

IEA
PVPSPerovskite and tandem degradation
challenges and mitigation strategies

Joshua S. Stein PhD. (Sandia), Sara Baumann (ISFH), Mark Khenkin (HZB)

Content also from Giles Eperon (Swift Solar) & Laura Mundt (Stanford University) – "Perovskite failure modes: What do we know so far?" PVQAT Talk November 2, 2021.

October 6, 2022 Frankfurt am Main, Germany, Degradation modes in new PV cell & module technology

Technology Collaboration Programme by lea SAND2023-10479C Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Perovskite PV Introduction

- "Perovskite" refers to crystal structure
- Metal Halide Perovskite PV has a range of chemical compositions:

Solution X=Halides (Cl⁻, Br⁻, l⁻) B= Organics or metal (Cs⁺)

History

- First perovskite PV cell made in 2009
 - <3% PCE (power conversion efficiency)
- PCE has risen fast
 - $\geq 25.6\%$ today at the cell level (limit 33%)¹
 - It took 40 years to achieve this PCE for c-Si.
- Promise of low cost manufacturing
 - Low temperature
 - Solution processing
 - High speed manufacturing

2

Degradation Modes for Perovskite PV

Perovskite PV materials are characterized by:

- Weak bonds allowing ions to move around in response to electric fields
- Susceptibility to degradation when exposed to **moisture**, **oxygen**, **heat & light**.

Packaging needs to keep water out and gasses (from heating) inside¹.

• Outgassing reactions are reversible.

Degradation Mode Classification:

- Extrinsic (water, oxygen, mechanical stress, potential induced degradation)
- Intrinsic (phase instability, halide segregation, decomposition)
- Device specific (electrode diffusion, transport layer reactions, reverse bias)

¹Shi, L. *et al. Science* **368**(2020).

Extrinsic: Water

PVPS

Mitigation: good encapsulation (diffusion barriers, edge seals, hydrophobic additives)⁶

• Formation of Pbl_x¹

- Can be solved by glass-glass modules², sputtered barriers^{3,4} or back-/frontsheets with diffusion barriers and edge sealing²
- Several reports on modules that withstand damp heat tests for at least 1000 h (IEC 61646)^{2,5}

¹Yang et al., ACS Nano 9, 1955-1936 (2015)
²Cheacharoen et al., Sustainable Energy Fuels, 2, 2398 (2018)
³Bi et al., Joule 3, 2748-2760 (2019)
⁴Ahangharnejhad et al., ACS Appl. Energy Mater., 4, 7571-7578 (2021)
⁵Azmi et al., Science, 376, 6588, 73-77 (2022)
⁶Arias-Ramon et al., Solar Energy Materials and Solar Cells, 215, 110625 (2020)

Slide content from Sara Baumann, ISFH

Packaging Examples

Emery et al., ACS Appl. Mater. Interfaces 2022, 14, 4 Slide co

Slide content from Mark Khenkin, HZB

PVPS

Extrinsic: Oxygen

- Lead-halide perovskites: oxygen reacts with the perovskite under light.
 - MAPI forms superoxides in iodide defect sites.
- Tin perovskites: oxygen oxidises the tin.

Reaction is <u>unfavorable without light</u> $4CH_3NH_3PbI_3 + O_2 \rightarrow 4PbI_2 + 2I_2 + 2H_2O + 4CH_3NH_2$

With light, O₂ gathers free electrons and forms a superoxide (O₂⁻) $4CH_3NH_3PbI_3^* + O_2^- \rightarrow 4PbI_2 + 2I_2 + 2H_2O + 4CH_3NH_2$

Mitigation: good encapsulation, cell design with efficient charge extraction, larger perovskite crystals Aristidou, Nat. Com. 2017

6

Extrinsic: Mechanical Stress

- Mechanical instability of perovskite materials can cause:
 - Issues with delamination
 - Challenges with establishing good electrical contacts
 - Dissimilar thermal expansion coefficients cause stress during thermal cycling
- External stress from wind, hail, snow.
- PVPS

Mitigation: Matching CTEs for materials, robust packaging, ample testing.

Example of Mechanical Degradation

Slide content from Mark Khenkin, HZB

Extrinsic: Potential Induced Degradation

Xu et al., Cell Reports Physical Science 3, 101026 (2022)

Mitigation: select encapsulant with lower diffusion rates (e.g., POE), other barrier layers

S

Requires bias + heat

- -1000 V applied for 1 d @ 60 °C to tandem module => 50% PCE loss
- No obvious shunts, Na⁺ ions from glass confined above cells (EDX)
- Diffusion of perovskite elements into encapsulant
- SIMS profile show Cs, Pb, Br and I, as negatively charged ion groups, diffuse along electric field
- Pos. voltage can partially recover PID
- Barriers to prevent diffusion might me needed for commercialization 8

Slide content from Sara Baumann, ISFH

Intrinsic: Phase Instability

 Depending on A-site cation selection or mixture, perovskite can be unstable in photo-active crystal phase at room temperature. Phase change to delta/yellow phase can happen over long timescales in FAPbl₃.

Li et al., *Chem. Mater.* 2016 Schelhas et al., *EES* 2019

SdVo

Mitigation: choose a composition that's in the phase stable regime - note that this space has not been fully explored for all variations of perovskite components yet!

Intrinsic: Halide Segregation

 Under illumination, perovskite compositions with halide ratios (normally I:Br) in a certain regime will undergo halide segregation, limiting voltage and creating defects.

Mitigation: choose a composition that doesn't segregate but also depends on Asite and B-site.

Slide content from Giles Eperon (Swift Solar) & Laura Mundt (Stanford University)

PVPS

Intrinsic: Thermal Decomposition

Thermal stability at 85 °C in nitrogen of different perovskite compositions

- Solar cells need to withstand high temperatures during module fabrication (typically > 100 °C) and operation (> 65 °C)²
- MAPbl₃ decomposition (resulting in Pbl₂ among others) starts at 85 °C even under air free conditions^{1,3,4}
- Perovskites containing MA less thermally stable than FAPbl₃ and FACsPbl₃¹

¹Schwenzer et al., ACS Appl. Mater. Interfaces, 13, 15292-15304 (2021)
²Raman et al., Renewable and Sustainable Energy Reviews 151, 111608 (2C
³Conings et al., Adv. Energy Mater., 5, 1500477 (2015)
⁴Kim et al., Scientific rports, 7, 4645 (2017)
⁵Pei et al., ACS Energy Lett., 6,9, 3029-3036 (2021)
11
Slide content from Sara Baumann, ISFH

Thermal Degradation Examples

DAMP HEAT TEST

OUTDOOR

J.Li et al., HZB, submitted

12 Slide content from Mark Khenkin, HZB

Intrinsic: Ion Migration

- The constituents of the perovskite lattice (A, X and even B) are able to migrate under low energy inputs
- Mobile ions (most likely iodide) likely shuffle back and forth over day/night cycling.
- Any changes are likely mostly reversible ('morning recovery' has been observed with some stacks), unless there is a reaction between mobile ions at one interface.
- Mitigation: reduce diffusivity

Slide content from Giles Eperon (Swift Solar) & Laura Mundt (Stanford University)

Device: Electrode Diffusion

- Common metals used for top electrode, and some TCOs, diffuse through the stack and react with the perovskite, forming things like AgI, Pb₀ or creating shunt paths.
- If components of the perovskite can diffuse out, they can react with the metal/TCO too.
- Likely more problematic at scribe lines in monolithically interconnected modules.
- This process will happen just under heating, but it is accelerated dramatically by heat + light conditions (e.g. operation under elevated temp).

Considered to be one of the most challenging instabilities to make a costeffective perovskite cell.

Mitigation: Use non-metal electrodes (TCOs, carbon), diffusion barrier (e.g., ALD-SNO_x)

Device: Transport Layer Reactions

Various issues with certain HTL or ETL choices:

- Reaction with perovskite (e.g. ZnO, NiO, some dopants)
- Thermal instability (e.g. MoO_x, some organics)
- UV or photo-instability (TiO₂)
- Delamination issues

Mitigation: Selection of appropriate materials for HTL and ETL (e.g. SnO_{x} , V_2O_5 , C_{60} , PTAA, polytpd, etc.)

Device: Reverse Bias

- Partial shading forces cells to operate under reverse bias
- Reverse bias leads to fast and partial irreversible degradation in $V_{\rm oc}$, $I_{\rm sc}$, FF & η^1
- Breakdown differs from avalanche mechanism in cSi cells
- Degradation mechanism based on ion migration^{2,3,4}

Mitigation: (1) Use carbon-based HTL⁵, (2) Avoid direct metal contacts⁶, (3) Avoid single-cation, single halide perovskites⁶, (4) include hole blocking layer between ETL and perovskite^{7,8}, (5) new interconnection schemes and bypass diodes⁹

VPS

¹Richter, master's thesis, ISFH (2021) ²Gould et al., IEEE 48th PVSC, 21129020 (2021) ³Bertoluzzi et al., Adv. Energy Mater., 11, 2002614 (2021) ⁴Bowring et al., DOI: 10.1002/aenm.201702365 (2017) ⁵Bowering et al., Adv. Energy Mater. 8, 1702365 (2018) ⁶Bogachuk et al., Sol. RRL, 2100527 (2021) ⁷Gould et al., IEEE 48th PVSC, 21129020 (2021) ⁸Ni et al., Nature Energy, 7, 65-73 (2022) ⁹Wolf et al., Sol. RRL, 2, 2100239 (2021)

Slide content from Sara Baumann, ISFH

Metastability

- Affects short-term (within one day/cycle) and long-term stability.
- Not always in a positive way.
- Strongly dependent on the device architecture.
- Translates into the outdoor operation

M. Khenkin, H. Köbler et al., HZB, in preparation

Slide content from Mark Khenkin, HZB

17

PVPS

- Extrinsic, intrinsic and device-specific degradation modes have been summarized.
- Extrinsic modes can be mitigated with effective encapsulation
- Intrinsic modes can be mitigated by selecting the right composition, engineering to increase heat dissipation, and surface engineering.
- Device-specific modes can be mitigated by using non-metal electrodes, diffusion barrier materials, bypass diodes.
- Solutions must be able to scale in size and speed for production.
- More outdoor field tests are needed to identify relevant degradation modes.
- Just because you can induce in a lab does not mean it will be a problem outside (e.g., diurnal and seasonal patterns)

Summary

www.iea-pvps.org

Joshua S. Stein, TASK13 jsstein@sandia.gov

Technology Collaboration Programme