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EXECUTIVE SUMMARY 

An evermore accelerated deployment of photovoltaic (PV) capacity is expected worldwide and 

in-situ solar irradiance time series play a decisive in supporting such growth: not only they 

represent the foundation of solar resource assessment and forecasting, but they also drive 

prospective PV yield studies, can be used as a calibration reference when using satellite data, 

evaluating PV systems’ performance, or even developing forecasting algorithms. 

However, such datasets inevitably have gaps (i.e., periods with missing data) – as a result of 

defaults during data-logging, sensor failures, among others, or from Quality Check (QC) 

procedures – that can compromise their applicability and value. An additional issue is that data 

gaps can be further enlarged when computing temporal aggregations, notably for intra-daily to 

daily, daily to monthly and yearly averages, thus further degrading the dataset. 

This has raised the need for gap-filling (GF) methods that can post-process either static 

historical datasets or more dynamic real-time data streams. Each case is characterized by 

different constraints, such as the access to data that follows a given data gap or the acceptable 

time lag for generating the replacement synthetic data. 

And while, naturally, a given gap-filling method can be tested for a given location, such 

analyses are done in a very context-specific manner. Thus, this report aims to propose a GF 

benchmark framework, as well as evaluate a set of possible baseline algorithms for: 

▪ The GF of intra-hourly time series of global horizontal irradiance. The results are exposed 
in this report only for time step of 15-min. 

▪ The GF of the corresponding daily sums of irradiation in the presence of with intra-day 
gaps (DSG, daily sums with gaps) using two different approaches: (1) gap-filling the intra-
day time series with the previous methods and (2) using directly the incomplete data with 
methods which are less sensitive to gaps. 

 

It is also important to mention that while the focus is exclusively on: 

• global horizontal irradiance (GHI), this report paves the way for potential future studies 

addressing global tilted irradiance (GTI) and PV time series, 

• baseline gap-filling methods, this same benchmark framework can be used by anyone 

to evaluate more complex, e.g., machine-learning (ML-)based, approaches. 

 

This report is the result of expert discussions during specific sessions of the subtask-2 activity 

2.1 of the Task 16 of PVPS and during the dedicated workshop organized during the ICEM 

2019 conference: “Workshop on best practices for automatic and expert-based data quality 

control methods and for gap filling methods”.  
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1 MOTIVATION & CONTEXT 

Over the last decades, high expectations have been placed in photovoltaics (PV) as an 

important element of any designed pathways that aims to address climate change (Pathak et 

al., 2022) and promote fairer and more equitable energy systems (Campos et al., 2022). 

This has driven an accelerated deployment of PV capacity, the design of innovative 

applications (e.g., floating PV, agriPV), but also the valorization of Earth Observation data 

which is of essence to properly understand and exploit the potential of this technology. Among 

such data, solar irradiance in-situ measurements are of particular importance for PV, enabling 

the modelling of predictive and expected operational yields for standard PV configurations as 

well as the simulation of innovative concepts. From a solar resource assessment and 

forecasting perspective, in-situ data represent high-quality local information that can also be 

used as a calibration reference for satellite- and numerical weather prediction-based models. 

While larger-scale PV projects are expected to have in place co-located radiation sensor (or 

reference solar cells) that are installed with the same tilt and orientation as the PV modules, 

the most generic setup of solar irradiance data is that of a horizontally placed device measuring 

global horizontal irradiance (GHI). These data are particularly relevant, being used to calibrate 

satellite and numerical weather prediction products and play a great role in the prospective 

and operational yield analysis and forecasting of any PV project (using transposition algorithms 

that transform horizontal data to any intended tilt and orientation with a reasonable level of 

accuracy). Additionally, for smaller size installations, these are often the only solar resource 

data available to implement performance analysis protocols. 

However, such datasets will inevitably have gaps (i.e., periods with missing data) – as a result 

of defaults during data-logging, sensor failures, among others, or from Quality Check (QC) 

procedures – that can compromise their applicability and value. An additional issue is that data 

gaps can be further enlarged when computing temporal aggregations, notably for intra-daily to 

daily, daily to monthly and yearly averages, thus further degrading the dataset. 

  



Task 16 Solar resource for high penetration and large-scale applications Task name – Framework for benchmarking of gap-filling methods  

  

10 

2 PROPOSING A BENCHMARKING FRAMEWORK FOR GHI 
GF AND DSG METHODS 

The main goal for this report is to propose a “generic” framework meant to benchmark gap 

filling (GF) methods, meant to fill intra-day periods of missing global horizontal irradiance (GHI) 

data, as well as methods aimed at deriving daily sums from such incomplete time series – here 

designated as Daily Sum with intra-day Gaps (DSG). Additionally, since the GF methods 

generate complete time series, the corresponding daily averages will also be assessed from a 

DSG perspective. 

This benchmark framework consists in a Monte-Carlo analysis where realistic GHI data gaps 

are generated and imputed to high-quality complete GHI daily profiles, considering not only 

the amount of missing data but also how it is distributed throughout a day. This leads to a setup 

where we have pairs of GHI time series - complete and incomplete daily profiles – which allow 

assessing the performance of GF and DSG methods in a robust manner: the incomplete time 

series are post-processed and compared with either the original daily profile (for GF methods) 

or the corresponding daily irradiation (for DSG). 

In this report, the benchmark is only considering 15-min time resolution, but other time 

resolutions can be considered if they are multiples of 1-min (e.g., 5-min, 10-min, 1-h, etc.). 

Additionally, the framework is designed in a way that allows to cross-compare already existing 

approaches, but also to test new approaches notably based on machine learning (ML) or 

derived from solar forecasting approaches, for example. Beyond this cross-comparison 

purpose, this benchmark can be used for recommendations about limits of data gaps, for a 

given precision for downstream solar processing chains. 

2.1 Setting up a reference 1-min GHI database 

To be able to implement this benchmark framework, an essential asset is an extensive 
database of GHI measurements, which contains: 

▪ High-quality measurements, which increases the availability of complete daily profiles and 
ensures a robust and credible performance assessment of the tested methods, 

▪ Measurements from different latitudes and climates, to ensure a diversity of GHI time series 
in terms of characteristics such as sunshine duration, intra-day variability but also missing 
data patterns. The missing data patterns are about when, how long and at what frequency 
data gaps occur. 

Thus, we have considered 1-min GHI measurements from 16 Baseline Surface Radiation 

Network (BSRN) stations1 with at least 3 years of data, over the period from 2004 to 2018. An 

additional criterion when choosing these 16 stations was the availability of concomitant 

satellite-based GHI estimates from the HelioClim-3v4 database2,3, since this source of data 

can be used by a large variety of GF and DSG approaches. In practice, it means that every 

site is in the field of view (FoV) of the Meteosat Second Generation (MSG) satellite, from which 

HelioClim-3v4 derives its estimates. 

 

 
1 https://bsrn.awi.de/ 
2 http://www.soda-pro.com/web-services/radiation/helioclim-3-archives/info 
3 https://www.soda-pro.com/help/helioclim/helioclim-3-overview 

https://bsrn.awi.de/
http://www.soda-pro.com/web-services/radiation/helioclim-3-archives/info
https://www.soda-pro.com/help/helioclim/helioclim-3-overview
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The location and altitude of the selected locations is shown in the figure below (c.f. Annex 1 to 

find exact values). 

 

Figure 1: Location and altitude of the locations selected for this report. 

 

The collected data were submitted to automatic QC tests as described by Roesch et al., which 

you can find in Annex 2. Only totally unflagged 1-min GHI data were kept, meaning that not 

passing the QC test is considered equivalent to being missing from the dataset.  

Figure 2 illustrates the distribution of the percentage of missing 1-min data from the daily 

profiles for the set of BSRN stations. It corresponds to the histogram, represented in log-scales 

in both axes, expressing the number of days per bins of percentage of corresponding number 

of missing 1-min data. It is to be noted that the maximum percentage of missing 1-min data 

within a day is 99.38 %. 

Then, the dataset is complemented with supplementary variables: 

• 1-min interpolated GHI from the HelioClim-3v4 database4 (SAT), 

• 1-min top of atmosphere horizontal irradiance (TOA), 

• 1-min global horizontal irradiance under clear-sky conditions (CLS) from ESRA (Rigolier et 

al., 2000), 

• Solar Zenith Angle (SZA) and Solar Azimuth Angle (SAA) computed from SG2 (Blanc et 

al., 2012). 

These variables are meant to potentially be used by the GF and DSG methods tested here. 

 

  

 

 
4 The original estimates have a 15-min resolution http://www.soda-pro.com/web-services/radiation/helioclim-3-archives/info 

http://www.soda-pro.com/web-services/radiation/helioclim-3-archives/info
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Figure 2: Number of daily profiles (log-scale) for a given daily percentage of missing values. 

 

The following table summarizes the compiled database: 

Number of BSRN stations 16 in the field of view of MeteoSat 2nd Generation (MSG) 

Temporal resolution  1-min 

Number of daily profiles of 1-min GHI 56281 

Number of records during daytime 

(solar elevation greater than 0°) 

41067747 min 

Number of valid records during daytime 

(solar elevation greater than 0°) 

39784911 min (96 %) 

Number of complete daily profiles 28616 (51 %) 

Number of incomplete daily profiles 27665 (49 %) 

Number of complementary variables 5 (SAT, TOA, CLS, SZA, SAA) 

Table 1: Summarized description of the compiled data 

 

This reference database is available online as a NetCDF file db_reference_1min_v0.nc, as 

well as a support document describing the corresponding CDL structure5. 

  

 

 
5 https://cloud.mines-paristech.fr/index.php/s/9obUl2ZVGZTUU12 

https://cloud.mines-paristech.fr/index.php/s/9obUl2ZVGZTUU12
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2.2 The reasoning behind the Monte-Carlo based framework 

As mentioned before, the main idea behind the proposed framework is to use the prepared 
reference database with a Monte-Carlo approach to randomly generate many pairs of daily 
profiles of GHI which is illustrated in Figure 3. Each pair consists in a complete (original) and 
an incomplete time series with synthetic but realistic data gaps. All these pairs represent 
realistic examples of daily profiles, coming from a large variety of climates and showing a large 
variety of missing patterns (both in length, frequency, and distribution throughout a day), which 
should be in a sense related to the environmental conditions of the instrumental setup.  
 

 

 

Figure 3: Schematic overview of the implemented Monte-Carlo based benchmark framework. Here, 

the focus is placed on the generation of synthetic but realistic data gaps and corresponding complete 

time series. 

 
More precisely, this approach consists in the following steps: 

▪ Step 1: random draws of complete daily profiles of 1-min GHI from BSRN from the 
reference database, for any site and any day. This ensures a considerably diverse dataset, 
ensuring an extensive assessment. 

▪ Step 2: for each selected complete daily profile, random draw a missing pattern from 
incomplete daily profiles with similar daytime duration (±10 %, measured as the number of 
1-min values where SZA<90°) and possibly from different sites. 

▪ Step 3: resample the complete daily profile of GHI (W/m2) for the other resolutions of 
interest (10-min, 15-min and 1-h) and the corresponding daily sum of irradiation of 
reference (Wh/m2). 

▪ Step 4: generate the incomplete daily profile of GHI (W/m2) at the final time step (1-min, 
10-min, 15-min and 1-h) with the corresponding missing pattern.  

▪ Step 5: extract the corresponding additional data: CLS, SAT, SAA, SZA with the 
corresponding time steps. It is important to note that while the first two are effectively used 
in the gap-filling methods tested in this report, the others are added for future potential gap-
filling approaches. 
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To further illustrate this, Figure 4 shows an example of actual complete and incomplete daily 
profiles, as well as the result from transferring the missing data pattern from one to the other. 

 

 
Figure 4: Example of the imputation of a data gap to a complete daily GHI profile. series. As mentioned 

in the text, the gap is extracted a randomly drawn incomplete daily profile, possibly even from a 

different location, that shows a similar daytime duration. 

 

It is important to consider that a GF or DSG method may rely on a ML approach which will 
require an optimization of the associated hyperparameters. Thus, following common practice 
when optimizing a set of hyperparameters, this Monte-Carlo based procedure can be applied 
three times to generate three separate datasets: 

▪ TRAIN: One dataset for the training of ML approaches 
▪ VALIDATION: One dataset for the validation of the ML approaches to determine, if any, 

the optimal value for the hyperparameter set (avoiding overfitting the model) 
▪ TEST: One dataset used exclusively to evaluate the performance of GF and DSG methods. 

 

In order to have three independent datasets, we have randomly separated the years of data 

into three groups with a respective ratio of 30 % / 15 % / 55 % for the TRAIN, VALIDATION, 

and TEST subsets (as seen in the table below). Although this partitioning is uncommon, the 

availability of such long datasets allows us to implement this demanding setup - where more 

than half of the data is used for testing- which increases the robustness of the obtained results. 

Of course, this specific split into TRAIN, VALIDATION, TEST subsets can be modified for the 

purpose of other benchmarks based on the same database. 
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Datasets Years #  of 1-min daily profile pairs6 

TRAIN 2005, 2010, 2013, 2016, 

2018 

15 454 

VALIDATION 2009, 2012 7 622 

TEST 2004, 2006, 2007, 2008, 

2011, 2014, 2015, 2017 

26 924 

 TOTAL 50 000 

Table 2: Data structuring for the implementation of the benchmark framework 

 

These three Monte-Carlo based datasets were made available online in a NetCDF file for 

different time resolutions7. The structure of the corresponding NetCDF file is described in CDL, 

which, due to its specificity and technical level, is made available only online in the same web 

address. 

  

 

 
6 Where one pair of corresponds to a complete daily profile and that same data after imputation of a plausible data gap 
7 https://cloud.mines-paristech.fr/index.php/s/9obUl2ZVGZTUU12 

https://cloud.mines-paristech.fr/index.php/s/9obUl2ZVGZTUU12
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3 SELECTED METHODS FOR THE BENCHMARK 

In this chapter, a selection of standard GF and DSG solutions is evaluated using the 

benchmark framework proposed in Chapter 2. To recap, this framework was designed to 

provide a comprehensive evaluation of GF and DSG algorithms, by taking into account real 

measurements from diverse climates to generate synthetic, but plausible (and data-driven), 

data gaps. The goal of this is twofold: first, to increase the likelihood that the proposed 

framework is used by readers, by providing results which are actionable, replicable, and, thus, 

verifiable; then, to propose, and evaluate, a set of models which can be seen as baselines 

against which we can compare the performance of more complex approaches. 

 

3.1 Symbol glossary 

For the brief description of the different methods, the following symbols are used: 

▪ 𝐺(𝑘) : a given daily profile of global horizontal irradiance averages (W/m2) with a given time 

resolution 𝑑𝑡 expressed in decimal hours (𝑑𝑡 =
1

60
,

1

6
,

1

4
, 1 respectively for 1-min, 10-min, 

15-min and 1-h resolutions), 
▪ 𝐺𝑐𝑙𝑠(𝑘) : the daily profile of global horizontal irradiance under clear-sky condition, obtained 

using the ESRA model, for the same day as 𝐺(𝑘), 

▪ 𝐺𝑠𝑎𝑡(𝑘) : the daily profile of satellite-based global horizontal irradiance, obtained from the 

HC3v4 database, for the same day as 𝐺(𝑘), 

▪ 𝐷: set of 𝑁𝐷 indices 𝑘 corresponding to the daytime period within a given day (i.e., a daytime 

mask) 
▪ 𝑀: set of 𝑁𝑀 indices 𝑘 corresponding to the daytime period within a given day where data 

are missing (missing mask), 
▪ 𝑉: set of 𝑁𝑉 indices 𝑘 corresponding to daytime period within the day where data are 

available (valid mask), 
▪ 𝐾𝑐(𝑘): clear-sky index, which estimates the atmosphere transmissivity to GHI relative to a 

clear-sky atmosphere. 

𝐾𝑐(𝑘) = {
𝐺(𝑘)

𝐺𝑐𝑙𝑠(𝑘)
 𝑖𝑓 𝑘 ∈ 𝑉

𝑁𝑎𝑁 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(1) 

 

▪ 〈𝑋〉 corresponds to the average of available elements of X, which includes the nighttime 

and disregards values which are missing or have failed the QC test 

〈𝑋〉 =
1

𝑁𝑉
∑ 𝑋(𝑘)

𝑘∈𝑉

 
(2) 

 

▪ 𝐻 : the effective daily irradiation for a complete G(k) (i.e., 𝑁𝑀 = 0): 

𝐻 = ∑ 𝐺(𝑘)𝑑𝑡

𝑘∈𝐷

= 24 〈𝐺〉 (3) 
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3.2 Descriptions of the GF methods 

The following method descriptions are very brief and do not represent the corresponding 

efficient code implementation. 

3.2.1 GF0: Assuming the nearest available clearness index within the day 

Assuming 𝐾𝑐(𝑛(𝑘)), i.e., the nearest 𝐾𝑐 value available, and multiplying it by the clear-sky 

expectation 𝐺𝑐𝑙𝑠 for the instants 𝑘 where data are missing, ensures that the generated data 

consider the GHI daily seasonality (i.e., the apparent movement of the sun). This is quite similar 

to a smart persistence model used in solar forecasting (described, for example, in Liu et al.), 

with the exception that for gap filling we can consider records stored after the period with 

missing data. 

This method needs to have at least one valid data within the current day. 

More formally, for any 𝑘 ∈ 𝑀, i.e., for all missing records, let us note n(k) as the nearest element 

of V with respect to k: 

𝑛(𝑘) = argmin
𝑙∈𝑉

|𝑙 − 𝑘| (4) 

Thus, 

𝐺𝐺𝐹0(𝑘) = 𝐾𝑐(𝑛(𝑘))  𝐺𝑐𝑙𝑠(𝑘) (5) 

 

This method is considered in this work as a baseline reference for performance, since it is quite 

easy to implement, and it does not require any additional data source. 

 

3.2.2 GF1: Linear interpolation of available clearness index within the day 

Starting from the same premise as GF0, where the nearest available 𝐾𝑐 values are considered, 

in GF1 the missing data are derived from a weighted linear interpolation of the last available 
value before a data gap starts and the first available one after the gap ends, 𝐺(𝑓(𝑘)) and 

𝐺(𝑐(𝑘)) respectively. It is important to note that the contribution of each of these values to the 

estimation of a given missing value is weighted by the weighting factor 𝛼(𝑘) which quantifies 

the relative distance in time between each of the values and the missing record. 

This method needs to have at least two valid data points within the current day. 

For any 𝑘 ∈ 𝑀, let’s note 𝑓(𝑘) and 𝑐(𝑘): 

𝑓(𝑘) = max{𝑙 ∈ 𝑉 ∕  𝑙 < 𝑘} (6) 

𝑐(𝑘) = min{𝑙 ∈ 𝑉 ∕ 𝑙 > 𝑘} (7) 

Thus, 

𝐺𝐺𝐹1(𝑘) = 𝐺𝑐𝑙𝑠(𝑘) ((1 − 𝛼(𝑘))𝐾𝑐(𝑓(𝑘)) + 𝛼(𝑘)𝐾𝑐(𝑐(𝑘))) (8) 

where: 

𝛼(𝑘) =
𝑘 − 𝑓(𝑘)

𝑐(𝑘) − 𝑓(𝑘)
 

(9) 
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3.2.3 GF2: k-Nearest Neighbor-based approach using prior data 

In the context of this report, the k-Nearest-Neighbor (kNN)8,9 can be seen as a simple ML 

model which estimates the GHI for a period of missing data of a given station as the average, 

point by point, of the N most similar days. In practice, similarity is quantified as the averaged 
Euclidean distance10 between the 𝐾𝑐 values from the available records of the day in question 

and the corresponding values from other days from the training (TRAIN) dataset that belong 

to the same calendar month. 

This method needs to have at least one valid data point within the current day. 

Let 𝑇 =  {𝐺(𝑘, 𝑑)} be a training dataset of N daily complete profiles of GHI, from which we 

compute the corresponding clear-sky index values {𝐾𝑐(𝑘, 𝑑)}. 

For a given incomplete daily profile G(k), the Euclidean distance is computed for each of the 

N elements corresponding to the same calendar month (to have approximately the same 

daylight periods): 

𝐷𝑇(𝑑) = {〈(𝐾𝑐 − 𝐾𝑐(. , 𝑑))
2

〉    𝑖𝑓 𝑑𝑎𝑦 𝑑 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 𝑚𝑜𝑛𝑡ℎ

+∞                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                             
 (10) 

 

These distances are then sorted in ascendant order (𝑑1, … , 𝑑𝑁): 

𝐷𝑇(𝑑1) ≤ 𝐷𝑇(𝑑2) ≤ ⋯ ≤ 𝐷𝑇(𝑑𝑁) (11) 

 

Then, for any 𝑘 ∈ 𝑀, the kNN method estimates the missing value as the simple average of 

the nearest L neighbors, being L the only parameter of this method, 

𝐺𝑘𝑁𝑁(𝑘) = 𝐺𝑐𝑙𝑠(𝑘)
1

𝐿
∑ 𝐾𝑐(𝑘, 𝑑𝑙)𝐿

𝑙=1   (12) 

 

It is interesting to note that the neighbor search could be extended to also consider historical 

GHI records from complementary data sources (e.g., a nearby station or concomitant satellite-

based estimates, such as the ones used in GF4). 

  

 

 
8 https://medium.com/analytics-vidhya/k-neighbors-regression-analysis-in-python-61532d56d8e4 
9 https://towardsdatascience.com/k-nearest-neighbours-knn-algorithm-common-questions-and-python-implementation-
14377e45b738 
10 Other distance metrics could have been considered, c.f. references 8, 9 

https://medium.com/analytics-vidhya/k-neighbors-regression-analysis-in-python-61532d56d8e4
https://towardsdatascience.com/k-nearest-neighbours-knn-algorithm-common-questions-and-python-implementation-14377e45b738
https://towardsdatascience.com/k-nearest-neighbours-knn-algorithm-common-questions-and-python-implementation-14377e45b738
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3.2.4 GF3: Kernel regression using prior data 

 
A Kernel-based regression is capable of modelling non-linear patterns as a weighted average 
of the available observations11,12. Here, the weights are derived from a kernel function (often a 
probability density function from a given distribution): for a given new point we want to estimate, 
the weight of each of the observations is inversely proportional to its distance to the new point. 
In a sense, the kernel serves as a similarity metric. It can also be said that kernel regression 
is close to a non-parametric approach, since only the weighting function may require any 
parameter(s) to be defined. 

 
Here, the weights are attributed based on a Gaussian kernel and on the same distance metric 
which is used for GF2. This can be seen as a weighted version of the previous GF method 
with an additional parameter σ for the kernel. 
 

Thus, and using the same notation as GF2, for any 𝑘 ∈ 𝑀, and 𝜎2 the only parameter for the 

kernel-based method, 

𝐺𝐺𝐹2(𝑘) = 𝐺𝑐𝑙𝑠(𝑘)
∑ 𝐾𝑐(𝑘, 𝑑) 𝐾 (

𝐷𝑇(𝑑)
𝜎2 )𝑁

𝑑=1

∑ 𝐾 (
𝐷𝑇(𝑑)

𝜎2 )𝑁
𝑑=1

 (14) 

 where the kernel K is gaussian: 

𝐾(𝑥) = 𝑒−𝑥2/2 (15) 

    

3.2.5 GF4 : Assuming concomitant satellite-based GHI estimation 

 
Being likely the easiest GF approach to implement, GF4 replaces the identified GHI gaps with 
the concomitant satellite-based GHI estimates (in this report, HelioClim3v4). 

 

Thus, for any 𝑘 ∈ 𝑀 

𝐺𝐺𝐹4(𝑘) = 𝐺𝑠𝑎𝑡(𝑘) (16) 

 

When using this approach, it is important to be aware of the limitations of satellite-based 

methods13. Additionally, it is important to note that although the satellite data used in this report 

are made available, HelioClim3v4 is a paid product. However, openly available databases 

exist, such as the CAMS Radiation service14 (from Copernicus Atmosphere Monitoring 

Services) or NSRDB15, the National Solar Radiation Database from the National Renewable 

Energy Laboratory (NREL). 

 

 
11 https://towardsdatascience.com/kernel-regression-made-easy-to-understand-86caf2d2b844 
12 https://towardsdatascience.com/an-introduction-to-kernel-methods-9c16fc8fefd2 
13 Although for a different product, the section 5 of “User Guide to the CAMS Radiation Service (CRS)” is a suggested reading. 
https://atmosphere.copernicus.eu/sites/default/files/2021-05/CAMS72_2018SC1_D72.4.3.1_2021_UserGuide_v1.pdf 
14 https://www.soda-pro.com/web-services/radiation/cams-radiation-service 
15 https://nsrdb.nrel.gov/ 

https://towardsdatascience.com/kernel-regression-made-easy-to-understand-86caf2d2b844
https://towardsdatascience.com/an-introduction-to-kernel-methods-9c16fc8fefd2
https://atmosphere.copernicus.eu/sites/default/files/2021-05/CAMS72_2018SC1_D72.4.3.1_2021_UserGuide_v1.pdf
https://www.soda-pro.com/web-services/radiation/cams-radiation-service
https://nsrdb.nrel.gov/
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It is also of interest to mention possible variations of this same implementation. First, the 

satellite estimate can be a priori calibrated for the target location based on historical data16. 

Second, alternative concomitant data sources can be considered: such as a neighboring GHI 

sensor or even a PV installation (which could be used as a variability proxy). 

 

3.2.6 Discussion on the applicability of the tested GF methods 

It is important to discuss the context of implementation of a given GF method, so that it is clear 

which applications a given method can be compatible with. In particular, from a data source 

and data availability in time perspectives. For example, a given method may require data only 

from the sensor under study (GF0 to GF3) or from a given satellite database (GF4). 

Additionally, it may depend on: only historical data which precede the gap (GF2 and GF3), a 

requirement for live data streams feeding real-time applications; data that come before and 

after the gap (GF0 and GF1), which benefits from a larger pool of information; or data that are 

concomittant to the data gap but comes from alternative data sources (GF4). 

Regarding the later case, it is important to take into account that the alternative source of data 

(be it a satellite, a neighboring GHI sensor, or even a PV installation which could be used as a 

proxy) there is often a delay associated to the data collection, data transfer, and data 

processing. Thus, even though the data are concomittant, depending on the characteristics of 

the service, it may be impractical for real-time applications.  

 

Method 
Data source Data are available ______ the gap 

Sensor itself Satellite before17 before & after concomitant to18 

GF0 X   X  

GF1 X   X  

GF2 X  X   

GF3 X  X   

GF4  X   X 

Table 3: Description of tested gap-filling models according to data source and data availability 

  

 

 
16 Because the impact of this calibration is highly dependent on the target location and the amount of available data, this has not 
been explored in this report. 
17 this would be the case for real-time data streams which feed real-time applications 
18 if neighboring in-situ data are available (GHI or PV as a proxy), and assuming an available and fast enough data transfer, could 
also be compatible real-time applications 
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3.3 Descriptions of the DSG methods 

First, we test the ability of the gap-filling methods discussed in 2.3 for estimating the daily 

irradiation H. Since these produce complete daily profiles of GHI, by generating the data for 

the missing periods, we can calculate the daily sum simply with, 

𝐻𝐺𝐹𝑥 = 24〈𝐺𝐺𝐹𝑥〉 (17) 

 

Then, three DSG methods are also tested, all of them based on the multiplication of the daily 

average of available intra-day GHI (nighttime included), or a calibrated version of it, by the 

number of hours in a day (24). Thus, we note: 

𝐻𝐷𝑆𝐺𝑥 = 24〈𝐺〉𝐷𝑆𝐺𝑥 (18) 

 

3.3.1 DSG0: Using the simple average of intra-day GHI 

Assuming that the daily average of the available data 〈𝐺〉 (i.e., in our case an incomplete 

sample of a day) may still be representative of the real daily average, the DSG is estimated by 
multiplying the simple average of available intra-day GHI, disregarding eventual missing (NaN) 
values, multiplied by 24 hours. 

𝐻𝐷𝑆𝐺0 = 24〈𝐺〉 (19) 

 

3.3.2 DSG1: simple average of intra-day GHI calibrated by clear-sky model 

Similar to DSG0 but tries to compensate the impact of the missing data by calibrating 〈𝐺〉 with 

the ratio of the corresponding daily sum of clear-sky ESRA model with and without the same 
missing patterns. 

𝐻𝐷𝑆𝐺1 = 24〈𝐺〉
∑ 𝐺𝑐𝑙𝑠(𝑘)𝑘∈𝐷

∑ 𝐺𝑐𝑙𝑠(𝑘)𝑘∈𝑉
 (20) 

 

This assumption works best when the missing data correspond to clear-sky periods and the 

corresponding irradiance is well estimated by the ESRA model. 

 

3.3.3 DSG2: Calibrated simple average of intra-day GHI 

▪ Similar to DSG1 but uses the ratio of the corresponding daily sum of satellite-based HC3v4 
database with and without the same missing patterns as a calibration factor, instead of the 
ESRA model. 

𝐻𝐷𝑆𝐺1 = 24〈𝐺〉
∑ 𝐺𝑠𝑎𝑡(𝑘)𝑘∈𝐷

∑ 𝐺𝑠𝑎𝑡(𝑘)𝑘∈𝑉
 (21) 

 
In comparison, this extends the best working conditions from clear-sky only to all sky 
conditions, as long as that is accurately modelled by HC3v4.  
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4 RESULTS OF THE BENCHMARK AT 15-MIN BASIS 

The different GF and DSG methods are assessed in terms of standard statistical metrics, as 

those described for example by Espinar et al. (2009): 

▪ Mean bias error (MBE), 

▪ Root mean square error (RMSE), 

▪ Mean absolute error (MAE), 

▪ Correlation coefficient (CC). 

These metrics at the intra-day and daily bases are used to evaluate the overall performance 

of the GF and DSG methods. Additionally, the dependency between the intra-day GF 

performance with the length of the period with missing data was further explored. To have a 

kind of analogy with forecasting, we have in fact considered that the time between a given 

timestamp with missing data and the nearest valid elements of the daily profile could be 

understood as the time horizon of the gap filling, named hereinafter the gap time horizon. 

𝐻𝑧(𝑘) = |𝑛(𝑘) − 𝑘| (22) 

 

For DSG assessment, the discriminating element is the fraction of missing values within a day: 

𝑝𝑀 = 𝑁𝑉/𝑁𝐷 (23) 

 

The validation dataset has been used for the following hyperparameters for the ML approaches 

GF2 and GF3: 

▪ L = 10 (for the kNN approach of GF2), 
▪ 𝜎2 = 0.0144 (for the Kernel-based approach of GF3). 

 

4.1 Assessment of intra-day GF methods 

Over the whole TEST dataset, the satellite-based GF method outperforms the other GF 

methods: 

 NDATA 

(timesteps) 

MREF 

(W/m2) 

MBE 

(%) 

MAE 

(%) 

RMSE 

(%) 

CC 

(-) 

GF0 

232556 338.1 

-2.9 17.5 33.6 0.923 

GF1 -3.6 15.7 29.2 0.941 

GF2 3.0 20.6 34.8 0.916 

GF3 3.0 20.4 33.6 0.920 

GF4 1.3 15.2 24.1 0.959 

Table 4: Overall performance of tested gap-filling methods 

Because this table only shows the overall performance, it may hide some variability in 

performance in respect to other variables. Here, we explore potential dependencies with the 

gap time horizons, which are not uniformly distributed in the dataset. 
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Figure 5 provides the distribution of the number of daily profiles for different bins of gap time 

horizon. 

 

Figure 5: distribution of the number of missing 15-min GHI with respect bins of gap time horizons. 

 

For each of these bins, Figure 6 represents the average daily GHI used for relative RMSE. 

 

Figure 6: averages 15-min GHI from the complete reference daily profiles for the different bins of 

gap time horizons. 
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Figure 7 presents the relative RMSE (%) for each gap-filling method (GF0 to GF4) for 8 

different intervals of gap time horizon. For gap time horizons less than 30 min, the best 

approach is the linear interpolation of clear-sky index (GF1). For larger gap time horizons, 

satellite data provide (GF4) the best GF approach. However, when satellite data are not 

available, the kernel-based approach (GF3) is better than the linear approach (GF1) for gap 

time horizons larger than 2 hours.  

The use of the GF3 approach should be carefully evaluated because, like the GF2 k-NN 

method, it depends on the number daily profiles of the training (TRAIN) dataset used per 

station that ranges here between 8500+ and 37000+ daily profiles. For such methods, the 

validation (VALIDATION) dataset must be used in an operational condition to assess the 

effective running performance of GF2 and GF3 methods, considering the historical dataset at 

hand and its amount of complete daily profiles. 

 

Figure 7: relative RMSE for the different GF methods for the different bins of gap time horizons. 

 

Figure 8 presents with boxplots, per bins of gap time horizon, the variability with respect the 

16 stations of the relative difference of RMSE between GF4 based on satellite and GF1 based 

on linear interpolation of clear-sky index. This relative difference of RMSE can be interpreted 

as RMSE-skill scores of GF4 compared to GF1. 
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Figure 8: boxplots of station-wise relative difference of RMSE between GF4 and GF1 for the different 

bins of gap time horizons. 

 

Except for the gap time horizons greater than 2-h, some stations do not present a positive skill-

score for GF4 when the gap time horizon is larger than 30 min: the average gain of GF4 with 

respect GF1 observed in Figure 5 is not uniform with respect the location. The performance of 

GF4 intrinsically depends on the performance of the satellite database for that location. 

Figure 9 shows boxplots of the variability of difference of RMSE between GF4 and GF1 with 

respect all gap time horizons larger than 30 min, for the different stations. Two stations clearly 

present under-performance of GF4 compared to GF1: IZA and TOR. 

 

 

Figure 9: boxplots of difference of RMSE between GF4 and GF1 for all gap time horizons larger than 

30 min, per station. 
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4.2 Assessment of the DSG methods 

Over the whole TEST dataset, the satellite-based DSG method outperforms the other methods 

for the DSG estimations, except for the RMSE criterion for which the satellite-based GF method 

provides slightly better results.  

 NDATA 
(days) 

MREF 
(Wh/m2) 

MBE 
(%) 

MAE 
(%) 

RMSE 
(%) 

CC 
(-) 

GF0→d 

26293  3613.1 

-0.6 % 2.1 % 6.2 % 0.996 

GF1→d -0.7 % 2.1 % 6.5 % 0.995 

GF2→d 0.6 % 2.9 % 6.8 % 0.995 

GF3→d 0.5 % 2.8 % 6.5 % 0.995 

GF4→d 0.3 % 2.0 % 3.7 % 0.998 

DSG0 -1 % 3.2 % 7.4 % 0.994 

DSG1 -0.4 % 2.6 % 6.2 % 0.996 

DSG2 -0.1 % 1.8 % 4.5 % 0.998 

Table 5: Overall performance of the tested “daily sum with gaps” methods 

 

Just as for the GF methods, limiting the analysis only to the overall performance hides a 

variability against the percentage of missing data within the daily profiles. Again, we can see a 

non-uniform distribution of days with respect the percentage of missing data during daylight 

(Figure 10). 

 

 

Figure 10: number of daily profiles for the different bins of daily percentage of missing data. 
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Figure 11 presents the corresponding average of daily sum of irradiation for the same bins of 

daily percentage of missing data as Figure 8. 

 

Figure 11: daily global horizontal irradiations from the reference complete daily profiles for the 

different bins of corresponding daily percentage of missing data. 

 

Owing to Figure 12, having less than 5 % of missing data within a day induces a relative RMSE 

lower than 1 %, whatever the DSG (or GF) methods. Having less than 20 % of missing data 

induces an uncertainty between 2 % and 4 %, depending on the method used. 

 

Figure 12: relative RMSE (%) of DSG for the different bins of daily percentages of missing data. 
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Figure 13Figure 13, presenting the RMSE-based skill values with respect to the GF0→d 

method, highlights the best approaches for the different bins of daily percentages of missing 

data. Up to 20 % of daily missing data, the GF1→d method based on linear interpolation of 

clear-sky index provides the most accurate DSG. After this threshold, satellite-based 

approaches, DSG2 and GF4→d, provide the most accurate DSG, respectively for daily missing 

data percentages between 20 % and 50 % and larger than 50 %. 

 

Figure 13: relative RMSE-skills (%) of DSG for the different bins of daily percentages of missing 

data, compared to the GF0→d method.  

 

Just like the intra-day performances discussed in section 4.1, these performances averaged 

over the stations hide some disparities within them. Figures 14 and 15 present per station the 

variability of the RMSE-skills (%) of respectively GF4→d and DSG2 for data daily percentages 

of missing data larger than 20 %. The RMSE-skills show clear underperformances of the two 

satellite-based approaches for IZA, TOR and PAY. 

 

Figure 14: boxplots of difference of RMSE between GF4→d and GF0→d for missing data percentage 

larger than 20 %, per station. 
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Figure 15: boxplots of difference of RMSE between DSG2 and GF0→d for missing data percentage 

larger than 20 %, per station. 
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5 CONCLUSION AND PERSPECTIVES 

This report aims to propose a general framework meant for benchmarking gap-filling methods 

as well as evaluate the performance of a selection of baseline methods. This is done both for 

intra-day completion and temporal aggregation from intra-daily to daily values of incomplete 

Global Horizontal Irradiance (GHI) time series. 

The general principle of this framework is to use real 1-min data of irradiance from in-situ 

pyranometric stations to get both high-quality QC-checked complete daily profile of 1-min 

irradiance along with real patterns of missing data during daytime. Having these two reference 

datasets, a Monte-Carlo procedure is used to generate synthetic daily profiles of irradiance 

with different time resolutions (by aggregation of the original 1-min data) both complete and 

with various data missing patterns. These synthetic profiles can be then used respectively as 

the reference and the input of gap-filling methods under test.  

This general framework is implemented in this work from high-quality QC-checked daily 

profiles of 1-min GHI time series provided by 16 BSRN stations over the time period 

2004-2018, along with satellite-data from Helioclim-3v4 and solar position related information 

from the SG2 library. This 1-min NetCDF database is available online19, as well as the 

corresponding databases for the time steps 10-min, 15-min and 1-h. Of course, these 

databases can be extended to a larger set of pyranometric stations with available 

corresponding satellite data. 

To apply this general framework, the report presents the approaches and the performances of 

5 gap-filling methods meant to complete time series of 15-min GHI and 8 gap-filling methods 

to provide daily sums of irradiations from daily profiles with missing data. The second case 

includes the 5 intra-day completion models, which can simply be aggregated after the 

gap-filling is done, as well as 3 other methods that can compute the compensated daily sums 

without explicitly gap-filling the intra-day profiles beforehand. 

From the obtained results, below is the overall ranking performance-wise (from best to worst, 

RMSE-wise): 

• GF4, GF1, GF0 and GF3 (tied), and GF2, for the intra-day completion of daily profiles,  

• GF4→d, DSG2, GF0→d and DSG1 (tied), GF1→d and GF3→d (tied), GF2→d, DSG0, 

for calculating the daily sums of irradiations from daily profiles with missing data. 

However, it is important to note that not only this ranking may change depending on the chosen 

statistical performance metric, but also that this performance depends on the target location 

and the horizon of the data gap. 

For example, for large data gaps, the use of GF4 (concomitant satellite data) demonstrates, 

on average, the highest performance but some significant under-performance may arise for 

some specific location. Thus, using the proposed Monte-Carlo-based benchmark framework 

with synthetic daily profiles using historical data can be very useful to quantify the local 

performance gains (or losses) of using satellite-based gap-filling methods compared to simpler 

approaches like the linear interpolation of clear-sky index. 

 

 

 
19 “db_benchmark_1min_v0.nc” file in https://cloud.mines-paristech.fr/index.php/s/9obUl2ZVGZTUU12 

https://cloud.mines-paristech.fr/index.php/s/9obUl2ZVGZTUU12
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It was also shown that for gap time horizons less than 30 min, the best approach is in fact GF1 

(linear interpolation of clear-sky index), whereas GF4 (using concomitant satellite data) 

performs best for higher horizons. However, when satellite data are not available, GF3 (the 

kernel-based approach) is better than GF1 for gap time horizons larger than 2 hours. It is 

important to note that for real-time applications the gap horizon is not known beforehand. For 

such contexts, either the best overall performing model or the one that better suits the most 

frequent gap horizon for a target location can be deployed. A simplistic alternative could be to 

implement a model switch could be put in place that changes from one approach to another 

as the gap horizon surpasses a given threshold. 

Nonetheless, it is relevant to acknowledge that a RMSE-based ranking of the gap-filling 

approaches under test may induce oversimplistic and inconsistent conclusions. For example, 

for some methods, notably based on satellite data, the average good performance may hide 

some local significant under-performances (e.g., underestimation of solar resource local 

variability). Additionally, it disregards the robustness and implementation complexity of each 

method, as well as specificities of the application context. While the (un)availability of satellite 

data are an easy example to illustrate this, two more differentiated cases are provided: 

• the added value of the generated synthetic data and which statistical indicator is a 

better proxy for its practical value greatly depend on the application at hand,   

• real-time data streams and applications can only use past data when a data gap occurs 

and may prioritize factors such model latency or time-of-response. 

Regarding potential developments for this benchmark, it could be extended to: 

• include larger reference databases (both in time and in number of locations), 

• integrate more gap-filling approaches, 

• integrate more performance tests, for example one which differentiates “clear” from 

“overcast” or “cloudy” days. 

Additionally, the principle of the framework itself can be of course questioned. First, this 

Monte-Carlo implementation is based on random draws of already existing data gap patterns 

but disregards their external causes (meteorological parameters, maintenance constraints, 

etc.): some unrealistic scenarios may then arise that may create some biases in the 

performance analysis. Pure random generation of data gaps based on time of occurrence and 

duration for each location could be implemented, as well to check the consistency of the 

results, compared to the existing approach.  
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7 ANNEX 1: LOCATION OF CONSIDERED GHI DATA 

 

 

BSRN Code  Station name Latitude Longitude Elevation 

BRB Brasilia -15.6010° -47.7130° 1023 m 

CAB Cabauw 51.9711° 4.9267° 0 m 

CAM Camborne 50.2167° -5.3167° 88 m 

CAR Carpentras 44.0830° 5.0590° 100 m 

CNR Cener 42.8160° -1.6010° 471 m 

FLO Florianopolis -27.6047° -48.5227° 11 m 

ILO Ilorin 8.5333° 4.5667° 350 m 

IZA Izana 28.3093° -16.4993° 2373 m 

LIN Lindenberg 52.2100° 14.1220° 125 m 

PAL Palaiseau 48.7130° 2.2080° 156 m 

PAY Payerne 46.8150° 6.9440° 491 m 

PTR Petrolina -9.0680° -40.3190° 387 m 

SBO Sede Boqer 30.8597° 34.7794° 500 m 

SMS Sao Martinho de Serra -29.4428° -53.8231° 489 m 

TAM Tamanrasset 22.7903° 5.5292° 1385 m 

TOR Toravere 58.2540° 26.4620° 70 m 

Table 6: Description of the considered sites with GHI measurements from the BSRN network. 
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8 ANNEX 2: IMPLEMENTED QUALITY-CHECK PROTOCOL 

 

As mentioned in the body of this report, the quality-check protocol considered in this report can be found 

in Roesch et al. (2011). It aims to flag observations that are suspected of being erroneous, so that for a 

given application the end user may choose if they wish to disregard such data. The authors propose two 

possible procedures when only GHI data are available: one defining physically possible limits for GHI 

observations, considering the time and location at hand; the other, more demanding, which defines 

extremely rare limits that GHI would only surpass over very short periods and under very rare conditions. 

For this report, the second procedure was implemented, and it consists in the following accepted ranges: 

−4 𝑊. 𝑚−2 ≤ 𝐺𝐻𝐼 ≤ 1.5 × 𝑆0 × 𝜇1.2 + 100  𝑊. 𝑚−2 (24) 

where S0 is the solar constant adjusted for Earth-Sun distance and μ is the cosine of the solar zenith 

angle. As also mentioned in the report, both variables were calculated using the sg2 library (Blanc et al., 

2012) which is available in GitHub20. 

 

  

 

 
20 https://github.com/gschwind/sg2 
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