

Subtask 2.1 Performance and Reliability of FPV - Chapter 2 FPV Energy Yield

Torunn Kjeldstad, IFE

EUPVSEC Parallel Event 2024

Technology Collaboration Programme by lea

Yield Assesment of FPV Systems

Thermal losses – and the mythical U-value

- Early studies clamed large increase in performance
- Why do we talk about this «U-value»?
- U-value not uniquely defined!

$$T_m = T_a + \frac{q_{sun}(1 - \text{module efficiency})}{U_{conv}}$$
 or $T_m = T_a + \frac{q_{sun}}{U}$ or...

The ability to exchange heat with the surroundings

Thermal losses – and the mythical U-value

- The challenge of single U-value
 - Clear wind dependency \rightarrow $U = U_0 + U_1 WS$.
 - Empirical value influenced by local conditions

Ideal world: unique value per FPV system type, applied generically **Real world**: empirical value incorporating factors such as wind direction, humidity, cloudiness, local topography, size of the plant, and placement of the sensors

Thermal losses – and the mythical U-value

«Air cooled» Mounted above the water

«Water cooled»
Thermal contact with water

50

45

40

Increasing U-value = ability to exchange heat

71 W/m²K

Large footprint

- M. Dörenkämper et al. Solar Energy 2021
- V. Nysted et al. EPJ PV 2024
- M. Dörenkämper et al. *Energies* 2023
- T. Kjeldstad et al. Solar Energy 2021,
- D. Faiman, Prog. Photovolt: Res. Appl. 2008

Thermal losses – modelling

PVSyst

$$T_c = T_a + \frac{POA \cdot \alpha \cdot (1 - \eta)}{U_c + U_v \cdot ws}$$

Uc and Uv can be set
Default value set to Uc = 20 W/m²K
Open rack systems Uv = 29 W/m²K
Uv = 0

PVlib

pvlib – community-developed opensource toolbox

pvlib supports several models including Faiman and Pvsyst

Appropriate heat loss coefficients should be used

Wave induced losses – varying irradiance

Changes in effective tilt – loss or gain

Orientation mismatch

Level of wave induced losses highly system dependent

Number of modules per floater Floater interaction with waves

Wave induced mismatch losses

Parameters affecting the losses

- Floater wave interactions
- Sea state (height and wave steepness)
- Solar angle (latitude, time of year, module tilt)
- String length

FPV on lakes, dams and reservoar WIL is small or moderate WIL more pronounced at non-optimal design tilt WIML saturates with increasing string length

Computed **example** values

Waveinduced losses – modelling

PVSyst

Constant loss factor, valid for whole simulation

Includes mismatch due to dispersion of efficiency (set to 2 %)

Modelling of WIL must be done outside PVSyst

Pvlib

Allows for full modelling of WIL: Module orientation from external wave module

Pvlib can simluate incident irradiance for each module and passed into pvlibs electrical functions

- PVmismatch – into pvlib

Soiling losses

Likely less soiling from particles

Bird droppings could be a severe challenge

Water available for cleaning

Cleaning could be challening

Area of high interest

But with a very large knowledge gap!

SERIS's FPV testbed at Tengeh Reservoir, Singapore

Making engineering considerations more precise

Thermal losses

Air flow beneath modules Wind conditions at site

Wave induced losses

Number of modules per floater Floater interaction with waves

Height and steepness of waves Latitude and POA vs optimal angel

Soiling losses

Usually between 1-3%, depending on site and conditions and cleaning

NOTE: VERY little has been published on soiling levels for FPV

www.iea-pvps.org

Torunn Kjeldstad, Task 13, Subtask 2.1 torunn.kjeldstad@ife.no

