

PRECISE IRRADIANCE MODELING AS SOURCE OF PARTIAL SHADING ANALYSIS

Bernhard Kubicek

AIRBORNE LASERSCANS

- Laser-Runtime measurement with fast mirrors for 2d-deflection
- Helicopter/plane mounted devices
- Heavy duty drones
- Additional visible light camera
- Result:
 - List of colored points in 3d
 - "Pointcloud"

RIEGL VPX-1 Helicopter Pod with VUX-240 and 3 PhaseOne iXM high resolution digital cameras

system operation and data acquisition with RiACQUIRE

Source: riegl.com

POINTS?!

- Can be visualized fast!
 - Realtime viewing of 10^6 points no problem on laptop
- Contain the full measured data
- Geolocated

CREATION OF DSM /DTM

- GeoTIFFs:
 - 2D images that are geolocated
 - A defined transformation for each pixel to a position on the globus
 - Instead of color triplets (RGB):
 - One or more floating point values (e.g. height above see level)
- One defines a resolution (e.g. 1m in NS and EW)
 - There are multiple laserscan-Points in such a pixel
 - Relatively high height:
 - Value for the digital SURFACE model
 - Relativiely low height:
 - Digital terrain model

LIDAR DATA

"Moosbrunn" south of Vienna/Austria

Floating point height scaled min to max: ~16m

DSM aka "highest points"

LIDAR DATA

DEM: lowest points

NO Trees+Buildings

Good for Water flow

Less height variation

Height variation: 3m

Height variation: ~3m

Laid dry swamp

20/09/2023

SUBTRACTION

- (DSM-DEM)
- Elevation of trees+buildings
- above ground level
- Why? Separate trees and buildings

YOU TALK ABOUT SWAMPS? What has that to do with PV ?!

20/09/2023

LIDAR DSM/DEM

- Availability:
 - Austria: 1m resolution, Vienna: 0.5m
 - Swiss: 0.5m
 - France: 0.25m
 - Typically FREE
- Exist especially in large cities
- Very often:
 - Free!!

Country / Province	Free	EPSG	Projection	Resolution	Format *
Australia	Yes	28348-28358	GDA94 / MGA Zone 48-58	5 m	ASC, GeoTIFF
Australia	Yes	28348-28358	GDA94 / MGA Zone 48-58	1 m	ASC
Austria	Yes	3035	ETRS89-extended / LAEA Europe	1 m	GeoTIFF
Austria / Burgenland	Yes	31256	MGI / Austria GK East	0.5 m	GeoTIFF
<u>Austria / Kärnten</u>	Yes	31258	MGI / Austria GK M31	1 m	ASC
Austria / Niederösterreich	Yes	31259	MGI / Austria GK M34	1 m	ASC
Austria / Oberösterreich	Yes	31255	MGI / Austria GK Central	0.5 m	XYZ, GeoTIFF
Austria / Salzburg	Yes	31258	MGI / Austria GK M31	1 m	ASC
Austria / Steiermark	Yes		UTM 33 North	1 m	GeoTIFF
Austria / Tirol	Yes	31254, 31255	MGI / Austria GK West, Central	1 m	GeoTIFF
Austria / Vorarlberg	Yes	31254	MGI / Austria GK West	5 m	IMG
Austria / Wien	Yes	31256	MGI / Austria GK East	1 m	ASC, GeoTIFF
<u>Belgium / Vlaanderen</u>	Yes	31370	Belgian Lambert 72	1 m	GeoTIFF
<u>Belgium / Wallonie</u>	Yes	3812	Belgian Lambert 2008	0.5 m	GeoTIFF
<u>Brazil / São Paulo</u>	Yes		UTM 23 South	1 m	LAZ
<u>Canada</u>	Yes		NAD83	0.75 arcs	GeoTIFF
Canada / New Brunswick	Yes	2953	NAD83 / New Brunswick Stereo	1 m	LAS
<u>Canada / British Columbia</u>	Yes		UTM xx North	1 m	LAZ, GeoTIFF
<u>Canada / Nova Scotia</u>	Yes		UTM 20 North	1 m	LAZ
<u>Denmark</u>	Yes		UTM 32 North	0.4 m	ASC, GeoTIFF
Estonia	Yes	3301	Estonian Coordinate System of 1997	1 m	XYZ, GeoTIFF
Finland	Yes		UTM 33-35 North	2 m	ASC, GeoTIFF
France	Yes	2154	RGF93 / Lambert-93	0.25 m	LAZ
Germany / Baden-Württemberg		31467	Gauss Krueger Potsdam Zone 3	1 m	XYZ
<u>Germany / Bayern</u>	Yes		UTM 32 North	1 m	GeoTIFF
Germany / Berlin	Yes		UTM 33 North	1 m	XYZ
Germany / Brandenburg	Yes		UTM 33 North	1 m	XYZ
Germany / Bremen			UTM 32 North	1 m	XYZ
<u>Germany / Hamburg</u>	Yes		UTM 32 North	1 m	XYZ
Germany / Hessen	Yes		UTM 32 North	1 m	XYZ
Germany / Mecklenburg-Vorpommern			UTM 33 North	1 m	ASC
<u>Germany / Niedersachsen</u>			UTM 32 North	1 m	XYZ
Germany / Nordrhein-Westfalen	Yes		UTM 32 North	1 m	XYZ, LAZ
Germany / Rheinland-Pfalz			UTM 32 North	1 m	XYZ
<u>Germany / Saarland</u>		31466	Gauss Krueger Potsdam Zone 2	1 m	XYZ
Germany / Sachsen	Yes		UTM 33 North	1 m	XYZ, LAZ
Germany / Sachsen-Anhalt	Yes		UTM 32 North	2 m	XYZ
Germany / Schleswig-Holstein		31468	Gauss Krueger Potsdam Zone 4	1 m	XYZ
Cormony / Thüringen	Vee		UTM 22 North	1	XX7 1 47

OPERA VIENNA

-

1-

>

TEXTURED BY ORTHOPHOTOS

FOR EACH TARGET POSITION

Horizon in Hemispheric map

20/09/2023

FOR EACH TARGET POSITION

OVERLAY OF HORIZON AND SUN

Including Distortion Correction = Clearsky PV potential

METHOD

- Full resolution grid
- Decrease to hypergrid 5x5 pixel, value=max(domain)
- do one more, 25x25px
- Do one more 125x125px
- For a point:
 - Start in the vicinity in the finest grid, create shadow map
- Go slightly further away, check the most corse grid
 - If shadow already larger in this direction than the corse grid value
 - Ignore
 - Otherwise refine
- SUPER efficient, very fast
- ONLY DNI

20/09/2023

Austria: Public interface, allows Horizo creation for PVGIS

Sonnengangberechnung

Sonnengang mit Horizontdarstellung

Abfragekoordinaten (EPSG:4326): 16.04, 47.81 Abfragehöhe (m): 512.7 (+2.0) Abfragezeit: 21.11.2023, 12:00 Uhr (Sonnenaufgang 8:23 Uhr, Sonnenuntergang 14:53 Uhr) Datengrundlage: Laserscanning Höhenmodell 2022 - geoland.at Befliegungsjahr im Abfragepunkt: 2017

https://voibos.rechenraum.com/voibos/voibos?name=sonnengang&Koordinate=16.03501,41.80624&CR9=4326&Datum=11-21:12:34&H=2

PROBLEMS OF LIDAR

- Commonly outdated!
 - In Vienna ~6 years old.
- Façades:
 - Jagged.

LOD 2.1 Manual building shapes based on development plans

Only exist in large cities Often outdated

3D RECONSTRUCTION

Photogrammetry

20/09/2023

RECIPE

- Take a 700€ DJI drone
- Programm a flight path
- Takes images of a house from multiple directions (50-500)
 - Images contains GPS positions in EXIF Metadata
 - Only accurate to 5m
- Put images into Photogrammetry software
 - Wait (0.5-3h)
- Get textured 3d model
- This can be done 100% with open source software
 - WebODM
- Or commercially: Pix4D

POINT CLOUD

PV*SOL

Textured Objects can be used in PV planning software, i.E. PV*Sol

Source: Valentin Software

CONCLUSION

- It is nowadays:
 - Free/very cheap to obtain detailed 3d models
- In the digital 3d model:
 - One can easily remove old buildings/trees
 - Plant custom geometry
- If one only performs direct irradiation:
 - Very fast algorithms exist
 - Suitable to find joint patches for strings of modules
- Public available data from goverments:
 - VERY NICE TO HAVE
 - Any € into that pays back!