

ICP I IEA
I PVPS

© pv magazine group

Reliability of FPV

Stefan Wieland, Fraunhofer Institute for Solar Energy Systems ISE

EUPVSEC Parallel Event 2024

Technology Collaboration Programme by lea

▪ physical, chemical or mechanical stress acting on PV plant

▪ physical, chemical or mechanical stress acting on PV plant

Stress profile:

. combination of stressors acting on PV plant

▪ physical, chemical or mechanical stress acting on PV plant

Stress profile:

■ combination of stressors acting on PV plant

Degradation:

▪ *gradual* change of PV components through stressors, affecting vital PV plant metrics such as output power

▪ physical, chemical or mechanical stress acting on PV plant

Stress profile:

■ combination of stressors acting on PV plant

Degradation:

▪ *gradual* change of PV components through stressors, affecting vital PV plant metrics such as output power

Failure:

E abrupt change in vital PV plant metrics, can also be cascading/catastrophic

- **to identify FPV-specific**
	- ➢stressors
	- ➢affected components
	- ➢degradation
	- ➢failure modes

- **to identify FPV-specific**
	- ➢stressors
	- ➢affected components
	- ➢degradation
	- ➢failure modes
- \bullet **to map interdependencies**

Our aim

Our aim

Our aim

▪ to quantify degradation (onsite data, lab tests, simulations)

• increased **mechanical loads** on more **complex mechanical support**

increased **fatigue** and compromised **mechanical integrity**

• increased **mechanical loads** on more **complex mechanical support** increased **fatigue** and compromised **mechanical integrity**

• higher **humidity** and **water exposure**

increased **moisture ingress**

• increased **mechanical loads** on more **complex mechanical support** increased **fatigue** and compromised **mechanical integrity**

• higher **humidity** and **water exposure**

increased **moisture ingress**

- lower **operating temperature**
	- - less thermally-activated **degradation**

• increased **biofouling**

enhanced **corrosion**

increased **tear** through mechanical removal

Mavraki et al. 2023

- increased **biofouling**
	- enhanced **corrosion**
	-
- increased **tear** through mechanical removal

Mavraki et al. 2023

• higher **salinity**

enhanced **corrosion**

- increased **biofouling**
	- enhanced **corrosion**
		- increased **tear** through mechanical removal

Mavraki et al. 2023

• higher **salinity**

PVPS

enhanced **corrosion**

• bird **droppings**

FPV stress profiles: Variability

• **Dependent on float technology**

- ➢varying water exposure
- ➢varying mechanical loads

© FloatingSolar © Zimmermann

FPV stress profiles: Variability

• **Dependent on float technology**

- ➢varying water exposure
- ➢varying mechanical loads

• **Dependent on waterbody type**

PVPS

18

Quantifying degradation: *Basics*

• **through performance loss rate (PLR)**

➢temporal decline of power output

➢essential ingredient in economic analysis

Quantifying degradation: *Basics*

• **through performance loss rate (PLR)**

➢temporal decline of power output

➢essential ingredient in economic analysis

• **with several methods**

➢ordinary least squares

➢seasonal-trend decomposition using LOESS

➢year-on-year

Sascha Lindig et al. 2022 Prog. Energy 4 022003

• -**0.7%/a** to **-0.5%/a**

(Multi-/Mono-Si; same for roof PV)

3 years,

strings

Luo et al. 2021

• -**0.7%/a** to **-0.5%/a**

(Multi-/Mono-Si; same for roof PV)

Luo et al. 2021

3 years, strings

- **-0.5%/a** (heterojunction Si; GPV -0.5%/a)
- -**1.32%/a** (multicrystalline Si; GPV -0.93%/a)
- **-1.68%/a** (CdTe; GPV -1.41%/a) Kumar et al. 2020

13 months, modules

• -**0.7%/a** to **-0.5%/a**

(Multi-/Mono-Si; same for roof PV)

Luo et al. 2021

3 years, strings

• **-0.5%/a** (heterojunction Si; GPV -0.5%/a)

- -**1.32%/a** (multicrystalline Si; GPV -0.93%/a)
- **-1.68%/a** (CdTe; GPV -1.41%/a)

13 months, modules

Kumar et al. 2020

• **-1.18%/a**

PVPS (multicrystalline Si; GPV -1.07%/a)

17 months, modules

• -**0.7%/a** to **-0.5%/a**

(Multi-/Mono-Si; same for roof PV)

Luo et al. 2021

• **-0.5%/a** (heterojunction Si; GPV -0.5%/a)

- -**1.32%/a** (multicrystalline Si; GPV -0.93%/a)
- **-1.68%/a** (CdTe; GPV -1.41%/a)

13 months, modules

Kumar et al. 2020

• **-1.18%/a**

PVPS (multicrystalline Si; GPV -1.07%/a)

17 months, modules

• reliability screening of **key components** in **controlled conditions** & **short timeframes**

- reliability screening of **key components** in **controlled conditions** & **short timeframes**
- **no FPV-specific standards** at the moment; RP DNV-RP-0584

- reliability screening of **key components** in **controlled conditions** & **short timeframes**
- **no FPV-specific standards** at the moment; RP DNV-RP-0584
- **relevant test standards**
	- ➢**IEC 61215** (climate and mechanical stress on modules)
	- ➢**IEC 61730** (mechanically/electrically safe module operation)
	- ➢**IEC 62782** (dynamic mechanical loads)
	- ➢**IEC 61701** (salt & mist corrosion)
	- ➢**IEC 62852** (connectors in DC circuits)
	- ➢**IEC 62930/EN 50618** (DC cables)

- reliability screening of **key components** in **controlled conditions** & **short timeframes**
- **no FPV-specific standards** at the moment; RP DNV-RP-0584 (IEC TC82)
- **relevant test standards**
	- ➢**IEC 61215** (climate and mechanical stress on modules)
	- ➢**IEC 61730** (mechanically/electrically safe module operation)
	- ➢**IEC 62782** (dynamic mechanical loads)
	- ➢**IEC 61701** (salt & mist corrosion)

- ➢**IEC 62852** (connectors in DC circuits) (Kempe, NREL,2023)
- ➢**IEC 62930/EN 50618** (DC cables)

(1) Mechanical loads:

- **on modules:**
	- ➢ couple CFD for wind with FEM for stress levels inside module (Romer et al. 2024)

(1) Mechanical loads:

- **on modules:**
	- \triangleright couple CFD for wind with FEM for stress levels inside module (Romer et al. 2024)

• **on floating structure:**

- \triangleright wind flow non-trivial; couple CFD with tool modelling ...
- ➢ … hydrodynamics, flexibility (Nygaard et al. 2016, Ikhennicheu et al. 2022)
- ➢ but account for feedback loop to stress levels in module interior

(2) Moisture ingress:

- is diffusion of water molecules into bulk material modeled (Fickian or non-Fickian)
- numerical solvers yield time-dependent concentration of moisture

(2) Moisture ingress:

- is diffusion of water molecules into bulk material modeled (Fickian or non-Fickian)
- numerical solvers yield time-dependent concentration of moisture

(3) Hotspot formation:

- identify (with Kirchhoff's mesh rule) operating point on IV curve induced through shading
- compute resulting dissipated power

(2) Moisture ingress:

- is diffusion of water molecules into bulk material modeled (Fickian or non-Fickian)
- numerical solvers yield time-dependent concentration of moisture

(3) Hotspot formation:

- identify (with Kirchhoff's mesh rule) operating point on IV curve induced through shading
- compute resulting dissipated power

(4) Thermally induced stresses

• coupled thermal and mechanical FEM simulations to compute fracture probability of module glass (Beinert et al. 2023)

▪We have a **qualitative** understanding

of relevant FPV stressors, affected components and resulting damage.

▪We have a **qualitative** understanding

of relevant FPV stressors, affected components and resulting damage.

▪We have **few onsite data**

on FPV degradation, let alone on its dependence on system design.

• We have a qualitative understanding

of relevant FPV stressors, affected components and resulting damage.

▪We have **few onsite data**

on FPV degradation, let alone on its dependence on system design.

▪We have a **wide range of** PV test standards,

but **hardly any** is FPV-ready.

▪We have a **qualitative** understanding

of relevant FPV stressors, affected components and resulting damage.

▪We have **few onsite data**

on FPV degradation, let alone on its dependence on system design.

▪We have a **wide range of** PV test standards,

but **hardly any** is FPV-ready.

▪We have established simulation frameworks for **single stressors**, but application to **FPV is lacking**, or **hampered** by necessity for tool coupling.

■ We have a **qualitative** understanding

of relevant FPV stressors, affected components and resulting damage.

▪We have **few onsite data**

on FPV degradation, let alone on its dependence on system design.

▪We have a **wide range of** PV test standards,

but **hardly any** is FPV-ready.

- ▪We have established simulation frameworks for **single stressors**, but application to **FPV is lacking**, or **hampered** by necessity for tool coupling.
- ▪**We want:** measurement/quantitative prediction of PLRs and failure frequencies.

Stefan Wieland, Fraunhofer ISE, Task 13 stefan.wieland@ise.fraunhofer.de

