

Optimized O&M New webtool for data monitoring and analysis

Christian Reetz, Mondas GmbH

Freiburg, 2021/09/30

Technology Collaboration Programme

- Mondas is a Spin Off founded in 2018
 - Fraunhofer ISE, PSE AG, Hochschule Biberach
- Core Product: cloud-based software for time-series analysis.
- Fields of application: technical monitoring and system optimization
 - Especially for large numbers of distributed systems
- Generic but: focus on building and energy systems
 - Building technology (AHU, Heating/Cooling, ...)
 - CHP's, district heating, power plants (wind, wood carpurators, ...) and PV plants

- Cost Optimal Operations and Maintenance for PV Plants
- Funded by: Federal Ministry for Economic Affairs and Energy (BMWi)

- Partners:
 - Pohlen Solar/Centroplan: resp. for O&M of nearly 3000 commercial PV Plants
 - Fraunhofer ISE: Scientific partner
 - Mondas GmbH: Cloud platform for O&M Data analysis

OptOM: Project Plan

	-	1							
	And the second								
		tell make	1	See. 2	 5.414 B	10482	No. Anna	1.044	\$1.4.4.7
								1. P	
	#16						# 1 - 1 - 1 T		
								ALC: NOT	
							in a summer of		
	-						4.		
	-						IT a cleant?		
							in the second		
	am. 1								
								-	
					-				

Reference implementation New web-base platform for monitoring and analysis

Cost optimization and prioritization of O&M tasks

Rule-Based Operation analysis Machine-learning-based Operation analysis

Collecting longterm data (Different Sources / Systems)

Failure detection and predictive fault detection

- Rule-Based time-series analysis to detect failures automatically:
 → Different inverter faults, decreasing performance, ...
- ML-based analysis to detect failures hard to detect by rule-based algorithms:
 → Shading detection, soiling detection, degradation, ...

Prioritization

- Prioritize O&M efforts by cost factors and cost optimization

 → Do the right (cost-optimal) things in the right order
 → Automated calculation of soiling losses and "best-time-to-clean"
 → Quantification of shading losses and their development
- Implementation as on-going analysis process (Platform)

OptOM: Rule-Based Analysis Example

Rule Development (ISE / Pohlen Solar)

Description

- This rule detects outliers in current-DC sensors. A fault is given by a sensor value: whose absolute deviation > certain threshold
- Do not apply to timeranges with other faults like "No AC Voltage"

Algorithm

For each Project (installation). For each System (inverter).

- 1. filter current-DC only when the rest of inputs are 0
- 2. apply z-score algorithm to current-DC
- 3. x0 = abs(currentDC move_mean(currentDC))
- 4. y0 = x0 / move_std(currentDC)

Platform: Rule Editor

...

PVPS

OptOM: ML-Bases Analysis Example

- Shading detection Algorithm
 (Fraunhofer ISE)
 - Eliminate "known" errors with rule-based analysis
 - PR Calculation (Based on Satellite data)
 - K-Means clustering (Two clusters, also more)
 - Result: 2D "Shading Mask"

OptOM: Field Test

- On-site analysis for 20 plants
 - Assessment of system condition
 - Fixing measurement hardware errors (mounting of irradiance sensors, ...)
 - Soiling assessment: Module cleaning and sample calibration measurements
 - Thermal conditions: Generators and selected Inverters

OptOM: Field Test

Deploy Methods to 200 commercial PV plants

- · Different age, technology and setup
- Up to 15 years of monitoring data per plant
- Find correlations (Components, weather, location, maintenance logs, ...)
- Possible: New set of rule-base analysis on basis of cross comparison

Both data analysis and visualization should be applied automatically

Algorithms "need to know" the time-series

- Which: plant, Inverter, string, measurement, ...
- Component hierarchy and interconnection ("connect-to relation")
- Parameters: nominal values, orientation, manufacturer, model

Approach:

- Use of a meta-data system, "describing" each sensor/time-series
- On basis of the system: "Work on sets of time-series"
 i.e.: find all irradiance sensors → apply certain analysis

OptOM: Metadata System

OptOM: Metadata System in Mondas

. G

- Editable: Web-tool or excel
- Generic: Applicable to any system
- Combined analysis: e.g.: PV and battery
- Adaptable/extendable: Metadata system

møndas	Administration / Metao	iata											
Accounts & Permissions Global settings File Manager	Mode: Raw							Add sensor	Import Export v 😫	Charsourch Bulk edit	Colorize sensors	Result Save	Project System Locatic ImportLabel
Metadefinitions Metadata		MeteolD 🗧 🔍	ImportLabel 😄 🤉	DP ‡ Q	SYS: Q	Unit: 0.	Color: 0.	Große AC [kWp]	୍ Module Type 😄 ୍	Modul Leerlaufspannung = 0.	Modul ÷ 🧠	WR Тур 🗧 🔍	DP Tags Unit Aggregation
Delete Sensors Selectors	aLDISÖD ZL Lange	TKHX2	TKHX2_2.7_U_AC3	MEA.VOLT	WR	v		678.52	Suntech STP205-18/Ud	33.5	205	Relu REFUSOL 017K	Description
Time Ranges Status Maps	a ALDI SÜD ZL Lange	ткнх2	TKHX2_2.7_U_AC1	MEA.VOLT	WR	v		678.52	Suntech STP205-18/Ud	33.5	205	Refu REFUSOL 017K	StatusMap Displayname
Virtual Sensor Rules Sensor Graph Groups	📑 Segn Dossedorf 1 💷	TERIS	TFRIS_AREA	PROPAREA	PLANT	m2		151.44					Projectdata MinMax
	1 DE032103 ALDI NO	TVAPZ	TVAPZ_2_J_DC	MEA CUR EL	WR	A		82.68	Suntech STP260-20/Wem	37.7	250	FRONIUS ECO 27.0-3-8	Moduldata OP comb
	Segro Dosseidort 1	TERIS	TFRIS_1.2_P_AC	MEA POWEL	WR	w		151.44	Trina TSM-240 PC05	37.2	240	Refu REFUSOL 017K	Indule Anzahl module color
	ALDI SUD ZL Lange	TKHX2	TKHX2_1.7_LAC1	MEACUREL	WR			676.52	Suntech STP205-18/Ud	33.5	205	Refu REFUSOL 010K	Resolution ModuleAzimut
	ALDI SUO ZL Lange	ткнх2	TKHX2_4.2_U_AC1	MEA.VOLT	WR	v		678.52	Suntech STP205-18/Ud	33.5	205	Refu REFUSOL 017K	ModuleAzimut ModuleAzimut ModuleAzimut
	al ALDI SUD 71: Lange	ТКНХ2	TKHX2_4.2_U_AC3	MEA.VOLT	WR	v		678.52	Suntech STP205-18/Ud	33.5	205	Refu REFUSOL 017K	ModuleAzimuti ModuleAzimuti
	CALDI SOD 71. Lange.	ТКНХ2	TKHX2_4.2_U_AC2	MEA VOLT	WR	v		678.52	Suntech STP205-18/Ud	33.5	205	Refu REFUSOL 017K	Dachneigung1 Dachneigung2 Dachneigung3
	ALDI SÜD Friale Lie	LEVBH	LEY8H_AREA	PROPAREA	PLANT	m2		166.26					Dachneigung WR Anzahl

Mondas: Metadata System

- Using "Selectors": key for automation in Mondas
- Selectors: Logical expression on metadata
- Selecting sets of time-series based on their metadata
- Technique used for:
 - ➢ Visualization

PVPS

- ➢Rule-based analysis
- ≻External modules

Mondas: Rule Editor

- Graphical Programming
- Input: one or more time-series
- Output: one or more time-series (virtual time-series)
- "Loops over" sets from selectors
- Many built-in functions

PVPS

- Metadata is also processed:
 - Adapted for virtual time-series
 - Metadata consistency checks

Mondas: Rule Editor

Applications

- Preprocessing
- Fault Detection and Prioritization
- Statistics Faults per Inverter model, etc.

Combination with ML Methods

- Preprocessing and "finding" training data
- Removing known

PVPS

errors from training data

Mondas: Visualization

Dashboard System

- Generic design
- Configured for specific systems and applications
- Selector mechanism enables
 Template dashboards
 (Automatically applied to new systems)
- Common configuration:
 - Overview with prioritization
 - "Linked to": several detail levels

OptOM: Summary and outlook

- OptOM is on-going until 2023
- Rule-based fault analysis has already proven to be useful
- \rightarrow Applicable to commercial plants
- ML-Methods are also promising
- On-going: Cost KPI integration
- Pohlen Solar plans application for all plants via the new Fraunhofer Spinoff and Mondas partner Enmova

Christian Reetz info@mondas-iot.de

