
#### IEA PVPS Task 13 Focus Workshop on Operation & Maintenance

Fraunhofer ISE, Freiburg im Breisgau (Germany), September 30th 2021





#### **Aerial Inspections and Diagnostics of PV Power Plants**

Ioannis Tsanakas | R&D Project Manager CEA – INES

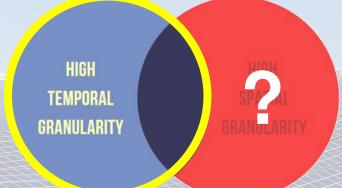
Technology Collaboration Programme



- PV O&M : major share of PV plants' OPEX; benchmark value as high as 8-15k €/MW per year, for utility-scale PV <sup>1,2</sup>. Mostly: non optimized corrective and "per-schedule".
- A cost reduction by 10-15% (by e.g. limiting unnecessary O&M tasks, underperformance, failures/downtime,...) → annual savings of ~2-3 million€ per year (average portfolios of large PV plant developers).

1. Technical Report NREL/TP-5C00-74840, June 2020 2. Technical Report IEA-PVPS T13-08:2017, May 2017 Focus expands: from development to operations

- → Need to *differentiate* through:
  - $\circ$  operational performance of PV assets `
  - o competitive costs of operations


lean data-driven diagnostics

The cornerstone:

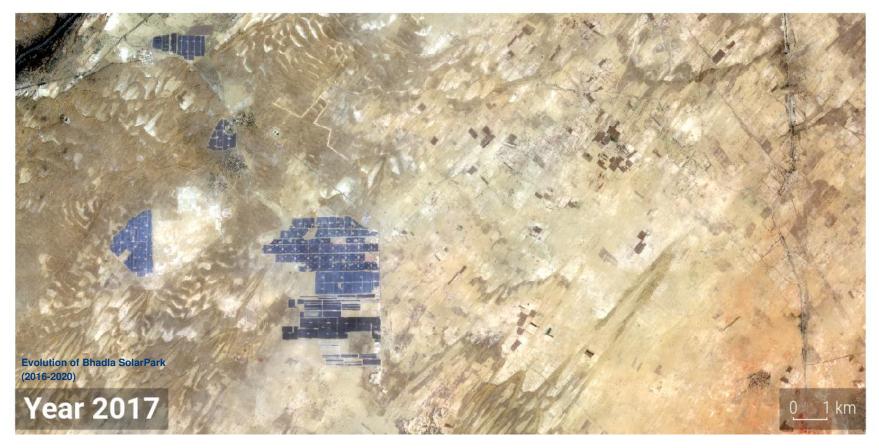
Advanced SCADA/monitoring software solutions, coupled with data analytics and diagnostics.

#### **Monitoring-based Diagnostics**

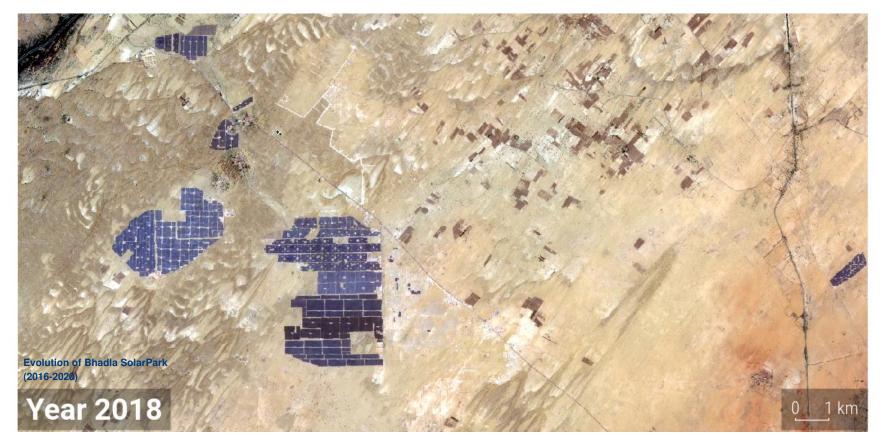




- How? Semi-automatic top-down approach, monitoring at real-time <sup>1</sup>.
- What? Where? Drill-down from substations, inverters to strings and junction boxes <sup>1</sup>.


Is it enough? Size matters

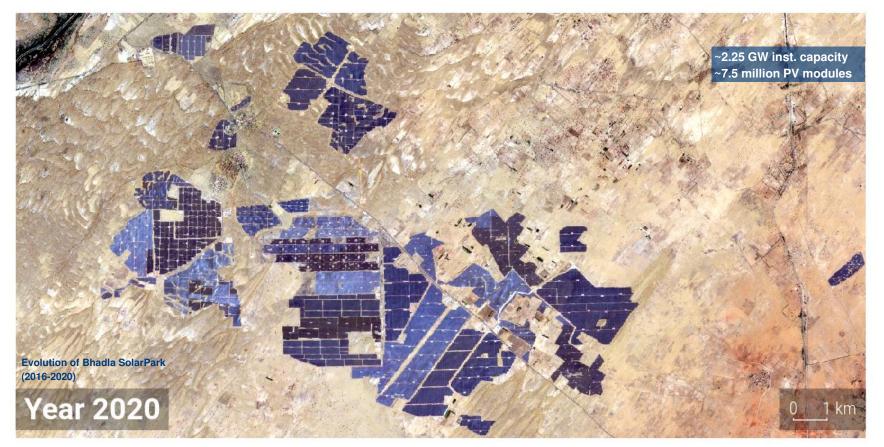
1. Solar Power Europe, O&M Best Practice Guidelines Version 4.0, 2020.









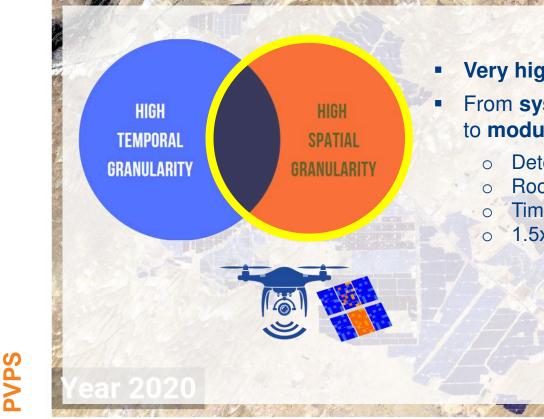













VPS

- Insufficient spatial granularity
- At component / subsystem level:
  - Undetected losses or failures
  - Triggered false-negatives
  - Root-cause analysis practically impossible, time- and labor- intensive.





- Very high spatial granularity
- From system and string level, down to module and submodule/cell level :
  - Detection, diagnosis.
  - Root-cause analysis possible.
  - Time- and labor- efficient.
  - 1.5x up to 4x higher "diagnostic capacity"

#### Aerial inspections in a nutshell



#### IR imagery-based

- Thermal signatures of faults from system to (sub)module level.
- Minimal instrumentation.
- Highly compatible with UAVs
- Standardized, commercialized, proved time-/cost- efficiency.
- High dependence on weather.
- Lower resolution vs EL / UVFL.
- Misinterpretations, false negatives.



Qualitative (mostly).

## EL imagery-based

- NIR luminescence signatures of faults down to cell/sub-cell level.
- Highest spatial resolution.
- More reliable interpretation.
- Suitable for evaluating propagation of certain faults.
- Complex deployment requirements. No turnkey solutions
- Need for high exposure times = challenging for aerial inspections.
- Higher cost & time vs IR.
- Qualitative (mostly).


# UVFL imagery-based

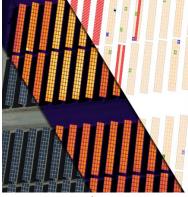
- Fluorescence signatures of defects at material/component level.
- Spatial resolution comparable to that of EL imagery.
- High potential for materials evaluation and in-depth forensics.
- Complex deployment requirements. No turnkey solutions
- Need for high exposure times = challenging for aerial inspections.
- Higher cost & time vs IR.
- Strictly qualitative.

#### IR inspections: State-of-Play

#### **Profile of commercial solutions**

- Turnkey services, including AI-based data analytics and fault diagnostics.
- Reporting & maintenance recommendations.
- "Per-schedule" or "on-demand" aerial scans (preventive maintenance or reactive troubleshooting); commissioning or asset transfer.




#### Two (very) different approaches

- Aircraft-mounted IR imagery
   100-150 MW/hour, focus on system/DC failures, higher cost
- UAV/drone IR imagery
   12 MW/day (~3 MW/hour), IEC compliance, system to module failures, lower cost

#### **Experience feedback**

- Extensive increasing IR inspection portfolios → rich libraries of faults, proprietary imagery analysis & mapping software.
- Fast ROIs: >10% lower preventive O&M; recovery of an average 1-2% PV power losses.









SITEMAR

#### IR inspections: Standardization and Best practices



IEC TS 62446-3 released by the IEC TC82, in 2017. Groundwork by Task 13 experts.
 → test procedures and requirements. No pass/fail criteria. Not specific for aerial IR.





Recommended TS for hardware (IR camera, etc)

Requirements related to ambient/meteo conditions





Failure modes classification Reporting / recommendations

Inspections configuration Site conditions and preparation



#### IR inspections: Standardization and Best practices

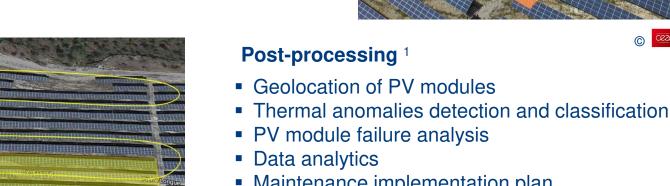


#### In a nutshell (for aerial IR inspections)

| Parameter                                               | Condition/Requirement – Remark(s)                                                                                                                                                                                                              |  |  |  |  |  |  |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Global Plane-of-Array Irradiance<br>(G <sub>PoA</sub> ) | ≥ 600 W/m <sup>2</sup> , for PV module/array inspection<br>≥ 300 W/m <sup>2</sup> , for inspection of other BOS components                                                                                                                     |  |  |  |  |  |  |
| Wind Speed<br>(S <sub>W</sub> )                         | ≤ 4 Bft or ≤ 8 m/s                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Cloud Coverage                                          | <ul> <li>clear-sky recommended ; if not possible, then two cases:</li> <li>cumulus type : ≤ 2 okta → to avoid any reflection effects</li> <li>sirrus type &lt; 10% / min. ; otherwise, ≥15 min. waiting time, to reach steady-state</li> </ul> |  |  |  |  |  |  |
| Air/ambient temperature<br>(T <sub>amb</sub> )          | No imiting conditions or requirements.<br>Recommendation: If the IR camera/equipment has any calibration function to limit the                                                                                                                 |  |  |  |  |  |  |
| Relative humidity<br>(RH)                               |                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Soiling                                                 | On modules : zero or low-uniform soiling on module plane (pre-cleaning required or<br>ensure less than 10% of losses in current output)<br>Atmosphere: avoid measurements after rain-dust or after soiling inducing activities                 |  |  |  |  |  |  |

| Parameter                                                                | Condition/Requirement – Remark(s)                                                                                                                                                                                          |  |  |  |  |  |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Spectral response                                                        | 8-14 $\mu m$ (optimal range) or 2-5 $\mu m$ (for electrical parts only)                                                                                                                                                    |  |  |  |  |  |
| (corresponding) Temperature range                                        | -20°C+120°C (at least)                                                                                                                                                                                                     |  |  |  |  |  |
| Noise-equivalent temperature difference (NETD)<br>or Thermal sensitivity | ≤ 0.1 K                                                                                                                                                                                                                    |  |  |  |  |  |
| Accuracy or absolute uncertainty/error                                   | ≤ ± 2% or ≤ 2 K                                                                                                                                                                                                            |  |  |  |  |  |
| Optical resolution / array size                                          | ≥ 640×480 pixels                                                                                                                                                                                                           |  |  |  |  |  |
| Other/adjustable functions                                               | Emissivity correction, ambient temperature, focus/netting, temperature level a<br>range, measurement spot and region-of-interest (ROI), output image and<br>video file format with radiometric data (e.g. *,RTIFF, *,RAVI) |  |  |  |  |  |

- Environmental conditions; hardware TS requirements.
- Angle-of-View, Distance-to-Target and DeltaT definitions.
- PV plant under operating (i.e. at MPPT) conditions, electrical/thermal steady-state, free of partial shading.
- Soiling: pre-check and cleaning prior to inspection.
- Intermittent faults: diagnosed at an individual inspection? Bi-annual (at least) inspections recommended.
- Recommended applicable safety regulation: EN 50110-1




Solar Power Europe, O&M Best Practice Guidelines Version 4.0, 2020.

#### IR inspections: **Deployment**

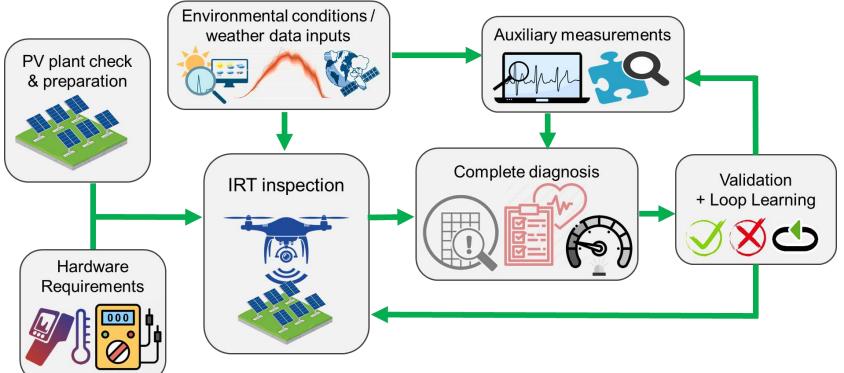
#### Data acquisition <sup>1</sup>

- Flyover(s) and logging of radiometric data. Georeferencing and/or 3D modelling of the PV plant (opt).
- UAV equipped or interoperating with auxiliary sensors. (e.g. temperature, irradiance, etc).
- Flight paths: typically pre-programmed and optimized:
  - $\rightarrow$  repeatability, IEC compliance, diagnostic accuracy.





Reporting

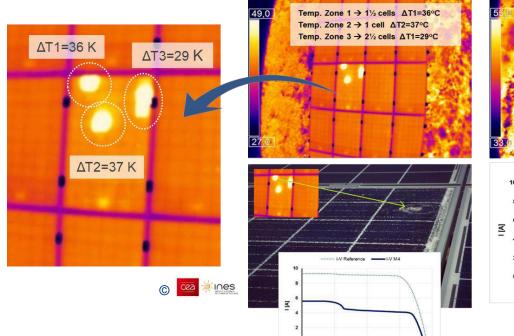









#### Example of applied IR inspection protocol \*




\* Overview / example of protocol applied by CEA-INES, for its patented "ASPIRE" IR-diagnostic methodology and software.

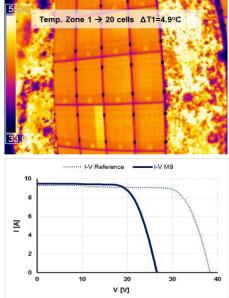
17

#### IR inspections: Case study examples





0

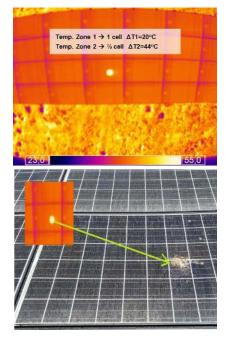

10

20

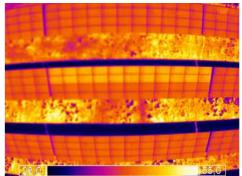

۲01 Total estimated ΔP=125.9 W or -48.4% Total measured ΔP=128.3 W or -49.35%

Accuracy = 98.1%

30

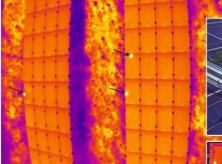



Severe, not-mitigated hot spots: follow-up failures

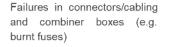



#### IR inspections: Case study examples






Soiling / dirt (e.g. bird droppings)





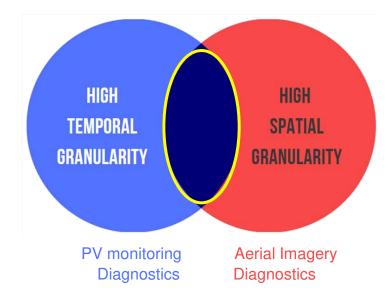





Shading losses (poor vegetation management)








IR inspections+diagnostics "roadmap" : future trends<sup>1,2</sup>

- Deployment and validation in emerging PV applications
- Hyperspectral imagery and 100% autonomous UAV
- "Complete" all-in-one imagery diagnostics
- "Data fusion" IoT enabled concept: Hybrid or integrated monitoring/diagnostic IR imagery solutions

#### **Data-driven predictive maintenance**

| Development                         | Develo | pment of                                                 | algorithm  | for predi                             | ctive mai   | ntenance   |            |            |              |          |
|-------------------------------------|--------|----------------------------------------------------------|------------|---------------------------------------|-------------|------------|------------|------------|--------------|----------|
| TRL 3-5<br>Demonstration<br>TRL 5-7 | Embec  | ded sens                                                 | ors and us | e of on-si                            | te autono   | mous UA    | /          |            |              |          |
|                                     |        | compone                                                  | nts and sy | tion, innov<br>istem des<br>d monitor | gns         |            |            |            | &M friendly  | PV /     |
|                                     |        | Effective and large scale use of metrics to optimise O&M |            |                                       |             |            |            |            |              |          |
| Flagship TRL 7-8                    |        | "complete diagnostics"                                   |            |                                       |             |            |            |            |              |          |
|                                     |        |                                                          | Devel      | opment a                              | f data-dri  | ven and/   | or physico | I models   | / Reliabilit | y models |
|                                     |        |                                                          |            | Creat                                 | ion of a la | irge-scale | databas    | e of PV pl | ant perfo    | mance    |
|                                     | 2021   | 2022                                                     | 2023       | 2024                                  | 2025        | 2026       | 2027       | 2028       | 2029         | 2030     |



1. Solar Power Europe, O&M Best Practice Guidelines Version 5.0 (in progress)

2. ETIP PV : European Strategic Research and Innovation Agenda (SRIA) for PV, May 2021.



www.iea-pvps.org

### Thank you for your attention



Ioannis Tsanakas, Task 13 Expert ioannis.tsanakas@cea.fr

