

PV as an ancillary service provider Laboratory and field experiences from different IEA PVPS countries

Editor: Markus Kraiczy, Fraunhofer IEE

August 2021

Technology Collaboration Programme

PV Grid Integration Challenges

Stage 1: Low PV/ VRE penetration		Stage 2: Regional PV/ VRE hotspots		Stage 3: PV/ VRE significantly affect system-wide operation		Stage 4: PV/VRE dominated power system
Main challenge: Get the grid PV/ VRE ready	ded*	Main challenge: Increase regional grid hosting capacity	ded*	Main challenge: Increase		Main challenge: Ensure system-wide stability
Regional challenges, i.e.:	recommended*	Regional challenges, i.e.:	menc	Regional and system-wide		Regional and system-wide
• Potential over-voltage issues (especially in rural grids)	com	 Significant over-voltage and over- loading issues 	recom	challenges, i.e.: See Stage 2		challenges, i.e.:See Stage 2 & 3
Potential over-loading issues (especially in rural grids)		Reverse power flows and reco- ordination of protection settings	irks re	High need for active and reactive power flexibility	frameworks recommended	• Potential reliability and stability issues in inverter dominated
	frameworks	System-wide challenges, i.e.:	frameworks	Coordination of regional and system-wide services		power systems (i.e. declining inertia, black-start, grid
System-wide challenges:Usually none	fram	Relevance of PV for system stability usually reached	fran			forming)
,	regulatory	Adaption of unit-commitment conventional generation	regulatory	 necessary at distribution level Potential reliability and stability issues (i. e. declining inertia) 	Building	 PV/ VRE and PV/ VRE hybrids have to provide a major share of ancillary services
Inverter functionalities in focus:		Inverter functionalities in focus:		• Inverter functionalities III		Inverter functionalities in focus:
• Usually "get out of the way"	Advanced	Autonomous grid support	Advanced	See Stage 2		• See Stage 2 & 3
approach. PV disconnects in case of a grid disturbance	rrier: Ac	functions, i.e. Volt-var, frequency-Watt			· ·	• Active grid control functions, i.e. synthetic inertia, black
(not recommended).	Barri	Ride through and remain connected functions	Barrier:	curtailment increasingly also for distributed PV/VRE	Barrier:	start capability, grid forming capability

PV/ VRE Penetration level (regional / system-wide)

High /

Medium to High

Medium to High /

Low to Medium

S	
٩	
d	

Low to Medium /

Low

2

High /

High

PV Inverter Functionalities

Levels and interrelations between advanced inverter functionalities

d inter- between inverter ities	Active grid control	Fast frequency response (i.e. synthetic inertia) Black start capability Grid forming control				
	Communication	 Remote control: i.e. connect/ disconnect, adjust maximum generation, adjust reactive power Parameter adoption 				
	Autonomous grid support	 Voltage control: i.e. Q(U) control Frequency control: frequency-watt P(f) Fast reactive current 				
	Interface protection	 Compatible with ride-throughs Avoid inadvertent tripping Islanding not inflicting power quality 				
	Ride-Through and remain connected	 Voltage ride-through Frequency ride-through RoCoF immunity 				
	Operational ranges	 Active power-frequency range Voltage range Reactive power range 				

Overview of Practice Examples in Report

Service	Торіс	Country/ Area
PV voltage	PV local reactive power compensation	Switzerland
control services	Remote PV reactive power control for voltage support at the Transmission – Distribution interface	Germany
PV frequency control services	Distributed PV response to a major separation event and resulting frequency excursions in the Australian National Electricity Market, August 2018	
	Frequency control services by Wind and PV power plants	Germany
PV curtailment	Dynamic PV power curtailment	Switzerland
	Remote curtailment of residential PV systems via Smart Meter Gateway	Germany
PV hybrids in insular power systems	PV storage hybrid system for 100% solar power on the remote island of St. Eustatius	St. Eustatius
	One hour with 100% renewable power - islanding operation test of the German community of Bordesholm	Germany
	PV hybrids in the island power system of El Hierro	Spain
Further	Minimization of harmonic current emissions of a PV plant	Germany
Further	PV inverter in hybrid (DC,AC) microgrids	Italy