

Introduction to PV Failure Fact Sheets (PVFS)

Gabi Friesen, Senior Researcher, SUPSI-PVLab IEA PVPS Task 13 Focus Workshop/Webinar on Operation & Maintenance, Fraunhofer ISE, 30 September 2021

Technology Collaboration Programme

Aim

Brief description of failures with examples, an estimation of risks and suggestions for mitigation measures.

Target audience

PV planners, installers, investors, independent experts and insurance companies.

Approach

PVPS

Summarise the key aspects described in IEA PVPS Task 13 technical reports.

PVFS Structure

Revised version of the failure sheet format proposed in the European Solar Bankability Project.

Ref: 'Technical risks in PV projects: report on technical risks in PV project development and PV plant operation', www.solarbankability.eu

PVFS 1-03: Module front delamination

PVFS List

➤ COMPONENT

> APPEARANCE

➢ DETECTION

➢ MITIGATION

➢ EXAMPLES

> DEFECT

> ORIGIN

➢ IMPACT

30 PV Failure Fact Sheets

FAILURES	PV MODULE	FAILURES	CABLE AND INTERCONNECTOR
PVFS 1-1	Cell cracks	PVFS 2-1	DC connector mismatch
PVFS 1-2	Discolouration of encapsulant or backsheet	PVFS 2-2	Defect DC connector/cable
PVFS 1-3	Front delamination	PVFS 2-3	Insulation failure
PVFS 1-4	Backsheet delamination	PV/FS 2_/	Thermal damage in combiner box
PVFS 1-5	Backsheet cracking	1 1 2 -4	merma damage in combiner box
PVFS 1-6	Backsheet chalking (whitening)	FAILURES	MOUNTING
PVFS 1-7	Burn marks	DV/EC 2 1	Rad modulo clamping
PVFS 1-8	Glass breakage	PVF55-1	Bad module clamping
PVFS 1-9	Cell interconnection failure	PVFS 3-2	Inappropriate/defect mounting struct
PVFS 1-10	Potential induced degradation	PVFS 3-3	Module shadingure
PVFS 1-11	Metallisation discolouration/corrosion	FAILURES	INVERTER
PVFS 1-12	Glass corrosion or abrasion		
PVFS 1-13	Defect or detached junction box	PVFS 4-1	Overheating (temperature derating)
PVFS 1-14	Junction box interconnection failure	PVFS 4-2	Incorrect installation
PVFS 1-15	Missing or insufficient bypass diode protection	PVFS 4-3	Complete failure (not operating)
PVFS 1-16	Not conform power rating		
PVFS 1-17	Light induced degradation in c-Si modules		
PVFS 1-18	Insulation failure		
PVFS 1-19	Hot spot (thermal patterns)		
PVFS 1-20	Soiling		

	FVF52-2	Delect DC connector/cable
	PVFS 2-3	Insulation failure
	PVFS 2-4	Thermal damage in combiner box
	FAILURES	MOUNTING
	PVFS 3-1	Bad module clamping
	PVFS 3-2	Inappropriate/defect mounting structure
	PVFS 3-3	Module shadingure
	FAILURES	INVERTER
	PVFS 4-1	Overheating (temperature derating)
	PVFS 4-1 PVFS 4-2	Overheating (temperature derating) Incorrect installation
tection	PVFS 4-1 PVFS 4-2 PVFS 4-3	Overheating (temperature derating) Incorrect installation Complete failure (not operating)
tection	PVFS 4-1 PVFS 4-2 PVFS 4-3	Overheating (temperature derating) Incorrect installation Complete failure (not operating)

Link for Download of PV Failure Fact Sheets (available soon!)

• IEA PVPS homepage https://iea-pvps.org/research-tasks/performance-operation-and-reliability-of-photovoltaic-systems/documents/

Downloadable as:

- annex of Report IEA-PVPS T13-23:2021 "Quantification of Technical Risks in PV Power Systems"
- full PVFS package + Introduction
- individual sheets

Module Component **PVFS** > DEFECT Front delamination Defect 1-3 > APPEARANCE Any local separation of the lavers between (i) the front glass and the encapsulant or (ii) the cell and Appearance ➢ DETECTION the encapsulant, visible as bubbles or as bright, milky area/s. It may appear continuous or in spots. The position and size of the delamination or bubble depends on the origin and progress of the failure. > ORIGIN ➢ IMPACT > MITIGATION ➤ EXAMPLES

 \geq

> COMPONENT

- > DEFECT
- > APPEARANCE

> DETECTION

- > ORIGIN
- > IMPACT
- ➢ MITIGATION
- ➤ EXAMPLES

Component	Module	PVFS
Defect	Front delamination	1-3
Detection	VI, (INS)	

Note: Detection methods in brackets lists secondary methods, which do not detect the failure with absolute certainty or which can be used in addition to other methods.

	Detection Methods
VI	Visual inspection
IRT	Infrared thermography
EL	Electroluminescence
IV	Daylight I-V measurement
UV	UV fluorescence
STM	Signal transmission method
MON	Data monitoring
dIV	Dark I-V measurement
BYT	Bypass diode testing
VOC	V _{oc} measurement
INS	R _{iso} measurement

> COMPONENT

- > DEFECT
- > APPEARANCE
- > DETECTION
- > ORIGIN
- > IMPACT
- > MITIGATION
- > EXAMPLES

Module Component **PVFS** Front delamination Defect 1-3 Origin The adhesion between the glass, encapsulant, active layers, and back layers can be compromised for many reasons. Typically, it is caused by the manufacturing process (e.g. poor cross linking of EVA, too short lamination times, too high pressure in the laminator, contaminations, improper cleaning of the glass, incompatibility of EVA with soldering flux, inadequate storage of the raw material) or environmental factors (e.g. thermal stresses, external mechanical stresses, UV). Delamination is generally followed by moisture ingress and corrosion. It is therefore more frequent and severe under hot and humid conditions. Production Installation Operation

Note: Correlations between failures are highlighted in bold. Link to other PVFS.

COMPONENT			
COMPONENT	Component	Module	D\/ES
DEFECT	Defect	Front delamination	1-3
APPEARANCE	Impact	Delamination or hubbles do not automatically nose a safety issue, but they can result	in reduced
DETECTION	inpact	insulation of the component and increased safety risk when they form a continuous pa	th between
ORIGIN		electric circuit and the edge due to possible water ingress. Moisture in the module w performance due to an increase of series resistance affect long term reliability and in som	e cases also
IMPACT		the structural integrity of the module. Moreover, delamination at interfaces in the optic result in additional optical reflection and subsequent decrease in current. This can be t	al path wil: he origin of
MITIGATION		current mismatch. If the mismatch is significant, it will trigger the bypass diode and ca	use further o a further
EXAMPLES		performance loss. Manufacturing related delamination issues often affects a relevant pe modules within the same production batch and consequentially has a big impact performance.	rcentage of on system

Failure with an impact on safety

Failure which can lead to a danger for who is working on or staying close to a PV system.

Failure with an impact on performance

Failure which impacts negatively the energy production of a PV system.

> COMPONENT

- > DEFECT
- > APPEARANCE
- > DETECTION
- > ORIGIN
- ➢ IMPACT
- > MITIGATION
- > EXAMPLES

Component Defect	Module Front delamination				PVFS
	Safety:		Performance:		13

No unique rating is possible \rightarrow Spectrum covering typical field observations

RATING SYSTEM

Safety category	Description
	Failure has no effect on safety.
f e m	Failure may cause a fire (f), electrical shock (e) or a physical danger (m) if a follow-up failure and/or a second failure occurs.
	Failure can directly cause a fire (f), electrical shock (e) or a physical danger (m).

Ref: 'Review of failures of photovoltaic modules', Report IEA-PVPS T13-01:2014

Performance category	Description		Ref: 'Silicon solar modu Defects to be used as a
	The defect has no direct effect on performance.	no loss (0%)	https://www.engineering content/uploads/2017/0
⊢2	The defect has a minor impact on performance.	below detection limit <2-3%	<u>Guide.pdf</u>
<u>⊢+_3_+</u> (The defect has a moderate impact on performance.	within warranty (<0.7-1%/year)	
<u>⊢−−−−−4</u> −1	The defect has a high impact on performance.	out of warranty (>0.7-1%/year)	
<u> </u>	The defect has a catastrophic impact on performance.	catastrophic loss (>3%/year)	

ef: 'Silicon solar module visual inspection guide: Catalogue of lefects to be used as a Screening Tool', K. Sinclair, M. Sinclair, ttps://www.engineeringforchange.org/wpontent/uploads/2017/09/Solar-PV-Product-Visual-Inspectionbuide.pdf

SdVc

- > COMPONENT
- ➢ DEFECT
- > APPEARANCE
- ➢ DETECTION
- > ORIGIN
- > IMPACT
- ➢ MITIGATION
- ➤ EXAMPLES

- Delamination creating a continu-Delamination with corrosion, [1] Delamination caused by detach-
- The pictures are taken from literature or case studies and give only a partial picture of the situation. They are used to explain the potential levels of impact.
- The Rating is based on a expert assessment.
- Power loss is estimated/measured on the component level.

Component Defect	Module Front delamination			PVFS 1-3
Mitigation	Corrective actions	Preventive actions (recommended)	Preventive actions (optional)	
	Modules with a direct safety	Check validity of IEC 61215	Extended testing (e.g	g. damp
	replaced. Regular inspections	fault detection by inverter or	(e.g. cross linking leve	el of EVA)
	status of the not replaced	other devices at an time.	inspections.	
	modules. In case of individual modules			
	which failed the insulation and/or wet-leakage test should be replaced.	mainly for small residential systems	mainly for larg utility scale sys	je stems

• **Repair or Replacement** of all modules rated as

• The choice of other **Mitigation Measures** (preventive or corrective) requires a cost benefit analysis.

The key challenge in reacting to failures or avoiding them at a reasonable cost is the ability to quantify and manage the various risks.

The PV Failure Fact Sheets (PVFS) helps in identifying a failure, assessing the risk through a rating system and suggesting mitigation measures. Final decisions requires a case specific risk and cost-benefit analysis.

Report IEA-PVPS T13-23:2021 "Quantification of Technical Risks in PV Power Systems" https://iea-pvps.org/research-tasks/performance-operation-and-reliability-of-photovoltaic-systems/documents/

Thank you for your attention

A special thanks goes to all contributors

Magnus Herz, TÜV Rheinland, Germany Karl Berger, AIT, Austria Gabriele Eder, OFI, Austria Werner Herrmann, TÜV Rheinland, Germany Bert Herteleer, KU Leuven, Belgium Uwe Hupach, TÜV Rheinland, Germany Jay Lin, PVGuider, Taiwan Sascha Lindig, EURAC, Italy Matthias Littwin, ISFH, Germany Christian Schill, ISE FhG, Germany

Gabi Friesen, IEA PVPS TASK 13

gabi.friesen@supsi.ch

