

Soiling Issues for O&M of PV Plants

Christian Schill, Fraunhofer ISE

30 September 2021, Task 13 Focus Workshop on Operation & Maintenance

Credits for Task13 members

SAN

Soiling Losses – Impact on the Performance of Photovoltaic Power Plants 2021

Report IEA-PVP 8 T10-21:2021

Main Authors

Christian Schill, Fraunhofer ISE, Freiburg, Germany

Anne Anderson, Research Institutes of Sweden AB (RISE), Sweden

Christopher Baldus-Jeursen, CANMET Energy Technology Centre, Canada

Laurie Burnham, SANDIA National Laboratories, USA

Leonardo Micheli, Universidad de Jaén, Spain

David Parlevliet, Murdoch University, Perth, Australia

Eric Pilat, CEA INES, France

Bengt Stridh, Mälardalens högskola, Sweden

Elías Urrejola, Atamostec, Chile

Contributing Authors

Manjunath Basappa Ayanna, CSIR, South Africa

Gianluca Cattaneo, Centre Suisse d'Electronique et de Microtechnique, Switzerland

Sebastian-Johannes Ernst, Fraunhofer ISE, Germany

Anil Kottantharayil, NCPRE, IIT Bombay, India

Gerhard Mathiak, TÜV Rheinland, Cologne, Germany

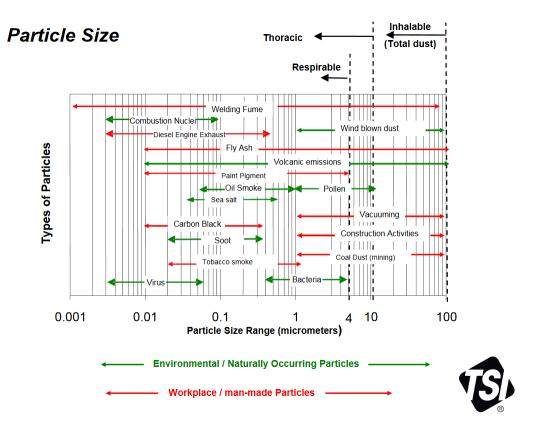
Erin Whitney, University of Alaska Fairbanks, USA

Rosmarie Neukomm, Bern University of Applied Sciences, Switzerland

Delphine Petri, Centre Suisse d'Electronique et de Microtechnique, Switzerland

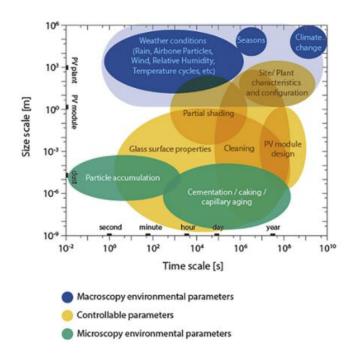
Lawrence Pratt, CSIR, South Africa

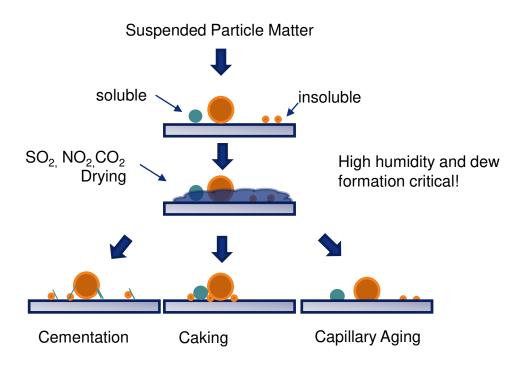
Lina Rustam, Fraunhofer ISE, Germany


Thomas Schott, Bern University of Applied Sciences, Switzerland

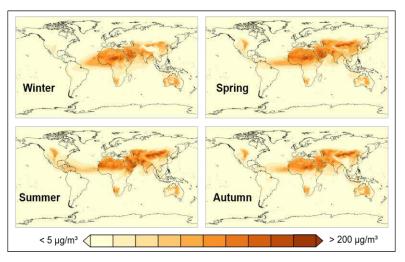
Editors

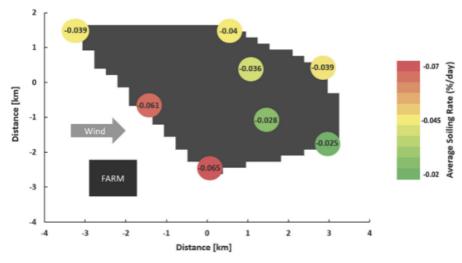
Ulrike Jahn, VDE Renewables, Alzenau, Germany


Sources of Soiling

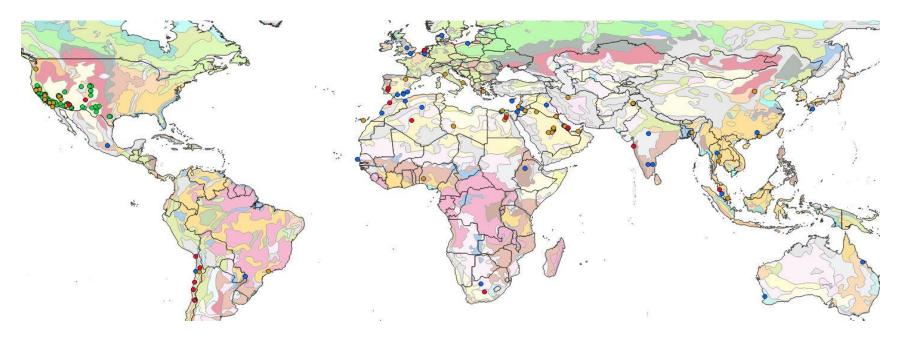


Basic physical Principles of Soiling





Spatial and temporal variation of soiling ratios


Source: kind permission by Jan Herrmann, University Freiburg

Seasonal and intra-day variation

- Spatial variation within one plant
- Each plant is different

Global soiling publications

Harmonized World Soil Database

FAO/IIASA/ISRIC/ISS-CAS/JRC, 2008. Harmonized World Soil Database (version 1.0). FAO, Rome, Italy and IIASA, Laxenburg, Austria

Inhomogeneous soiling and IR imaging

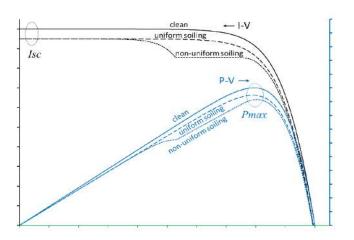


Figure 2-1: Illustration of soiled PV module and corresponding I-V & P-V curves

Most commonly used metric:

SRatio = Pmax_soiled / Pmax_clean

IEC 61724-1:2021 Photovoltaic system performance

Part 1: Monitoring – Soiling

- Defines terms
- Measurement principles (MPP, Isc-based, clean vs. soiled)
- Sampling intervals per accuracy classes
- Number of sensors per plant size
 - (e.g. 6 sensors for 300 MW ≤ plant size ≤ 500 MW)
- Data analysis ("daily average, filter outliers" etc.)
- Recommends rain gauge, but states that having soiling measurements gives direct result
- states that snow loss may be detected by soiling sensor unless mounted atypically for array

Monitor Soiling: Overview of Sensors

Soiling Sensors					
Manufacturer	Atonometrics	Atonometrics	Campbell Scientific	Kipp and Zonen	NRG Sys- tems
Model name	Soiling Measurement System	Mars Soiling Sensor	CR-PVS1	Dust IQ	Soiling Measurement Kit
Method	Short-circuit current and power	Optical (im- age pro- cessing camera)	Short-circuit current	Optical (LED)	Short-circuit current
Module power range	Up to 450 W	Not applica- ble	Up to 300 W	Not appli- cable	3 panels of 15 W each
Power supply	10 to 30 VDC or 100 to 240 <u>VAC</u>	10 to 30 VDC	16 to 32 VDC	12 to 30 VDC	5 to 15 VDC
Output options	Ethernet	RS-485, Ethernet	RS-232	RS-485	Available upon request
Approximate Cost: Euro / USD	€ 6078 / \$ 6900	€ 2600 / \$2950	€ 2334 / \$ 2649	€ 3807 / \$ 4320	Available upon request

Can Soiling be predicted? – Soiling models

Lead Author	Model Class	Year	Aim	Key Pa- rameters	Main Findings	Reference
Kimber	Linear	2006	Extracting soiling loss from PV performance data.	PV Per- formance Ratio, Rainfall	The model generates a soiling loss profiles based on the rainfall pattern and on the soiling rate recorded during the longest dry spell. It requires the identification of a minimum cleaning treshold and of the length of dry period.	A Kimber, L. Mitchell, S. Ngogadi, and H. Wenger, The Effect of Soiling on Large Grid-Connected Photovoltaic Systems in California and the South- west Region of the United States', in 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, Walloods, 10.1104/WCPEC.2006.279690.
Gasem	Semi- Physi- cal	2012	Modelling soiling loss profile using weather data	Ta, WS, WD, dust, tilt, rainfall	A model is developed to estimate the dust accu- mulation based on weather conditions and to convert this into an electrical loss based on the PV module charac- teristics and on the dust spectral transmittance	H. Qasem, T. R. Betts, and R. Gottschag, Soiling Correction Model for Long Term Energy Prediction in Photovoltaic Modules. New York: Issue, 2012.
Boyle	Linear	2015	Modelling a daily soiling profile meas- ured at five U.S. Loca- tions	TSP	A linear model is devel- oped where the trans- mittance loss are a function of TSP and of the exposure time.	L. Boyle, 'don't soil your chances with solar energy(experiments of natural dust accumulation gosglar, modules and the effect on lightransmission'.
Guo	Linear & Semi- Physi- cal	2016	Modelling a daily soiling profile of a soiling meas- urement system in Qatar.	WS, PM10, RH	A multi-linear and a semi-physical models are developed and compared. Both models were found to return estimation with < 16% uncertainty when used to estimate the daily soiling loss profile.	Guo B, Jayed, W, Khan S, Figgis B, Mirza T, Models for Prediction of Soiling-Caused Photovoltaic Power Output Degradation Based on Environmental Variables in Doha, Qatar. ASME 2016 10th Int. Conf. Energy Sustain., 2016, p. 1–8. https://doi.org/10.1115/ES2016-59390.
Eulipa: ka.	ANN & Linear	2016	Soiling loss is estimated from particle size composi- tion	Particle size	Multi-linear regression and ANN are used to estimate the soiling losses based on particle size composition of the soil. ANN are found to perform better.	 Bujipaka, F. Mani, and R. Kumar, Modeling of soiled PV module with neural networks and regression using particle size composition', Sol. Energy. vol. 123, pp. 116–126, Jan. 2016, gg: 10.1016/j.solener.2015.11.012.
Javed	ANN & Linear	2017	Modelling a daily soiling profile of a soiling meas- urement system in Qatar.	Same-day PM10, WS, WD, Ta, RH, Previous- day PM10, WS, RH, Wind Gust frequency and expo- sure time	A 10-input ANN model was able to significantly model the soiling loss trends, returning better results than a multilinear approach based on the same inputs. PM10, WS and RH were found to be parameters better correlated with soiling.	W. Jased, B. Guo, and B. Figgis, Modeling, of photovoltatic soiling loss as a function of environmental variables; Solar Energy, vol. 157, pp. 397–407, Nov. 2017, pp. 360; 10.1016/j.solener.2017.08.046.
Bergin	Semi- Physi- cal	2017	Modelling the profile of a soiling meas- urement in India	PM com- ponents concentra- tions	The soiling profiles is modelled based on the concentration of each PM10 and PM2.5 components. taking into account each specific component's absorption and scattering efficiency.	Bergin MH, Greenwald R, Xu J, Berta V, Chameides WL. Influence of aero- sol dry deposition on photosynthetical- ly active radiation available to plants: A case study in the Yangtze delta region of China. Geodus, Res Lett 2011;28:2015—3. https://doi.org/10.1029/2001GL013461

Key Pa. Main Eindings

Micheli	Linear	2017	Ranking the average soiling losses of 20 soiling station in the USA.	PM10, PM2.5, Rainfall	PM10, PM2.5 and rain- fall are found to be the best soiling predictors, out of 100+ potential variables, when the average losses of differ- ent sites are compared.	Micheli L, Muller M. An investigation of the key parameters for predicting PV soiling losses. Prog Photovoltaics Res Appl 2012;28:291—307. https://doi.org/10.1002/pip.2880.
Figgis	Linear	2018	Modelling soiling depo- sition and resuspension	WS, PM10	Multilinear relations are proposed to estimate soiling accumulation, deposition, resuspen- sion and rebound rates	Figgis B, Guo B, Javed W, Ahzi S, Bexxood Y. Dominant environmental parameters for dust deposition and resuspension in desert climates. Aerosol Sci Technol 2018;52:788–98. https://doi.org/10.1080/02786826.2018 1462473.
Cordero	Linear	2018	Modelling soiling rates in Chile	AOD	A linear correlation is found in between AOD and soiling rates. Ground-measurements outperformed satellitederived data.	Cordero RR, Damiani A, Laroze, D, MacDonell, S, Joroquera J, Sepulveda E, et al. Effects of soiling on photovoltaic (PV) modules in the Atacama Desert. Sci. Rep. 2018;8:1–14. https://doi.org/10.1038/s41598-018-32291-8.
You	Semi- Physi- cal	2018	Modelling the soiling loss profile for seven cities worldwide	PM50-20, Vd.	The soiling accumulation is calculated based on the deposition velocity, calculate from the local conditions.	You S, Lim YJ, Dai Y, Wang CH. On the temporal modelling of solar photo- voltaic soiling: Energy and economic impacts in seven cites. Appl. Energy 2018;228:1136–40. https://doi.org/10.1016/j.apenergy.201 8.07.020.
Zhou	Semi- Physi- cal	2019	Modelling soiling loss based on particle depo- sition estima- tion	PM, Rain- fall	The soiling losses are estimated using a Community Multiscale Air Quality (CMAQ) model. The estimated PV panel transmittance are lower compared to on-site measurements.	L. Zhou et al., The impact of air pollu- tant deposition on solar energy system efficiency: An approach to estimate PV soiling effects with the Community Multiscale Air Quality (CMAQ) moder, Sci. Total Environ., vol. 651, pp. 458– 465, Feb. 2019. 90: 10.1016/j. sciototenv. 2018. 09. 194.
Micheli	Linear	2019	Rank the severity of the average soiling losses of 41 soiling stations in the USA using environmental parameters.	PM10, PM2.5, Rainfall	The work confirms that PM10 and PM2.5 are the best soiling predictors, followed by parameters desoribing the average and maximum length of the dry periods. Although, Desotie that, if found that the results could be significantly affected by the environmental parameters sourcing and processing methodology.	Michel, M. G. Decoglie, and M. Muller, Predicting photocolais soling losses using environmental parameters. An opdate, Progress in Protocollaics: opdate, Progress in Protocollaics on 3, pp. 210-219, Mar. 2019, doi: 10.1002/pjp.3079.
Shap: sough	Linear & ANN	2019	Modelling the soiling loss profile of a PV installation in the UAE	Irradiance, Rainfall, Exposure time	A multi-linear and an ANN models were used to estimate the performance of a soiled PV module, with no significant difference between their results.	S. Shapsouch, R. Dhaouadi, and I. Zualkenan, 'Using Linear Regression and Back Propagation Neural Net- works to Predict Performance of Soiled PV Modules', Procedia Com- puter Science, vol. 155, pp. 463–470, 2019, 10.1016/j.procs.2019.08.085.
Micheli	Geo- spatial	2019	Estimating average soiling loss from nearby data	Nearby soiling data, site's character- istics	The average soiling loss of a site can be estimate using soiling data from nearby sites, by using spatial interpolation.	Micheli L. Decedie MG, Muller M. Mapping Photovoltaic Soiling Using Spatial Interpolation Techniques. IEEE J Photovoltaics 2019;9:272–7. https://doi.org/10.1109/JPHOTOV.2018.2872548.
Laarabi.	ANN	2019	Modelling the soiling rate of a site in Morocco	Irradiance, Ws. Wd, Ta, RH, Rainfall	A 6-35-1 ANN model is implemented and vali- dated. A sensitivity analysis shows that relative humidity, first,	Laarabi, B. May Tzuc, O. Dahlioui, D. Bassam A. Elota-Baöuelos, M. Barbdadi, A. Artificial neural network modeling and sensitivity analysis for soiling effects on photovoltaic panels

Different types of models (n>15):

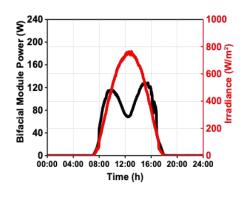
- 1. Linear Regression Models
- 2. Semi-Physical models
- 3. ANN
- 4. Geospatial models

Mitigation: preventive and corrective measures

Preventive measures fall rather into the responsibility of EPCs:

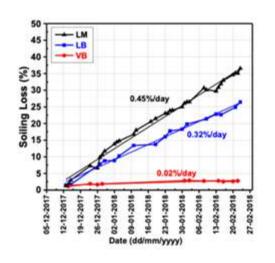
- site- and module selection,
- anti-soiling coating applications,
- site adaption

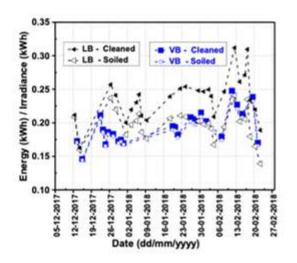
whereas corrective measures fall into the competence of O&M:


choosing the right cleaning technology and schedule

Mitigation System Design: Vertical Bifacial E/W

VB: Vertical Bifacial


LB: Latitude tilt Bifacial


LM: Latitude tilt Monofacial

A Study by Anil Kottantharayil and colleagues, India

Mitigation System Design: Vertical Bifacial E/W

Latitude tilt Bifacial cleaned: always higher Latitude tilt Bifacial soiled: initially higher, after ~7 weeks lower than Vertical Bifacial (VB)

Mitigation: Cleaning Methods

Manually, semi-automatic, fully-automatic

Mitigation: Cleaning Methods

- Manual devices, dust brooms, water brushes, nozzles (see module datasheet for max pressure!)
- Truck-mounted devices
- Semi-automatic systems use portable robots which can be manually moved from row to row. (battery-powered or wired, rail-mounted, frame-mounted or freely movable)
- Fully automatic systems: regularly clean one row of modules.
 These systems are often solar-powered, and they can be rail-mounted, frame-mounted or freely movable.

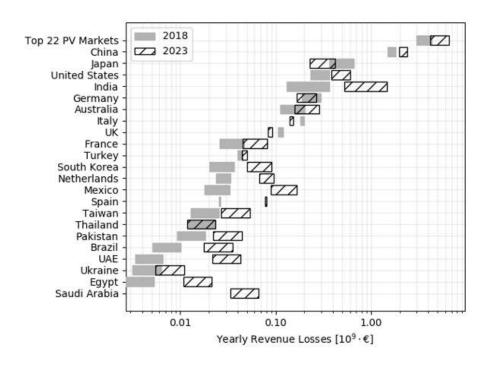
(0

Mitigation: Cleaning per Weather condition

Weather/Area	Cleaning technique applied			
Desert	Vibration of surface and aerodynamic streamlining			
Dry	Electrostatic biasing, autonomous robotic cleaning, sprinkler			
Rainy, humid	Special techniques are not required, but can be com- bined with anti-reflective coating			
Cold, moist	Autonomous/robotic cleaning, sprinkler, and anti- reflective coating			
Snow	Stowing/inverting, anti-reflective coating			
Hot, arid, sunny	Electrostatic biasing, autonomous/robotic cleaning, sprinkler			
Cloudy, shaded	Autonomous/robotic cleaning, sprinkler, aerodynamic streamlining			

Adapted from S. Mondal, A. K. Mondal, A. Sharma, V. Devalla, S. Rana, S. Kumar and J. K. Pandey, "An overview of cleaning and prevention processes for enhancing efficiency of solar photovoltaic panels," *CURRENT SCIENCE*, vol. 115, no. 6, p. 13, 2018

Generic « Best Time to Clean »


→ balancing the total cost of cleaning against the cost of energy lost to soiling.

Jones (2016)

- Cost of cleaning operation at the start of the interval (C_c)
- The value of the energy lost due to soiling over the interval between cleans (V_I)
- The value of energy sold over the interval (V_S)
- The power loss due to soiling (L_s(t))
- The power generated by the plant without soiling (P(t))
- Electricity Tariffs (R(t))

Global economic Impact of Soiling

Mitigation Strategies for Solar Power Generation," Joule, vol. 3, no. 10, p. 2303-2321, 2019.

Estimate:

2018:

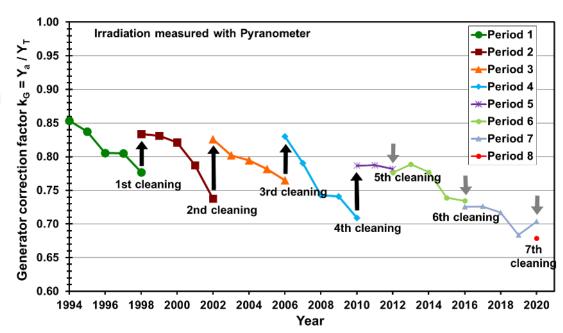
- loss ~ 3% to 4% of annual PV energy
- Economic loss ~ 3 5 billion €

2023:

increase up to 4% to 5% and 4 to 7 billion €

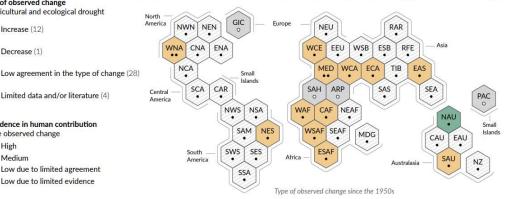
Factors:

- Installation in high-insolation regions → Soiling
- reduced price of electricity: less revenue
- Same soiling, more efficient modules: larger energy losses


Based on optimal cleaning schedule scenario In a real world: even higher losses

Use case Soiling in temperate climates

- Thomas Schott, Rosmarie Neukomm, CH
- Main pollution is a railway line (Bern-Zürich) at a distance of less than 100 m of the PV system.
- natural rainfall > 1'000 l/m²a
- Nat. cleaning considered to be sufficient BEFORE installation of the plant.


PV-System Tiergarten West, BFH-TI, Burgdorf: Trend of the generator correction factor in summer (April-September)

An outlook: IPCC projections

c) Synthesis of assessment of observed change in agricultural and ecological drought and confidence in human contribution to the observed changes in the world's regions

Observed changes in global droughts and human contribution, IPCC report 2021: the problem will become worse in sunbelt regions

Each hexagon corresponds to one of the IPCC AR6 WGI reference regions

Type of observed change in agricultural and ecological drought

Increase (12)

Decrease (1)

to the observed change

• • • High

. Medium

Limited data and/or literature (4)

Confidence in human contribution

Low due to limited agreement

Low due to limited evidence

IPCC AR6 WGI reference regions: North America: NWN (North-Western North America, NEN (North-Eastern North America), WNA (Western North America), CNA (Central North America), ENA (Eastern North America), Central America; NCA (Northern Central America) SCA (Southern Central America), CAR (Caribbean), South America; NWS (North-Western South America), NSA (Northern South America), NES (North-Eastern South America), SAM (South American Monsoon), SWS (South-Western South America), SES (South-Eastern South America) SSA (Southern South America), Europe: GIC (Greenland/Iceland), NEU (Northern Europe), WCE (Western and Central Europe), EEU (Eastern Europe), MED (Mediterranean), Africa: MED (Mediterranean), SAH (Sahara), WAF (Western Africa), CAF (Central Africa), NEAF (North Eastern Africa), SEAF (South Eastern Africa), WSAF (West Southern Africa), ESAF (East Southern Africa), MDG (Madagascar), Asia: RAR (Russian Arctic), WSB (West Siberia), ESB (East Siberia), RFE (Russian Far East), WCA (West Central Asia), ECA (East Central Asia), TIB (Tibetan Plateau), EAS (East Asia), ARP (Arabian Peninsula), SAS (South Asia), SEA (South East Asia), Australasia: NAU (Northern Australia), CAU (Central Australia), EAU (Eastern Australia), SAU (Southern Australia), NZ (New Zealand), Small Islands: CAR (Caribbean), PAC (Pacific Small Islands)

www.iea-pvps.org

Christian Schill, Task13 Christian.Schill@ise.fraunhofer.de

Matching Soil type against soiling publications

Image source U.S Department of Agriculture, Public domain

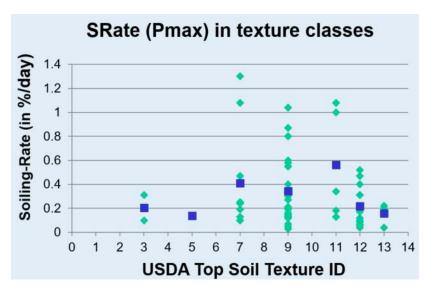
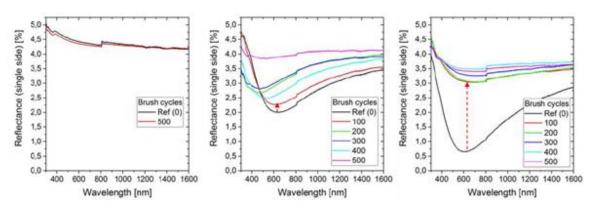



Image Source: ISE

1	clay(heavy)
2	silty clay
3	clay (light)
4	silty clay loam
5	clay loam
6	silt
7	silt loam
8	sandy clay
9	loam
10	sandy clay loam
11	sandy loam
12	loamy sand
13	sand

PV Module cleaning tests

Spectral reflectance of 3 glass types:

- a) float glass without ARC,
- b) float glass with ARC
- c) structured glass with ARC after up to 500 linear abrasion test cycles with a brush according to ASTM D2486

Laboratory car wash for testing the scratch resistance of coatings in accordance to ISO 20566