PV O&M Optimization by AI Practice

Sinogreenergy

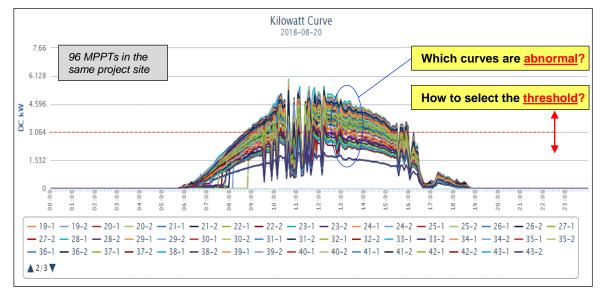
Sinogreenergy Maoyi Chang, K. H. Chen, T. P. Hsu

Reforecast Co., Ltd. Jia-Long Li, Yu-Sheng Chen, Leah Wang

Company Profile

Sinogreenergy

Sinogreenergy acts as an Invest Platform for PV Project Development and O&M Service.


20MW Saltland Project in Chiayi, Taiwan

Background & Motivation

Typical Monitoring System

- By manual (visual) monitoring.
- Lacking of the failure mode diagnosis.
- Do not provide enough information for recovery plan.
- It is also difficult to monitor for many projects at the same time.

Background & Motivation

20

060006450130081500009450039415420924543339415450945454639411548094845

50kW)

Power (x

- by Machine Learning Each MPPT model is built as Only 7-day Learning the Finger-Print Model for each project In-situ analysis Modeling Result completed in every 5-min 800 No need for Complex Input Irradiance Irradiation (kW/m²) Location / Sea-Level 600 Inclination / Azimuth Angle Prediction **PV Module** (type/vendor/PAN file) 400 Inverter (type/supplier) 200 **Input Parameters** Solar Irradiance

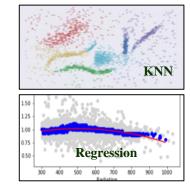
Power Prediction Model

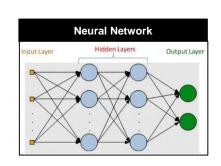
MPPT (P, I, V) & capacity

Power Prediction

- For 7-day model training:
 > 6 Million data-sets
- Computing within every 5 min for 120 projects (6,023 MPPTs)

Power Prediction Model

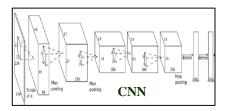

Artificial Intelligence (AI) - Machine Learning Algorithm


Artificial Neural Network

(ANN)

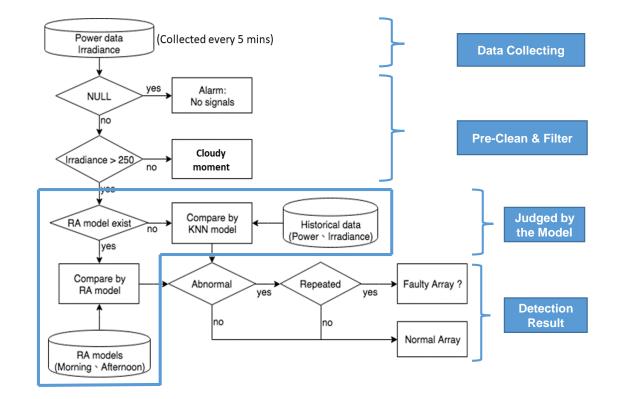
Statistical Method

- SVM
- KNN
 - (K-Nearest Neighbors)
- Regression



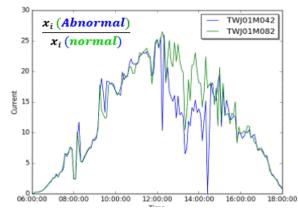
Machine Learning

- CNN
- RNN
- LSTM


(Long Short-Term Memory)

Sinogreenergy 天泰能源

Fault Detection Algorithm



Sinogreenergy 天泰能源

Fault Detection Flowchart Detection & Diagnosis Algorithm

Detection & Diagnosis Algorithm

- When the MPPT power is <u>less than certain</u>% of the prediction over the time frame, the MPPT is judged as <u>Abnormal</u>.
- The abnormal MPPT is then compared with <u>other Same-Capacity</u> <u>MPPTs</u> in the same project site.
- <u>Not limited</u> by specific inverter brands or data logger types.
- The <u>Abnormal Ratio</u> is introduced for <u>Failure Mode Diagnosis</u>..

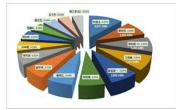
Abnormal Ratio = $\sum_{i=1}^{n} \frac{x_i \ (abnormal)}{x_i \ (normal)} / n$

x_i (*abnormal*): feature value for low efficient equipment *x_i* (*normal*): feature value for normal equipment *n*: number of data points

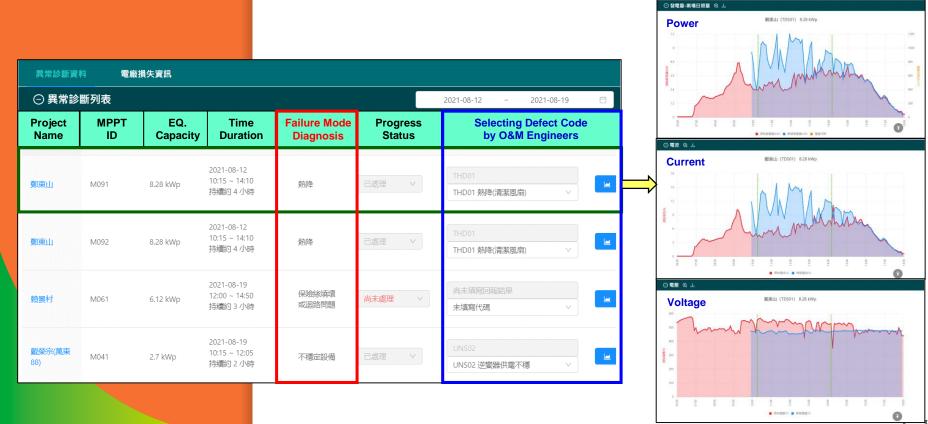
Failure Mode Diagnosis

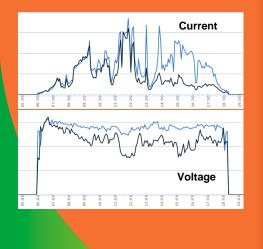
Knowledge Database

Every detected alert is checked by our O&M engineers in the field, and thus the failure mode is verified.

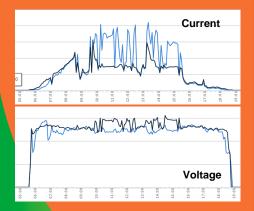


• Regular Maintenance

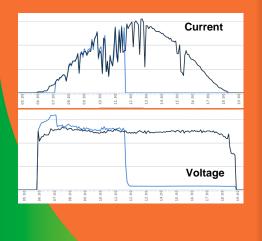

Performance Review



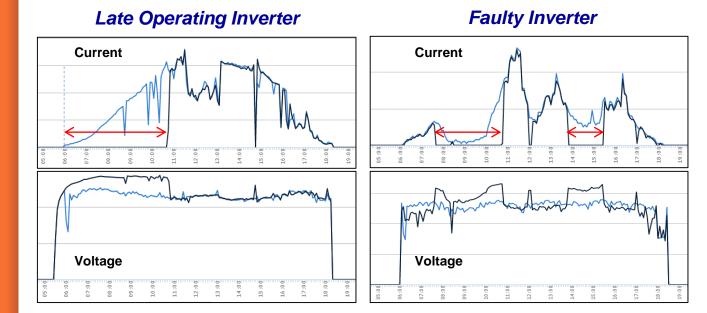
Fault Detection & Diagnosis (AI System)

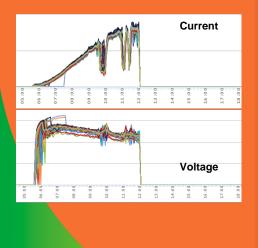


Shading or Module Dirty



Inverter Thermal Degradation


Fuse Burnt & String Issue



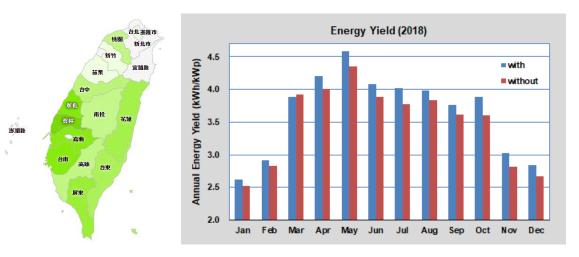
Inverter Issue

Failure Mode Verification



Outage & Utility Pole Issue

Utility Power Pole Faults

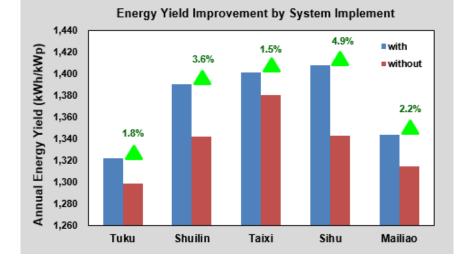


Energy Yield Improvement

Energy Yield Improvement (First year implement result is 2018, V1)

- 120 projects With AI: <u>3.65</u> kWh/kWp (+<u>4.7%</u>
- 120 projects Without AI: <u>3.49</u> kWh/kWp

Energy Yield Improvement


Comparison in the same Geographic & Weather Condition

Energy Yield Improvement

1.8% ~ 4.9% increased in Yunlin County

County	Township	With		Without		Benefit
		Annual kWh/kWp	Project Site (Q'ty)	Annual kWh/kWp	Project Site (Q'ty)	Denenit
Yunlin	Tuku	1,322	4	1,298	3	1.8%
	Shuilin	1,391	4	1,342	17	3.6%
	Taixi	1,401	11	1,381	18	1.5%
	Sihu	1,408	7	1,343	4	4.9%
	Mailiao	1,344	8	1,315	8	2.2%

Detection & Diagnosis Precision

120 projects (39.2 MWp)

applied with 11 inverter brands and 9 module suppliers

Fault Detection & Failure Diagnosis (First year result is 2018, V1)

✓ The <u>fault detection</u> precision : <u>99.2%</u>

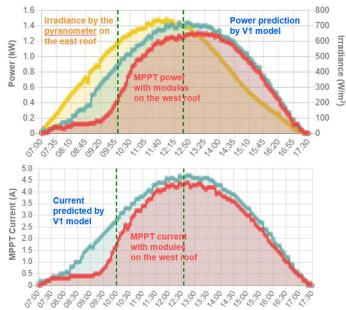
✓ The overall failure mode diagnosis precision : 92.3%

Equipment Faulty Alert	Total	TRUE	FALSE	Precision	
Equipment Faulty Alert	3558	3529	29	<u>99.2%</u>	
Failure Mode	Total	TRUE	FALSE	Precision	
Inverter Issue	1539	1489	50	96.8%	
Thermal Degradation (Inverter)	233	218	15	93.6%	
Shadowing	766	673	93	87.9%	
Fuse Burnt /	332	318	14	95.8%	
String Problem	332	516	14	30.070	
Outage for project site / Communication Error	61	58	3	95.1%	
Other Faults	583	534	49	91.6%	
Unable to Classify	74	23	51	31.1%	
Sum	3588	3313	275	<u>92.3%</u>	

"Shading" Diagnosis needs to be further improved.

Multiple Orientation PV Arrays

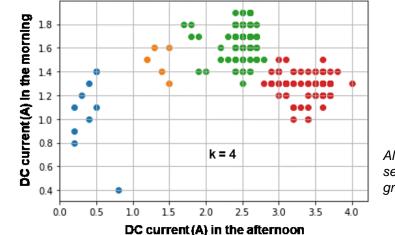
For roof-top project (< 500kWp), there is usually <u>only one</u> on-site <u>pyranometer</u> due to cost pressure, but there might be <u>multiple</u> <u>orientations</u> for PV arrays.


It explains why one-pyranometer irradiance model results in diagnosis mistake.

Diagnosis Mistake

In the case, we apply the Irradiance by the East-Roof pyranometer.

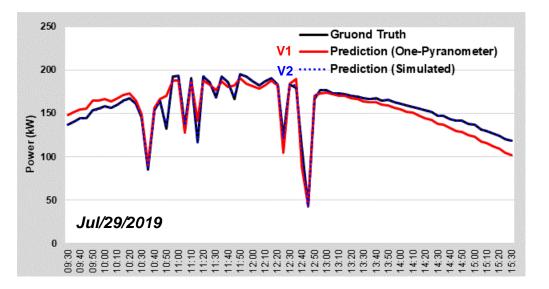
The **West-Roof MPPT** has lower power and current than the prediction in the morning, therefore the AI performs <u>wrong diagnosis judgement</u> as <u>Shading or</u> <u>Module dirty</u> failure mode.



$$RA_t = \frac{P_t/P_0}{IRR_t/IRR_0}$$

Simulated POA Irradiance

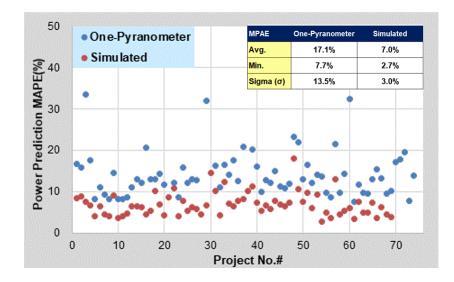
- To distinct PV arrays in each orientation, the data pre-treatment by <u>Clustering</u> algorithm is performed.
- Then it is assumed that normal MPPTs might have the equal RA in other orientations.
- <u>The simulated POA irradiance</u> in other orientations would be obtained by the inversion from RA equation.


All MPPTs in the project are separated into 4 orientation groups.

V1 : One-Pyranometer IrradianceV2 : Simulated POA Irradiancefrom 2019

Power Prediction (V2)

The power prediction with simulated POA irradiance (V2) fits quite well with the real power output (ground truth).


The comparison of the power prediction error by the indicator of MAPE with 74 projects

<u>*Mean Absolute Percentage Error*</u>

MAPE (%) =
$$\frac{100}{n} \sum_{i}^{n} \left| \frac{\overline{p_i} - p_i}{p_i} \right|$$

Power Prediction

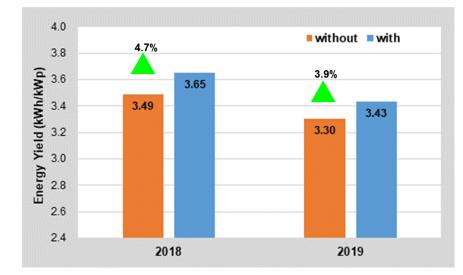
- Power Prediction Error (MAPE) is obviously reduced by Simulated POA Irradiance model (V2).
- The MAPE for one-Pyranometer model (V1) is 17.1%
- The MAPE for Simulated Irradiance model (V2) is only 7.0%

V1 : One-Pyranometer IrradianceV2 : Simulated POA Irradiance

Detection and Diagnosis Precision

- ✓ The fault detection precision for V1 and V2 are almost the same.
- ✓ The overall precision of <u>Failure Mode Diagnosis</u> : <u>94.0%</u> (+1.7%)
- ✓ The precision of <u>Shading</u> issue : <u>92.8%</u> (+5.0% improved)

Fault Detection	V1 V2	3,558 11,181	3,529	29	00	20/			
	V2	11 191			33.	2%			
		11,101	11,028	153	98.	6%			
Failue Mode Diagnosis		Judged Q'ty		Precision					
		V1	V2	V1	V2	V2 - V1			
Burnt Fuse or	True	318	664	95.8%	96.2%	0.4%			
String Issue	False	14	26	95.0 /0	90. 2 /0				
Shading or	True	673	1,485	97 00/	▶92.8%	5.0%			
Module Dirty	False	93	115	01.3/0					
Inverter Issue	True	1,489	5,334	96 .8%	95.6%	-1.2%			
inverter issue	False	50	248						
Thermal Degradation	True	218	2,021	93.6%	94.0%	0.4%			
(Inverter)	False	15	129	93.0 /0	34.0 /0				
Outage or	True	58	99	95.1%	97.1%	2.0%			
Communication Error	False	3	3	95.1 /0	97.1/0				
Other Abnormality	True	557	768	84.8%	85.0% 0.	0.2%			
other Apriormanty	False	100	136			0.2 /0			
Sum	True	3,313	22,277	92.3%	94.0% 1.	1.7%			
Sulli	False	272	1,115	92.3%	94.0%	1.7 %			

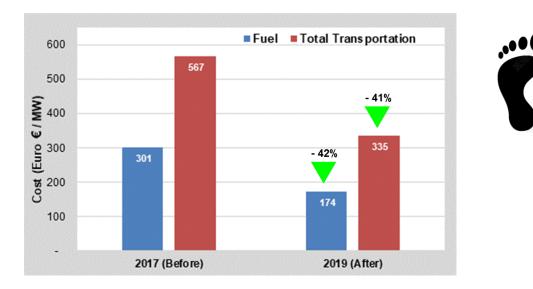


Test Group : 120 Projects <u>with AI solution</u> 39.2MW (6,023 MPPTs)

Control Group : another randomly selected 120 Projects without AI

Energy Yield

- V1 (2018): <u>0.16</u> kWh/kWp (<u>4.7%</u>) increased.
- V2 (2019) : <u>0.13</u> kWh/kWp (<u>3.9%</u>) improved.


Note: The solar irradiation in 2019 is 7.6% decreased compared to that in 2018.

The transportation cost includes vechicle fuel, mass-transit, parking and vehicle maintenance costs.

O&M Transportation Cost

- After AI implantation, vehicle fuel and transportation cost <u>reduce 42%</u> and <u>41%</u> respectively.
- <u>Lower carbon footprint</u> O&M task is achieved.

Carbon

Conclusion

Summary

- 120 projects (39.2MW) are implanted more than two years.
- The precision of fault detection : 98.6%
- The precision of failure mode diagnosis : 94.0%
- The precision of Shading diagnosis by simulate POA irradiance (V2) model is 92.8% (+5% improved).
- Energy Yield is 3.9%~4.7% improved.
- Low carbon footprint O&M is achieved by 41% transportation cost reduction.

Thanks for your Attention !

Acknowledgments to Our Team

