
 

Ta 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Worldwide Benchmark  
of Modelled Solar  
Irradiance Data 
2023 

Report IEA-PVPS T16-05: 2023 P
V

P
S

 

Task 16 Solar Resource for High Penetration and Large Scale Applications 



Task 16 Solar Resource for High Penetration and Large Scale Application – Worldwide benchmark of modelled solar irradiance data    

 

What is IEA PVPS TCP? 

The International Energy Agency (IEA), founded in 1974, is an autonomous body within the framework of the Organization for Economic 

Cooperation and Development (OECD). The Technology Collaboration Programme (TCP) was created with a belief that the future of energy 

security and sustainability starts with global collaboration. The programme is made up of 6000 experts across government, academia, and 

industry dedicated to advancing common research and the application of specific energy technologies.  

The IEA Photovoltaic Power Systems Programme (IEA PVPS) is one of the TCPs within the IEA and was established in 1993. The mission 

of the programme is to “enhance the international collaborative efforts which facilitate the role of photovoltaic solar energy as a cornerstone 

in the transition to sustainable energy systems.” In order to achieve this, the Programme’s participants have undertaken a variety of joint 

research projects in PV power systems applications. The overall programme is headed by an Executive Committee, comprised of one 

delegate from each country or organisation member, which designates distinct ‘Tasks,’ that may be research projects or activity areas.  

The IEA PVPS participating countries are Australia, Austria, Belgium, Canada, Chile, China, Denmark, Finland, France, Germany, Israel, 

Italy, Japan, Korea, Malaysia, Mexico, Morocco, the Netherlands, Norway, Portugal, South Africa, Spain, Sweden, Switzerland, Thailand, 

Turkey, and the United States of America. The European Commission, Solar Power Europe, the Smart Electric Power Alliance (SEPA), the 

Solar Energy Industries Association and the Copper Alliance are also members. 

Visit us at: www.iea-pvps.org 

What is IEA PVPS Task 16? 

The objective of Task 16 of the IEA Photovoltaic Power Systems Programme is to lower barriers and costs of grid integration of PV and 

lowering planning and investment costs for PV by enhancing the quality of the resource assessments and solar forecasts. 

 

 Authors  

 ➢ Main Content: Anne Forstinger (CSPS), Stefan Wilbert (DLR), Adam R. Jensen (DTU), Birk Kraas 

(CSPS), Carlos Fernández Peruchena (CENER), Christian A. Gueymard (Solar Consulting Services), 

Dario Ronzio (RSE), Dazhi Yang (Harbin Institute of Technology), Elena Collino (RSE), Jesús Polo 

Martinez (CIEMAT), Jose A. Ruiz-Arias (Uni Malaga), Natalie Hanrieder (DLR), Philippe Blanc (MINES 

ParisTech), Yves-Marie Saint-Drenan (MINES ParisTech)  

 

 ➢ Editor: Anne Forstinger 

 

 

 

 

 

 

 

 

DISCLAIMER 

The IEA PVPS TCP is organised under the auspices of the International Energy Agency (IEA) but is functionally and legally autonomous. 

Views, findings and publications of the IEA PVPS TCP do not necessarily represent the views or policies of the IEA Secretariat or its 

individual member countries  

COVER PICTURE  

Position of reference radiometric station and number of test data sets per station. © CSP Services.  

 ISBN 978-3-907281-44-4: Solar Resource for High Penetration and Large-Scale Applications 2023 

 

 

http://www.iea-pvps.org/


 

 

 

 

INTERNATIONAL ENERGY AGENCY 

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME 

 

 

 

 

Worldwide Benchmark of Modelled Solar 
Irradiance Data 

 

 

 

 

IEA PVPS  
Task 16 

Solar Resource for High Penetration and  

Large-Scale Applications 
 
 
 

Report IEA-PVPS T16-05:2023 
June - 2023 

 

 

ISBN 978-3-907281-44-44 
 
 
 
 
 
 



 

 



Task 16 Solar Resource for High Penetration and Large Scale Applications – Worldwide benchmark of modelled solar irradiance data    

5 

TABLE OF CONTENTS 

 

Acknowledgements ................................................................................................................6 

Executive summary ................................................................................................................7 

1 Introduction .................................................................................................................9 

2 Test and reference datasets ......................................................................................10 

2.1 Reference database .......................................................................................10 

 Test data sets .................................................................................................12 

3 Evaluation method .....................................................................................................17 

4 Quality control and data selection..............................................................................19 

4.1 QC methodology for 1-minute data ................................................................19 

4.2 Data selection .................................................................................................26 

5 Benchmark Results ....................................................................................................27 

5.1 Scatter density plots .......................................................................................27 

5.2 World maps ....................................................................................................29 

5.3 Results overview per continent ......................................................................32 

6 Conclusions and summary .........................................................................................35 

Description of the data file annex ..........................................................................................36 

References .............................................................................................................................37 

 

  



Task 16 Solar Resource for High Penetration and Large Scale Applications – Worldwide benchmark of modelled solar irradiance data    

6 

ACKNOWLEDGEMENTS 

The authors would like to thank NamPower in Namibia, Yuldash Solirov from the Institute of 

Material Science in Uzbekistan, Frank Vignola from the University of Oregon, David Pozo from 

the University of Jaén, Dietmar Baumgartner from the University of Graz, Julian Gröbner at 

PMOD, Nicolas Fernay from the University of Lille, Peter Armstrong at the Masdar Institute, 

Laurent Vuilleumier at MeteoSwiss, Irena Balog at ENEA, Sophie Pelland at CanmetÉNERGIE 

Varennes, Etienne Guillot at CNRS-PROMES Odeillo, and Majed Al-Rasheedi at the Kuwait 

Institute for Scientific Research for the provision of data for this study. Furthermore, we 

gratefully thank the Department of Civil and Mechanical Engineering at the Technical 

University of Denmark, the Swedish Meteorological and Hydrological Institute, the Australian 

Government Bureau of Meteorology, the INPE National Institute of Space Research, the CCST 

Center for Earth System Sciences, along with FINEP Financier of Studies and Projects Ministry 

of Science and Technology, PETROBRAS Petróleo Brasileiro, the SKYNET organization (in 

particular Hitoshi Irie and Tamio Takamura (CEReS/Chiba-U.), Chiba University, Tadahiro 

Hayasaka (Tohoku University), and Chulalongkorn University), as well as the ESMAP program 

of the World Bank Group (in particular Joana Zerbin, Clara Ivanescu, Branislav Schnierer, 

Roman Affolter, GeoSUN Africa, Rachel Fox, and Margot King), the NOAA Global Monitoring 

Laboratory and the BSRN (in particular for stations 1, 3, 4, 6, 7, 8, 9, 10, 11, 13, 17, 20, 21, 

31, 32, 33, 34, 35, 36, 37, 40, 42, 45, 47, 48, 49, 53, 56, 57, 58, 59, 60, 61, 63, 65, 70, 71, 72, 

74). We would also like to thank the German Federal Foreign Office for funding and 

coordinating the enerMENA project, and to express our deep gratitude to the other project 

partners for their efforts in measuring the meteo-solar data and for agreeing to share their data. 

These partners are the Cairo University in Egypt, the University of Oujda and Institute 

Research Solar Energy et Energies Nouvelles (IRESEN) in Morocco, the Research and 

Technology Centre of Energy (CRTEn) in Tunisia, the University of Jordan in Jordan, and the 

Centre de Developpement des Energies Renouvelables (CDER) in Algeria.  

CSPS and DLR thank the German Ministry for Economic Affairs and Climate Action for funding 

their contribution to the study within the SOLREV project (contract number 03EE1010). Adam 

R. Jensen thanks the Danish Energy Agency for funding his participation (grant number: 

64019-0512). Part of this work has been financed by Research Fund for the Italian Electrical 

System with the Decree of 16 April 2018. 

The authors thank Solargis, Meteotest, DWD, NREL, KNMI, BoM, and CAMS for sharing their 

data for the evaluation within this benchmark as well as their comments and remarks regarding 

the evaluation.  

  



Task 16 Solar Resource for High Penetration and Large Scale Applications – Worldwide benchmark of modelled solar irradiance data    

7 

EXECUTIVE SUMMARY 

Modelled irradiance data based on satellite products and numerical weather prediction models 

are frequently used in solar energy applications and atmospheric sciences. Many such sources 

of data are now offered by many different institutional or commercial providers, but it is 

currently difficult for users to independently identify the best provider for their specific 

application and location. This work presents a benchmark of model-derived direct normal 

irradiance (DNI) as well as global horizontal irradiance (GHI) data at the sites of 129 globally 

distributed ground-based radiation measurement stations. DNI and GHI estimates from ten 

different solar radiation datasets, either public-domain or commercial, are compared against 

high-quality ground-based irradiance observations from these stations. The comparison of the 

modelled to observed data is conducted at hourly temporal resolution. The performance of the 

modelled data is analysed with respect to different regions and climate zones. This study is 

intended to help the solar industry make better informed decisions about solar resource 

assessments. 

The reference observational database consisting of ground measurements, is collected from 

25 different providers or radiometric networks. Most stations provide measurements of DNI, 

GHI, and diffuse horizontal irradiance (DIF) with thermopile radiometers and a solar tracker. A 

few stations provide measurements of only two independent components, with either two 

thermopile radiometers or a single rotating shadowband irradiometer (RSI). The used 

reference database is at high temporal resolution (1 min) from 129 stations during 2015–2020. 

Only quality-assured data have been considered in this benchmark through a comprehensive 

set of best practices and newly implemented quality-control procedures. These include 

automatic as well as manual data quality-control tests carried out by a team of experts for all 

stations and result in flags describing the quality for each time stamp. The 129 stations are 

spread out worldwide, including 31 stations in Africa, 31 in Asia, 27 in North America, 20 in 

Europe, 13 in Australia, 5 in South America, and 2 in Antarctica. The bulk of the quality-

controlled data from the 129 stations has been published within this benchmark including the 

results of the quality control. 

 

Figure 1: Station map of reference stations for the benchmark. Each point represents 

one station and its color corresponds to the number of modelled data sets that are 

tested at that site.  
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The modelled data sets, which are tested by comparing them to ground-based reference 

measurements in this benchmark, are called test data sets. They stem from ten different 

models from nine different providers. Not all models provide estimates for all stations, as Figure 

1 shows. 

Amongst other statistical performance parameters, the mean bias deviation, root mean square 

deviation, and standard deviation are calculated for each year and for all stations. The results 

for the relative mean bias deviation affecting GHI are shown in Figure 2.  

Based on the results of the statistical analysis, the most appropriate data set might depend on 

site, climate, or continent of interest. The model errors and the differences between the various 

modelled data sets are much higher for DNI than for GHI.  

Based on this work, analysts can make an informed decision about which surface radiation 

model(s) and data provider(s) are most suited for their location and application. 

 

 

Figure 2: Relative mean bias deviation for GHI and all stations and years. Magenta color 

indicates results out of the color bar range. The point size corresponds to the total 

number of datapoints in the tested time series from 2015 to 2020.  
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1 INTRODUCTION 

Modelled solar irradiance data, based on satellite products and numerical weather prediction 

(NWP) models, are frequently used in solar energy applications and atmospheric sciences. 

This kind of data is offered by several institutional or commercial providers, and currently it is 

not practically feasible for users to independently identify the best provider for their specific 

application and location. This work presents a benchmark of model-derived direct normal 

irradiance (DNI) as well as global horizontal irradiance (GHI) data at the sites of 129 globally 

distributed ground-based radiation measurement stations. DNI and GHI estimates from 10 

different solar radiation databases, either commercial or public-domain, are compared against 

these stations’ high-quality ground-based irradiance observations. The comparison of the 

original model data delivered by the data providers is conducted at hourly temporal resolution, 

even though some of these data sets are available at a finer temporal resolution. The 

performance of the data is analysed with respect to different regions and climate zones. This 

study is intended to help the solar industry make better informed decisions about solar 

resource assessments and solar potential studies. 

The reference observational database, consisting of ground measurements, is collected from 

25 different providers or radiometric networks. Most stations provide measurements of DNI, 

GHI, and diffuse horizontal irradiance (DIF) with thermopile radiometers and a solar tracker. A 

few stations provide measurements of only two independent components, either with two 

thermopile radiometers or a single rotating shadowband irradiometer (RSI). The reference 

database is at high temporal resolution (1 min) from 129 stations during 2015–2020. Only 

quality-assured data have been considered in this benchmark through a comprehensive set of 

best practices and newly implemented quality-control procedures (Forstinger et al., 2021). 

These include both automatic and manual data quality-control tests, as well as descriptive 

quality flagging, as carried out by a team of experts from this Task. The 129 stations are spread 

out worldwide with data from all continents. These stations were selected from an initial pool 

of 161 stations that were submitted to the initial quality-control process. The quality control 

process, as well as other practical or technical considerations, resulted in the elimination of 32 

stations. The solar irradiance modelled datasets stem from ten models from nine different 

providers at the 129 stations considered in the final reference dataset. Not all models provide 

data for all stations, because of limitations in the geographical coverage of the satellite on 

which they depend. Both publicly available datasets and commercial data sets are included in 

the present benchmark. This multi-model multi-site study constitutes a considerably enhanced 

effort in comparison with the earlier benchmark that was conducted under the auspices of 

previous IEA Tasks (Ineichen 2014; Šúri et al. 2008), and various investigations of the literature 

(e.g., (Amillo et al. 2018; Marchand et al. 2018; Salazar et al. 2020)). 

This report is structured as follows. Section 2 presents the test and reference data sets used 
for this benchmark. Section 3 describes the evaluation method and related performance 
metrics. The quality-control procedure and data selection are explained in Section 4. Finally, 
Section 5 presents the results of the benchmark, followed by a summary and outlook in 
Section 6. The report is accompanied by a data Annex with visualization and tables of the 
results and reference station information. These files are described in the Annex at the end 
of the report.  
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2 TEST AND REFERENCE DATASETS 

The first part of this section describes the reference data acquired with ground-based 

radiometers from 129 stations. As mentioned above, the test data are compared to the 

reference data from the ground stations. The 10 test data sets of modelled irradiance time 

series that are analysed in the benchmark are introduced in Subsection 2.2.  

2.1 Reference database 

            

Figure 3: Example of a Tier-1 (left) and Tier-2 (right) station.  

The reference data used in this benchmark originates from 129 ground stations distributed 

worldwide, as provided by 25 distinct sources. These include large national or international 

networks, as well as some private stations that have not been used yet to test any modelled 

data.  

Most stations provide measurements of DNI, GHI, and DIF, obtained with three thermopile 

radiometers and a solar tracker (example shown in Figure 3, left). Such stations are called 

“Tier-1 stations” in this work. A few stations provide measurements of only two independent 

components, either with two thermopile radiometers or a single RSI (Figure 3, right). Such 

stations are called “Tier-2 stations”. 

The reference database is at high temporal resolution (1 min) from 129 stations and spans the 

period 2015–2020. Initially, 161 ground stations were quality-controlled to determine their 

applicability for the benchmark (Figure 4). The quality control process is explained in Section 

4. The final set of 129 stations was selected based on the quality and data availability in the 

evaluation period (2015–2020). The selection of the evaluation years 2015–2020 was done 

based on the data availability of both modelled and quality-checked reference data.   

Figure 5 (left) shows the providers of the selected reference stations. The database is partly 

obtained from the Southern African Universities Radiometric Network (Brooks et al. 2015), the 

National Renewable Energy Laboratory (Andreas and Stoffel 1981; Andreas and Wilcox 2010; 

2012; Andreas and Stoffel 2006; Vignola and Andreas 2013; Ramos and Andreas 2011), the 

Baseline Surface Radiation Network (BSRN; Driemel et al. 2018; Gueymard et al. 2022) and 

further sources. As often in similar radiation data benchmarks, BSRN contributes a significant 

part of the stations. However, nearly 75% of the final pool of stations is not part of BSRN, which 

increases the novelty and relevance of this benchmark. Another important contributor is the 

ESMAP network, which has rarely been used for this kind of validation studies. About 25% of 

the stations were so far not in the public domain, and some are still only available to CSPS 

and their clients. These new stations are thus of particular value for the benchmark because 

they were unseen to any developer of modelled irradiance data. 
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The bulk of the ground measurement data set (122 stations out of the 161 quality-controlled 

stations used for the analysis), including the quality-control flags derived per Section 4, has 

been made publicly available by the benchmark evaluator team (Forstinger, et al. 2021: link). 

The data providers of these 122 stations, which all provide all three components, are also 

shown in Figure 5. Note, that the selected stations for the benchmark (Figure 5 (left)) and the 

published stations (Figure 5 (right)) are chosen from the 161 quality-controlled stations. The 

number of stations therefore varies between the two groups. In some cases, stations that had 

not been used for the benchmark were made publicly available. 

Figure 6 shows all the 129 measurement stations that have finally been selected as reference 

stations for the benchmark. The color scale indicates the number of test data sets per reference 

station. Stations that were used by one or two providers for any kind of post-processing prior 

to the benchmark are marked with crosses.  

A list of all stations including their coordinates, climate zone, station code, continent, altitude 

above mean sea level (AMSL), data source, number of available test data sets, tier level, and 

availability of calibration records, is included in the data Annex to this report (StationList.xlsx). 

 

 

Figure 4: Location and number of years per reference station. In total, 686 station- 

calendar years of the original pool of 161 different stations were quality-controlled. 

 

https://doi.org/10.23646/3491b1a6-e32d-4b34-9dbb-ee0affe49e36
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Figure 5: Source of the 129 selected reference data sets for the benchmark (left) and the 

122 published data sets with quality control flags (right) (Forstinger, et al. 2021: link). 

Note that the number of stations per provider is different in the two data sets. 

 

 

Figure 6: Location and number of test data sets per reference station. Stations that were 

used by one or two providers for post-processing are marked with crosses. 

 Test data sets 

Currently, there are many regional and global, public or private, modelled solar irradiance data 

sets, and new ones are created on a regular basis. For more details, the reader is referred to 

the extensive review of solar resource databases in another report of this Task (Sengupta et 

al. 2021). 

Ten data sets are evaluated in the present benchmark. This represents a good sample of what 

is available today for solar resource assessment, verification of solar forecasts, or other 

applications. Not all commercial data providers accepted to participate in this study, however.  

All data sets, with their data provider, main data sources, and spatial and temporal coverage, 

are described in Table 1. The 10 data sets originate from 9 different data providers because 

the Copernicus Atmosphere Monitoring Service (CAMS) contributed two different versions of 

https://doi.org/10.23646/3491b1a6-e32d-4b34-9dbb-ee0affe49e36
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its CAMS radiation database. The surface irradiance in these data sets is modelled mainly 

from geostationary satellite images, with however two exceptions: (i) One pure NWP data set 

that provides global coverage (ACCESS G3, Australian Community Climate and Earth-System 

Simulator) and (ii) a global data set that is mainly based on imagery from polar satellites 

(CERES, Clouds and the Earth’s Radiant Energy System). Multiple test data sets use Meteosat 

Second Generation (MSG) satellites as main data source. 

Some modelled data sets use imagery from more than one satellite to reach global coverage, 

whereas other data sets only evaluate a part of the satellite field of view. The geostationary 

satellites and their field of view are shown in Figure 7. The areas close to the poles are not 

covered by most data sets, which is primarily caused by the poor viewing angle of 

geostationary satellites at these latitudes, but are covered by NWP and polar-orbiter-based 

models. Table 2 provides further details on the main data sources and methods, as well as on 

the spatial and temporal resolutions. The table also provides the different resolutions of the 

input data sets of the models for some data sets (e.g., CAMS). The test data providers kept 

the responsibility to properly use their data for the creation of the 60-min averages that are 

evaluated in this benchmark. 
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Table 1: Overview of the properties of the test data sets. Note that the spatial and/or 

temporal coverages might have been extended since the submission of the test data 

and that the now available version might have been updated since the submission. 

Provider   Dataset or model Main data source Spatial coverage 
Temporal 

coverage 
Availability 

DWD SARAH-2.1 MSG satellites Full disk MSG Since 1983 

Gridded data, 

30min: freely 

available link 

CAMS 

CAMS v3.2 

MSG satellites 

Europe / Africa / Middle East / 

Atlantic Ocean (MSG field of 

view, -66°N to 66°N) (clear-sky 

data available globally) 

Since 2004 Freely available 

CAMS pre-v4 

Meteotest Meteotest, various sat. 

GOES-16, MSG-4, 

IODC, 

HIMAWARI-8, 

Meteotest NWP 

model 

MOS  

Global (-66°N to 66°N) 

MSG since 

2005; 

other sat: 

since 2018 

Commercially 

available 

CSIRO CSIRO Himawari-8 Australian continent 
Since Jul. 

2016  
Freely available 

NREL 

(NSRDB) 

Physical Solar Model 

Version 3 
GOES  

GOES: covering longitudes 

between 25°W to the east and 

175°W to the west as well as 

latitudes between 21°S to the 

south and 60°N to the north 

(i.e., contiguous United States, 

part of Alaska, southern 

Canada, Central America, and 

part of South America.  

GOES: 1998–

2019 

 

Freely available 

Solargis Solargis v2.x Various satellites 

Global (60°N to 45°/55°S), 

land area and adjacent sea and 

oceans. regions between 60–

65°N on request. 

Since 1994 for 

Europe and 

Africa; since 

1999 for 

central Asia 

and America 

except of >50° 

S (2018 

there); since 

2007 for other 

regions.  

Commercially 

available 

BoM BoM APS3 ACCESS-G3 NWP Global 
Since Jul. 

2019 
Freely available 

NASA CERES SYN1deg Various satellites Global Since 2000 Freely available 

https://doi.org/10.5676/EUM_SAF_CM/SARAH/V002_01
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KNMI MSG-CPP algorithm v1 MSG satellites Full-disk Meteosat Since 2015 Freely available 

 

Figure 7: Location of the current geostationary satellites that provide coverage around 

the globe. Meteosat corresponds to the coverage of the Meteosat Prime satellities, 

Meteosat 8 and Meteosat 7&5 correspond to two slightly different coverages of the 

Meteosat IODC (Indian Ocean Data Coverage) satellites, depending on period. Image 

from NREL. 

 

All data sets, except ACCESS G3, include direct irradiance estimates. In the case of the 

CERES data set, the direct horizontal irradiance is provided rather than DNI. The conversion 

from direct horizontal irradiance to DNI at hourly resolution constitutes a source of error 

because of the variation in solar zenith angle (SZA) during 1-hour time intervals. In the present 

case, DNI is derived by dividing direct horizontal irradiance by the cosine of the zenith angle 

at the center of the hour (e.g., 12:30 for an irradiance average corresponding to the hour from 

12:00 to 13:00). SZA is obtained at each instant from a sun position algorithm. For this study, 

the SZA provided with the reference data is used. 

To better understand the possible effects of location-specific or regional model post-processing 

techniques that are often used to improve surface irradiance estimates, the data providers 

were specifically asked about their possible reliance on such methods. Consideration for this 

issue certainly plays a non-negligible role in any validation study. The CAMS v3.2 data used a 

field-of-view-wide bias correction. Similarly, CSIRO applied a continental-wide spatial 

calibration for its data set, which only covers Australia. Solargis used 23 stations for regional 

improvement of the model. Meteotest applied data from 34 stations for post-processing using 
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interpolation. The list of stations that have been used by any of these providers has been 

considered for the data analysis and are marked in Figure 6. 

The selection of the time intervals and evaluated sites is discussed in Section 4. 

Table 2: Properties of the test data sets. Note that various resolutions are used for the 

individual input data sets that are utilized to derive the irradiance and that information 

on these resolutions is only provided in some cases. 

Provider Model/main data sources Spatial resolution Temporal resolution 

DWD 
SARAH-2.1, Meteosat satellites, MVIRI + SEVIRI, doi: 

10.5676/EUM_SAF_CM/SARAH/V002_01 
0.05° gridded sat. data (~5.5 km)  

1 min (based on 30-min 

satellite data), 30 min, 

daily, monthly 

CAMS 

CAMS v3.2 and experimental pre-v4 

APOLLO_NG/Heliosat-4(DLR) method, MSG satellites for 

clouds, clear-sky from CAMS integrated forecasting system 

Output interpolated to location of 

ground station, input data at 

various resolutions:  3–10 km 

(sat. pixel), DTM up to ~100 m; 

aerosol, water vapor, ozone: 

0.4°; ground albedo: 6 km 

output: 1 min, 15 min, 

60 min, 1 d, monthly; 

input: 15-min clouds, 3-h 

aerosols/water 

vapour/ozone, monthly 

ground albedo  

Meteotest 
Meteotest  MOS 

GOES-16, MSG-4, IODC, HIMAWARI-8 
1/16° (~7 km) 15 min 

CSIRO Himawari-8 2 km max 10 min  

NREL 

(NSRDB) 

Model: Physical Solar Model Version 3 

GOES 

1998–2019, gridded segments 

(4- km), and for 2018 and 2019, 

2-km spatial resolution 

1998–2019: 30 min; 

2018–2019: 5 min for 

continental US and 10–

15 min full disk.  

Solargis 

Solargis model v2.x; GOES, Meteosat MSG and MFG 

(PRIME and IODC positions), Himawari and MTSAT 

satellites; Aerosols from CAMS atmospheric model 

Final result 250 m, satellite data 

2–4 km  

10 and 15 min depending 

on satellite, 1 and 5 min 

on request. 15-min data 

used for benchmark 

BoM BoM APS3 ACCESS-G3 ~12 km 1 h (23-07-2019 to 2020) 

NASA 
CERES. MODIS on Terra & Aqua (polar sat.) + 

geostationary sat. (GOES, Meteosat, MTSAT, Himawari) 
1°x1° (111 km) 1 h 

KNMI 

MSG-CPP algorithm v1. Input: MSG sat. (SEVIRI data: all 

channels except HRV); multi-year mean climatologies of 

water vapor, ozone, aerosol (ECMWF/CAMS), surface 

albedo (MODIS) 

full disk, satellite pixel size (~3 

km) 
15 min  
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3 EVALUATION METHOD 

The present evaluation compares the modelled test data from each data set and reference 

station to the corresponding data points that were determined to be valid according to the 

quality-control procedure (explained in Section 4). Various metrics are used to characterize 

the deviations, as explained below. The time resolution of this comparison is 1 hour. The 

evaluation method was proposed and discussed in detail by the evaluation team and further 

revised based on the input of the participants of PVPS Task 16.  

The evaluation metrics used in this benchmark are summarized in Table 3. The metrics are 

calculated for GHI and DNI at each station using the reference data (r) and the modelled 

estimates (s). Mean values are noted as µ. The total number of valid data points at each station 

is noted as N. Individual data points are noted with the subscript “i”, which varies between 1 

and N. The metrics are either expressed in irradiance unit (W/m2) or as a relative value in 

percent, as indicated by an “r” prefix. To distinguish the metrics in irradiance units better from 

the relative deviations, the former are also referred to as “absolute” metrics, indicated by an 

“a” prefix. Note that, here, the term absolute does not refer to the distance to zero (the absolute 

value or modulus), but to the units. The formulas provided in this section mainly stem from 

(Gueymard 2014). 

Table 3: Metrics for prediction error evaluation. 

Mean bias deviation (aMBD) 
aMBD =

1

N
∑(si − ri)

i

 

Mean bias deviation relative to mean value 

of reference data (rMBD) rMBD =
100

μr

1

N
∑(si − ri)

i

 

Root mean square deviation (aRMSD) 

aRMSD = √
∑ (si − ri)2

i

N
 

Root mean square deviation relative to mean 

value of reference data (rRMSD) rRMSD =
100

μr
⋅  √

∑ (si − ri)2
i

N
 

Standard deviation (Stddev) 

stddev = √
∑ (si − ri − mean(si − ri))2

i

N
 

Mean absolute deviation (aMAD) 
aMAD =

1

N
∑ |si − ri|

i

 

Mean absolute deviation relative to the mean 

value of reference data (rMAD) rMAD =
100

μr

1

N
 ∑ |si − ri|

i

 

Kolmogoroff-Smirnoff Index (rKSI), defined 

in text 
rKSI =

100

AC
⋅ ∫ Dndx

Xmax

Xmin

 

 
rOVER , defined in text 

rOVER =
100

AC
⋅ ∫ max(Dn − DC, 0) dx

Xmax

Xmin
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Relative Combined Performance Index 

(rCPI)  
rCPI =

1

4
(rKSI + rOVER + 2 ⋅ rRMSD) 

 
 

 

In the definition of the rKSI and the rOVER the following parameters are used: 

o Dn: absolute difference between the normalized cumulative distributions of the test and 

reference irradiance data in a specific irradiance interval 

Dn = |normdistrcum,s − normdistrcum,r| 

o normdistrs/r =
hist(s/r,bins=100)

sum(hist(s/r,bins=100))
, where hist describes the histogram of 

the irradiance data sets s or r, respectively, using 100 bins.  
o normdistrcum,s/r  is the cumulative distribution according to normdistrs/r 

o Dn = |normdistrcum,s − normdistrcum,r|n: irradiance interval number  

o x: irradiance 

o Xmin/max: minimum and maximum values of the irradiance time series  

o Xmax = max( r) 

o Xmin = min( r) 

o DC =
Φ(N)

√N
 with the approximation Φ(N) = 1.63 

o AC = DC ⋅ (Xmax − Xmin) 
 

By design, rKSI is 0 if the test and reference data distributions can be considered identical.  

rOVER describes the relative frequency of exceedance situations, when the normalized 

distribution of test data points in specific bins exceeds the critical limit that would make it 

statistically undistinguishable from the reference distribution. 

A small rCPI indicates a good performance of the test data set. 

The above metrics are calculated for each evaluated test data set for each year (YYYY-01-01 

to YYYY-12-31) and each month. Furthermore, the mean annual values are used to calculate 

the weighted average metrics. The applied weight for each year is the number of available 

hours per year. Station years with <1000 h/year are discarded. 

Only hours considered as valid are used for the benchmark. The definition of a valid hour is 

presented in the following section. The minimal solar elevation for the benchmark is 10°. A 

time interval that includes some data with lower elevation is processed if the remaining valid 

data represent more than 83% of this time interval (i.e., less than 10 missing minutes). In this 

case, the data points <10° are also included. 

If data points are missing in the test data sets, these data points are excluded and reported by 

specifying the number of missing points and the irradiation sum related to the gaps that is 

derived from the reference data.  
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4 QUALITY CONTROL AND DATA SELECTION 

Ground-based irradiance measurements typically contain time intervals with significant errors 

caused, for example, by instrument malfunction, maintenance issues, or problematic 

environmental conditions (e.g., rain drops, dew, or ice on the sensor). Hence, a quality control 

(QC) procedure is needed to detect such erroneous (or potentially erroneous) data and 

ultimately exclude them from the reference data used in high-accuracy applications such as 

this benchmark exercise. QC methods of various kinds have been proposed, e.g., (Espinar et 

al. 2011; Long and Dutton 2002; Maxwell et al. 1993; Long and Shi 2008). Each one of these 

consists of a suite of automatic tests. However, automatic tests alone are insufficient because 

they typically miss certain types of errors, and often mislabel valid data as erroneous. In the 

vast majority of cases, an expert visual inspection step must be added to automatic QC to 

obtain the best possible results (Forstinger et al. 2021). 

A harmonized QC procedure is used here for the benchmark in the form of a “best-of” method 

based on a combination of a variety of tests that have already been published and widely 

recognized, while adding expert visual inspections. 

In order to perform QC of such a large database, several radiometric stations were assigned 

to a number of experts, all co-authors of this report. Their QC results differed to a certain 

degree for various reasons. For instance, experts might have different opinions on what 

constitutes a bad data point, or they might have practical experience with a specific instrument 

model or with unusual measurement situations. More pragmatically, coding errors might have 

been inadvertently introduced by one expert in some cases. The evaluators implemented the 

QC method individually so that any difference in implementation could be traced back for 

further improvements and better documentation. The deviations of the results between 

different evaluators were then compared to the variation in the fraction of usable data for the 

161 stations. The comparison of the evaluators’ results showed sufficient consistency of the 

method, as described in more detail in (Forstinger et al. 2021). The QC method is described 

in the following subsection. The application of the QC results to determine if an hour is used in 

the benchmark is explained in subsection 4.2. The QC results are included in the published 

reference data sets mentioned in subsection 3.2 ((Forstinger et al. 2021), link). 

4.1 QC methodology for 1-minute data 

The QC methodology consists of many tests that are selected from the literature and applied 

in stepwise progression. In addition to these automatic tests, the evaluators also reviewed and 

reported the available information on instruments, calibration, maintenance, and records of 

any special events at each station if such detailed information was available. The visual 

inspection of such a large database (686 station-years of 1-min data from 161 stations) 

constitutes an important accomplishment, at a scale never attempted before.  

Several sets of QC tests have been specifically designed for historic radiation databases, such 

as BSRN (Long and Dutton 2002), SERI QC (Maxwell, Wilcox, and Rymes 1993), QCRad 

(Long and Shi 2008), MESOR (Hoyer-Klick et al. 2008; Hoyer-Klick et al. 2009), ENDORSE 

(Espinar et al. 2011), RMIB (Journée and Bertrand 2011), or MDMS (Geuder et al. 2015). In 

these existing methods, the various tests use different types of threshold limits for the three 

individual irradiance components—DNI, GHI, and DIF— as well as parameters derived from 

these components together with additional quantities such as solar position angles or clear-

sky irradiance. The types of limits are:  

http://www.webservice-energy.org/record/3491b1a6-e32d-4b34-9dbb-ee0affe49e36/
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• physical possible limits 

• extremely rare limits.  

• rare limits. 

The existing QC tests have been compared and critically discussed by experts within the 

framework of IEA PVPS Task 16. Considering the diversity of monitoring stations currently 

existing in the world, two separate methods have been devised, (i) for the ideal case when 

measurements of all three irradiance components (GHI, DIF, DNI) are available; and (ii) for the 

case when only two components are measured (GHI and either DIF or DNI). The latter case is 

typical of remote solar resource stations that are equipped with an RSI; see details in 

(Sengupta et al. 2021). Whenever DIF is rather measured with a thermopile pyranometer 

equipped with a manually-operated shadowband attachment, more QC tests should be 

implemented (Nollas, Salazar, and Gueymard 2023), but such stations were not included in 

this study. 

Each QC test generates a specific flag for each timestamp. Each flag can take one of three 

possible values: “data point seems fine”, “data point seems problematic”, or “test could not be 

performed”. The latter situation can occur because of a missing timestamp/data or because 

the test requirements were not met (e.g., the irradiance was not above the required threshold), 

and thus the test could not be applied. 

The visual inspection of the data is important to detect any “bad” point that was not detected 

by the automatic tests, and manually assign a specific flag. This step also includes checking 

the metadata, if available (logbook with maintenance schedules, reported issues, calibration 

information, general comments, etc.). Visual inspection can also help determine if the 

timestamps refer to the start or the end of the averaging interval (e.g., 1-min, 10-min or 1-h 

averaging), since this information is often not provided (or can be erroneous). The correct 

interpretation of the timestamps is essential for practically all QC tests but also for any 

validation or benchmarking exercise to ensure that the reference and test data align rigorously. 

Furthermore, errors in the correct time zone or station coordinates can also only be identified 

through visual examination by an expert. 

The applied QC tests are defined and described in detail below. All test results are visualized 

using appropriate public-domain software and provide automatically generated flags. Manual 

flagging is also permitted, thus providing a way to flag data that passed the automated QC 

tests. The applied tests are: 

• Missing timestamps  

• Missing values  

• K-Tests (Geuder et al. 2015; Gueymard 2017) 

• BSRN’s closure tests (Long and Dutton 2002) 

• BSRN’s extremely rare limits test (Long and Dutton 2002) 

• BSRN’s physically possible limits test (Long and Dutton 2002) 

• Tracker-off test, improved from (Long and Shi 2008) 

• Visual inspection, including  

o shading assessment, 

o closure test,  

o AM/PM symmetry check for GHI, and  

o calibration check using the clear-sky index (GHI divided by clear sky GHI). 

All the automatic tests, as well as the visual review, are discussed in more detail in what 

follows.  
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Missing timestamps  

Missing timestamps, which might occur during a data logger reset or data acquisition failure, 

are identified and filled in with the “not a number” data type (NaN). This ensures that, at the 

end of the QC procedure, all data files are serially complete. 

Missing values  

After adding any missing timestamps, the total number of missing data can be determined to 

provide an overview of the data completeness of each station. 

K-Tests  

Various studies, e.g., (Geuder et al. 2015; Gueymard 2017), have defined a number of tests 

to verify that each data point is within physical limits and to detect possible tracker issues. 

These tests are based on the clearness indices Kn, and Kt, the diffuse fraction K, and their 

physical relationships. These normalised quantities are defined as 

 Kn =
DNI

ETN
  (eq. 1) 

 K =
DIF

GHI
   (eq. 2) 

 Kt =
GHI

ETN⋅cos (SZA)
  (eq. 3) 

where ETN is the extraterrestrial irradiance at normal incidence, and SZA is the solar zenith 

angle. ETN is obtained as the product of the solar constant, 1361.1 W/m2 (Gueymard 2018), 

and the sun-earth distance correction factor, which is calculated by the sun position algorithm. 

The suite of K-tests is applied within each appropriate domain; the corresponding flag names 

are indicated in Table 4. If the condition is not fulfilled and the data point is within the 

appropriate domain, the point is flagged with the corresponding flag name. Because the 

measured GHI at 1-minute resolution can be much higher than the corresponding clear-sky 

value during cloud-enhancement periods (Gueymard 2017), the upper threshold for Kt is 

adjusted here for the use of 1-min data. It might have to be decreased for data with a lower 

resolution (e.g., 5-min or 10-min resolution). 

Table 4: Performed K-Tests. ALT denotes the station altitude above mean sea level 

(AMSL) expressed in m. ETN is the extraterrestrial irradiance in W/m². 

Condition Domain Flag name 

Kn < Kt  (GHI > 50W m2⁄  and Kn > 0 and Kt > 0)  flagKnKt 

Kn < (1100 + 0.03 ∗ ALT)/ETN)  (GHI > 50W m2⁄  and Kn > 0)  flagKn 

Kt < 1.35  (GHI > 50W m2 and Kt > 0 ⁄ )  flagKt 

K < 1.05  (SZA < 75° and GHI > 50W m2⁄  and K > 0 )  flagKlowSZA 

K < 1.1  (SZA ≥ 75° and GHI > 50W m2⁄  and K > 0 )  flagKhighSZA 

K < 0.96  
(Kt > 0.6 and GHI > 150W m²⁄  and  

SZA < 85° and K > 0 )  
flagKKt 

 

BSRN’s closure tests  

To test the expected correspondence between the GHI, DNI, and DIF irradiance components, 

i.e., deviation from the ideal closure, the BSRN closure tests are applied (Long and Dutton 

2002). If the conditions described in  
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Table 5 are not fulfilled in the corresponding domain, the data point is flagged with a descriptive 

flag. 

 

Table 5: Application of the three-component closure test  

Condition Domain Flag name 

|
GHI

DNI⋅cos(SZA)+DIF
− 1| ≤  0.08  (SZA ≤ 75° and GHI > 50W m2⁄ )  flag3lowSZA 

|
GHI

DNI⋅cos(SZA)+DIF
− 1| ≤  0.15  (SZA > 75° and GHI > 50W m2⁄ )  flag3highSZA 

 

BSRN’s extremely rare limits test  

The three irradiance components are also tested in comparison with extremely rare limits (Long 

and Dutton 2002). If the condition for each component is not fulfilled for a data point, that point 

is flagged with the corresponding flag name, as described in Table 6. 

Table 6: Application of the extremely rare limits tests 

Condition Domain Flag name 

−2 W/m² ≤ GHI ≤ 1.2 ⋅ ETN ⋅ cos1.2(SZA) + 50 W/m² all data flagERLGHI 

−2 W/m² ≤ DIF ≤ 0.75 ⋅ ETN ⋅ cos1.2(SZA) + 30 W/m² all data flagERLDIF 

−2 W/m² ≤ DNI ≤ 0.95 ⋅ ETN ⋅ cos0.2(SZA) + 10 W/m² all data flagERLDNI 

 

BSRN’s physically possible limits test  

In addition to the extremely rare limits, the physically possible limits of each component are 

tested as well (Long and Dutton 2002). Considering the high-quality requirement for the 

benchmark application envisioned here, both tests are required. If the condition for each 

component is not fulfilled for one data point, the point is flagged with the corresponding flag 

name (Table 7). 

Table 7: Application of the physically possible limits tests 

Condition Domain Flag name 

−4 W/m² ≤ GHI ≤ 1.5 ⋅ ETN ⋅ cos1.2(SZA) + 100 W/m² all data flagPPLGHI 

−4 W/m² ≤ DIF ≤ 0.95 ⋅ ETN ⋅ cos1.2(SZA) + 50 W/m² all data flagPPLDIF 

−4 W/m² ≤ DNI ≤ ETN all data flagPPLDNI 

 

Tracker-off test 

Since, for most stations, the direct and diffuse components are obtained with a tracker 

equipped with a pyrheliometer and a pyranometer with shading disc or ball, a tracker failure 

results in incorrect values for both measurements. The causes of such failures include 

electromechanical problems within the tracker, loss of power, misalignment or timestamp 

errors, etc. Detecting such problems is critical, but can be difficult, particularly in the case of 

slight mistracking. The tracker-off test involves comparisons with rough estimates of the 

coincident clear-sky irradiance components (GHIclear,s, DNIclear,s, DIFclear,s), which are here 

obtained as a fixed fraction of the extraterrestrial irradiance at horizontal incidence, ETH = ETN 

cos(SZA) (Table 8). If all conditions described in Table 8 are not fulfilled for any data point, it 

is flagged with the corresponding flag name.  
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Table 8: Application of the tracker-off test 

Conditions Definitions Flag name 

(GHIclear,s –  GHImeasured)

(GHIclear,s +  GHImeasured)
 <  0.2 

(DNIclear,s –  DNImeasured)

(DNIclear,s +  DNImeasured)
 >  0.95 

SZA <  85° 

GHIclear,s = 0.8 ⋅ ETH 
DIFclear,s = 0.165 ⋅ GHIclear,s 

DNIclear,s =
GHIclear,s −  DIFclear,s

cos(SZA)
 

flagTracker 

 

Visual inspection with a multi-plot 

All test results and selected irradiance data are compiled into a single multi-plot arrangement 

for easy visualization. Such a plot is made for each year and for each station (see, e.g., Figure 

8 for the Visby station, 2016). For a larger examplary image of the multi-plot and example 

Python code, please refer to https://github.com/AssessingSolar/solar_multiplot. More 

specifically, these plots not only include visualization of the test results discussed above, but 

also:  

(1) visualization of the deviation of the measured DNI by the pyrheliometer from the DNI 

calculated from DIF and GHI (i.e., closure error);  

(2) an overview of the diurnal variation of DNI and GHI as a function of time and solar position; 

(3) the clear-sky index calculated as the ratio between the measured GHI and the clear-sky 

GHI from the public-domain McClear v3’s database (Lefèvre et al. 2013; Gschwind et al. 

2019; Qu et al. 2017);  

(4) a comparison between the pyranometer GHI observation and that calculated from DNI and 

DIF;  

(5) comparisons of the pyranometer GHI measurements before and after solar noon to identify 

possible levelling or timestamp errors; and  

(6) visualization of the data points in K-space with the applied limits. 

https://github.com/AssessingSolar/solar_multiplot
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Figure 8: Visualization of various QC tests used to evaluate the quality of irradiance data at 

one station (Visby, Sweden, 2016). Numbers in boldface refer to the description in the text. 

A multi-plot like the one shown in Figure 8 is created not only from the raw (pre-QC) data, but 

also from the data points that pass the automatic flagging (as an intermediate result in order 

to visualize the data flagged by the automatic checks), and finally from the data points that 

pass the complete QC, including manual revisions. Sorting out the already detected suspicious 

data points before the plotting step allows for a better visual control of the remaining data 

points. If suspicious data points are found, further visualizations can be used to confirm 

whether those points are invalid, in which case an overriding manual flag is set that can be 

used to exclude such points from processing. For each station and year, the three kinds of 

multi-plots (raw data, data points that pass the automatic flagging, and final selection) just 

described, offer a complete overview of the station data. 

Plot (1) in Figure 8 shows the deviation between the measured and calculated DNI with respect 

to the sun’s azimuth angle. In this case, two distinct levels appear over the year. To detect if a 

specific issue existed at the station (e.g., long periods without cleaning or with a tracker issue), 

one needs further visualization of the data. One example is shown in Figure 9, which describes 

the diurnal variation of DNI for each day of a complete year. The day of the year appears on 

the x-axis, whereas the time of day is shown vertically, using true solar time to emphasize the 

expected symmetry around solar noon. The upper plot shows a clearly different deviation 

pattern in the later part of the year (black rectangle). Consultation of the log book available for 

that site led to the conclusion that this is not a station issue per se, but the result of a sensor 

change. That change resulted in a slightly different configuration in terms of levelling, 

alignment, instrument response, and overall performance. The lower plot of Figure 9 is for the 

same station but a different year. It shows a change in deviation caused by sensor soiling, 

which remained noticeable over a long period. Whereas the sensor changes in the upper plot 

of Figure 9 do not lead to an exclusion of the data, the sensor soiling shown in the lower plot 

of Figure 9 may lead to data exclusion. This demonstrates the necessity of manual expert QC 
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and the general need for station log books, in which cleaning intervals and sensor changes 

are recorded. 

The GHI clear-sky index time series (3) is helpful to reveal whether the GHI sensor’s calibration 

is outdated, incorrect or its sensitivity drifts over time. The clear-sky index is expected to be ≈1 

under clear-sky conditions. However, this is rarely the case in the real world. One main reason 

is that the clear sky GHI is only an approximation at any instant. Nevertheless, cases where 

the clear-sky index remains constant and well below 1 can be an indication of a calibration 

issue. Similarly, an abrupt or step-like change of the clear-sky index under clear conditions is 

typically the signature of a change of calibration factor by a substantial amount, or of the result 

of cleaning a dirty sensor. Again, an expert is needed to decide whether a calibration issue is 

likely at the station. In Figure 8, the clear-sky index is constant and well below 1 in the later 

part of the year, but this is the result of cloudy weather conditions rather than a calibration 

issue. This is apparent when comparing the heat maps of GHI and DNI (plot (2) in Figure 8). 

If the expert detects issues with individual data points, those are flagged with “flagManual”. 

The results of the individual tests, in the form of a quality flag per test, are properly documented 

(metadata) and packed into one single file per site and year, which also includes the solar 

irradiance observations. Finally, all flags are combined into a single usability code, indicating 

an objective level of quality for each data point.  

 

 

Figure 9: Heat maps of the difference between measured and calculated DNI in W/m² 

with respect to day of the year (x-axis) and solar time of the day (y-axis) for different 

station-years. Top: Visby 2015; Bottom: Visby 2019. 
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4.2 Data selection 

Since the benchmark is carried out at hourly resolution, the 1-minute QC flags have to be 
combined to indicate whether the hourly averages are valid or not. The following method is 
applied to determine the validity of hourly averages: 

- Split each hour in 12 “5-min intervals” (e.g., 1 to 5 min; 6 to 10 min, …) 

- Count the number of good samples in each 5-minute interval (minimum 0, maximum 

5). Each 1-min sample is labelled as good if it has not failed any QC test and if all three 

radiation components are present.  

- Count the number of 5-minute intervals in an hour containing at least 3 good samples. 

If at least 3 good samples are found, the 5-minute interval is classified as “OK”, 

otherwise as “NOT OK”. 

- The hour is only included in the benchmark if at least 10 5-minute intervals are “OK” 

(83% of the complete hour). 

A special case had to be considered for the ACCESS G3 modelled data set because it does 

not provide DNI data. The normal rule that all components must be available is simply not 

enforced in that case. 

Regarding the data selection and exclusion process, it is important to ensure that the remaining 

data set still represents the conditions at the site from a statistical standpoint. Because data 

collected under complex and variable cloud conditions might be flagged as suspicious or 

erroneous more frequently than under clear skies, there is a risk of artificially biasing the data 

set toward less cloudy conditions than what actually occurs. It is possible to confirm that, in 

terms of cloudiness, the final data sets are close to the original data sets (before QC) by 

comparing the histograms of the GHI clear-sky indexes before and after data exclusion. The 

changes in the histograms caused by the data exclusion resulting from the method described 

above can be considered negligible.  

All measured GHI, DNI, and DIF valid data points (i.e., that have passed the QC tests) are 

used for the calculations.  
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5 BENCHMARK RESULTS 

This section presents an overview of the results of the benchmark and allows the reader to 

analyse specific stations or groups of stations in more detail. This overview uses further plots 

and results that are included in the data Annex of the report (DOI: 10.5281/zenodo.7867002). 

A presentation-style approach is used because the answer to the key question addressed here 

(Which data set is most adequate at site X?) depends on the site location, the application 

considered (e.g., accuracy requirements), and other technical, practical, or even subjective 

standpoints. Hence, the user should rely on a contextual assessment rather than uniquely on 

statistical results. Because it is impossible to discuss each individual site or region in detail 

here, the objective is to provide guidance so that the reader can be empowered and able to 

successfully analyse their case based on the specific information in the data Annex.  

The results of the benchmark are presented in world maps with color-coded dots for each 

station and in color-coded tables for station subgroups, as explained in the following 

subsections. The subgroups are continents and/or climate zones. The statistical metrics are 

defined above in Section 3. Furthermore, scatter density plots of modelled vs. reference data 

for each station, year, and radiation component are included for a quick evaluation of the 

dispersion.  

Among all metrics, rMBD is of paramount interest for the analysis as it is directly related to the 

overall under- or over-estimation of the solar energy resource at any given site. Hence, the 

examples provided below are mostly for rMBD. Moreover, the variation of rMBD from year to 

year and site to site within a certain region is of interest to estimate the reliability of a data set. 

Similarly, the distribution of the deviations and the histograms of the annual irradiance data 

are also of interest. The quality of these distributions is described by the other metrics and 

visualized in the scatter plots.   

Obviously, anyone interested in the data quality of modelled data sets for a site that is included 

in this benchmark will consider the results for this specific site as most important. Such results 

can be seen best in the result tables and scatter plots. To estimate the data quality for a site 

that is geographically close and in a climate similar to any site covered in this benchmark, the 

results can be analysed in the same way. 

If the objective is rather to estimate the data quality for a specific region or climate zone, the 

result tables for those groups are appropriate. Additionally, the world maps can be analysed 

by focussing on the specific regions of interest. 

If one or more specific modelled data set is of interest, e.g., to find where in the world it is most 

accurate, the corresponding world maps, result tables, and scatterplots should be used and 

compared. 

The different presentations of the results are described in the following sections based on 

examples. Results for all stations and parameters are found in the data Annex. 

5.1 Scatter density plots 

Scatter density plots have been created for all stations, all years, and the two essential 

radiation components (GHI and DNI). The plots show the measured reference irradiance on 

the x-axis, the modelled test irradiance on the y-axis, and the color denotes the number of data 

points within a data bin. The x- and y-axes are the same for all plots , whereas the range of 

the color bar is specific to each plot. Because of the large quantity of possible scatterplots, it 

https://doi.org/10.5281/zenodo.7867002
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is virtually impossible to scrutinize all those that are related to a specific case. To help the 

reader into using the scatterplots more efficiently and on a wider scale, various groups of such 

plots are combined into single ensemble charts. They are provided as images (in png format), 

as follows: 

• Charts showing results from all data providers at one station, year, and component in a 

single file 

• Charts showing results from a single data provider at all stations, for each year and 

component in a single file. 

The left and right parts of Figure 10 are two examples of the first type of these combined plots 

for the station of Cabauw (CAB) for 2016. The second type is created in two different ways, 

which differ depending on the number of stations covered by each data provider. In one option, 

the plots are placed such that each station is always in the same position within the figure, 

irrespective of the number of stations covered by the specific data provider. This leads to small-

size scatter density plots per station because 129 of them are analyzed here. As a remedy for 

this issue, the second option rather shows all scatterplots as big as possible to fit into one such 

single figure. In that case, the drawback is that the position of a station in the figure changes 

from one data provider to another.  

 

Figure 10: Exemplary scatterplots for Cabauw in 2016: GHI (left) and DNI (right). 

Examples of GHI and DNI scatterplots for 2016 from various data providers are also shown for 

the station Izaña (IZA) in Figure 11. That station has been selected as an example as it sticks 

out from other stations, as previously noted in (Yang and Gueymard 2021), which motivates a 

closer analysis with the scatter density pots. It is obvious that GHI is modelled more accurately 
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than DNI and that some models show much stronger deviations than others. IZA is located on 

the Canary Islands at 2373 m AMSL. The high altitude brings along modelling complications 

because it is difficult to ascertain whether the station is below or above clouds from satellite 

images alone. Moreover, snow cover cannot be easily distinguished from cloud cover. There 

might also be deviations in the modelled data sets caused by strong variation in altitude within 

the spatial resolution of the various input data sets—most importantly in relation to aerosols 

and water vapor. The issues found in the IZA case are likely to apply at similar locations 

(mountain sites, low latitudes). These issues and resulting uncertainties also have to be 

considered when evaluating the performance of any satellite-based model over surrounding 

areas, which might often result in incorrect conclusions. 

 

 

Figure 11: Exemplary scatterplots for Izaña in 2016: GHI (left) and DNI (right). 

 

5.2 World maps  

To obtain an overview of the benchmark results, world maps with color-coded dots for the 

analysed error metrics are used here. Figure 12 shows rMBD, rRMSD, rMAD, and rKSI for 

GHI for all data providers, stations, and years in a single plot. To combine the results for 

different years, the weighted averages of all years for each specific metric are used. The point 

size corresponds to the total number of data points from all considered years included in the 

analysis. 
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Figure 12: GHI benchmarking results for all stations and years, using four error metrics. 

Magenta color indicates stations out of the color bar range.  
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Figure 13: DNI benchmarking results for all stations and years, using four error metrics. 

Magenta color indicates stations out of the color bar range.  

The overview plots in Figure 11 exemplify the variation of the results for different stations, 

clearly indicating that some stations are affected by less accurate estimates from multiple 

models. For some models, a clear dependency on region or continent is also visible. Moreover, 

the different data set size per station and provider can be seen. Various general tendencies of 
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some data sets are also found. For example, the NWP ACCESS 3G data set shows almost 

exclusively positive bias. The higher deviations of the CERES data sets compared to the other 

satellite-based data is apparent, at least in part because of the much larger size (≈110x110 

km) of its pixels compared to that of models based on cloud data from geostationary satellites 

(≈4x4 km). Interestingly, these deviations appear generally highest over the Americas.  

Over southern Africa, all data sets generally benefit from lower rRMSD and rMAD than they 

do elsewhere. Some data sets also show below-average rRMSD and rMAD results over 

Australia and the southwestern USA. These results are most likely related to the high 

irradiance levels found over those regions, which are affected by only low and relatively stable 

attenuation from clouds and aerosols. In other regions with low cloudiness but higher aerosol 

loads, such as northern Africa, fewer data sets show below-average rRMSD or rMAD. 

The same metrics as in Figure 12 are shown for DNI in Figure 13, with the same colour bars 

as for GHI and each metric. It is obvious that the deviations are typically higher for DNI than 

for GHI, and that large deviations exist at more stations. This was expected and corroborates 

findings of previous studies. This result can be explained by a stronger error propagation effect 

on the modelled DNI caused by uncertain input data (in particular for clouds and aerosols), 

which is made even stronger by any significant discrepancy between station elevation and the 

pixel’s mean elevation. Examples stations with higher deviations are Izaña (Canary Islands, 

mountain site with high in-pixel topographic inhomogeneity) and Dar es Salaam (Tanzania, 

site with prevalent high aerosol load and smog).  

World map plots for additional metrics can be found in the data Annex.  

5.3 Results overview per continent 

At continental scale, it is important to obtain a more detailed overview of the results, which in 

turn facilitates a better comparison of different data sets. Specific tables with color-coded 

metrics are created to that effect. There is one table per continent, radiation component, and 

metric. Such tables are also provided for each climate zone, radiation component, and metric. 

As examples, two such tables are shown in Table 9 and Table 10. The same general structure 

is used for all other cases. The table title specifies the sub-group (continent or climate zone), 

the radiation component, and the metric. Below the title, a list of the (abbreviated) site names 

is shown in alphabetical order from left to right. Tier-2 stations are marked with an asterisk (*) 

to distinguish them from Tier-1 stations. The reference data points from Tier-2 stations are 

typically associated with higher uncertainty because not all QC tests can be performed and the 

instrumentation's accuracy is typically lower. These reasons might lead to measurement-

induced higher error metrics compared to Tier-1 stations. The uncertainty of the applied 

reference data is expected to vary from one station to another and even from time stamp to 

time stamp for a specific station. An individual uncertainty analysis per station and time interval 

is extremely complex. After the detailed quality control and the rejection of suspicious data, a 

significant part of the variation of the uncertainty with station and time is removed. As a 

simplification, we estimate the uncertainty of Tier-1 and Tier-2 stations and DNI and GHI based 

on the literature (Sengupta et al. 2021).  

In well maintained field measurement campaigns with fully functional instruments, the DNI 

measurements of Tier-1 stations are associated with a standard uncertainty (1-sigma, 68%) of 

about 1.5% and GHI measurements with about 2% (Sengupta et al. 2021). In problematic 

cases and the most relevant zenith angles, the quality control removes data with deviations of 

calculated and measured GHI of 8%. We expect the uncertainties of the used data to be lower 
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than this limit defined by the quality control and close to the mentioned uncertainties for good 

maintenance.  

For well-maintained Tier-2 stations, the standard uncertainty is estimated as 5% for DNI and 

for GHI as 4% (Sengupta et al. 2021). As the three component test cannot be performed for 

the Tier-2 stations, the upper uncertainty limit that is related to the quality control for these 

stations is higher than in the case of the Tier-1 stations, and we expect it to be about 10%. As 

in the case of the Tier-1 stations we also expect the uncertainty to be close to the estimations 

for well-maintained stations.  

In parallel, stations that have been used for post-processing during the production of some of 

the modelled data sets (Solargis and Meteotest) are marked with the "^" symbol. The first 

column from the left provides the list of the modelled data providers that supplied irradiance 

data at each site. In the color-coded part of the tables, the weighted average of the metric 

considering the mean annual results (e.g., rMBD in percent for Tables 9 and 10) of each test 

data set at each site is shown. The weighting factor for each year is the number of data points 

evaluated in the year for the specific modelled data set. Note that, depending on the provider, 

the evaluation at any specific site might be based on a different number of data points or years, 

if the test data contains gaps or covers a different time period. 

The columns titled “Mean” and “Std” to the right of the color-coded part of the table provide the 

mean and standard deviation of the corresponding metric for each modelled dataset under 

scrutiny, as calculated using all the available reference stations. These values are evaluated 

for a modelled data set only if more than 75% of the sites of the subgroup (continent or climate 

zone) is included in it. In Table 9, for example, the average and standard deviation are not 

calculated for ACCESSG3 because this data set does not provide data for at least 75% of the 

stations. Moreover, only those stations that are covered by all modelled data sets with >75% 

of the sites are included in the calculation of the average and standard deviation. For example, 

still in Table 9, the stations KIR, NYA, and VIS are neither used to calculate the average nor 

the standard deviation. 

Table 9: rMBD for GHI over Europe. 

Europe: GHI, rMBD (%) 
site CAB CAR^ CAS CEN DAO DAV JAE* KAZ KIR LOC LYN MIL NOR NYA ODE PAL PAY TAB^ TOR VIS Mean Std Abs_Mean Abs_Std 

model                                                 

SOLARGIS -2.5 0.6 0.3 -0.1 -2.1 -1.0 1.0 2.6 nan 0.5 0.9 1.9 -1.6 Nan 1.7 -1.8 -1.7 0.2 -2.3 -2.6 -0.2 1.6 1.3 0.8 

METEOTEST -3.6 0.1 -0.7 0.9 3.2 5.1 2.7 2.1 nan 0.5 1.7 0.0 -0.7 Nan 8.8 -0.2 -2.2 3.4 -4.9 -7.1 0.9 3.2 2.4 2.3 

CAMS_v3.2 2.1 -1.1 -0.0 -2.5 -8.1 -6.7 -1.3 4.8 nan -2.2 0.5 -1.8 -1.0 Nan 7.3 2.5 -2.7 -4.2 -3.2 nan -1.0 3.8 3.1 2.4 

CAMS_pre-v4 -4.1 -0.9 -0.8 -2.6 -10.2 -9.0 -2.0 0.8 nan 0.3 -4.5 -1.4 -4.4 Nan -0.2 -3.3 -3.2 -1.8 -8.0 -4.4 -3.3 3.2 3.4 3.1 

KNMISEVIRI 0.7 -0.9 0.2 -0.2 -17.7 -17.3 -1.4 -2.3 -19.1 -3.0 1.9 2.7 0.3 Nan -7.7 0.4 -1.3 -2.7 0.2 -0.8 -2.8 6.0 3.6 5.5 

DWDSARAH -1.2 0.9 1.7 -1.0 -21.5 -20.4 -1.5 -0.7 nan -1.4 0.2 3.5 -1.6 Nan -5.4 1.7 -3.7 1.7 -2.7 nan -3.0 7.1 4.2 6.4 

CERES -3.2 -8.4 -3.8 -3.5 -8.0 -5.9 -5.1 -4.1 4.3 -7.7 3.2 -1.2 -0.1 -38.8 -7.0 -0.7 -10.0 -6.2 -8.3 -2.4 -4.7 3.5 5.1 2.9 

ACCESSG3 nan nan 2.0 nan 3.2 4.1 nan nan nan 0.2 6.4 nan 4.7 Nan 6.0 0.2 nan 2.3 nan -0.9 nan nan nan nan 
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Table 10: rMBD for DNI over Europe. 

 

Regarding the bias metrics (rMBD and MBD), the average and standard deviation of the 

absolute values of the biases for each station and data set are also shown (see columns titled 

“Abs_mean” and “Abs_Std” at the far right). Beside the change in how the absolute value is 

derived, the same procedure as above is applied to calculate the average and standard 

deviation.  

The list of modelled data sets is sorted according to their performance ranking only if they 

provide data for more than 75% of the stations. For all metrics except the bias, the ranking is 

based on the average metric shown in the column “Mean”. For the bias (rMBD and aMBD), the 

ranking is made according to the mean of absolute biases (“Abs_mean”); this is necessary to 

avoid that a model with both high positive and high negative biases obtains a good ranking if 

those biases compensate each other when averaging. Modelled data sets that are not ranked 

because of a too low number of validation sites appear in alphabetic order below the ranked 

data sets and are separated from these by a black horizontal line. 

Although the ranking is of great interest in general, it should not be overvalued, and rather has 

to be regarded as only one piece of information amongst many. For example, the standard 

deviation of the metric used for each ranking (column “Std” or “Abs_Std”) is also of importance 

because it indicates how far from the average the performance for a specific site could be. A 

modelled data set that would perform well on average (low deviations at many sites), but would 

show huge deviations at some sites, might constitute a risk in practice. A data set with slightly 

higher average deviations, but less dispersion overall, could be more recommendable. 

Some interesting findings are that (i) the rankings are different for GHI and DNI; (ii) a ranking 

one might derive according to the metrics for a single station does not always follow the shown 

ranking that is based on the average; and (iii) different results are obtained for different 

subgroups (continents or climate zones). One of the data sets (Solargis) is often associated 

with the lowest average deviation metrics. This corresponds generally well to the performance 

ranking that one can obtain for many individual stations, but the best data set for a specific 

station is at times provided by another model. 

Because the post-processing performed by some of the providers might lead to too optimistic 

results, it is important to analyze the general ranking after removing the particular stations used 

by Meteotest and Solargis to that effect, and to derive a new ranking covering only the 

remaining sites. This new ranking is found almost unchanged. There are exceptions, however, 

when only a small number of stations per subgroup exist, but in such cases the ranking is not 

considered representative anyway because of the low number of remaining stations (e.g., 

South America, where 3 of 5 sites are removed).  

Regarding the analysis for climate zones, it is important to emphasize that less models are 

ranked because the models share less stations when grouped into climate zones than into 

continents. This is a direct consequence of the spatial coverage of the modelled data sets.  
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6  CONCLUSIONS AND SUMMARY 

A worldwide benchmark of various modelled radiation data sets of both global irradiance (GHI) 

and direct normal irradiance (DNI) has been carried out extensively at 129 high-quality 

radiometric stations on an hourly basis. The measured reference data were submitted to a 

stringent quality control procedure, performed at 1-min resolution.  

The benchmark results have shown noticeable deviations in performance between the various 

modelled data sets. In particular, it was found that the most appropriate data set actually 

depends on both site and climate or continent of interest. Some stations are especially 

challenging for some models, as evidenced by the high deviations observed for several data 

sets in difficult environments (e.g., high mountains or coastal areas).  

The modelled errors and deviations between data sets were found generally much higher for 

DNI than for GHI, as expected, because of the higher sensitivity of the former to aerosols, 

clouds, elevation, and other factors.  

All modelled data sets evaluated here are based on satellite observations, with the exception 

of ACCESS G3, which is based on NWP modelled data. The NWP data set does not provide 

DNI predictions, and generally showed positive bias in its GHI predictions. The CERES global 

data set derived from polar satellites and geostationary satellites had significantly higher 

deviations than all the other satellite derived data sets, at times even higher than the NWP 

data. An essential reason is its coarse resolution (1°), which results in pixels (cells) that are 

much larger than those of the other databases. The deviations of its DNI predictions are even 

substantially more pronounced than that of other models.  

The deviation metrics of data sets based mainly on geostationary satellite imagery are closer 

to each other than to the ACCESS G3 or the CERES data sets. This difference is more 

pronounced for the standard deviation than for the bias, and also more obvious for DNI than 

for GHI. The lowest average deviation metrics are often achieved by a single data set 

(Solargis). It also performs best at many individual stations, but the best data set for a specific 

station is at times provided by another model. 

From a methodological standpoint, this benchmark underlined the importance of the reference 

data quality. Without a stringent quality control procedure, no real validation can be done, with 

the risk of obtaining invalid results. 

The large volume of benchmark results obtained here have been organized in tables, figures, 
and supplementary material in a data Annex. Users are encouraged to consult this dataset to 
to identify the most appropriate data set(s) for a specific application or over a specific region. 

Future work will further analyse the expected positive impact of various post-processing 

methods (known as “site adaptation”) on the data evaluated in this benchmark. Furthermore, 

it is recommended that a similar benchmark be conducted for more reference stations, 

including sites over regions that are so far not covered well or at all. Moreover, future work 

should also involve new modelled data sets and updated versions of the current data sets. 

Such work is currently planned as part of the activities of IEA PVPS Task 16 on solar resource 

data and forecasting. The validation of global tilted irradiance predictions is desirable too, but 

both modelled data sets and high-quality reference data are much less common.  
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DESCRIPTION OF THE DATA FILE ANNEX 

The data annex (DOI: 10.5281/zenodo.7867002) includes: 

• StationList.xlsx: list of all stations including their coordinates, climate zone, station 

code, continent, altitude AMSL, data source, number of available test data sets, station 

type (Tier-1 or Tier-2), and available calibration record. 

• Result tables in folder “ResultTables”: Folders “climate_zones” and “continents” contain 

the tables described in Section 5.3. The filenames are 

“Component_metric_in_subgroup.html” with “component” DNI or GHI, “metric” 

describing the metric (see Table 3), and “subgroup” describing the continent or climate 

zone. 

• World maps: The folder “Resultmaps” contains world maps of the metrics described in 

Section 5.2. Either four or three metrics, depending on map, are included in each pdf. 

A legend describing the meaning of the point size is also included.  

• Scatter plots of test vs. reference irradiance: The folder “Scatterplots” contains two 

folders, “DNI” and “GHI”, for the two investigated components. Three subfolders are 

also contained in these two folders:  

o The subfolders “plotsPerSiteYear” contain plots named 

“scatOverviewCOMPONENT_SITEYYYY.png”, where “COMPONENT” is 

either DNI or GHI, SITE is the three-letter site abbreviation, and YYYY is the 

evaluated year. The png plots include the scatterplots for all test data sets 

evaluated for the case specified by the filename.  

o The subfolders “plotsPerTestdataProvider” contain plots named 

“scatOverviewTESTDATASET_COMPONENTYYYY.png”, where 

“TESTDATASET” describes the test data set, “COMPONENT” is either DNI or 

GHI, and YYYY is the evaluated year. The png plots include the scatterplots for 

all sites evaluated for the case specified by the filename.  

o The subfolders “plotsPerTestdataProviderSamePosPerStat” contain the same 

scatterplots as “plotsPerTestdataProvider”, but using a slightly different 

visualization method. Here, the position of each scatterplot for a given site within 

the plot is always the same. Although this yields many empty subplots and small 

scatterplots, it can be helpful to rapidly browse through the plots if only one or 

a few stations are of interest.  

 

  

https://doi.org/10.5281/zenodo.7867002


Task 16 Solar Resource for High Penetration and Large Scale Applications – Worldwide benchmark of modelled solar irradiance data    

37 

REFERENCES 

Amillo, A. G., L. Ntsangwane, T. Huld, and J. Trentmann. 2018. “Comparison of Satellite-
Retrieved High-Resolution Solar Radiation Datasets for South Africa.” Journal of Energy 
in Southern Africa 29 (2): 63–76. https://doi.org/10.17159/2413-3051/2018/V29I2A3376. 

Andreas, A., and T. Stoffel. 1981. “NREL Solar Radiation Research Laboratory (SRRL): 
Baseline Measurement System (BMS); Golden, Colorado (Data).” NREL Report No. DA-
5500-56488. https://doi.org/10.5439/1052221. 

———. 2006. “University of Nevada (UNLV): Las Vegas, Nevada (Data).” NREL Report No. 
DA-5500-56509. https://doi.org/10.5439/1052548. 

Andreas, A., and S. Wilcox. 2010. “Observed Atmospheric and Solar Information System 
(OASIS); Tucson, Arizona (Data).” NREL Report No. DA-5500-56494. 
https://doi.org/10.5439/1052226. 

———. 2012. “Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating 
Shadowband Radiometer (RSR); Los Angeles, California (Data).” NREL Report No. DA-
5500-56502. https://doi.org/10.5439/1052230. 

Brooks, M.J., S. du Clou, J.L. van Niekerk, P. Gauche, C. Leonard, M.J. Mouzouris, A.J. Meyer, 
N. van der Westhuizen, E.E. van Dyk, and F Vorster. 2015. “SAURAN: A New Resource 
for Solar Radiometric Data in Southern Africa.” Journal of Energy in Southern Africa 26: 
2–10. 

Driemel, A., J. Augustine, K. Behrens, S. Colle, C. Cox, E. Cuevas-Agulló, F. M. Denn, et al. 
2018. “Baseline Surface Radiation Network (BSRN): Structure and Data Description 
(1992–2017).” Earth Syst. Sci. Data 10: 1491–1501. https://doi.org/10.5194/essd-10-
1491-2018. 

Espinar, B., L. Wald, P. Blanc, C. Hoyer-Klick, M. Schroedter Homscheidt, and T. Wanderer. 
2011. “Project ENDORSE - Excerpt of the Report on the Harmonization and Qualification 
of Meteorological Data:Procedures for Quality Check of Meteorological Data.” https://hal-
mines-paristech.archives-ouvertes.fr/hal-01493608. 

Forstinger, A., Y.-M. Saint-Drenan, S. Wilbert, A. Jensen, B. Kraas, C. Fernández Peruchena, 
C. Gueymard, D. Ronzio, D. Yang, E. Collino, J. Polo Martinez, J. Ruiz-Arias, N. 
Hanrieder, and P. Blanc. 2021. “IEA-PVPS Task-16 Reference Solar Measurements.” 
Lionel Menard. https://doi.org/10.23646/3491b1a6-e32d-4b34-9dbb-ee0affe49e36. 

Forstinger, A., S. Wilbert, B. Kraas, C. Gueymard, D. Ronzio, D. Yang, E. Collino, J. Polo 
Martinez, J. Ruiz-Arias, N. Hanrieder, P. Blanc, and Y.-M. Saint-Drenan. 2021. “Expert 
Quality Control of Solar Radiation Ground Data Sets.” ISES Solar World Conference, no. 
October. 

Geuder, N., F. Wolfertstetter, S. Wilbert, D. Schüler, R. Affolter, B. Kraas, E. Lüpfert, and B. 
Espinar. 2015. “Screening and Flagging of Solar Irradiation and Ancillary Meteorological 
Data.” Energy Procedia 69 (May): 1989–98. 
https://doi.org/10.1016/J.EGYPRO.2015.03.205. 

Gschwind, B., L. Wald, P. Blanc, M. Lefèvre, M. Schroedter-Homscheidt, and A. Arola. 2019. 
“Improving the McClear Model Estimating the Downwelling Solar Radiation at Ground 
Level in Cloud-Free Conditions - McClear-V3.” Meteorologische Zeitschrift 28 (2): 147–
63. https://doi.org/10.1127/metz/2019/0946. 

  



Task 16 Solar Resource for High Penetration and Large Scale Applications – Worldwide benchmark of modelled solar irradiance data    

38 

Gueymard, C. 2014. “A Review of Validation Methodologies and Statistical Performance 
Indicators for Modeled Solar Radiation Data: Towards a Better Bankability of Solar 
Projects.” Renewable and Sustainable Energy Reviews 39 (November): 1024–34. 
https://doi.org/10.1016/J.RSER.2014.07.117. 

———. 2017. “Cloud and Albedo Enhancement Impacts on Solar Irradiance Using High-
Frequency Measurements from Thermopile and Photodiode Radiometers. Part 1: 
Impacts on Global Horizontal Irradiance.” Solar Energy 153 (September): 755–65. 
https://doi.org/10.1016/J.SOLENER.2017.05.004. 

———. 2018. “A Reevaluation of the Solar Constant Based on a 42-Year Total Solar Irradiance 
Time Series and a Reconciliation of Spaceborne Observations.” Solar Energy 168 (July): 
2–9. https://doi.org/10.1016/J.SOLENER.2018.04.001. 

Gueymard, C., J. Bright, X. Sun, J. Augustine, S. Baika, L. Brunier, S. Colle, et al. 2022. “BSRN 
Data Set for IEA-PVPS Task-16 Activity 1.4 Quality Control.” PANGEA. 
https://doi.org/https://doi.pangaea.de/10.1594/PANGAEA.939988. 

Hoyer-Klick, C., H.G. Beyer, D. Dumortier, M. Schroedter-Homscheidt, L. Wald, M. Martinoli, 
C. Schilings, et al. 2008. “Management and Exploitation of Solar Resource Knowledge.” 
In EUROSUN 2008, 1st International Conference on Solar Heating, Cooling and 
Buildings, Lisbon, Portugal. 

Hoyer-Klick, C., H. Beyer, D. Dumortier, L. Wald, C. Schillings, B. Gschwind, L. Menard, et al. 
2009. “MESoR – MANAGEMENT AND EXPLOITATION OF SOLAR RESOURCE 
KNOWLEDGE.” In SolarPACES 2009, Berlin : Germany (2009). 

Ineichen, P. 2014. “Long Term Satellite Global, Beam and Diffuse Irradiance Validation.” 
Energy Procedia 48 (January): 1586–96. 
https://doi.org/10.1016/J.EGYPRO.2014.02.179. 

Journée, M., and C. Bertrand. 2011. “Quality Control of Solar Radiation Data within the RMIB 
Solar Measurements Network.” Solar Energy 85 (1): 72–86. 
https://doi.org/10.1016/j.solener.2010.10.021. 

Lefèvre, M., A. Oumbe, P. Blanc, B. Espinar, B. Gschwind, Z. Qu, L. Wald, et al. 2013. 
“McClear: A New Model Estimating Downwelling Solar Radiation at Ground Level in 
Clear-Sky Conditions.” Atmospheric Measurement Techniques 6 (9): 2403–18. 
https://doi.org/10.5194/amt-6-2403-2013. 

Long, C. N., and E. G. Dutton. 2002. “BSRN Global Network Recommended QCtests, V2.0.” 
Baseline Surface Radiation Network. 
https://bsrn.awi.de/fileadmin/user_upload/bsrn.awi.de/Publications/BSRN_recommende
d_QC_tests_V2.pdf. 

Long, C N, and Y. Shi. 2008. “An Automated Quality Assessment and Control Algorithm for 
Surface Radiation Measurements.” The Open Atmospheric Science Journal 2: 23–37. 

Marchand, M., A. Ghennioui, E. Wey, and L. Wald. 2018. “Comparison of Several Satellite-
Derived Databases of Surface Solar Radiation against Ground Measurement in Morocco.” 
Advances in Science and Research 15 (April): 21–29. https://doi.org/10.5194/ASR-15-21-
2018. 

Maxwell, E., S. Wilcox, and M. Rymes. 1993. “Users Manual for SERI QC Software, Assessing 
the Quality of Solar Radiation Data.” Solar Energy Research Institute, Golden, CO. 

Nollas, F., G. Salazar, and C. Gueymard. 2023. “Quality Control Procedure for 1-Minute 
Pyranometric Measurements of Global and Shadowband-Based Diffuse Solar 
Irradiance.” Renewable Energy 202 (January): 40–55. 
https://doi.org/10.1016/J.RENENE.2022.11.056. 



Task 16 Solar Resource for High Penetration and Large Scale Applications – Worldwide benchmark of modelled solar irradiance data    

39 

Polo, J., S. Wilbert, J. A. Ruiz-Arias, R. Meyer, C. Gueymard, M. Súri, L. Martín, et al. 2016. 
“Preliminary Survey on Site-Adaptation Techniques for Satellite-Derived and Reanalysis 
Solar Radiation Datasets.” Solar Energy 132 (July): 25–37. 
https://doi.org/10.1016/J.SOLENER.2016.03.001. 

Qu, Z., A. Oumbe, P. Blanc, B. Espinar, G. Gesell, B. Gschwind, L. Klüser, et al. 2017. “Fast 
Radiative Transfer Parameterisation for Assessing the Surface Solar Irradiance: The 
Heliosat-4 Method.” Meteorologische Zeitschrift 26 (1): 33–57. 
https://doi.org/10.1127/metz/2016/0781. 

Ramos, J., and A. Andreas. 2011. “University of Texas Panamerican (UTPA): Solar Radiation 
Lab (SRL); Edinburg, Texas (Data).” NREL Report No. DA-5500-56514. 
https://doi.org/10.5439/1052555. 

Salazar, G., C. Gueymard, J. Bezerra Galdino, O. de Castro Vilela, and N. Fraidenraicha. 
2020. “Solar Irradiance Time Series Derived from High-Quality Measurements, Satellite-
Based Models, and Reanalyses at a near-Equatorial Site in Brazil.” Renewable and 
Sustainable Energy Reviews 117 (109478). 

Sengupta, M., A. Habte, S. Wilbert, C. Gueymard, and J. Remund. 2021. “Best Practices 
Handbook for the Collection and Use of Solar Resource Data for Solar Energy 
Applications: Third Edition.” National Renewable Energy Laboratory. 
https://www.nrel.gov/docs/fy21osti/77635.pdf. 

Šúri, M, J. Remund, T Cebecauer, D Dumortier, L. Wald, T Huld, and P. Blanc. 2008. “First 
Steps in the Cross-Comparison of Solar Resource Spatial Products in Europe.” In 
Eurosun 2008, 7–10. http://hal-ensmp.archives-ouvertes.fr/hal-
00587966%0Ahttp://hal.archives-ouvertes.fr/hal-00587966/. 

Vignola, F., and A. Andreas. 2013. “University of Oregon: GPS-Based Precipitable Water 
Vapor (Data).” NREL Report No. DA-5500-64452. 

Yang, D., and C. Gueymard. 2021. “Probabilistic Post-Processing of Gridded Atmospheric 
Variables and Its Application to Site Adaptation of Shortwave Solar Radiation.” Solar 
Energy 225 (September): 427–43. https://doi.org/10.1016/J.SOLENER.2021.05.050. 

 



Task 16 Solar Resource for High Penetration and Large Scale Applications – Worldwide benchmark of modelled solar irradiance data    

1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Acknowledgements
	Executive summary
	1 Introduction
	2 Test and reference datasets
	2.1 Reference database
	2.1 Test data sets

	3 Evaluation method
	4 Quality control and data selection
	4.1 QC methodology for 1-minute data
	4.2 Data selection

	5 Benchmark Results
	5.1 Scatter density plots
	5.2 World maps
	5.3 Results overview per continent

	6  Conclusions and summary
	Description of the data file annex
	References

