

Using FAIRification and PV Ontologies to enable 2nd Life PV via provenance of modules, their energy production and O&M history Roger H. French, Kyocera Professor, Case Western Reserve University IEA PVPS Task 13 Webinar: Enabling 2nd Life Photovoltaics April 18th, 2024

Factors necessary for a Robust PV 2nd Life Market

How to Value 2nd Life PV Modules

- Need to know Module's Provenance
 - Where has it been, for how long?
 - How old is it?

PV Power Plants Sell Electricity

Therefore there is timeseries Power Production Data

Managing PV Power Plant Assets

- Bidding on 1 hour, next day markets for electricity sales
- Analysing PV Performance Loss Rate

New Data Science, Deep Learning and AI technologies

- Are rapidly changing how PV assets are studied
- Data-enabled analyses can establish 2nd Life PV Market

AI/ML Opportunities: Accelerating Time to Science

To develop AI/ML for Science, such as Photovoltaic Science We have High Performance Computing (HPC)

- "Scaled Up" Computing: Works for Physics Simulation Modeling
 - But doesn't handle massive datasets

Yet Big Tech uses Distributed Computing (DC)

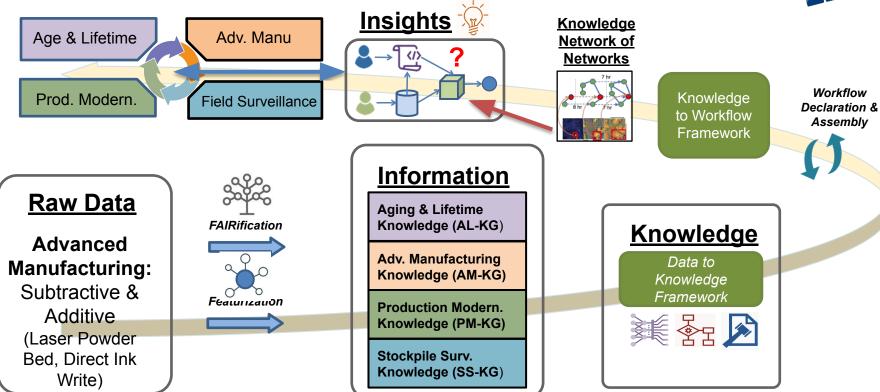
• "<u>Scaled Out</u>" Computing: e.g. used by Google, Meta, etc.

AI/ML for Science needs D/HPC Computing

- Needs the integration of "Scaled Out & Scaled Up" Computing
- CRADLEtm: Common Research Analytics & Data Lifecycle Environment¹
 - Automated pipelines, FAIRification², Efficient Insights

Data Centric Al³ presents humans with a grand opportunity

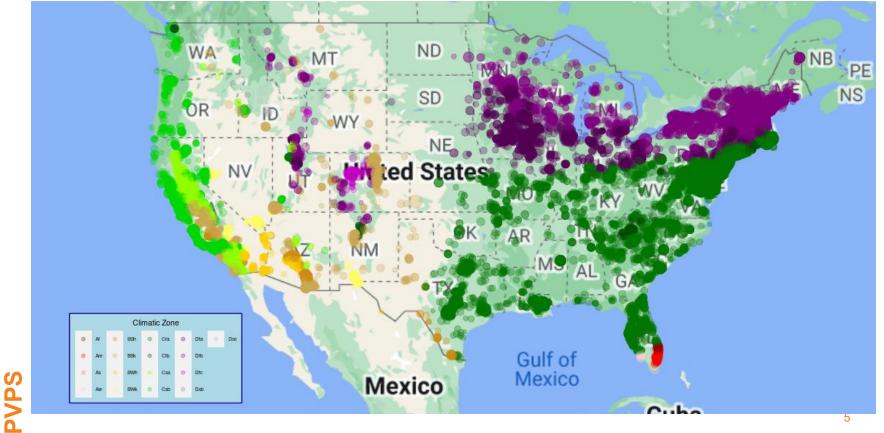
- "<u>Computational Inflection Point for Scientific Discovery</u>"⁴
 - Augmenting human reasoning; Working alongside human researchers
 - Scientific investigations restructured around the "salient human tasks"
 - With computers handling the routine and onerous tasks
 - Supplementing our human capabilities


While decreasing reductionist approaches in scientific research

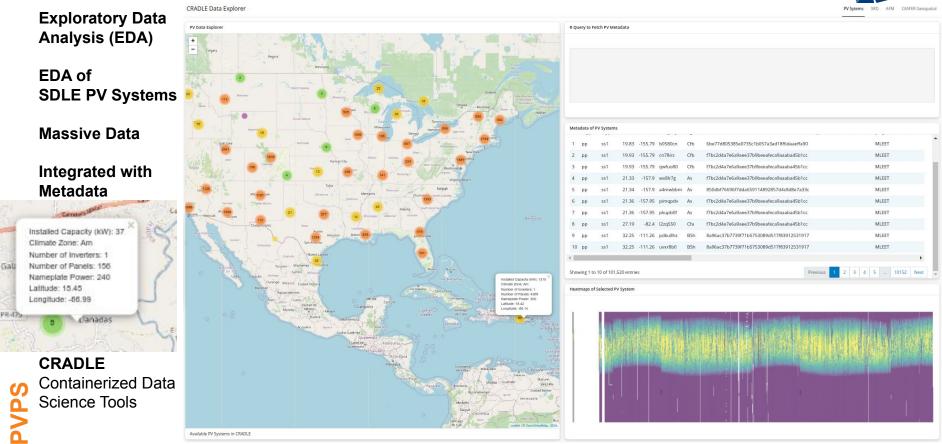
In SDLE Res. Cntr.

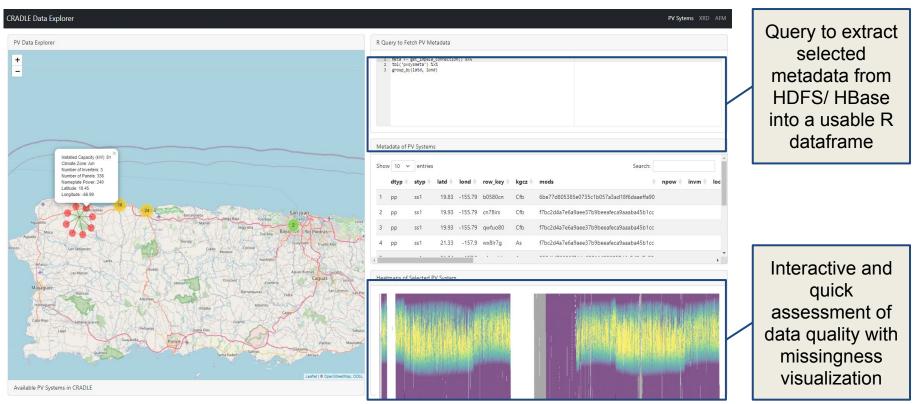
- Dist. Compute
 - o 2.5 Pb Cluster
 - o 7 TB Ram
 - 1164 CPU Cores
 - 30 GPUs
 - 480 GPU VRAM
 - 384k Cuda Cores
 - 1.2k Tensor Cores
- High Perf. Compute
 - $\circ~$ 7152 CPU Cores
- <u>Nvidia AISC 8 DGX</u>
 - 2.5 Tb VRAM
 - 4 Tb RAM
 - 15 Tb nvme storage

AI/ML Framework: Data to Knowledge, Knowledge to Workflow

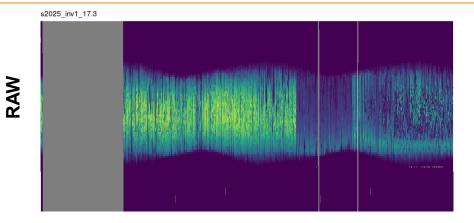


[1] Arafath Nihar *et al.*, "Accelerating Time to Science using CRADLE: A Framework for Materials Data Science," presented at the 30th IEEE International Conference On High Performance Computing, Data, & Analytics, Goa, India: IEEE, Dec. 2023. doi: <u>10.1109/HiPC58850.2023.00041</u>.

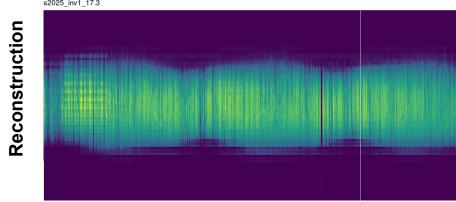

Large Scale Photovoltaic Fleet Monitoring: 104,700 PV Systems

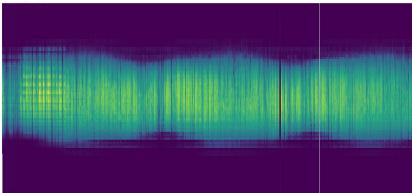


104,700 PV Systems Ingested: EDA

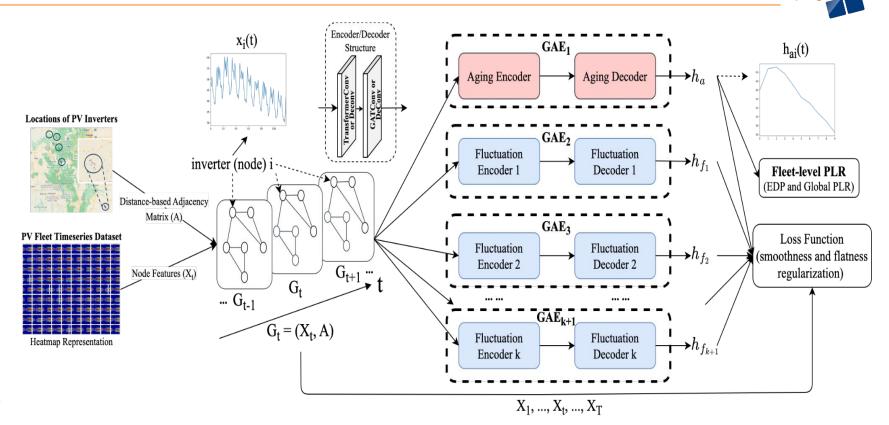

Photovoltaic Systems: CRADLE Data Explorer

PVP


Data Reconstruction: Block Outages & Anomalous Measurements


s2025_inv1_17.3

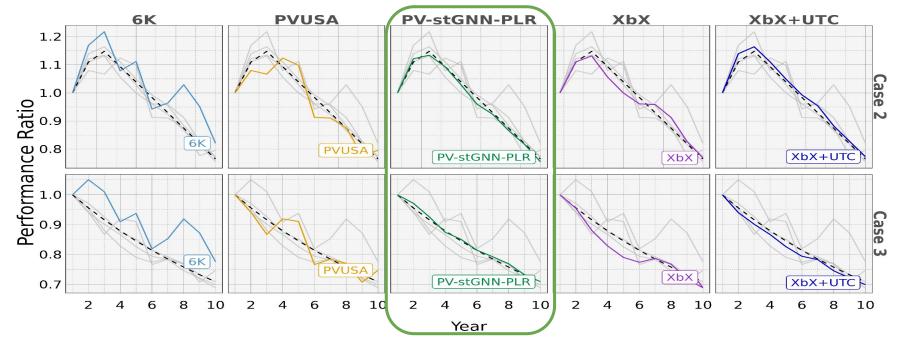
PVPS



s2025_inv2_18

s2025_inv2_18

Performance Loss Rate (PLR) Determination



PVPS

Best PLR Determination: Using st-Graph Modeling

10

Fleet wide performance analysis, performed using st-GNN Models

Spatiotemporal Graph Neural Network Models

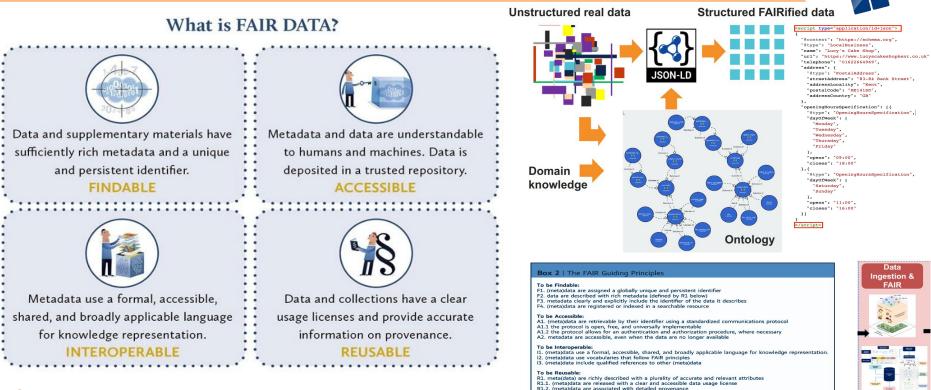
PVPS

[1] Y. Fan, R. Wieser, X. Yu, Y. Wu, L. S. Bruckman, and R. H. French, "Using Spatio-Temporal Graph Neural Networks to Estimate Fleet-Wide Photovoltaic Performance Degradation Patterns," PLOS ONE, vol. 19, no. 2, p. e0297445, Feb. 2024, doi: 10.1371/journal.pone.0297445.

[2] Y. Fan et al., "Spatio-Temporal Denoising Graph Autoencoders with Data Augmentation for Photovoltaic Data Imputation," in Proceedings of the ACM on Management of Data, May 2023, pp. 1–19. doi: 10.1145/3588730.

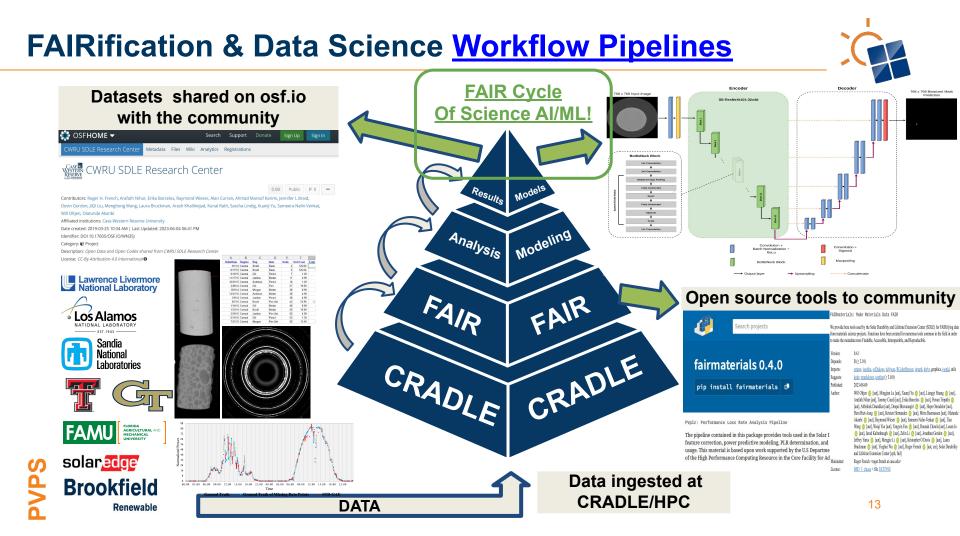
The Problem with Data

More time is often spent locating, querying, and assessing if data is fit to use Than actually analyzing and learning from the data itself

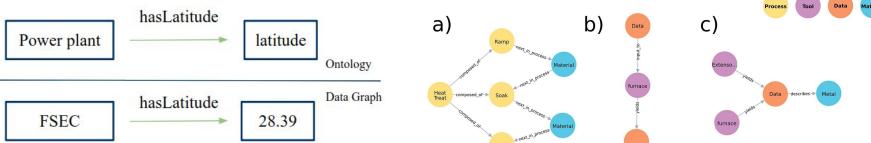

- Data is hinged on extensive institutional knowledge
- Large datasets are difficult to get a high level sense of
- Querying data can be complex if stored in multiple formats and databases

One week, 14 emails, and five people later...

An outdated SQL query is found in a Word document retrieves only half of each experiment


Making Data & Models FAIR

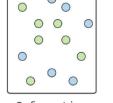
- R1.3. (meta)data meet domain-relevant community standards

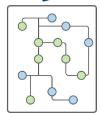

[2] A. Nihar et al., "Toward Findable, Accessible, Interoperable and Reusable (FAIR) Photovoltaic System Time Series Data," in 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Jun. 2021, pp. 1701–1706. doi: 10.1109/PVSC43889.2021.9518782.

What is an Ontology?

An ontology is a formal dictionary

- of terms for a given industry or domain that shows how the terms are related
- Terms are stored as object-relationship pairs Subject, predicate, and object




By relating terms together, an ontology can create a densely interconnected web

 \cap

Data

0 0

0 \bigcirc

0

0

0

0

 \cap

0

Information

Knowledge

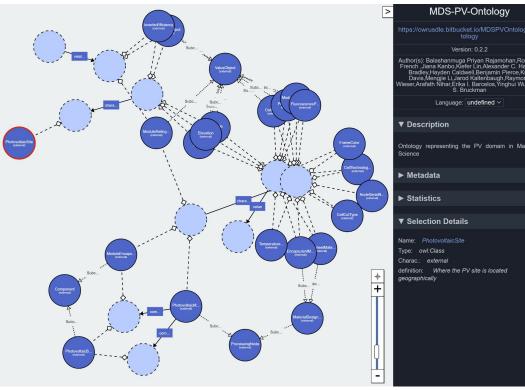
MDS-Onto is registered, Connects to Schema.org & W3C

An Open Source Initiative

To standardize terminology

Across Materials Domains

While not requiring people To change variable names


Major breakthrough in Knowledge Management

MatPortal.org	Ontologies Search Annotator Recommender Mappings	Login			
Browse rowse the library of ontologie	S 🕐				
25 D.	Search Showing 30 of 31	Sort: Popular			
Submit New Ontology	Materials Data Science Ontology (MDS) Materials Data Science(MDS) is an ontology encompassing multiple domains relevant to materials science, chemical synthesis and characterizations, photovoltaics and geospatial				
Entry Type Ontology (30) Ontology View (1)	datasets Uploade d: 4/12/24				
Uploaded in the Last	Materials Mine (MM) A materials ontology to support data publication involving nanomaterials and metamaterials.				
~	Uploade d: 10/19/21				
Category	BWMD original non modularized ontology (BWMD)				
Group	Original non modularized BWMD ontology created as result of the project Material digital in 2020 Uploade d: 6/23/22				
Format					
□ OWL (26) □ SKOS (1)	Mat-O-Lab container ontology (MOCO) A lightweight ontology to describe the structure of tabluar (series) data stored in hdf5 containers				

mds-PV Ontology v0.2.2

Graph of the terms in mds-PV Onto

- **PV** Site, System, Inverter, Module
- **Backsheet, Cell**

JSON-LD

Version: 0.2.2

S. Bruckman

	{
	"@context": {
	"PMDCo": "https://w3id.org/pmd/co/",
	"PVBacksheet": "https://cwrusdle.bitbucket.io/PVBacksheetOntology/",
	"PVCellOntology": "https://cwrusdle.bitbucket.io/PVCellOntology/",
	"PVInverterOntology": "https://cwrusdle.bitbucket.io/PVInverterOntology/",
gy/On	"PVModuleOntology": "https://cwrusdle.bitbucket.io/PVModuleOntology/",
	"PVSiteOntology": "https://cwrusdle.bitbucket.io/PVSiteOntology/",
aor H	"QUDT": "http://qudt.org/2.1/vocab/unit#",
ger H. arding ris	"brick": "https://brickschema.org/schema/Brick#",
nd	"csvw": "http://www.w3.org/ns/csvw#",
ı,Laura	de. http://pull.olg/dc/elements/1.1/ ,
	"dcam": "http://purl.org/dc/dcam/",
	"dcat": "http://www.w3.org/ns/dcat#",
	"dcmitype": "http://purl.org/dc/dcmitype/",
	"dcterms": "http://purl.org/dc/terms/",
terials	"doap": "http://usefulinc.com/ns/doap#",
	"foaf": "http://xmlns.com/foaf/0.1/",
	"geo": "http://www.opengis.net/ont/geosparql#",
	<pre>"odrl": "http://www.w3.org/ns/odrl/2/",</pre>
	"org": "http://www.w3.org/ns/org#",
	"owl": "http://www.w3.org/2002/07/owl#",
	"prof": "http://www.w3.org/ns/dx/prof/",
	"prov": "http://www.w3.org/ns/prov#",
	"qb": "http://purl.org/linked-data/cube#",
	"rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
	"rdfs": "http://www.w3.org/2000/01/rdf-schema#",
	"schema": "https://schema.org/",
	"sh": "http://www.w3.org/ns/shacl#",
	"skos": "http://www.w3.org/2004/02/skos/core#",
	"sosa": "http://www.w3.org/ns/sosa/",
	"ssn": "http://www.w3.org/ns/ssn/",
	"time": "http://www.w3.org/2006/time#",
	<pre>"vann": "http://purl.org/vocab/vann/",</pre>
	"void": "http://rdfs.org/ns/void#",
	<pre>"wgs": "https://www.w3.org/2003/01/geo/wgs84_pos#",</pre>
	"xml": "http://www.w3.org/XML/1998/namespace",
	"xsd": "http://www.w3.org/2001/XMLSchema#"

We check Terms

Across Materials Communities

A common terminology

• Is being established

To Unify PV Datasets

- Enabling PV Histories
- For Valuation
- Of 2nd Life PV

Login Support

Materials Data Science Ontology

Last uploaded: April 12, 2024

Summary Classes Properties

омт Adi

Bui

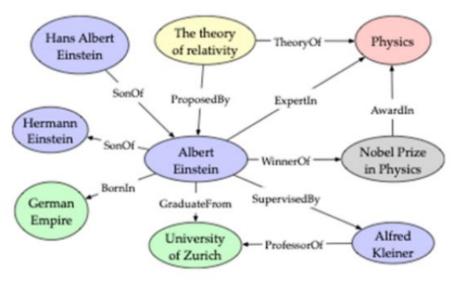
BW

Col

De

Las Mat Mat

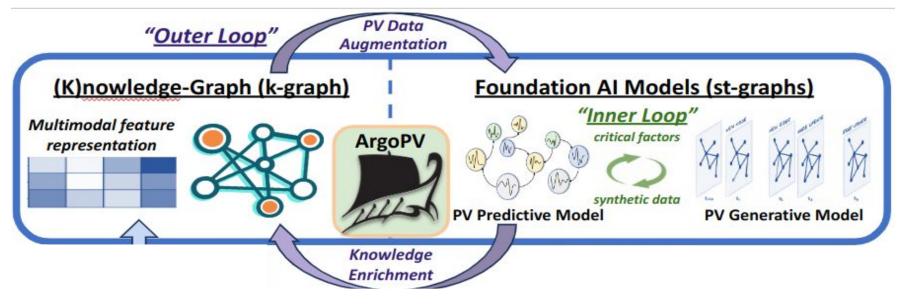
Mat Mat Mat Mat Notes Mappings


oings Widgets

ITOLOGY	MAPPINGS					
ditive Manufacturing Onto	4					
uilding Material Ontolog				×	5	
WMD Domain Ontology	\leftarrow Previous 12Next \rightarrow				10	
	MATERIALS DATA SCIENCE ONTOLOGY	THE PMD CORE ONTOLOGY	SOURCE			
WMD Mid Level Ontology	Prozess	Prozess	SAME_URI		8	
WMD original non modu	TestingMachine	Testing Machine	SAME_URI		10	
ommon Core Ontologies	Agent	Agent	SAME_URI		86	
evices, Experimental sca	Knoten-Seriennummer	Knoten-Seriennummer	SAME_URI		1	
iropean Materials Model	Weight	Weight	SAME_URI		57	
ser Powder Bed Fusion	Non Transformative Analysis Process	Non Transformative Analysis Process	SAME_URI		152	
at-O-Lab container ontol	2DPixelCoordinates	2D Pixel Koordinaten	SAME_URI		1	
aterial Properties Annota	Activity	Activity	SAME_URI		7	
aterial Science and Engi	Node Info	Node Info	SAME_URI		33	
aterials And Molecules I	ProvidedIdentifier	Provided Identifier	SAME_URI		13	
aterials Data Vocabular	Identifier	Identifier	SAME_URI		26	
aterials Design Ontolog	Organization	Organization	SAME_URI		13	
aterials-mechanics-ontc	Entity	Entity	SAME_URI		56	
aterialsMine			Republication and the	•	130	

* * *

Data Representations: RDF vs. LPG (Labeled Property Graph)


(Albert Einstein, BornIn, German Empire)
 (Albert Einstein, SonOf, Hermann Einstein)
 (Albert Einstein, GraduateFrom, University of Zurich)
 (Albert Einstein, WinnerOf, Nobel Prize in Physics)
 (Albert Einstein, ExpertIn, Physics)
 (Nobel Prize in Physics, AwardIn, Physics)
 (The theory of relativity, TheoryOf, Physics)
 (Albert Einstein, SupervisedBy, Alfred Kleiner)
 (Alfred Kleiner, ProfessorOf, University of Zurich)
 (The theory of relativity, ProposedBy, Albert Einstein)
 (Hans Albert Einstein, SonOf, Albert Einstein)

(a) Factual triples in knowledge (b) Entities and relations in knowledge graph.

Using same "graph" approaches as Power Forecasting & PLR Determination

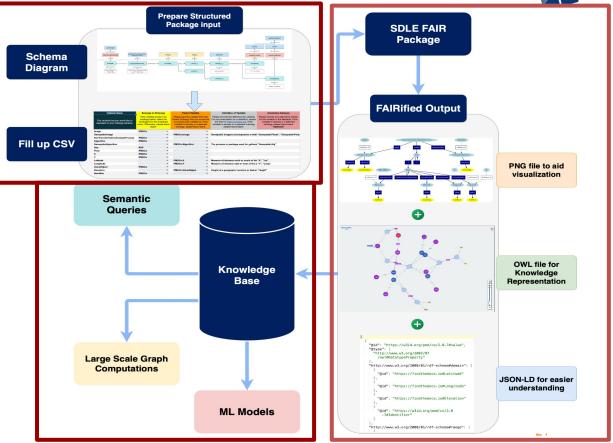
Al Inflection Point: FAIR data assists 2nd Life PV valuation

Knowledge Graphs

GNN ddDT/Foundation Models

Combined st-Graph/ddDT Models & Knowledge Graph Repositories

www.iea-pvps.org


Questions

rxf131@case.edu

FAIR data model for the PV Lifecycle

PVPS