas and 

periods, the rate of decrease of this correlation with distance is a strong function of the 

data’s temporal resolution. A distance of approximately 5 km might be sufficient to smooth 

out fluctuations on a 1-minute timescale, whereas distances greater than 50 km would be 

needed to smooth out hourly fluctuations. See also Remund et al. (2015) for examples 

pertaining to other regions in the world.  
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Figure 9-16. Site-pair correlations as a function of time and distance for sample 

regions in North America and Hawaii. Mean monthly cloud speed was estimated from 

satellite-derived cloud motion vectors computed for each data point. Image from 

Perez, Hoff, and Kivalov (2011) 

9.6.2 Quantifying Photovoltaic Output Variability 

The variability quantifying metric should adapt to a wide range of temporal and spatial scales 
and embed (1) the physical quantity that varies, (2) the variability timescale, and (3) the time 
span during which variability is assessed.  

9.6.2.1 Physical Quantity 

For energy producers and grid operators, the pertinent quantity is the power output, p, of a 

power plant or of a fleet of power plants at a given point in time. The power output variability 

reflects the underlying variability of irradiance impinging on the plant(s); therefore, 

understanding and quantifying the variability of irradiance amounts to quantifying and 

understanding the variability of p. DNI’s variability is relevant for concentrating technologies, 

whereas the variability in GHI or GTI is representative of flat-plate technologies. This section 

focuses on the latter. 

The solar geometry-induced variability is fully predictable. Here, the focus is on 

cloud/weather-induced variability that is stochastic in nature. To better understand this 

variability component, it is useful to first remove the solar geometry effects. The clearness 

index, Kt (ratio between GHI and its extraterrestrial counterpart), or the clear-sky index, Kc 
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(ratio between GHI and its clear-sky counterpart), both embed the stochastic variability of 

irradiance but are largely independent of solar geometry. The use of Kc is preferable in 

general because it more effectively removes solar geometry effects at low solar elevations 

(Perez et al. 1990). Nevertheless, its use implies that the clear-sky irradiance can be 

accurately estimated, which represents an additional step that many analysts try to avoid. 

9.6.2.2 Timescale 

The intuitive temporal example presented suggests that the temporal scale of the selected 

physical quantity’s time series, t, is a fundamental factor. Depending on the application, t 

can range from 1 second or less to hours and more. A variation in Kc corresponding to the 

selected timescale t is noted ∆𝐾𝑐∆𝒕. On short scales (milliseconds to minutes), this change 

is often referred to as the ramp rate. 

9.6.2.3 Time Span 

A proper measure of variability should include ramp events covering a statistically significant 

time span. This time span should be a large multiple of t. 

9.6.2.4 Nominal Variability Metric 

Nominal variability refers to the variability of the selected dimensionless clear-sky index. The 

maximum or mean ∆𝐾𝑐∆𝒕 ramp rate over a given time span has been proposed as such a 

measure (Hoff and Perez 2010); however, most authors have recently settled on the ramp 

rate’s variance, or its square root—the ramp rate’s standard deviation—over a given time 

span as the preferred metric for variability. 

 Nominal variability = 𝜎(∆𝐾𝑐∆𝒕) = √𝑉𝑎𝑟[∆𝐾𝑐∆𝒕] (9-7) 

9.6.2.5 Power Output (Absolute) Variability Metric 

Eq. 9-7 describes a nominal dimensionless metric. When dealing with power generation, it is 

necessary to scale up the nominal metric and to quantify the power variability in absolute 

terms. This is expressed by Eq. 9-8: 

Power variability =  𝜎(∆𝒑∆𝒕) = √𝑉𝑎𝑟[∆𝒑∆𝒕] (9-8) 

Recall that p can be modeled from Kc via extraction of GHI, extrapolation to POA irradiance 

(GTI), and inclusion of PV specifications (i.e., without changing the inherent cause of 

variability); hence, Eq. 9-8 does not include additional intrinsic variability information relative 

to Eq. 9-7. 

9.7 Applying Solar Resource Data to Other Types of Solar Energy 
Projects 

9.7.1 Projects Using Flat-Plate Thermal Collectors  

Energy simulation tools for flat-plate thermal collector systems usually include a suite of 

modules describing the thermal receiver and the thermal losses of the piping, parasitic 

losses, and thermal storage. Some typical tools for these simulations are Polysun75 and 

                                                

 
75

 See http://www.velasolaris.com/.  

http://www.velasolaris.com/
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T*Sol76; however, some of the aforementioned general software tools also include these 

types of systems. For example, this is the case with RETScreen, SAM, and Greenius. 

Although the irradiance in the flat-plate collector plane (GTI) is the physically relevant 

irradiance, the separate specification of DNI and DHI can be of interest. Individual incidence 

angle modifiers can be used to determine the efficiency of the DNI and DHI energy 

conversion, respectively, for a given solar position. 

9.7.2 Solar Heating and Cooling in Buildings 

Solar heating and cooling in buildings (SDHtake-off Project 2012), smart cities, and smart 

grids are projects that include solar systems among other energy systems or energy 

conservation measures. Solar radiation data are still needed for sizing, simulation, and 

evaluation. Note, in particular, that TMY and Test Reference Year (TRY)/ Design Reference 

Years (DRY) (Crawley 1998; Hall et al. 1978; Lund 1974) were originally developed for 

building applications. The TRNSYS simulation software (University of Wisconsin) has also 

traditionally been applied to buildings. 

9.7.3 Smart Electric Grids  

Electric grids benefit from high-quality solar radiation data in both grid operation (now, today, 

and the next days) and grid planning (the next months to years). For example, solar radiation 

and forecasting data are used in grid operation for: 

 Power system state estimation  

 Unit commitment and scheduling of power plants and storage units 

 Congestion forecasting and management  

 Forward coordination between various stakeholders (e.g., transmission and distribution 

grid operators, plant operators, and other market players). 

The further the integration of solar PV into the grid proceeds, the more important it is to 

integrate information about current and upcoming electrical power production and feed-in 

into operation processes. Regulations such as the European System Operation Guideline77 

define the need for data. Grid-connected PV power plants of a relevant size (e.g., more than 

1 MWp) provide real-time measurement data and a regular schedule of the planned feed-in. 

Further, for a detailed congestion forecast in grid operation, one needs an additional 

estimate for the possibly large number of small grid-connected installations. Because even 

smart meters do not always provide real-time data to the grid operators, those not receiving 

the data need to generate or buy an estimation of regional feed-in, typically based on some 

upscaling method. To do so, radiation data from NWP and satellite observations are a 

valuable source of information. Forecasting providers, making use of sophisticated statistical 

or even machine learning models, usually process these inputs. For this, they rely on 

detailed master data about the individual plant or the large number of plants behind the 

meter. An extensive database (per grid and/or per nation) collecting and providing such 

master data should be available.78 In contrast to grid operation, where individual estimates 

and forecasts are permanently integrated into the processes, grid planning is based on a 
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 See http://www.valentin-software.com/. 
77

 See https://www.europex.org/eu-legislation/sogl/. 
78

 See, for example, 
https://www.bundesnetzagentur.de/EN/Areas/Energy/Companies/CoreEnergyMarketDataRegister/Cor
eDataReg_node.html.  

http://www.valentin-software.com/
https://www.europex.org/eu-legislation/sogl/
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historical radiation data set, and simultaneity factors within a portfolio of installed or expected 

power plants are assumed. 

As an alternative to operational approaches intended to blend with standard transmission 

system operator (TSO) practice, such as those just described, another avenue is currently 

explored in the International Energy Agency’s Photovoltaic Power Systems Programme 

(PVPS) Task 16: entirely eliminating supply-side forecast uncertainty and its impact on load 

imbalances via operationally firm solar forecasts. This is achieved by adding and operating 

dedicated hardware and controls to PV plants or fleets of plants so that the output seen by 

the grid operator exactly amounts to the forecast output. The hardware consists of optimized 

storage and plant oversizing to make up for all instances of forecast over- or underestimation 

as well as controls to equate actuals and predictions in real time. In addition to being a 

prospectively cost-effective operational forecast strategy for TSOs, the real value of this 

strategy lies in opening the door to least-cost firm power generation, hence the possibility of 

ultrahigh solar penetration at the lowest possible cost. 

 A prospectively cost-effective operational forecast strategy for TSOs: Firm forecast 

operations have been analyzed for individual Surface Radiation Budget Network 

(SURFRAD) locations in the United States as well as for a simulated fleet in California 

comprising 16 power plants—one in each state’s climatic region (Perez et al. 2019a, 

2019b). Applying the State University of New York forecast model to the California fleet 

would result in achieving a firm forecast cost less than $150/kWp today (i.e., an 

approximate 10% premium on current large-scale turnkey PV costs) for firm day-ahead 

forecasts. Future PV and storage costs anticipated in 10–15 years should reduce the 

cost of entirely eliminating solar supply-side imbalances to less than $50 per PV kWp. 

Pierro et al. (2020) recently showed that such a firm forecast strategy could already be 

cost-effective for ratepayers today in Italy, compared to the existing market for load 

imbalance corrections. 

 A least-cost ultrahigh penetration transition strategy: The same operational strategy—

optimized storage plus overbuilding—applied on a larger scale has been shown to be the 

key to achieving firm, effectively dispatchable PV production at the least possible cost. A 

series of recent publications (Perez et al. 2019c, 2019d) showed that 2040-targeted, 

firm, 24/7 electricity production levelized cost of energy (LCOE) of the order or less than 

5 U.S. cents per kWh were realistic targets in the central United States, Italy, and the 

island grid of La Reunion, France. Figure 9-17 illustrates how PV overbuilding can 

sufficiently reduce storage requirements to achieve an acceptably low firm power 

generation LCOE. Pierro et al. (2021) showed that the entry-level firm forecast strategy 

can be gradually expanded over time, following technology costs and TSO practice 

learning curves to transition from low-level firmness requirements—meeting forecast 

production—to more stringent requirements, until meeting demand 24/7/365 becomes 

economically achievable with only minimal reliance on conventional resources. 
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Figure 9-17. Impact of PV overbuilding on firm power generation LCOE. Although 

unconstrained PV (A) is inexpensive (apparently below grid parity), firming PV to meet 

demand 24/365 with storage alone (B) is unrealistically expensive. Overbuilding PV 

fleets reduces storage requirements to the point (C) where firm PV power generation 

can achieve true grid parity (D). Image from Perez et al. (2019c) 

9.7.4 Chemical Applications  

Solar resource data are required for several chemical applications. These can be divided 

into two main topics because of their different use of the solar resource: desalination and 

photochemical applications. 

9.7.4.1 Solar Desalination 

Global demand for freshwater is continuously increasing because of population growth and 

economic development. To meet this increasing demand, desalination has become the most 

important source of freshwater for drinking and agriculture in some world regions with huge 

solar energy potential, such as the Middle East and North Africa (Isaka 2012). 

Seawater solar thermal desalination via multistage flash or multi-effect distillation uses solar 

heat as the energy input. This methodology is the most promising desalination process 

based on renewable energy. As previously discussed, the CST part of the desalination 

project needs several years of high-quality, on-site data for simulation and design 

optimization or site-adapted data time series that are similar to the required data for CST 

plants. 

Many small PV-based membrane desalination systems have been installed worldwide, 

especially in remote areas and islands. As in the case of a standard PV plant, GHI and/or 

GTI data are needed as the most relevant solar input for these systems. 
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9.7.4.2 Solar Photocatalysis: Detoxification and Disinfection of Fluids 

Solar photocatalytic detoxification and disinfection processes constitute a solution for the 

treatment of contaminated groundwater, industrial wastewater, air, or soil (Malato 2004). The 

development of these processes has reached a point where the solar technology can be 

competitive with conventional treatment methods, particularly at isolated locations with high 

solar potential, which can be the case with many agricultural farms. 

Solar photochemistry can be defined as the technology that collects solar photons and 

introduces them in an adequate reactor volume to promote specific chemical reactions 

(Blanco and Malato 2010). The equipment that performs this function is a solar collector—

specifically, a compound parabolic collector with a relatively large acceptance angle; hence, 

they can use DNI and the part of DHI that emanates from the circumsolar region. The 

requirements for solar photochemical reactors are similar to any other photochemical 

reactor, with the particularity that their light input comes from the sun rather than from a 

lamp. For this reason, and according to the working temperature, the collector must be tilted 

or mounted on a tracking system with one or two axes; Figure 9-18 illustrates two different 

photo reactors installed at Plataforma Solar de Almería (CIEMAT), Spain.79 Depending on 

the type of solar collector, tilted or direct ultraviolet solar irradiance data will be needed. In 

the most general case that ultraviolet radiation is not measured locally, these variables must 

be empirically derived from DNI and/or GHI data (e.g., Habte et al. 2019). 

 

Figure 9-18. Compound parabolic collector photo reactors installed at Platforma Solar 

de Almería for solar water disinfection applications: (left) compund parabolic 

collector-SODIS and (right) FITOSOL-2 . Photos from Platforma Solar de Almería, 

CIEMAT 

9.8 Summary of Applications of Solar Resource Data 

This chapter summarized available information as well as guidance on the type of solar 

resource relevant to various stages of a solar project, and attempted to inform readers about 

their specific needs relative to solar radiation data and how these needs depend on the type 

of solar project and on the project’s stage.  

Figure 9-19 displays a summary of the solar radiation needs at different steps of a 

hypothetical project. The information provided here is applicable to the case of large solar 
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energy projects, mainly PV and CST, and to the case of building energy performance 

evaluations.  

 

Figure 9-19. Data application techniques for the various stages of project 

development 

Maps (from, e.g., the Global Solar Atlas80 or the Global Atlas for Renewable Energy81) 

should be used to make a preliminary assessment of the solar resource, cautiously 

assuming a fairly large potential for error. GIS tools and resources are commonly used at 

this step for convenience. Various spatial resolutions need to be used when addressing 

projects at the regional or national scale—compared to the case of the neighborhood or city 

scale. Using these tools, maps of solar radiation, and simple energy production models, the 

potential of the energy output from different technologies can be evaluated and compared. 

Using GIS tools for potential assessment, terrain slopes and additional land constraints must 

be considered for large projects. During this screening process, the nature of local aerosols 

and their spatiotemporal variability might need to be considered. Because widely different 

sources of information might be available at that stage, it is important to define appropriate 

comparison parameters among the solar resource data sources and to clarify the definition 

of variability, error, and uncertainty; thus, variability needs to be identified, mainly at the 

interannual level, and distinguished from the uncertainty of the model. Ideally, considering 

the uncertainties from each data source, a common “most probable” range should be 

obtained, which should include the expected or “true” value. Temporal and spatial variability 

                                                

 
80

 See https://globalsolaratlas.info/map.   
81

 See https://irena.masdar.ac.ae/gallery/#gallery.  
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is addressed in this chapter through the COV statistic, which can be determined by using 

long time series of measured or modeled data for the site and its surroundings. 

In the feasibility assessment stage, typical solar radiation series are needed for plant 

simulation and for economic/profitability analysis. Typical annual time series are provided by 

a TMY, TRY, DRY, Typical global horizontal irradiance year (TGY), or Typical direct normal 

irradiance year (TDY). In addition to the review of typical meteorological data series 

generation for solar energy simulation, this chapter reviewed the proposed procedures for 

the analysis of the interannual variability and the generation of series of a specific POE, such 

as P90; thus, to evaluate the profitability and payback of a project, simulations of its behavior 

during bad years are needed. Section 4.8 specifically deals with the issues of combining 

data sets and reducing their uncertainty through site adaptation processes. These steps are 

very important for a precise feasibility assessment and to guarantee bankability, particularly 

for projects with large associated investments. 

During and before the plant’s construction phase, solar radiation data are needed to refine 

the yield estimation and to minimize the expected profitability uncertainties; thus, the value of 

the energy generated by a solar installation depends on the system’s output and on the price 

offered for that energy at the time it is generated. Methods for the yield estimation of non-

concentrating PV projects and of CST projects have been discussed. Additional 

meteorological inputs that are necessary for yield estimation, as well as solar radiation 

characteristics, such as its spectral and angular distribution, were also discussed.  

For power plant operation, the solar resource information must include high-quality, on-site 

measurements to qualify the plant’s performance as well as accurate irradiance forecasts for 

operation and revenue optimization. This chapter’s final section discussed the type of solar 

radiation data needed for different types of solar projects, such as flat-plate thermal 

collectors, solar heating and cooling in buildings, smart electric grids, solar desalination, and 

other chemical applications.  
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10.1 Introduction  

Advancing renewable energy technologies will require improvements in our understanding of 

solar radiation resources. This chapter briefly describes areas of research and development 

identified as emerging technology needs. The International Energy Agency (IEA) 

Photovoltaic Power System (PVPS) Task 16 work plan for the second phase (2020–2023) 

on “solar resource for high penetration and large-scale applications” seeks to address 

significant parts of the research-and-development needs presented in this chapter. 

10.2 Application, Evaluation, and Standardization of Solar 
Resource Data  

With the increasing diversity and complexity of solar resource data, it is necessary to invest 

significant effort in the application, evaluation, and standardization of these data. Users need 

to know which data sets are most suitable for their applications, and this requires readily 

available evaluations of existing products. As examples, such evaluations are planned within 

the IEA PVPS Task 16 related to satellite and numerical weather prediction-based (NWP-

based) radiation data as well as ASI-based radiation nowcasts.  

To create an efficient market, best practices and standards for the creation, documentation, 

and application of the resource data are needed. Task 16 contributes to relevant work in 

international standardization bodies, such as the International Organization for 

Standardization, International Electrotechnical Commission, and ASTM International. The 

standardization activities are related to solar spectra, radiation measurements, calibration 

and test methods, radiation forecasts, data formats, meteorological measurements for power 

plant performance measurement, and even to fundamental issues such as vocabulary. 

Some resource products are currently not used to their full extent. The potential benefits of 

their full applications might be understood by most stakeholders, but methods to use the 

data are yet to be developed or implemented. Examples of such resource products include 

meteorological parameters, such as time series of soiling rates; spectral mismatch factors; or 

circumsolar radiation data that are often included only as an approximation in power plant 

models. Other examples are probabilistic forecasts or ASI-based highly resolved spatial 

forecasts. Users and data providers must collaborate closely to create the best data sets and 

to fully exploit the potential of such resource data.  

10.2.1 Improvement in Irradiance Quality Control Procedures 

PVPS Task 16 is actively engaged in developing better and more stringent methods of 

evaluating the quality of irradiance measurements based on time series of experimental 

data. The primary objective is to produce a high-quality irradiance database for the validation 

of satellite-derived irradiance data sets at hundreds of sites worldwide. The new 

developments consist of improving and augmenting the few existing quality-control 
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algorithms in the literature, such as those discussed in Section 7.7, which follow Long and 

Shi (2008) and Maxwell, Wilcox, and Rymes (1993).  

The improved methodology includes the implementation of new tests to check many difficult-

to-detect and small perturbations, such as time stamp errors, mistracking, morning/afternoon 

asymmetry, soiling, shading, or calibration drift. The quality-control algorithm will allow for an 

easy visualization of the results for further inspection by trained observers. The overall 

applicability and repeatability of the process are being evaluated by having a group of 

experts separately quality-control several common data sets and comparing their results in a 

kind of round-robin experiment.  

It is expected that a user-friendly and public-domain fully functional code will be released at 

the conclusion of this effort. Its wide adoption should eventually reduce the uncertainty in 

measured data sets, simplify the practice of solar resource assessments, and ultimately 

benefit the whole solar industry. 

10.2.2 Evaluation of Solar Cadasters  

As noted by the International Renewable Energy Agency (IRENA 2019), to face the 

challenges of supplying renewable energy in steadily growing cities, there will be a new 

focus on photovoltaics (PV) at the urban scale. The PV potential of rooftops—as well as 

parking shades, roads, etc.—can be modeled with high-spatial-resolution solar mapping 

techniques in the form of solar cadasters. Today, such cadasters are emerging as products 

for many urban areas, notably in North America and Europe.82 Some solar cadasters even 

cover a whole country.83 

Nevertheless, the methodology and the quality of such products are generally not well 

known. For example, Walch et al. (2020) compared several solar cadasters existing over the 

same regions and reported large discrepancies. These discrepancies and quality 

shortcomings could be caused by methodology differences in various aspects, such as (1) 

the nature (vector, raster) and the spatial resolution of the digital surface model used for the 

3D modeling; (2) the source (satellite, network of radiation sensors, NWP, etc.), the model 

(all-sky, clear-sky, etc.), and the interpolation method used for the solar radiation data; or (3) 

the simplifications/approximations in the physical layout or in the PV yield simulations (tilted 

or horizontal planes, partial shadowing of PV modules, etc.). Task 16 of the IEA PVPS will 

assess some of these models and provide advice for best practices when using solar 

cadasters.  

Additionally, the use of solar cadaster methodologies based on high-resolution solar 

modeling in urban-scale cadasters will be assessed for extended purposes, such as 

modeling and forecasting solar energy in cities, grid planning, or congestion management. 

10.3 Forecasting Solar Radiation and Solar Power 

Solar power forecasting will be an essential component of the future energy supply system, 

which will use large amounts of variable solar power. Solar power forecasting systems 

already contribute to the successful integration of considerable amounts of solar power to 

the electric grid, and solar power forecasting is receiving unprecedented attention from 

various scientific communities because the solar resource variability must be managed to 
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maintain the stability of the grid and to enable optimal unit commitment and economic 

dispatch. Consequently, new techniques and approaches are being proposed to improve the 

accuracy of the models to provide solar radiation and power forecasts. 

The earlier chapters of this handbook covered the different approaches being used in current 

research on irradiance forecasting and solar power forecasting; for convenience, these two 

tightly related topics are referred to collectively as “solar forecasting” (Yang et al. 2018). 

Improvements in NWP-based irradiance forecasting could emerge from improvements in 

resolution, data assimilation, and parameterizations of clouds and radiation. Specific 

forecasting products would need to be developed for areas where dust storms or smoke 

episodes can result in adverse situations and to prepare an optimal schedule for post-

episode cleaning operations, especially where water is scarce. Moreover, to overcome NWP 

limitations, which lead to unavoidable errors in the estimation of the possible future 

atmospheric states (and are amplified at both higher forecast horizons and spatiotemporal 

resolutions), probabilistic forecast approaches are being proposed. In addition, the 

development and application of rapid-update-cycle models84 has high potential to improve 

intraday forecasting. Such models need to be properly initialized; hence, satellite detection of 

cloud height and cloud optical depth as well as other atmospheric states remain research 

priorities. A further opportunity emerges from the expansion of large-eddy simulation 

approaches to increasingly larger domain sizes that could soon bring operational mesoscale 

forecasting within reach (Schalkwijk et al. 2015). Large-eddy simulation will reduce the need 

for cloud parameterization approaches that are challenged by the disparity between grid 

resolution and cloud turbulence scales in standard NWP methods, and it is expected to bring 

a new level of accuracy to NWP. 

Forecasting techniques based on cloud motion will benefit from enhancements in cloud-

detection approaches for both satellite-based and ASI-based methods. Improved update 

cycles of satellite imagery (e.g., 5-minute updates in the United States through the 

Geostationary Operational Environmental Satellite - R Series) will provide information that 

could so far be derived only from sky imagers for very short-term forecasting. It has become 

increasingly clear that accurate physics-based forecasting with sky imagers requires 3D 

reconstruction of the cloud field (Kurtz, Mejia, and Kleissl, 2017), and further research in this 

area is required. 

With respect to statistical methods, apart from model development, the availability of high-

quality, current measurement data of solar irradiance and solar power will be of critical 

importance. Increasingly, powerful artificial intelligence techniques are being developed that 

should lead to substantial progress. Finally, an optimized combination (or hybridization) of 

different physical and statistical models will be an advantage for any solar power prediction 

system (Guermoui et al. 2020; Marquez, Pedro, and Coimbra 2013). 

10.3.1 Probabilistic Solar Forecasting 

The specification of the expected uncertainty of solar irradiance or power predictions for 

different weather situations provide valuable additional information to forecast users and 

serve as a decision aid; therefore, users are increasingly demanding that probabilistic 

forecasts replace traditional deterministic ones. 

Probabilistic forecasting—through the quantification of probabilities of future outcomes and 

information about uncertainty in addition to the commonly provided single-valued (best-

estimate) prediction—has gained interest as an approach to providing a more 
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comprehensive view than the traditional deterministic paradigm. This can be done for a 

specific site, or it could be extended over a geographic region from gridded deterministic 

NWP forecasts (Davò et al. 2016). Nevertheless, despite these advantages, a relevant way 

of quantifying the benefits of probabilistic forecasting is to assess its potential economic 

value. 

Probabilistic forecasting could be based on the use of NWP ensemble prediction systems as 

well as on the statistical analysis of the distributions (or quantiles of distributions) of historic 

predictions and measurements. In this regard, several post-processing techniques have 

been explored to generate probabilistic forecasts (Antonanzas et al. 2016; Van der Meer, 

Widén, and Munkhammar 2018), and more effort can be devoted to evaluate multiple 

methods on the same data set to compare their performance. In addition to pursuing these 

promising strategies, new frameworks could be explored for generating probabilistic 

forecasts. As an example, the generation of multiple plausible weather scenarios along with 

current weather prediction and real-time data from ground measurements and satellite 

images can be used together to estimate the probability of occurrence of different 

atmospheric states and the associated solar resource. 

In addition to exploring probabilistic generation schemes, key areas of investigation that can 

produce rich dividends are post-processing methods to improve forecasts by removing 

systematic biases and providing spatial and temporal downscaling. New techniques and the 

analysis of a variety of potential target variables (such as the ensemble mean or variance of 

forecasts) can be investigated (Gastón et al. 2018). 

The following upcoming challenges have been identified for ongoing research on 

probabilistic solar forecasting. 

10.3.1.1 Standardized Framework for the Evaluation of Solar Probabilistic Forecasts 

Although it is less mature than wind probabilistic forecasting, in recent years the topic of 

solar probabilistic forecasting has seen a surge in landmark publications (Bakker et al. 2019; 

Doubleday, Hernandez, and Hodge 2020; Li and Zhang 2020; Van der Meer, Widén, and 

Munkhammar 2018; von Loeper et al. 2020; Yagli, Yang, and Srinivasan 2020; Yang 2019). 

Unfortunately, Lauret, David, and Pinson (2019) noted that the solar forecasting community 

uses diverse verification tools and sometimes even improper scoring rules for evaluating the 

quality of the forecasts. This fact does not facilitate forecast analysis and performance 

comparisons of the different probabilistic forecasting techniques and therefore hampers the 

dissemination of probabilistic forecasts among forecast users and developers. The challenge 

is to provide the forecasting solar community with a comprehensive, standardized, rigorous, 

and well-accepted verification framework. This should comprise a set of diagnostic tools, 

proper scoring rules, and skill scores mostly originating from the weather forecast verification 

community. Further, specific scoring rules (e.g., energy score or Variogram score) should be 

used to assess the quality of the multivariate forecasts (see Chapter 8, Section 8.6). The 

objective will be also to clearly define the different reference/benchmark models used to 

gauge the performance of any newly proposed methods. In addition, the verification 

framework should benefit from standardized publicly available data sets.  

10.3.1.2 Generate Multivariate Probabilistic Forecasts  

Until now, most work related to solar probabilistic forecasts has been restricted to the 

univariate context. This corresponds to probabilistic forecasts that do not consider 

spatiotemporal dependencies. Because of complex mechanisms such as cloud passage, 

however, solar power generation behaves as a random variable distributed in space and 

time (Golestaneh, Gooi, and Pinson 2016). The next challenge will be to design multivariate 

probabilistic models that can capture the spatiotemporal correlations present in solar 
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forecasts. The scenarios or the space-time trajectories generated by this type of model will 

provide better inputs than univariate forecasts in grid power optimization problems, such as 

unit commitment or optimal power flow.  

10.3.1.3 Establish a Link Between Quality and Value of Probabilistic Forecasts85 

In solar forecasting, most studies concentrate on the evaluation of the quality of the 

probabilistic forecasts. In contrast, very few publications are devoted to the assessment of 

their value. Recall that quality refers to the correspondence between forecasts and the 

observations, whereas value is linked to the benefit (economic or otherwise) gained from the 

use of these probabilistic forecasts in an operational context. As noted by Pinson (2013) for 

wind probabilistic forecasts, however, it is not clear how improving the quality of these 

forecasts—in terms of improved skill scores or increased probabilistic reliability—could lead 

to added value for decision makers. Hence, in the context of decision making, more work is 

needed to link the probabilistic metrics used by the forecasters and the utility functions 

defined by the decision makers.  

10.3.2 Solar Forecast Based on All-Sky Imagers 

ASI-based solar forecasting is a recent forecasting method, and many options to improve 

these forecasts can still be explored. The selection of the most promising development 

directions will be enabled by comparisons of different ASI forecasts, such as the one 

organized within the IEA PVPS Task 16. Future research on both the hardware and software 

sides can be expected. The first results of a common benchmark of different ASI systems 

will also be published. 

Related to the hardware, the investigation of different camera types (infrared/visible, high 

dynamic range) is ongoing. Also, the combination of a few cameras or networks of cameras 

will continue. Networks of ASIs covering several hundred square kilometers are an option to 

create highly resolved nowcasts for whole regions. The combination of many cameras also 

allows for an increase in the forecast horizon and accuracy. In addition, downward-looking 

shadow cameras on mountains, buildings, or other elevated positions to derive irradiance 

forecasts is a promising topic of research (Kuhn et al. 2017, Kuhn et al., 2019, Wilbert et al. 

2020).  

Current evaluation software is often simplistic, and many approximations are applied. ASI 

images contain a large amount of information that is currently not fully used to avoid these 

approximations. Related to software developments, the application of artificial intelligence 

will certainly increase for ASI forecasts. 

10.3.3 Artificial Intelligence for Solar Forecast 

The predictive capabilities of artificial intelligence hold a lot of promise for solar forecasting, 

and for that reason efforts are increasing to identify their applications to improve NWP 

models. Among those models, it is important to highlight machine learning and, specifically, 

deep learning. The term machine learning encompasses all artificial intelligence techniques 

that give computers the ability to learn without being explicitly programmed to do so. 

Although machine learning was first used in the late 1950s, the current form of machine 

learning is commonly assumed to have started in the 1980s because of the increased 

amount of available data and novel approaches to treat them. Deep learning is a recent 

(circa 2010) subset of machine learning that makes the computation of multilayer neural 
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networks feasible and enhances the capability to find patterns in unstructured or unlabeled 

data. 

A promising application of deep learning neural networks is to replace computationally 

expensive parameterizations of certain physical schemes in NWP models because they 

involve modeling at scales much greater than the actual phenomena. The search for less 

expensive models favors higher resolution simulations for generating short-term forecasts at 

the local scale that need to be computed within short periods of time. Deep learning has also 

gained interest in satellite meteorology because it can provide rapid answers from models 

trained with tens of thousands of images, and its applications to solar forecasts could be 

explored for resolving weather patterns (in urban areas or large solar power plants) that are 

not achievable by traditional NWP models. In particular, convolutional neural networks (a 

class of deep neural networks) can be explored to provide forecasts as an image-to-image 

translation problem based on a filtering process that can be used to detect meaningful 

patterns. Within this data-driven (or “physics-free”) approach, the atmospheric physical 

processes are emulated from the training examples alone—not by incorporating a priori 

knowledge of how the atmosphere actually works—which can generate nearly instantaneous 

forecasts. The accuracy and the temporal and spatial resolutions of this approach are yet to 

be explored. 

Finally, to exploit the capabilities that artificial intelligence can bring to solar forecasting, 

models should be trained by vast amounts of granular data captured with a network of 

measuring instruments. This could comprise low-cost, good-performance radiometers 

measuring solar radiation, sky cameras providing cloud screening, and spaceborne 

instruments dedicated to the observation of clouds, aerosols, and climate change indicators 

(Gueymard 2017). In addition, especially in urban environments, Internet of Things sensors 

(such as street cameras, connected cars, drones, or cell towers) can be useful for this 

purpose, where high spatial resolution could probably be achieved. In the same vein, smart 

sensors might be useful for monitoring accurate demand forecasting together with renewable 

generation forecasting in the search for the optimization of economic load dispatch and to 

improve demand-side management and efficiency. 

Yet the lack of transparency that usually accompanies artificial intelligence models (i.e., 

retracing the path that the model took to reach its conclusion) has drawbacks: the difficulty of 

translating the information generated into basic principles (or physics) and interpreting the 

information to determine what is happening in the natural world and apply the knowledge 

gained at a particular project site to other regions. Consequently, an appropriate strategy 

could benefit from the optimized combination of both physical and artificial intelligence-based 

models. 

10.3.4 Firm Photovoltaic Power 

Grid-connected solar power generation, either dispersed or centralized, has developed and 

grown at the margin of a core of dispatchable and baseload conventional generation. Its 

economics and management have required increasingly versatile and precise historical and 

operational solar resource information with increasing penetration levels. Operational solar 

forecasts have become central to transmission system operation in regions with significant 

solar penetration levels—for example, energy markets and load ramp management. 

The challenge ahead for grid-connected solar is to go beyond the margin and the context of 

underlying conventional generation management. For wind, the transformation of intermittent 

variable solar power generation into firm, effectively dispatchable power generation is a 

prerequisite to the gradual displacement of the underlying conventional generation core. The 

IEA PVPS Task 16 will focus on this variable-to-firm generation transformation by developing 
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and analyzing the data, methodologies, and models that will cost-optimally enable this 

transformation in pertinent grid-connected contexts defined by: 

 Their geographic extent (from single plants to balancing area fleets) 

 Their level of penetration, from current to ultrahigh levels 

 The considered solar technologies: PV and/or CST 

 The economics of firm power generation enablers, in particular storage technologies, 

including conventional electrochemical batteries, thermal storage, and pumped 

hydropower 

 The economics of nontraditional firm power generation enablers, such as operational 

curtailment; whereas some years ago output curtailment of expensive PV (e.g., via peak 

output inverter limitation) was not economically sensible, it will likely become standard 

practice in future systems.  

A logical initial step in the direction of firm solar power generation is firm solar power 

forecasting, where forecast errors are operationally balanced by these enablers. The end-

game objective is the delivery of 24/7 energy capable of entirely displacing conventional 

generation. 

10.4 Additional Parameters 

Although direct normal irradiance, global horizontal irradiance, and global tilted irradiance 

are the most important meteorological input parameters for solar power plant yield, several 

additional parameters must be provided at high resolution for accurate yield analysis. Solar 

energy-specific measurands include the soiling rate of plant components, albedo, spectral 

mismatch factors, the sunshape/circumsolar radiation, and the extinction of radiation 

between the mirrors and the receiver of tower power plants. Often, no site-specific 

information on these properties is available, which results in remarkable impacts on the 

accuracy of the yield prediction; hence, these parameters must be studied in more detail in 

the future. This topic will continue to be investigated under Subtask 1 of the IEA PVPS Task 

16. Similar to the increasing interest in albedo data for bifacial PV modules, other 

technological developments might also trigger research on further additional parameters. 

10.5 Effects of Climate Change on Solar Resource Assessments 

Changes in atmospheric aerosol loading from natural causes or industrial pollution, changing 

patterns of clouds, relative humidity, precipitation, and other climatic variables might have 

recently affected solar resource availability and could affect it further in the future (Huber et 

al. 2016).  

This could be important when estimating the performance of a solar power plant throughout 

the system’s design life (approximately 25 years). Research is needed to advance climate 

modeling capabilities and to merge the outputs of these models with advanced system 

performance models. The climate of the future can follow different scenarios, and aerosol 

scenarios are expected to matter most with respect to the solar resource. In contemporary 

climate modeling, aerosol pollution scenarios are considered independent from greenhouse 

gas scenarios. Rao et al. (2017) describe various aerosol scenarios in terms of “shared 

socioeconomic pathways” that depend on assumed “strong,” “medium,” and “weak” policies 

against aerosol pollution. These scenarios are included in the current generation of climate 

model runs (Collins et al. 2017). In parallel, geoengineering experiments, aiming at injecting 

various types of reflecting particles into the stratosphere as an attempt to curb climate 
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change, are already starting. Such experiments, if generalized, might completely disrupt all 

current estimates of the future solar resource (Smith et al. 2017).  

The identification and treatment of years with impacts of exceptionally strong volcanic 

eruptions should be standardized because they impact the probabilities of exceedance, 

which are a key factor in the bankability of large solar systems. Further investigation is 

needed, including liaising with the volcanology scientific community. The last major eruption 

with a global effect on aerosols happened in 1991 at Mount Pinatubo in the Philippines, 

before solar energy applications were widespread, so such eruptions have been forgotten by 

the solar energy industry. Additional focus will be put on climate change effects when 

conducting long-term analyses. Subtask 2 of IEA PVPS Task 16 will seed further progress in 

this area, e.g., to precisely assess the risk of major volcanic eruptions. 
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