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a belief that the future of energy security and sustainability starts with global collaboration. The programme is made up of 

6.000 experts across government, academia, and industry dedicated to advancing common research and the application 

of specific energy technologies.  

The IEA Photovoltaic Power Systems Programme (IEA PVPS) is one of the TCP’s within the IEA and was established in 

1993. The mission of the programme is to “enhance the international collaborative efforts which facilitate the role of 

photovoltaic solar energy as a cornerstone in the transition to sustainable energy systems.” In order to achieve this, the 

Programme’s participants have undertaken a variety of joint research projects in PV power systems applications. The 

overall programme is headed by an Executive Committee, comprised of one delegate from each country or organisation 

member, which designates distinct ‘Tasks,’ that may be research projects or activity areas.  

The IEA PVPS participating countries are Australia, Austria, Belgium, Canada, China, Denmark, Finland, France, 
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Visit us at: www.iea-pvps.org 

What is IEA PVPS Task 16? 

The objective of Task 16 of the IEA Photovoltaic Power Systems Programme is to lower barriers and costs of grid 

integration of PV and lowering planning and investment costs for PV by enhancing the quality of the forecasts and the 

resources assessments. 
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FOREWORD 

Solar energy technologies—such as solar photovoltaics (PV), solar heating and cooling, and 
concentrating solar power—provide solutions to the growing need for clean energy to mitigate climate 
change, improve air quality, and reduce dependence on non-renewable fuels. During the past few years, 
the use of solar energy has strongly progressed, in particular thanks to the impressive development and 
deployment of PV. PV deployment reached more than 1 TW of installed capacity worldwide in 2022, 
and it has emerged as one of the most cost-competitive energy technologies overall. The markets for 
the various solar energy systems continue to increase—the solar PV market turnover in 2022 was 
estimated to be more than $U.S. 200 billion worldwide. Reliable and precise historical estimates and 
future projections of the solar resource are relevant not only to predict the energy output of solar 
installations and power systems but also, increasingly, to determine their expected competitiveness and 
economic return. 

This fourth edition of the Best Practices Handbook for the Collection and Use of Solar Resource Data 
for Solar Energy Applications has been prepared under the leadership of the National Renewable 
Energy Laboratory (NREL) together with a team of worldwide experts that consists of 51 authors from 
11 countries working within the framework of the International Energy Agency’s (IEA’s) Photovoltaic 
Power Systems Programme (PVPS) Technology Collaboration Programme Task 16 on “Solar Resource 
for High Penetration and Large-Scale Applications.” This project is a joint task with the IEA’s Solar Power 
and Chemical Energy Systems (SolarPACES) Technology Collaboration Programme. Building on the 
previous work under the IEA’s Solar Heating and Cooling Technology Collaboration Programme, this 
handbook is a prominent example of technology collaboration across the different solar energy 
technologies and the respective IEA technology collaboration programs. 

This fourth edition of the handbook follows only three years after the previous edition, which was 
published in 2021, and it marks the rapid evolution in the field of solar resource assessment and 
forecasting. It reflects the considerable progress that has occurred since then in the measurement and 
modeling of solar radiation and related topics. For instance, this edition features a data quality and solar 
resource variability chapters. Particular emphasis is on the progress of forecasts using all-sky images 
as well as on probabilistic and regional forecasts, which increasingly use machine learning. For the 
practitioner, an important Chapter 11 deals with the application of solar resource data to solar energy 
projects, including performance modeling. 

With comprehensive coverage of the state of the art in solar resource assessment and forecasting, this 
handbook serves as a reference document for a wide range of target audiences—from science to solar 
energy professionals. Understanding the nature of solar radiation, its variations across the world, and 
forecasting its evolution over time will increasingly contribute to making solar energy more predictable. 
As the contribution of solar energy to the energy supply increases over time, the improved predictability 
is crucial for the optimization of future energy systems. 

The IEA PVPS Technology Collaboration Programme is pleased to publish the fourth edition of this 
handbook together with NREL. Most importantly, I would like to acknowledge the leadership of NREL, 
in particular, Aron Habte and Manajit Sengupta; the IEA PVPS Task 16/IEA SolarPACES Task 5 
experts; and the support of the U.S. Department of Energy. 

I hope this handbook finds many interested readers and contributes to the further deployment of solar 
energy worldwide. 

Daniel Mugnier 
Chair, IEA PVPS Technology Collaboration Programme 
August 2024  
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PREFACE 

Jan Remund1 and Manajit Sengupta2 

1 Meteotest, Switzerland 

2 National Renewable Energy Laboratory, USA 

 
As the world looks for carbon-free sources to meet energy demands associated with heat, electrical 

power, and transportation, energy from the sun stands out as the single most abundant energy resource 

on Earth. Harnessing this energy is the challenge as well as an opportunity for achieving a carbon-free 

energy supply by 2050 to fulfil the 1.5°C target set by the Intergovernmental Panel on Climate Change1 

and recommended in the 2015 Paris Agreement. Reducing carbon dioxide emissions per energy unit 

and rapidly accessing the huge potential of solar energy will have the largest effects on achieving the 

1.5°C target. 

Photovoltaics (PV), solar heating and cooling, and concentrating solar power (CSP) are the primary 

forms of energy applications using sunlight. These solar energy systems use different technologies, 

collect different fractions of the solar resource, and have different siting requirements and production 

capabilities. Reliable information about the solar resource is required for every solar energy application. 

This holds true for small installations on a rooftop as well as for large, gigawatt-size, utility-scale solar 

power plants; however, solar resource information is the most critical in the latter case because such 

projects require substantial investments, sometimes exceeding $1 billion in construction costs. Before 

such projects can be undertaken, the best possible information about the quality and reliability of the 

fuel source (i.e., solar radiation) must be made available. This implies that project developers need to 

have reliable and accurate information about the solar resource available at specific locations, including 

historic trends in the seasonal, daily, hourly, and (preferably) subhourly variability to predict the daily 

and annual performance of a proposed power plant. Without this information, a bankable financial 

analysis is not possible. 

In response to a meeting of prominent CSP developers and stakeholders hosted by the U.S. Department 

of Energy (DOE) in September 2008, the National Renewable Energy Laboratory (NREL) produced a 

handbook to provide best practices for the use of solar resource data, which was titled Concentrating 

Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data.2 The content 

was based on the experiences of scientists and engineers from industry, academia, and DOE for 

identifying the sources, quality, and methods for applying solar and meteorological data to CSP projects.  

During this time, the International Energy Agency’s (IEA’s) Solar Heating and Cooling (SHC) Technology 

Collaboration Programme was hosting tasks on solar resource knowledge management (Task 36, 

2005–2011; Task 46, 2011–2016). This work was then followed by the IEA’s Photovoltaic Power 

Systems Programme (PVPS) Task 16. These tasks have brought together the world’s foremost experts 

in solar energy meteorology. This group of experts agreed there is a need to maintain a collective 

document to disseminate the knowledge that was being developed through these tasks. It was decided 

that combining the efforts of the experts involved in the IEA tasks to build on the information in NREL’s 

 

 

1 See https://www.ipcc.ch/report/ar4/syr/. 

2 See https://www.nrel.gov/docs/fy10osti/47465.pdf.  

https://www.ipcc.ch/report/ar4/syr/
https://www.nrel.gov/docs/fy10osti/47465.pdf


Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

ix 

original version of the handbook would provide the best use of resources and deliver a handbook of 

outstanding quality to users. It was also decided that the handbook would incorporate additional solar 

technologies, such as PV, along with additional aspects of energy meteorology that had become 

extremely important, such as solar forecasting. As a result, in 2017, NREL published a second edition 

of the handbook under a revised title, Best Practices Handbook for the Collection and Use of Solar 

Resource Data for Solar Energy Applications.3 This served as the final deliverable for IEA SHC Task 

46. An update in 2021 concluded the work of the first phase of IEA PVPS Task 16 between 2017 and 

2020. This document is the result of the collaboration in the third period (2020–2023), presented here 

as the fourth edition of the handbook. As before, this edition is available in two formats, published by 

NREL and the IEA PVPS. 

The solar PV industry has rapidly developed throughout the last few years based on ongoing technical 

evolution, technology cost reduction, and enhanced growth rates. PV installation sizes as well as 

penetration levels have grown—further enhancing the needs for accurate solar data for planning and 

operation. Induced by these needs, there have been significant enhancements in the body of knowledge 

in the areas of solar resource assessment and forecasting. This fourth edition of the handbook updates 

and enhances the preceding versions and presents the state of the art in a condensed form for all of its 

users.  

In the coming years, another stage of solar penetration will be reached, and solar energy will become a 

major share of the production and the backbone of the electric grid. This growth will increase the needs 

for high-quality and reliable resource data as well as for studies about optimal integration, including 

firming PV power.  

The handbook’s structure has been updated since the previous editions. Many chapters now include 

executive summaries and an overview figure. Chapter 1 lays out the need for high-quality and reliable 

solar resource data to support the rapidly growing industry, and Chapter 2, as before, provides a basic 

tutorial on solar resources.  

Chapter 3 presents a comprehensive overview of best practices for measuring solar radiation, including 

information gained under collaborative work completed during the IEA PVPS Task 16. Chapter 4 is a 

new chapter describing data quality assessment. Chapter 5 describes additional meteorological 

variables (besides radiation) that are required for accurate performance analysis. Chapter 6 is also a 

new chapter giving insights on solar resource variability. Chapter 7 summarizes techniques used to 

develop estimates of solar resources from weather satellite data and numerical model predictions.  

Chapter 8 describes an updated list of commonly used models and datasets available in both the public 

and private sectors, and Chapter 9 provides an update on recent developments in the ability to forecast 

the solar resource over time horizons spanning from minutes to hours ahead and days ahead.  

Chapter 10 provides important information on both measured and modeled solar data uncertainty. All 

this information leads to Chapter 11, which provides data application techniques for the various stages 

of project development, from prefeasibility to routine operations, as shown in the figure in the executive 

summary of that chapter. The outlook for future work is summarized in Chapter 12. 

 

 

3 See https://www.nrel.gov/docs/fy18osti/68886.pdf. 

https://www.nrel.gov/docs/fy18osti/68886.pdf
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ITCZ Intertropical Convergence Zone 
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LMD Laboratoire de Météorologie Dynamique (Laboratory of Dynamic 

Meteorology) 
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LST Local Standard Time 
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METEOSAT Meteorological satellite 

MetOp Meteorological Observation  
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PIMENT Laboratory of Physics and Mathematical Engineering for Energy and 

the Environment 
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POE probability of exceedance 
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REST2 Reference Evaluation of Solar Transmittance, 2 bands 
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SID surface incoming direct radiation 

SIS solar surface irradiance 

SMARTS Simple Model of the Atmospheric Radiative Transfer of Sunshine 

SMHI Swedish Meteorological and Hydrological Institute 

SO2 sulfur dioxide 

SolarPACES Solar Power and Chemical Energy Systems 

SolarPILOT Solar Power tower Integrated Layout and Optimization Tool 

SOLEMI Solar Energy Mining database 

SOLIS SOlar Irradiance Scheme 

Suomi-NPP Suomi National Polar-Orbiting Partnership 

SPECTRL2 Bird Simple Spectral Model version 2 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

xxii 

Acronym Definition 

SPF smart persistence forecast 

SPRAY Solar Power Ray-Tracing Tool 

SRB Surface Radiation Budget 

SRRL Solar Radiation Research Laboratory   

SRTM Shuttle Radar Topography Mission 

SS Smithsonian scale 

SSE Surface meteorology and Solar Energy 
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1 THE IMPORTANCE OF SOLAR RESOURCE 
INFORMATION FOR SOLAR POWER 

Manajit Sengupta1  

1 National Renewable Energy Laboratory, USA 

 
Solar radiation is the fuel for all solar energy technologies. For any solar generation source, knowledge 

of the quality and future reliability of the fuel is essential for determining the financial viability of any new 

project. This information is also important during operations for accurate control, analyses, and 

integration of the generation to the grid. The variability of the supply of sunlight represents the single-

greatest uncertainty in a solar power plant’s predicted performance. Solar resource information is 

needed for various stages of a plant’s development and operation, such as: 

• Historical long-term data for site selection during feasibility studies 

• Prediction of power plant output for plant design and financing 

• Real-time measurement and solar forecasting for plant and grid operations. 

Site selection requires information about numerous parameters for prospective project locations, 

including current land use, grid access, and proximity to load centers. The top priority, however, is 

determining if adequate solar resource exists for a proposed project. For site selection, average annual 

solar irradiation at the site is the first meteorological selection criterion. Other meteorological 

parameters, such as ambient temperature, wind speed and surface albedo, also play an important role. 

Further, lower seasonal and interannual variability could also be advantageous because of a more 

consistent match to the power demand. As weather patterns can change from one year to another, 

many years of data are required to determine reliable average irradiation conditions and interannual 

variability. For this purpose, satellite-derived, high-quality historic solar radiation datasets covering at 

least 10 years are usually considered necessary for the site selection of large solar energy systems. As 

humanity encounters a changing climate, new solar development will have to account for the possibility 

of changes and variability in solar resource that might not be represented in historical data. Output from 

climate models is currently being investigated for use in predicting future solar generation and 

understanding resource adequacy under high deployment of photovoltaics. 

As flat-priced electricity feed-in tariff regulations get phased out, the economic yield of solar power 

systems increasingly depends on the solar production at specific times of the day as well as during 

various times of the year. Thus, for solar projects with variable prices, the temporal distribution of solar 

irradiance to estimate potential yields among competing sites might be critical even during site selection. 

This becomes even more important as storage solutions are integrated with new solar generation 

facilities. At early stages of project development, it is sufficient to study the temporal variability of the 

energy output throughout the year and typical daily cycles. As an alternative to multiple-year datasets, 

typical meteorological year (TMY) data for each site might be sufficient at this stage, particularly for 

smaller installations; however, the TMY cannot characterize interannual variability and might have 

limited use for certain projects. 

If an appropriate site is identified, the development of a larger solar energy project will require more 

precise and detailed datasets. For site-specific techno-economic optimization of a solar system, the 

availability of high-resolution data is always beneficial. These data generally exist in the form of satellite-

derived or reanalysis-based time series. To finance large solar power plants, datasets that are validated 

by ground measurements on or near the site are essential to reduce the yield risk. In addition to accurate 
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solar radiation measurements, specialized meteorological stations usually provide additional 

environmental parameters that help to optimize the sizing and proper selection of plant components. 

Accurate solar and meteorological stations are also valuable during the commissioning of larger plants 

because reliable measurements form the basis for acceptance testing to demonstrate proof of fulfillment 

of technical specifications for heat or electric output. Although temporary measurement equipment can 

be used for acceptance testing, reliable measurements are essential for estimating real-time plant output 

to ensure high efficiency of the plant throughout its service life. The evaluation of plant output as a 

function of solar irradiance is the most important indicator of power plant performance. A reduction in 

overall efficiency implies a degradation of one or more power plant components or poor maintenance or 

operation. Although remotely sensed data can be used for smaller systems, where performance 

accuracy can be relaxed, larger solar systems usually rely on ground-based measurements, which might 

be combined with near-real-time satellite-derived solar radiation data. Local ground measurements also 

assist in site-specific model validation and improvements of solar forecasts. 

Proper and accurate solar forecasts are important for the optimized use of solar power plants, both 

economically and operationally. They help to improve system operations, such as the optimal use of a 

storage tank in a solar thermal water heating system, a molten salt system for high-temperature 

applications, or a battery system in a photovoltaic (PV) system. With the fast growth of grid-connected 

solar electrical systems, solar radiation forecasts have become highly important for safe grid operations 

and the efficient dispatch of power plant resources. Short-term solar forecasts in areas of high solar 

penetration enable efficient dispatch, while day-ahead forecasts enable accurate unit commitment, 

leading to efficient planning of reserves.  

This handbook covers all pertinent aspects of solar radiation that are relevant for the planning and 

operation of PV plants, solar thermal heating and cooling systems, concentrating solar thermal plants, 

and the electric grid.  Chapter 2 introduces solar radiation concepts that are essential for understanding 

the behavior of sunlight. Chapter 3 discusses the measurement of solar radiation and the best practices 

that must be followed to acquire defensible solar measurements. Chapter 4 provides users with 

information about how to control the quality of measurements and how to assess that quality after 

measurements have been taken. Chapter 5 provides users with information on meteorological 

parameters that are either used for modeling solar irradiance, solar energy production, or PV reliability. 

Chapter 6 provides information about the variability of solar radiation at various timescales. As solar 

radiation is inherently variable, this chapter is particularly important for those who seek to develop 

methods to balance grid operations. Chapter 7 provides users with information about solar radiation 

modeling, including how satellite-based models predict solar radiation and how solar radiation can be 

modeled at various orientations at which solar energy converters are deployed. Chapter 8 provides 

users with information about various sources of solar data and models. This chapter is a useful 

repository of links for users looking for either solar datasets or models to manipulate solar data for their 

applications. Chapter 9 covers solar forecasting at various timescales and is an extremely important 

chapter for grid operators seeking to reduce the cost of grid operations under fast-growing deployments 

of solar energy. Chapter 10 provides users with an understanding of uncertainty in solar measurements 

and modeled solar data, both historical and forecast. Chapter 11 provides users with information about 

how to use both measured and modeled solar data for modeling solar energy both during development 

and operation of solar energy plants. Chapter 12 provides users with an outlook of what is on the horizon 

for the International Energy Agency (IEA) Photovoltaic Power Systems Programme (PVPS) Task 16, 

primarily based on the challenges and gaps that have been identified by experts.  

Some emerging topics, such as the application of machine learning in solar energy applications and the 

impact of climate change on plant performance and resource adequacy, are briefly mentioned in the 

handbook. As we move toward decarbonization of the grid, and ultimately of all energy use, it is expected 

that these topics will be expanded upon and presented in more detail in future editions of the handbook. 
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Readers should note that this handbook is the result of significant effort by the foremost international 

experts in the field. Therefore, this handbook ensures that the material presented here is well vetted and 

is the most current understanding of the state of the art.  
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2 OVERVIEW OF SOLAR RADIATION RESOURCE 
CONCEPTS 

Aron Habte,1 Thomas Stoffel,2 Christian Gueymard,3 Daryl Myers,4 Philippe Blanc,5 Sara Bham, 5 

Stefan Wilbert,6 Frank Vignola,7† and Nicholas Riedel-Lyngskær8 

1 National Renewable Energy Laboratory, USA 

2 Solar Resource Solutions, LLC, USA 

3 Solar Consulting Services, USA 

4 National Renewable Energy Laboratory, USA, retired 

5 MINES Paris–PSL, Center Observation, Impacts, Energy, France 

6 German Aerospace Center (DLR), Germany 

7 University of Oregon, USA 

† Deceased 

8 Technical University of Denmark (DTU), Denmark 

Executive Summary 

Obtaining data time series or temporal averages of the solar radiation components—most importantly, 

global horizontal irradiance (GHI) and direct normal irradiance (DNI)—that relate to a conversion system 

is the first step in selecting the site-appropriate technology and evaluating the simulated performance 

of specific system designs. Photovoltaic (PV) systems and thermal flat-plate collectors (fixed or tracking) 

can use all downwelling radiation components, as well as radiation reflected from the ground if in the 

collector’s field of view. The reflected component is of particular importance for bifacial PV systems and 

related to the albedo of the ground. Systems with highly concentrating optics rely solely on DNI. Low-

concentration systems might also be able to use some sky diffuse radiation.  

Describing the relevant concepts and applying a consistent terminology are important to the usefulness 

of any handbook. This chapter discusses standard terms that are used to illustrate the key 

characteristics and components of solar radiation—the fuel for all solar technologies. 

Beginning with the sun as the source, this chapter presents an overview of the effects of Earth’s orbit 

and atmosphere on the possible types and magnitudes of solar radiation available for energy 

conversion. An introduction to the concepts of measuring and modeling solar radiation is intended to 

prepare the reader for the more in-depth treatments in Chapters 3–10. This overview concludes with a 

topic of terrestrial spectral irradiance, which is used as a basis for performance evaluation of various PV 

technologies and characterization of absorptance, reflectance, and transmittance, and spectral 

response evaluation of PV materials. 
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Figure ES 2-1. Example solar radiation data and application to solar energy projects  
Image by NREL 

 

2.1 Extraterrestrial Irradiance Spectrum 

Any object with a temperature above absolute zero Kelvin emits radiation. With an effective surface 

temperature of ≈5800 K, the sun behaves like a quasi-static blackbody and emits radiation over a wide 

range of wavelengths, with a distribution that is close to that predicted by Planck’s law ( 

Figure 2-1). This constitutes the solar spectral power distribution, or solar spectrum. For terrestrial 

applications, the useful solar spectrum, also called the shortwave spectrum (≈290–4000 nm), includes 

the spectral regions called ultraviolet (UV), visible, and near-infrared (NIR) ( 

Figure 2-1). The latter is the part of the infrared spectrum that is below 4000 nm in the solar spectrum. 

In contrast, the longwave (or far-infrared) spectrum extends beyond 4 µm, where the planetary thermal 

emission is dominant. Based on a recent determination (Gueymard 2018b), most spectral irradiance 

(98.5%) of the extraterrestrial spectrum (ETS) is contained in the wavelength range from 290–4000 nm. 

In what follows, broadband solar radiation will always refer to this spectral range, unless specified 

otherwise. 
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Figure 2-1. Reference ETS (ASTM E490-22) and 5800-K blackbody distribution using Planck’s law 
(Image by Philippe Blanc, MINES Paris–PSL University) 

 

Various ETS distributions have been derived based on ground measurements, extraterrestrial 

measurements, and physical models of the sun’s output. All distributions contain some deviations, as 

evidenced by the historical perspective offered by (Gueymard 2018b; 2004; 2006). A more recent 

generation of ETS distribution, based on spectral measurements from space, was published (Gueymard 

2018b) and was eventually adopted to become the current standard extraterrestrial spectrum, as now 

mandated by ASTM Standard E490 (ASTM E490 2022) ( 

Figure 2-1). 

2.2 Solar Constant and Total Solar Irradiance 

The total radiant power emitted by the sun is nearly constant to within ±0.2%. The solar irradiance at 1 

AU (astronomical unit, approximate average sun-Earth distance) distance from the sun is called the total 

solar irradiance (TSI) and used to quantify the solar output. TSI was commonly called the solar constant 

(SC) until slight temporal variations were discovered (Fröhlich and Lean 2004; Kopp and Lean 2011). 

The SC is now defined as the long-term mean TSI. Small but measurable changes in the sun’s output 

and TSI are related to the sun’s magnetic activity. There are cycles of approximately 11 years in solar 

activity, which are accompanied by a varying number of sunspots (cool, dark areas on the sun) and 

faculae (hot, bright spots). TSI increases during high-activity periods because the numerous faculae 

more than counterbalance the effect of sunspots. From an engineering perspective, these TSI variations 

are relatively small, so the SC concept is still useful and eminently appropriate in solar applications.  

 

Figure 2-2 shows the latest version of a composite TSI time series based on multiple spaceborne 

instruments that have monitored TSI since 1978 using a variety of absolute scales (Gueymard 2018a). 

Estimates are also used from 1976–1978 to make this time series start at the onset of solar cycle 21. 

The solar cycle numbers are indicated for further reference. (Solar cycle 25 has started in December 

2019 and is expected to peak in 2024 or 2025.)  

Figure 2-2 shows the SC (always evaluated at 1 AU) as a horizontal solid line.  
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Figure 2-2. Four solar cycles show the temporal variations of TSI in a composite reconstruction of 
the 1976–2017 time series based on observations from spaceborne radiometers after corrections 
and gap-filling.  

The thick line indicates the 27-day moving average (corresponding to the 27-day mean solar rotation 
period), and the circled numbers refer to the solar cycle designation. The horizontal line shows the 
SC (1361.1 W/m2). Image based on data published in (Gueymard 2018a)  

 

On a daily basis, the passage of large sunspots results in lower TSI values than the SC. The measured 

variation in TSI resulting from the sunspot cycle is at most ±0.2%, only twice the precision (i.e., 

repeatability—not total absolute accuracy, which is approximately ±0.5%) of the most accurate 

radiometers measuring TSI in space. There is, however, some large variability in a few spectral 

regions—especially the UV (wavelengths less than 400 nm)—caused by solar activity. 

Historic determinations of SC have fluctuated throughout time (Gueymard 2006; Kopp 2016). At the 

onset of the 21st century, it was assumed to be 1366.1 ± 7 W/m2 (Gueymard 2004) More recent satellite 

observations using advanced sensors and better calibration methods, however, have shown that the 

SC is somewhat lower: ≈1361 W/m2. After careful reexamination and corrections of decades of past 

satellite-based records, (Gueymard 2018a) proposed a revised value of 1361.1 W/m2, which has since 

been adopted as the new standard value according to ASTM E490 (2022). The magnitude of this change 

is the result of better measurements and methodology rather than a change in the output of the sun. 

According to astronomical computations such as those made by the National Renewable Energy 

Laboratory’s (NREL’s) solar position software,4 using SC ≈1361 W/m2, the seasonal variation of ±1.7% 

in the sun–Earth distance causes the irradiance at the top of the Earth’s atmosphere to vary from ≈1409 

W/m2 (+3.5%) near January 3 to ≈1315 W/m2 (–3.3%) near July 4. This seasonal variation is systematic 

and deterministic; hence, it does not include the daily (somewhat random) or cyclical variability in TSI 

induced by solar activity, which was discussed previously. 

 

 

4 See https://midcdmz.nrel.gov/spa/. 

https://midcdmz.nrel.gov/spa/
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This variability is normally less than ±0.2% and is simply ignored in the practice of solar resource 

assessments. 

 

 
 

Figure 2-3. Schematic of the Earth’s orbit. The Earth’s orbit around the sun is  
slightly elliptic. Note: The seasons are represented for the Northern Hemisphere.  

Image by NREL 

2.3 Sun-Earth Distance and Extraterrestrial Radiation 

The amount of radiation exchanged between two objects is affected by their separation distance. The 

Earth’s elliptical orbit (eccentricity 0.0167) brings it closest to the sun in January and farthest from the 

sun in July, as just mentioned. The average Sun–Earth distance is close to the new definition of the AU, 

which is exactly 149,597,870,700 m, as introduced in 2012 by the International Astronomical Union and 

recognized as a Système International (SI) unit in 2014 by the International Bureau of Weights and 

Measures (BIPM).5  

Figure 2-3 shows the Earth’s orbit in relation to the Northern Hemisphere’s seasons, caused by the 

average ≈23.4° tilt of the Earth’s rotational axis with respect to the plane of the orbit. The solar irradiance 

available at the top of atmosphere (TOA) is called the extraterrestrial radiation (ETR). ETR (Eq. 2-1) is 

the power per unit area, or flux density, in Watts per square meter (W/m2), radiated from the sun and 

available at the TOA. Just like ETS, ETR (e.g.,  

Figure 2-4) varies with the Sun–Earth distance (r) and annual mean distance (r0): 

                                      ETR = TSI (
𝑟0

𝑟⁄ )
2
 

(2-1) 

 

 

5 See https://www.bipm.org/documents/20126/41483022/SI-Brochure-9-EN.pdf/2d2b50bf-f2b4-9661-f402-

5f9d66e4b507  

https://www.bipm.org/documents/20126/41483022/SI-Brochure-9-EN.pdf/2d2b50bf-f2b4-9661-f402-5f9d66e4b507
https://www.bipm.org/documents/20126/41483022/SI-Brochure-9-EN.pdf/2d2b50bf-f2b4-9661-f402-5f9d66e4b507


Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

2-6 

As indicated in Section 2.2, it is customary to neglect temporal variations in TSI so that TSI can be 

replaced by SC in Eq. 2-1 for simplification. The Sun–Earth distance correction factor, (r0/r)², in Eq. 2-1 

can be obtained from sun position algorithms, such as those described in Section 2.4.1. 

Daily values of sufficient accuracy for most applications can also be found in tabulated form (e.g., [Iqbal 

2012]). 

 

 

Figure 2-4. ETR (i.e., the solar normal irradiance available at the TOA)  

Image by NREL 

 

From the TOA, the sun appears as a very bright small disk surrounded by a completely black sky, apart 

from the light coming from stars and other celestial bodies. The angle describing the size of the sun disk 

can be determined from the distance between the Earth and the Sun, and the latter’s visible diameter. 

It varies by ±1.7%, because the Sun–Earth distance varies. A point at the top of the Earth’s atmosphere 

intercepts a cone of light from the hemisphere of the sun facing the Earth with a total angle of 0.53°±1.7% 

(i.e., 0.266° half the apex angle on a yearly average). Because the divergence angle is very small, the 

rays of light emitted by the sun are nearly parallel; these are called the solar beam. The interaction of 

the solar beam with the terrestrial atmosphere is discussed next. 

2.4 Solar Radiation and the Earth’s Atmosphere 

The Earth’s atmosphere can be seen as a continuously variable filter for the solar ETR as it reaches the 

surface. Figure 2-5 illustrates the attenuation of solar radiation by atmospheric constituents such as 

ozone, oxygen, water vapor, aerosols, or carbon dioxide. The amount of atmosphere the solar photons 

must traverse, also called the atmospheric path length or air mass (AM), depends on the relative position 

of the observer with respect to the sun’s position in the sky (Figure 2-5). By convention, air mass one 

(AM1) is defined as the amount of atmospheric path length observed when the sun is directly overhead. 

As a first approximation, and for low zenith angles, air mass is geometrically related to the solar zenith 

angle (SZA). Actually, the air mass is approximately equal to the secant of SZA, or 1/cos(SZA). Air mass 

1.5 (AM1.5) is a key quantity in solar applications and corresponds to SZA = 48.236° (Gueymard, Myers, 

and Emery 2002). Air mass two (AM2) occurs when SZA is ≈60° and has twice the path length of AM1. 

By extrapolation, one refers to the value at the TOA as AM0 (Myers 2013).  
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The cloudless atmosphere contains gaseous molecules and particulates (e.g., dust and other aerosols) 

that reduce the ETR as it progresses farther down through the atmosphere. This attenuation is caused 

mostly by scattering (a change of a photon’s direction of propagation) and also by absorption (a capture 

of radiation). Finally, clouds are the major elements that modify the ETR (also by scattering and 

absorption) on its way to the surface or to a solar collector.  

  

Figure 2-5. Illustration of air mass, the SZA, and absorption and scattering in the atmosphere. 
Scattering of the direct beam photons from the sun by the atmosphere produces diffuse radiation 
that varies with air mass.  

Image by NREL, modified from Dunlap et al. (1992) 

Absorption converts part of the incoming solar radiation into heat and raises the temperature of the 

absorbing medium. Scattering redistributes the radiation in the hemisphere of the sky dome above the 

observer, including a part that is reflected back into space. The longer the path length through the 

atmosphere, the more radiation is absorbed and scattered. The probability of scattering and absorption 

increases as the path (air mass) from the TOA to the ground increases. 

Part of the radiation that reaches the Earth’s surface is eventually reflected into the atmosphere. A 

fraction of this returns to the surface through a process known as backscattering. The actual geometry 

and flux density of the reflected and scattered radiation depend on the reflectivity and physical properties 

of the surface and constituents in the atmosphere, especially clouds and aerosols. 

Based on these interactions between the radiation and the atmosphere, the terrestrial solar radiation is 

divided into two components: direct beam radiation, which refers to solar photons that reach the surface 

without being scattered or absorbed, and diffuse radiation, which refers to photons that reach the 

observer after one or more scattering events with atmospheric constituents. These definitions and their 

usage for solar energy are discussed in detail in Section 2.5. 

Ongoing research continues to increase our understanding of the properties of atmospheric 

constituents, ways to estimate them, and their impact on the magnitude of solar radiation in the 
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atmosphere at various atmospheric levels and at the surface. This is of great importance to those who 

measure and model solar radiation fluxes (see Chapters 3–7). 

2.4.1 Solar Position in the Sky 

The position of the sun in the sky depends in particular on the position of the Earth relative to its orbit 

around the sun, the rotation of the Earth, and the direction of the Earth’s axis of rotation relative to the 

plane of the Earth’s orbit ( 

Figure 2-3). The Earth rotates around an axis through the geographic north and south poles, inclined at 

an average angle of ≈23.4° to the plane of the Earth’s orbit. The axial tilt of the Earth’s rotation results 

in daily variations in solar geometry during any year. At mid-latitudes (latitudes 23.4° to 66.6°, both north 

and south) near midday, the sun is relatively low above the horizon during winter and high in the sky 

during summer. In the summer of the Northern Hemisphere, days are longer than winter days because 

the North Pole is facing the sun in summer and directed away from the sun in winter. All these changes 

result in changing geometry of the solar position in the sky with respect to time of year and specific 

location. Similarly, the resulting yearly variation in the solar ETR contributes to seasonal variations in 

climate and weather at each location. The solar position in the sky corresponds to topocentric angles, 

as follows: 

• The solar elevation angle is defined as the angle formed by the direction of the sun and the local 

horizon. It is equal to 90°–SZA. 

• The solar azimuth angle is defined as the angle formed by the projection of the direction of the sun 

on the horizontal plane defined eastward from true north, following the International Organization 

for Standardization (ISO) 19115 (ISO 19115-1:2014) standard. For example, 0° or 360° = due north, 

90° = due east, 180° = due south, and 270° = due west. 

An example of apparent sun path variations for various periods of the year is depicted in Figure 2-6). 

Because of their significance in performing any analysis of solar radiation data or any radiation model 

calculation, the use of solar position calculations of sufficient accuracy is necessary, such as those 

derived from NREL’s Solar Position Algorithm6 (Reda and Andreas 2004; 2007). This algorithm predicts 

solar zenith and azimuth angles in addition to other related parameters such as the Sun–Earth distance 

and the solar declination. All this is possible in the period from 2000 B.C. to 6000 A.D. with an SZA 

standard deviation of only ≈0.0003° (1''). To achieve such accuracy during a long period, this algorithm 

is very time consuming, with approximately 2300 floating operations and more than 300 direct and 

inverse trigonometric functions at each time step. To realize the stated accuracy over many millennia, 

the algorithm requires input values for the target date of differences between clock time and the apparent 

solar time due to variations in the Earth’s rotational speed. Other algorithms exist, differing in the attained 

accuracy and in their period of validity. They use various strategies to limit the number of functions and 

operations, such as reducing the period of validity while maintaining high accuracy (Blanc and Wald 

2012; Grena 2008; Blanco, Milidonis, and Bonanos 2020) or keeping a long period while reducing 

accuracy (Michalsky 1988b; 1988a). 

 

 

6 See http://www.nrel.gov/midc/spa/.  

http://www.nrel.gov/midc/spa/
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Figure 2-6. Apparent sun path variations during a typical year in Denver, Colorado  

Image from the University of Oregon Solar Radiation Monitoring Laboratory 
(http://solardata.uoregon.edu/sunChartProgram.php) 

2.5 Solar Resource and Irradiance Components for Solar Energy 
Applications 

Solar radiation, when going through the atmosphere, can be transmitted, absorbed, reflected, or 

scattered in varying amounts by atmospheric constituents (aerosols, water vapor, ozone, other gases), 

depending on wavelength.  

Consider first the downwelling broadband irradiance components reaching a horizontal surface. 

Broadband means that this irradiance is integrated over the whole shortwave spectrum, ranging from 

~290 nm to 4000 nm, expressed in W/m2. These complex interactions of the Earth’s atmosphere with 

solar radiation result in three fundamental irradiance components of interest, notably to solar energy 

conversion technologies (Figure 2-7): 

• DNI: solar direct or beam irradiance from a small solid angle centered on the sun position. 

• Diffuse horizontal irradiance (DHI): scattered solar downwelling irradiance on a horizontal plane 

from the sky dome, excluding the same small solid angle as the direct component. 

• GHI: solar downwelling irradiance on a horizontal plane from the whole dome, also called the total 

hemispheric irradiance. 

 

http://solardata.uoregon.edu/SunChartProgram.php
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Figure 2-7. Depictions of three fundamental irradiance components  

Image by Philippe Blanc, MINES Paris–PSL University  

 

These basic solar components are related to each other by a fundamental expression called the closure 

equation:  

 GHI = DNI • cos(SZA) + DHI (2-2) 

The difference between the global and diffuse horizontal irradiance is often denoted as the beam 

horizontal irradiance (BHI = DNI • cos(SZA)) rather than direct horizontal irradiance to avoid acronym 

confusion with diffuse horizontal irradiance.7 

GHI is measured at a relatively large number of stations in the world (see Chapter 8); however, the 

quality of such data remains to be verified at most of these stations. Assuming that good-quality GHI 

data are available at a station of interest, how can the analyst derive the two other components—DNI 

and DHI?  

There are two possible solutions to this frequent situation. The first is to obtain time series of GHI, DNI, 

and DHI from a reputable source of satellite-derived data. The modeled and measured GHI data can 

then be compared for quality assurance and possible improvements of the modeled data (using site 

adaptation; see Chapter 7, Section 7.6) or, conversely, to determine the quality of the measured data. 

Both measured and modeled GHI values might unfortunately incorporate systematic biases. 

Understanding the magnitude and nature of these biases and how they can affect the calculation is 

important when determining the uncertainty in the results (see Chapter 10).  

The second method for determining DNI and DHI from GHI data consists of using one of numerous 

“separation” or “decomposition” models, as further discussed in Chapter 7, Section 7.3.1. Considerable 

literature exists on this topic. (Gueymard and Ruiz-Arias 2016) reviewed 140 such models and quantified 

their performance at 54 high-quality radiometric stations over all continents using data with high temporal 

resolution (1 minute, in most cases). Other studies have followed, proposing and/or validating potentially 

better models (Starke et al. 2021; Tan, Wang, and Zhang 2023; Yang 2022; Yang et al. 2024; Ruiz-

Arias and Gueymard 2024a; 2024b). All current models of this type, being empirical in nature, are not 

of “universal” validity and thus might not be optimized for the specific location under scrutiny, particularly 

under adverse situations (e.g., subhourly data, high surface albedo, or high aerosol loads) that can 

 

 

7 An alternate set of acronyms indeed exists in the literature, whereby DHI or DIR represents the direct horizontal 

irradiance and DIF is the diffuse horizontal irradiance. 
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trigger significant biases and random errors; hence, the most appropriate way to deal with the 

component separation problem cannot be ascertained at any given location. The solar radiation scientific 

research community continues to validate the existing conversion algorithms and to develop new ones.  

In general, the higher the time resolution, the larger random errors in the estimated DNI or DHI will be. 

Even large biases could appear at subhourly resolutions if the models used are not appropriate for short-

interval data. This issue is discussed by (Gueymard and Ruiz-Arias 2016; 2014), who showed that not 

all hourly models are appropriate for higher temporal resolutions and that large errors might occur under 

cloud-enhancement situations. Another avenue of research is to optimally combine the estimates from 

multiple models using advanced artificial intelligence techniques (Aler et al. 2017; Tan, Wang and Zhang 

2024).  

2.5.1 Irradiance vs. Radiance 

To better understand the different components of broadband irradiance on any tilted plane (Figure 2-8), 

one should consider the downwelling and upwelling broadband radiances at the surface, expressed in 

W/(sr•m2). The downwelling radiance describes the angular distribution of the downwelling solar 

radiation from the sky to the surface. The upwelling radiance describes the angular distribution of the 

downwelling solar radiation reflected by the surface. The downwelling and upwelling irradiance incident 

on a tilted plane is the result of the integral of the downwelling and upwelling radiance with respect to 

the hemisphere facing that plane. The upwelling irradiance is generally named the surface-reflected 

irradiance, or just ground-reflected irradiance if no water surfaces are involved.  

  

Figure 2-8. Solar radiation components incident on a tilted plane (oriented hemispherical irradiance)  

Image by Philippe Blanc, MINES Paris–PSL University  
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Following Figure 2-8, the different components of irradiance on a tilted plane are: 

• Beam tilted irradiance (BTI): downwelling solar irradiance incident on the tilted surface, from the 

downwelling radiance restricted to the same small solid angle as DNI: 

 BTI = DNI • cos(AI) (2-3) 

where AI is the angle of incidence of the sunbeams for that specific tilted surface. 

• Diffuse tilted irradiance (DTI): downwelling solar irradiance incident on the tilted surface, considering 

the solid angle of sky dome facing the tilted plane, but excluding the same small solid angle as for 

DNI. 

• Reflected tilted irradiance (RTI): upwelling solar irradiance reaching the tilted surface from the 

surface-reflected upwelling radiance, considering the solid angle of the ground facing the tilted 

plane. 

• Global tilted irradiance (GTI): defined as the sum of the diffuse, direct, and reflected irradiance 

incident on the tilted surface. GTI is also referred to as the plane-of-array (POA) irradiance in the 

photovoltaic (PV) literature. 

In the theoretical case when the sky diffuse radiance can be considered isotropic (i.e., constant 

downwelling radiance in all directions, except for the small solid angle of the direct component), and if 

the surface’s reflectance is also assumed isotropic (Lambertian) with a given albedo, , a simplified 

relationship is obtained: 

 GTI = DNI • cos(AI) + DHI • SVF + r • GHI • GVF (2-4) 

where SVF is the sky view factor between the collector and the visible part of the sky, and GVF is the 

ground view factor between the collector and the visible part of the foreground surface, according to: 

 SVF = (1+cos(tilt))/2 (2-5) 

 GVF = (1–cos(tilt))/2  (2-6) 

The tilt angle is written as “tilt” in these equations and defined as illustrated in Figure 2-8. Eq. 2-5 and 

2-6 are strictly valid only under the assumptions of isotropy for both the sky and reflected radiance, and 

of a reflecting surface of an infinite dimension. These assumptions are convenient to simplify 

calculations (Kamphuis et al. 2020), but rarely fully accurate in nature. For a more accurate calculation, 

anisotropic models of downwelling sky radiance (e.g., (Gueymard and Kocifaj 2022)), of sky diffuse 

irradiance (see Chapter 7), and of bidirectional reflectance distribution function (BRDF) (e.g., [Ross 

1981]; see also Chapter 7) need to be used that correspond well to the current sky and ground 

conditions. 

2.5.2 Direct Normal Irradiance and Circumsolar Irradiance 

By definition, DNI is the irradiance on a surface perpendicular to the vector (i.e., normal incidence) from 

the observer to the center of the sun caused by radiation that was not scattered by the atmosphere out 

of the region appearing as the solar disk (WMO 2018). This strict definition is useful for atmospheric 

physics and radiative transfer models, but it results in a complication for ground observations: it is not 

possible to observe whether a photon was scattered if it reaches the observer from the direction in which 

the solar disk is seen. Therefore, DNI is usually interpreted in a less stringent way in the world of solar 

energy. Direct solar radiation is understood as the “radiation received from a small solid angle centered 

on the sun’s disk” (ISO 9488 2022). The size of this “small solid angle” for DNI measurements is 

recommended to be 5 ∙ 10-3 sr (corresponding to ≈2.5° half angle) (WMO 2018). This recommendation 

is approximately 10 times larger than the angular radius of the solar disk itself based on no-atmosphere 
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geometry, whose yearly average is 0.266°. This relaxed definition is necessary for practical reasons 

because instruments for DNI measurement (pyrheliometers) need to track or follow the sun throughout 

its path of motion in the sky, and small tracking errors are to be expected. The relatively large field of 

view (FOV) of 5° (or 2.5° half angle) of pyrheliometers reduces the effect of such tracking errors. 

To understand the definition of DNI and how it is measured by pyrheliometers in practice, the role of 

circumsolar radiation—scattered radiation coming from the annulus surrounding the solar disk—must 

be discussed. (The reader is referred to the detailed review, based on both experimental and modeling 

results, found in [Blanc et al. 2014].) Because of forward scattering of direct sunlight in the atmosphere, 

the circumsolar region closely surrounding the solar disk (solar aureole) looks very bright and can affect 

the observed sunshape (Buie, Monger, and Dey 2003). The sunshape—a quantity not to be confused 

with the “shape of the sun”—is the azimuthally averaged radiance profile as a function of the angular 

distance from the center of the sun normalized to 1 at the apparent sun’s disc center. The radiation 

coming from this region is called circumsolar radiation. For the typical FOV of modern pyrheliometers 

(5°), circumsolar radiation contributes a variable amount, depending on atmospheric conditions, to the 

DNI measurement. Determining the magnitude of the circumsolar radiation is of interest in concentrating 

solar thermal (CST) applications because DNI measurements are typically larger than the beam 

irradiance that can be used in concentrating systems. This causes an overestimate of CST plant 

production because the FOV of the concentrators (typically of the order of 1° or less) is much smaller 

than the FOV of the pyrheliometers that are used on-site to determine the incident DNI.  

The circumsolar contribution to the observed DNI can be quantified if the radiance distribution within the 

circumsolar region and the so-called penumbra function of the pyrheliometer are known. The latter is a 

characteristic of the instrument and can be derived from the manufacturer’s data. The former, however, 

is difficult to determine experimentally with current instrumentation. For instance, a method based on 

two commercial instruments (a “sun and aureole measurement” system and a sun photometer) has 

been presented (Gueymard 2010; Wilbert et al. 2013). Other instruments that can measure circumsolar 

irradiance are documented in (Wilbert, Pitz-Paal, and Jaus 2012; Wilbert et al. 2018; Kalapatapu et al. 

2012; Wilbert 2014). 

To avoid additional measurements, substantial modeling effort is required and might involve estimation 

of the spectral distribution (Gueymard 2001). Some specific input data are rarely accessible in real time, 

particularly when a thin ice cloud (cirrus) reduces DNI but considerably increases the circumsolar 

contribution. Despite these difficulties and because of the special needs of the solar industry, new 

specialized radiative models have been developed recently to evaluate the difference between the true 

and apparent DNI using various types of observations (Eissa et al. 2018; Räisänen and Lindfors 2019; 

Sun et al. 2020; Xie et al. 2020). More research is being conducted to facilitate the determination of the 

circumsolar radiation at any location and any instant as part of solar resource assessments. Further 

information on circumsolar radiation can be found in Chapter 5, Section 5.10. 

2.5.3 Diffuse Irradiance 

The atmosphere absorbs and scatters some radiation out of the direct beam before it reaches the Earth’s 

surface. Scattering occurs in essentially all directions, away from the specific path of the incident beam 

radiation. This scattered radiation constitutes the sky diffuse radiation in the hemisphere above the 

surface. In particular, the Rayleigh scattering theory explains why the sky appears blue (short 

wavelengths, in the blue and violet parts of the spectrum, are scattered more efficiently by atmospheric 

molecules) and why the sun’s disk appears yellow-red at sunrise and sunset (blue wavelengths are 

mostly scattered out of the direct beam, whereas the longer red wavelengths undergo less scattering, 

resulting in a red shift). The broadband sky radiation in the hemisphere above the local surface is 

quantified as the DHI. A more technical and practical definition of DHI is that it represents all radiation 
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from the sky dome except what is considered DNI; hence, in practice, DHI is the total irradiance from 

the whole-sky hemisphere minus the 2.5° annulus around the sun center. 

DHI includes radiation scattered by molecules (Rayleigh effect), aerosols (Mie effect), and clouds (if 

present). It also includes the backscattered radiation that is first reflected by the surface and then re-

reflected downward by the atmosphere or clouds. The impact of clouds is difficult to model because they 

have optical properties that can vary rapidly over time and can also vary considerably over the sky 

hemisphere. Whereas a single and homogenous cloud layer can be modeled with good accuracy, 

complex three-dimensional cloud scenes present more challenges (Hogan and Shonk 2013). 

2.5.4 Global Irradiance 

The total hemispherical solar irradiance on a horizontal surface, GHI, is the sum of DHI and the projected 

DNI to the horizontal surface, as expressed by Eq. 2-2. This fundamental equation is used for data 

quality assessments, some solar radiation measurement system designs, and atmospheric radiative 

transfer models addressing the needs for solar resource data. Because GHI is easier—and less 

expensive—to measure than DNI or DHI, most radiometric stations in the world provide only GHI data.  

2.5.5 Front and Rearside Plane-of-Array Irradiance and Albedo 

POA refers to the receiving surfaces of one or more planar solar collectors, all with the same orientation 

or on the same tracking device such that one POA description applies to all. POA irradiance is the fuel 

for monofacial PV and flat-plate thermal collectors, whereas the rear plane-of-array (RPOA) irradiance 

is only useful for bifacial PV collectors. In the PV literature, GTI is typically referred to as the POA 

irradiance, or even just POA.  

Consider now the broadband irradiance components on a tilted plane. The orientation of this tilted plane 

is defined by the two spherical angles that describe the orientation of the surface’s normal vector: 

azimuth (ψ) and zenithal angle (θ), also simply referred to as tilt. A horizontal plane has a tilt of 0°, 

whereas a vertical plane has a tilt of 90°. A plane has two faces defined by opposite normal vectors. In 

particular, the horizontal irradiance components defined above implicitly consider the normal toward the 

sky (up) with θ =0°. For a horizontal plane facing the ground, the upward global irradiance is referred to 

as reflected horizontal irradiance (RHI). 

For a bifacial PV module with a tilt θ and azimuth ψ, the tilt of its backside is 180-θ with the same azimuth 

ψ. As mentioned above, the corresponding global irradiance incident on that backside is usually denoted 

as RPOA. Similar to POA, the RPOA irradiance is composed of the three same components: direct, 

diffuse, and reflected tilted irradiance (Figure 2-9). Obviously, the direct irradiance cannot be incident 

on the front and back sides at the same time. 
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Figure 2-9. Solar radiation components (oriented hemispherical irradiances) incident on the front 
and back of a tilted plane  

Image by Philippe Blanc, MINES Paris–PSL University  

 

2.5.5.1 Albedo 

The ratio of the total irradiance reflected to the total irradiance received by a surface is called the 

“bihemispherical reflectance,” which is also customarily known as “albedo” (ρ). In contrast, the term 

“reflectance” is used when directionality is involved (e.g., to describe the effect of specular reflecting 

surfaces such as a concentrating mirror). More discussion on these definitions appears in (Gueymard 

et al. 2019). For solar energy applications, the albedo definition can be mathematically expressed as 

the RHI emanating from a surface normalized by the GHI that is incident onto it: 

 𝜌 = RHI
GHI⁄ . (2-7) 

 
This definition holds for either spectral or broadband fluxes. Only the latter case is discussed further 

here because of its predominant interest in solar applications, but further information on spectral albedo 

can be found in Chapter 3. The albedo’s physical possible values range from 0–1 (sometimes expressed 

in percentage). In nature, most land areas not covered by ice or snow have an albedo in the approximate 

range from 0.15–0.45. Water bodies usually have a low albedo, typically near 0.05. At the other extreme, 

areas covered with fresh snow or clean ice have a very high albedo, which can exceed 0.85. Figure 2-

10 shows the distribution of the mean values of albedo of the land areas in the world. According to this, 

75% of the values are included in the range approximately between 0.14 and 0.39. High values around 

0.8 correspond to the regions with fresh snow or clean ice. The median value is ≈0.2, which has 

traditionally been a standard constant value for albedo in solar applications. 
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Figure 2-10. Distribution of annual mean values of albedo in land areas of the world (no oceans or 
large water bodies included) obtained from a combination of MODIS products and ERA5 reanalysis  

The vertical red line shows the mean; the vertical blue line indicates the median. The interquartile 
range (“50% (Q3–Q1)”) is shown in dark orange. The range showing 75% of the data is marked in 
light orange (“75%”). Some descriptive statistical values are also provided in the textbox: mean, 
median, standard deviation (STD), median absolute deviation (MAD), and the first and third quartile 
(Q1 and Q3). 

 

One difficulty is that albedo is not merely a true constant surface property but rather a property of the 

coupled surface-atmosphere system. In particular, surface albedo is a function of the inherent surface 

characteristics, atmospheric state, and illuminating conditions (Wang et al. 2015). For that reason, in 

general albedo presents a high variability both in space (at scales from a few centimeters to hundreds 

of kilometers) and time (at scales from minutes to daily, seasonal, and even interannual) (e.g., dry 

regions with sparse vegetation or spots of snow cover—see, e.g., [Berg et al. 2020; Gueymard et al. 

2019; 2021]).  

Figure 2-11 shows an example of the temporal variability of the albedo of a specific site at different 

timescales. Under clear skies, the diurnal albedo evolution is a function of solar position because the 

reflection process is never purely isotropic (Lambertian) in the real world. Conversely, albedo tends to 

be constant under dense overcast conditions because the direct beam component is zero, and the 

incident illumination is nearly isotropic. Additionally, daily albedo time series vary on a daily, seasonal, 

and interannual basis. 
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Figure 2-11. (Top) Example of diurnal variation of albedo (30-minute intervals) for (left) cloudy-sky 
conditions and (right) clear conditions, derived from the total incident and reflected horizontal 
irradiances, GHI and RHI, measured at the AmeriFlux radiometric station of Walnut Gulch Kendall 
Grasslands in Arizona, United States. (Bottom) Five years of daily mean albedo recorded at the 
same station, illustrating its seasonal and interannual variability. 

The variations of the surface characteristics are typically related to the vegetation’s phenological state, 

the surface’s roughness and wetness, and the presence of snow or ice. Additionally, the albedo’s 

spatiotemporal variability is impacted by both the atmospheric state and the ambient illumination 

conditions through the GHI’s direct and diffuse components. In this respect, it is possible and convenient 

to define two theoretical illumination scenarios. The extreme situation in which there is only pure direct 

beam illumination—resulting in an ideally black sky dome—corresponds to the conceptual case of 

“directional-hemispherical reflectance,” also known as black-sky albedo (BSA). The opposite theoretical 

situation is that under purely isotropic diffuse illumination, referred to as white-sky albedo (WSA). 

Overall, RHI can be expressed as a combination of these individual components as: 

 RHI =  BSA · BHI +  WSA · DHI  (2-8) 

where BHI and DHI denote the direct and diffuse horizontal irradiances, respectively. Assuming that the 

diffuse illumination is purely isotropic, the actual surface albedo—sometimes referred to as blue-sky 

albedo—can be interpolated as a weighted linear combination of its components (Lewis and Barnsley 

1994; Lucht, Schaaf, and Strahler 2000; Román et al. 2010): 

𝜌 =  WSA · 𝐾 +  BSA · (1 –  𝐾) (2-9) 

where K is the diffuse fraction, DHI/GHI. Under overcast conditions, usually only the diffuse component 

is present (K1), hence ρWSA. This approximation is convenient and typically used in most solar 

energy applications because of practical constraints and lack of detailed data on BSA. Most often, WSA 

is considered a constant value over time, such as 0.2, but that might constitute an oversimplification. 

Both BSA and WSA can be determined by respective spatial and angular integrations of the surface’s 

BRDF. This is the conceptual foundation to determine the reflectance of the target surface according to 
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the geometry of the source-surface-observer directions of radiation. It is a function of wavelength (λ) 

and of the structural and optical properties of the surface. The BRDF attempts to describe the behavior 

of the naturally anisotropic scattering of the solar radiation at the surface-air interface. Because of the 

complexity, diversity, and variability of BRDF distributions, mathematical models are used in practice to 

generate a parametric representation of it (Lucht, Schaaf, and Strahler 2000). In addition to the precise 

determination of the angular reflectance in any direction, the BRDF framework is used in a large range 

of applications related to satellite remote sensing. 

In solar energy applications, determining surface albedo is fundamental for various reasons (Gueymard 

et al. 2019). First, radiative transfer models require albedo to account for the multiple reflections between 

the surface and the atmosphere (referred to as the backscattering effect) and to ultimately evaluate DHI 

and GHI (Ruiz-Arias and Gueymard 2018; Sun et al. 2020; Xie, Sengupta, and Dudhia 2016). Second, 

in the frequent case when the incoming solar irradiance is modeled based on satellite imagery, the 

surface albedo also constitutes a key independent variable to estimate the dynamic range of cloud 

reflectance (Perez, Cebecauer, and Šúri 2013). Third, most solar applications involve planar solar 

thermal collectors or PV modules that are tilted with respect to the horizontal, in which case the ground-

reflected irradiance that is incident on the tilted plane must be determined. This is particularly important 

in increasingly popular bifacial PV technology, which directly exploits the reflected irradiance as the 

primary source of energy for each module’s rear side. This makes bifacial PV modules markedly more 

sensitive to the albedo magnitude and variations than monofacial modules; hence, reliable information 

about the surface albedo has become important to determine the most suitable PV technology at any 

site, to obtain reliable simulations of the envisioned system’s energy output, and to assess the economic 

feasibility of any solar power project. Difficulties exist because the calculation of the reflected irradiance 

on a tilted surface is generally performed following several simplifying assumptions that do not apply in 

practice (Gueymard et al. 2019; Kamphuis et al. 2020). A detailed discussion on these practical aspects 

is presented in Section 3.4. 

There are three main sources of data on surface albedo: (1) ground measurements using albedometers 

(two pyranometers placed horizontally in opposite up and down directions, measuring GHI and RHI, 

respectively); (2) satellite estimates based on monitoring the reflected radiance emanating from the 

Earth’s surface-atmosphere system; and (3) predictions based on a reanalysis model. All present distinct 

characteristics with advantages and limitations. 

In-situ albedo measurements are described in Chapter 3, Section 3.3.2. Various albedo products from 

the other two sources have been proposed and cover various geographic areas and periods at diverse 

spatiotemporal resolutions. An exhaustive table of openly accessible sources is available in (Gueymard 

et al. 2019), along with their main characteristics. In addition, some specialized proprietary databases 

of surface albedo exist and are accessible through service providers. Modeled albedo databases are 

described in Chapter 5.  

When using albedo databases to evaluate the specific albedo at a site during the design phase of a 

projected solar energy system, some critical questions arise: (1) Will the historical albedo at hand be 

conserved in the future, considering possible changes in the surface characteristics caused by the 

system’s construction (e.g., vegetation removal)? (2) How is the albedo of the specific site under scrutiny 

related to the albedo of the area (e.g., grid cell) for which information is available from these databases? 

The first question must be answered on a case-by-case basis by the designer. To address the second 

question, an analysis of the spatial variability of the albedo over the area around the site must be 

conducted. Analyses show that this spatial variability can be high in many cases (Gueymard et al. 2021; 

Wang et al. 2015), which complicates the matter because the use of spatial interpolation or extrapolation 

over inhomogeneous areas could result in incorrect results.    
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2.5.5.2 Rear Plane-of-Array Irradiance  

RPOA consists primarily of scattered light from multiple sources including the ground, sky, and 

neighboring PV rows (Figure 2-12). RPOA depends mostly on the surface albedo beneath the PV array, 

the height and tilt of the array, and the fraction of diffuse light in the sky hemisphere. Research has 

shown that RPOA on the back of a 37° fixed-tilt system above light sandy soil is 130–150 W/m2 when 

the frontside is illuminated with the air mass 1.5 global (AM1.5G) reference spectrum (1000 W/m2) 

(Monokroussos et al. 2020; Deline et al. 2017; IEC 61215-1 2021). Therefore, about 12% of the total 

irradiance received by a bifacial PV system (BPV) under reference conditions is RPOA, most of which 

is ground-reflected light.  

It is possible, and at times cost-effective, to increase the albedo of the original surface over which a BPV 

system is being built using a high-reflectance product, such as a white membrane, to maximize RPOA. 

In contrast, floating BPV systems are somewhat at a disadvantage because of the low albedo of water 

(typically 0.05–0.07). Such systems would thus substantially benefit from the addition of appropriate 

reflectors (Ziar et al. 2021). 

 

Figure 2-12. Contributions to illumination of the front and rear of BPV modules, including direct, sky 
diffuse, and ground-reflected radiation  

Image by NREL  

 

2.5.6 Terrestrial Solar Spectra 

Many solar energy applications rely on collectors or systems that have a pronounced inhomogeneous 

spectral response. The performance of solar cells that constitute the building blocks of PV systems are 

affected by the spectral distribution of incident radiation. Each solar cell technology has a specific 

spectral dependence (see Section 3.2.6). To allow for the comparison and rating of solar cells or 

modules, it is thus necessary to rely on reference spectral conditions. To this end, various international 

standardization bodies—ASTM, the International Electrotechnical Commission (IEC), and ISO—have 

promulgated standards that describe such reference terrestrial spectra. In turn, these spectra are 

mandated to test the performance of any solar cell using either indoor or outdoor testing methods. 

Currently, all terrestrial standard reference spectra are for an air mass of 1.5 (noted AM1.5). The reason 

for this, as well as historical perspectives on the evolution of these standards, are discussed by 

(Gueymard, Myers, and Emery 2002). The standard reference spectra of relevance to the solar energy 

community are the following: 

• ASTM G173: for DNI and GTI on a 37°-tilted surface 

• ASTM G197: for the direct, diffuse, and global components incident on surfaces tilted at 20° and 

90° 
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• IEC 60904-3: similar to an older edition of ASTM G173, with only slightly different values, lower by 

0.29% 

• ISO 9845-1: replicating an older edition of ASTM G173, additionally proposing 171 subordinate 

spectra related to various atmospheric conditions (Jessen et al. 2018). 

In addition, (CIE 241:2020 2020) proposes a number of recommended reference solar spectra for 

industrial applications at various air masses, and ASTM G177 defines a “high-UV” spectrum at an air 

mass of 1.05 for material degradation purposes. 

It is emphasized that these reference spectra correspond to clear-sky situations and are difficult to 

realize experimentally (Gueymard 2019). Spectroradiometers are now available that measure the 

spectral irradiance at high temporal resolution (e.g., each minute) under all possible sky conditions. 

Moreover, there are models, such as the Fast All-sky Radiation Model for Solar applications with 

Narrowband Irradiances on Tilted surfaces (FARMS-NIT) (Xie and Sengupta 2018; Xie, Sengupta, and 

Wang 2019), that can provide modeled narrowband or spectral irradiance for fixed-tilt and single-axis 

tracking systems under all-sky conditions. The availability of measured and/or modeled spectral data is 

critical to testing solar energy systems under field conditions (see Chapters 3, 5, and 7). 
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Executive Summary 

Accurate measurements of the incoming irradiance are essential for solar power plant project design, 

implementation, and operations. Large and medium solar energy systems require ground-measured 

irradiance data for: 

• Site resource analysis, yield assessment, financing 

• System design 

• Plant operation and performance control. 

Ground-based irradiance measurements are also essential for developing, testing, and enhancing 

models to estimate and forecast solar radiation resources. This includes performing a site adaptation of 

long-term resource datasets and applying recent measurements for the creation of a forecast. Solar 

irradiance measurements are only available at a limited number of stations, so a specific measurement 

campaign must typically be performed at (or around) the location of each specific new project. 

Depending on the solar technology that will be used in the project, different radiometers are of interest. 

Pyranometers are used to measure global horizontal irradiance (GHI), global tilted irradiance (GTI) (also 

referred to as plane-of-array [POA] irradiance when measured on a photovoltaic [PV] array), diffuse 

horizontal irradiance (DHI), rear plane of array (RPOA), or reflected horizontal irradiance (RHI). 

Pyranometers can measure the resource used by PV and flat-plate solar systems. RPOA, DHI, and RHI 

are particularly relevant for bifacial PV (BPV). As an alternative or in addition to measuring RPOA with 

a pyranometer directly, this RPOA can also be estimated based on RHI, GHI, and DHI. In this approach, 

RHI is divided by GHI to calculate the local surface albedo that is then used to derive the ground-

reflected contribution to RPOA. DHI is utilized along with so-called view factors to obtain the diffuse 

radiation’s contribution to RPOA. In the case of PV systems, PV reference cells are also of interest, as 
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they might replace GTI and RPOA pyranometers for monitoring applications. To measure DHI, a sun-

shading device such as a tracked shading ball for the pyranometer is often used, which complicates the 

measurements compared to the other above-mentioned radiation components, because a solar tracker 

is needed. For systems based on concentrating collectors, direct normal irradiance (DNI) measurements 

are required. DNI is also of interest for large and tracked PV installations. Such measurements can be 

collected with pyrheliometers that are mounted on solar trackers. The protective windows of these 

instruments are prone to soiling, and their signal is affected more by soiling than that of pyranometers. 

Thus, pyrheliometers require more frequent maintenance. To avoid expensive maintenance-intensive 

and failure-prone solar trackers for DNI and/or DHI measurements, alternative instruments are available. 

Such instruments are comparably cheaper and require less maintenance, but cannot reach the same 

high accuracy as well-maintained tracker systems equipped with a pyrheliometer and two pyranometers 

of the highest accuracy class, even if their operations and maintenance (O&M) is optimum.  

To generate reliable irradiance measurement data, it is important not only to select the most appropriate 

sensors, but also to ensure their correct installation, operation, and maintenance. The station’s design 

must avoid unwanted effects caused by shading or other influences from, for example, traffic, industrial 

activity, insects, animals, strong winds, or vandalism. The frequent periodic inspection of the station by 

trained personnel, including required corrections and cleaning of the sensors, is typically a simple task, 

but essential for measurement accuracy. In operating solar power plants, conflicts of interest resulting 

from the expected difficulty for a single contractor to reconcile two different objectives (high solar plant 

efficiency and high irradiance data quality) should be avoided. This is because, for instance, 

measurement errors caused by soiled radiometers or wrong radiometer installation can lead to an 

overestimation of solar system efficiency. The calibration of radiometers also contributes significantly to 

overall uncertainty and must be repeated periodically according to the instrument specifications and 

international standards. The provided recommendations are based on the relevant international 

standards and are complemented by exemplary station plans and checklists for the various steps 

needed for accurate solar irradiance measurements. 

 

Figure ES-3-1. Exemplary plan for a high-accuracy radiometric station with a solar tracker, albedo 
measurement, wind mast, PV soiling measurements, and a PV power supply positioned for minimal 
shading effects.  

Image from CSP Services 
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3.1 Introduction 

Solar power plant project design, implementation, and operations require accurate measurements of 

the incoming irradiance. Because accurate solar irradiance measurements are relatively time-

consuming and expensive compared to other meteorological variables like temperature, they are 

publicly available for only a limited number of permanent or semipermanent stations. This is true 

especially for direct normal irradiance (DNI) or diffuse horizontal irradiance (DHI). Large and medium 

solar energy projects thus typically require the installation of an on-site station to collect ground-

measured irradiance data for: 

• Site resource analysis and site adaptation of long-term resource datasets for yield assessment and 

financing 

• System design 

• Plant operation and performance control. 

More generally, ground-based irradiance measurements at various sites are also essential for: 

• Developing and testing models that use remote satellite-sensing techniques or available surface 

meteorological observations to estimate the solar resource 

• Developing solar resource forecasting techniques and enhancing their quality by applying recent 

measurements to generate the forecasts  

• Other disciplines not directly related to renewable energy, such as climate studies or accelerated 

weathering tests.  

This chapter discusses the available radiometers and their calibrations and provides recommendations 

on the required measurands and instruments for different applications, their installation, station design, 

and operations and maintenance (O&M). Further, detailed exemplary station plans and checklists are 

provided for the various tasks that are connected to radiation measurement campaigns.  

3.2 Radiometer Types 

Instruments designed to sense any form of radiation are called radiometers. The earliest developments 

of instrumentation for measuring solar radiation were designed to meet the needs of agriculture (in terms 

of bright sunshine duration to understand evaporation) and to determine the sun’s output or “solar 

constant.” During the 19th and 20th centuries, the most widely deployed instrument for indirectly 

estimating solar radiation was the Campbell-Stokes sunshine recorder (Iqbal 2012; Vignola, Michalsky, 

and Stoffel 2020). This analog device focuses the direct beam with a simple spherical lens (glass ball) 

to create burn marks during clear periods (when DNI exceeds ≈120 W/m2) on a sensitized paper strip 

placed daily in the sphere’s curved focus plane. By comparing the total burn length to the corresponding 

day length, records of the percentage of possible sunshine from stations around the world became the 

basis for characterizing the global distribution of solar radiation (Löf, Duffie, and Smith 1966). The 

earliest pyrheliometers (from the Greek words for fire, sun, and measure) were based on calorimetry 

and used by scientists to measure brief periods of DNI from various experimental sites, generally at high 

elevation to minimize the effects of a thick atmosphere on the transmission of radiation from the sun 

(e.g., in an attempt to derive the solar constant). By the early 20th century, scientists had developed 

pyranometers (from the Greek words for fire, sky, and measure) to measure global horizontal irradiance 

(GHI) and better understand the Earth’s energy budget (Vignola, Michalsky, and Stoffel 2020). 

This section summarizes the types of commercially available radiometers most commonly used to 

measure solar radiation in the context of solar energy technology applications. Solar resource 

assessments are traditionally based on broadband measurements (i.e., encompassing the whole 
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shortwave spectrum [0.29–4 µm]). Spectrally selective measurements made using spectroradiometers 

(described in Chapter 5, Section 5.7) are needed to evaluate the spectral distribution of this irradiance 

and ultimately investigate the performance of photovoltaic (PV) cells that have a significant spectral 

dependence. 

3.2.1 Pyrheliometers and Pyranometers 

Pyrheliometers and pyranometers are two types of radiometers used to measure solar irradiance. Their 

ability to receive solar radiation from two distinct portions of the sky distinguishes their designs. As 

described in Chapter 2, pyrheliometers are used to measure DNI, and pyranometers are used to 

measure GHI, DHI, global tilted irradiance (GTI or plane of array [POA]), or the in-plane rear-side 

irradiance (RPOA). Another important measurement involving pyranometers is that of reflected 

horizontal irradiance (RHI), which is necessary to estimate the surface albedo per Eq. 2-3 (Table 3-1). 

Figure 3-1 summarizes some key attributes of these two types of radiometers. 

  

Figure 3-1. (Left) Thermopile assembly used in an Eppley Laboratory Inc. model PSP and (right) a 
typical photodiode detector.  

Photos used with permission from LI-COR Inc. 
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Table 3-1. Overview of Solar Radiometer Types and Their Applications 

Radiometer 
Type 

Measurement 
Field of View 
(Full Angle) 

Installation 

Pyrheliometer DNI 5–6° Mounted on a two-axis solar tracker for alignment with 
the solar disk 

Pyranometer GHI 2π steradians Mounted on a stable horizontal surface free from local 
obstructions a 

Pyranometer DHI 2π steradians Mounted on a two-axis solar tracker fitted with a 
shading attachment or on a manually adjusted 
shadowband platform to block DNI from the detector’s 
surface a 

Pyranometer GTI (POA) 2π steradians Mounted in the plane of the PV module array or flat-
plate solar collector (fixed or tracked along one or two 
axes)a 

Pyranometer RPOA 2π steradians Mounted in the plane of the rear side of the PV module 
array oriented toward the ground (fixed or tracked along 
one or two axes)a 

Pyranometers Albedo 2π steradians 
(for each 
pyranometer) 

Two pyranometers mounted horizontally measuring the 
downward and upward irradiance (Section 3.3.2)a 

a Optionally, thermopile pyranometers are installed with a powered ventilator and heating system to 
reduce contamination of optical surfaces and thermal errors. The base (heatsink) of most 
thermopile pyranometers must be shielded from direct sunlight. 

 
Pyrheliometers and pyranometers commonly use either a thermoelectric or photoelectric passive sensor 

to convert the sensed solar irradiance (W/m2) into a proportional electrical signal (microvolts [µV] DC). 

Thermoelectric sensors have an optically black coating that allows for a broad and uniform spectral 

response to all solar radiation wavelengths (Figure 3-1, left), covered by a window (flat for 

pyrheliometers and domed for pyranometers) having a flat transmittance from approximately 300–3,000 

nm or wider. The most common thermoelectric sensor used in radiometers is the thermopile. There are 

all-black thermopile sensors used in pyrheliometers and pyranometers, as well as black-and-white 

thermopile sensors used exclusively in pyranometers. In all-black thermopile sensors, the surface 

exposed to solar radiation is completely covered by the absorbing black coating. The absorbed radiation 

creates a temperature difference between the black side of the thermopile (i.e., “hot junction”) and the 

other side (i.e., “reference” or “cold junction”). Often the “cold junction” is attached to a large thermal 

mass that serves as a heatsink. The base of the pyranometer often serves as the heatsink. The 

temperature difference causes a voltage signal. One drawback of this design is that the hot junction 

radiates to the sky, thus creating radiative imbalance, referred to as “thermal offset.” Consequently, the 

signal of all-black thermopile pyranometers is somewhat too low during the day and negative at night, 

particularly under cloudless conditions because the sky is then colder than if covered by clouds. The 

magnitude of this underestimation depends on the meteorological conditions, the measured radiation 

component, and the instrument’s design and specifications, and is about 0–20 W/m² for unventilated 

and about half of that for ventilated pyranometers (Sanchez, Cancillo, and Serrano 2016; Sanchez, 

Serrano, and Cancillo 2017). Some recent instruments rely on innovative features that almost 

completely eliminate their offset. 

In black-and-white thermopiles, the surface exposed to radiation is partly black and partly white. In this 

case, the temperature difference between the black and the white surfaces creates the voltage signal. 
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This design has the advantage of eliminating the thermal offset issue. Despite having a relatively small 

thermal mass, the 95% response times of thermopile radiometers are not negligible for some 

applications, with the output signal typically lagging the changes in solar flux by 1–30 seconds.8 Some 

instruments include a signal postprocessing that tries to compensate for this time lag. Most instruments 

of this type include electronic circuitry to introduce a temperature compensation to the signal, thus 

reducing the need for any ulterior temperature correction. Recently, new smaller thermopile sensors 

with response times as low as 0.2 seconds have been made commercially available as well. A detailed 

analysis of radiometer response times is found in Driesse (2018). 

In contrast to thermopiles, common photoelectric sensors generally respond to only the visible and near-

infrared spectral regions from approximately 350–1100 nm (Figure 3-1, right; Figure 3-2). Pyranometers 

with photoelectric sensors are sometimes called silicon (Si) pyranometers or photodiode pyranometers. 

Their non-flat spectral sensitivity and their limited spectral range lead to significant spectral errors, as 

the solar spectrum varies in a way that cannot be fully captured by photoelectric sensors even with 

elaborate postprocessing and complex calibrations. On the other hand, these sensors have very fast 

time-response characteristics on the order of microseconds.  

For both thermopile and photelectric detectors used in commercially available instruments, the electrical 

signal generated by exposure to solar irradiance magnitudes of approximately 1000 W/m2 is ≈10 mV 

DC (assuming no amplification of the output signal and an appropriate shunt resistor for photodiode 

sensors). This rather low-level signal requires proper electrical grounding and shielding considerations 

during installation, as well as a highly accurate voltage measurement (Section 3.5.4).  

Most manufacturers now also offer pyrheliometers and pyranometers with built-in amplifiers and/or 

digital outputs. Such digital instruments have several advantages and are described in Section 3.4.3. 

  

Figure 3-2. Spectral response of Kipp & Zonen CM21 thermopile pyranometer, CHP1 pyrheliometer, 
and LI-COR pyranometer LI200SA plotted next to the GHI, GTI, DNI, and DHI spectra for ASTM G-173 
conditions at AM1.5.  

Image by the German Aerospace Center (DLR)  

 

 

8 The given response time represents the time it takes the instrument to reach 95% of the final value. Typically, a 

steplike change of the incoming irradiance is used to determine the response time. 
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3.2.1.1 Pyrheliometers 

Pyrheliometers are typically mounted on automatic two-axis solar trackers to maintain the instrument’s 

alignment with the solar disk and to fully illuminate the detector from sunrise to sunset (Figure 3-3 and 

Figure 3-4). Alignment of the pyrheliometer with the solar disk is determined by a simple diopter—a 

sighting device in which a small spot of light (the solar image) falls on a mark in the center of a target 

located near the rear of the instrument, serving as a proxy for alignment of the solar beam to the detector. 

A small tracking error is acceptable as long as the solar image is at least tangent to the diopter target. 

Modern sun trackers use software to compute and precisely track the sun position. These calculations 

require that the sun tracker is assembled and positioned correctly (horizontally leveled, with correct 

azimuth and elevation orientation). Therefore, tracking errors occur if the tracker is not installed and 

positioned correctly (e.g., imperfect leveling). A solid, stable mounting platform is required so that wind 

and vibration, nearby personnel or traffic, as well as thermal expansions due to temperature variations, 

do not induce any significant tracking errors. Sun sensors can help reduce the remaining tracking errors 

during periods with direct irradiance. The sun sensor tracks the sun and typically uses a four-quadrant 

sensor placed behind a pinhole or a lens to detect the tracking error. The tracking error is then sent to 

the tracker software so that it can be corrected. Because of all these requirements and their associated 

costs, solar trackers are only used at high-quality or research-class stations.  

By convention, and to allow for small variations in tracker alignment, view-limiting apertures inside the 

pyrheliometer’s collimating tube allow for the detection of radiation in a narrow annulus of sky around 

the sun (WMO 2018), called the circumsolar region. This circumsolar radiation component is the result 

of forward scattering of radiation near the solar disk, itself caused by cloud particles, atmospheric 

aerosols, and other constituents that can scatter solar radiation. All modern pyrheliometers should have 

a 5° field of view (FOV), following the World Meteorological Organization (WMO) (WMO 2018) 

recommendations. (An FOV-related design characteristic of pyrheliometers is their penumbra function; 

see Chapter 2, Section 2.5.2 and references therein.) The FOV of older instruments could be larger, 

however, such as 5.7°–10° full angle. Depending on the FOV and tracker alignment, pyrheliometric 

measurements include varying amounts of circumsolar irradiance contributions to DNI. Although this is 

usually a very small contribution to the measurement, it can affect the measurement under atmospheric 

conditions of intensified scattering. To determine the amount of circumsolar irradiance and its spatial 

distribution over the FOV, a few methods are available (see Chapter 2, Section 2.5.2 and Chapter 5, 

Section 5.10). 

 

Figure 3-3. Schematic of a Kipp & Zonen B.V., model SHP1—a “smart” pyrheliometer.  

Image modified from Kipp and Zonen (2017) 
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Figure 3-4. A pyrheliometer (1), a shaded pyranometer (2), and a shaded pyrgeometer (3) (see 
Section 3.2.4) mounted on an automatic solar tracker.  

Photo from DLR 

 

The most accurate measurements of DNI under stable conditions are accomplished using an electrically 

self-calibrating absolute cavity radiometer (ACR). This advanced type of radiometer is the basis for the 

World Radiometric Reference (WRR), the internationally recognized detector-based measurement 

standard for DNI (Fröhlich 1991). The WMO World Standard Group of ACRs is shown in Figure 3-5. By 

design, ACRs have no windows and are therefore generally limited to fully attended operation during 

dry conditions to protect the integrity of the receiver cavity (Figure 3-6). Removable windows and 

temperature-controlled all-weather designs are available for automated continuous operation of these 

radiometers; however, the installation of a protective window nullifies the “absolute” nature of the DNI 

measurement. The window introduces additional measurement uncertainties associated with the optical 

transmittance properties of the window (made from either quartz or calcium fluoride) and the changes 

to the internal heat exchange resulting from the sealed system. Moreover, ACRs need some periods of 

self-calibration during which no exploitable measurement is possible. This creates discontinuities in the 

high-accuracy DNI time series that could be measured with windowed ACRs, unless a regular 

pyrheliometer is also present to provide the necessary redundancy (Gueymard and Ruiz-Arias 2015). 

Combined with their very high cost of ownership and operation, this explains why ACRs are normally 

not used to measure DNI in the field. 

A unique 10-month comparison of outdoor measurements from 33 pyrheliometers, including ACRs, 

under a wide range of weather conditions in Golden, Colorado, indicated that the estimated 

measurement uncertainties at a 95% confidence interval ranged from ±0.5% for windowed ACRs to 

+1.4%/–1.2% for commercially available instruments (Michalsky et al. 2011). Interestingly, the results 

also suggested that the measurement performance during the comparison was better than indicated by 

the manufacturers’ specifications. These results, however, were obtained under laboratory conditions—

as opposed to field conditions—and thus the instruments were remarkably well attended in terms of 

calibration, daily cleaning, and maintenance. Soiling of the protective window can degrade the accuracy 

of pyrheliometers. Some recent designs include a window heater to limit the effect of dew, raindrops, 

and soiling, but frequent cleaning is desirable anyway. 

1 

2 
3 
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Figure 3-5. The World Standard Group of ACRs (marked in green) used to define the WRR or DNI 
measurement standard.  

Photo from the Physical Meteorological Observatory in Davos/World Radiation Center 

 

 

Figure 3-6. Schematic of the Eppley Laboratory Inc. automatic Hickey-Frieden model of an ACR. 

Image modified from Reda (1996) 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

3-10 

3.2.1.2 Pyranometers 

A pyranometer has a thermoelectric or photoelectric detector with a hemispherical FOV (180° or 2π 

steradians) (Figure 3-4 and Figure 3-7). This type of radiometer is mounted horizontally to measure GHI. 

In this horizontal mount, the pyranometer has a complete view of the sky dome. Ideally, the mounting 

location for this instrument is free of natural or artificial obstructions on the horizon. Alternatively, the 

pyranometer can be mounted at a tilt to measure GTI (or POA), as in the case of latitude-tilt or one-axis 

tracking systems, or vertically for building applications. In an upside-down position, it senses RHI. The 

local albedo is simply obtained by dividing the latter by GHI, as further discussed in Sections 2.5.5.1 

and 3.3.2. 

 

Figure 3-7. Schematic of the Eppley Laboratory Inc. PSP.  

Image by the National Renewable Energy Laboratory (NREL) 

 

Thermoelectric pyranometer detectors are mounted under one or two protective dome(s) (usually made 

of optical glass or precision quartz in some high-end models) and/or a diffuser. Both designs protect the 

detector from the weather and provide optical properties consistent with receiving hemispheric solar 

radiation. Pyranometers can be fitted with ventilators that constantly blow air—sometimes heated—from 

under the instrument and over the dome (Figure 3-8). The ventilation and heating reduces the potential 

for contaminating the pyranometer optics caused by dust, dew, frost, snow, ice, insects, or other 

materials. Ventilation also beneficially mitigates the thermal offset characteristics of pyranometers with 

single all-black detectors (Vignola, Long, and Reda 2009). The ventilation devices require a significant 

amount of electrical power (5 to 20 W), particularly when heated, adding to the required capacity for on-

site power generation in remote areas and to the periodic maintenance such as cleaning of the intake 

air filter or replacement of the fan. Both DC and AC ventilators exist, but DC ventilators are preferable 

(Michalsky, Kutchenreiter, and Long 2017). Further, external heating can cause errors in thermopile-

based measurements so that it should be restricted to conditions requiring heating and to low or no 

irradiance periods (dusk to dawn), if possible, if the heating is not combined with ventilation. Some 

pyranometer models are equipped with recirculating ventilation between the two glass domes. The air 

might also be heated to suppress dew and frost formation, and that heating can be done throughout the 

day with little to no impact on measurement accuracy. This approach reduces the power consumption 

significantly relative to an external heating and ventilation device because of the lower heat loss 

achieved by recirculating the air. Whereas this maintains most of the beneficial ventilation/heating 

effects, dust settling or insects/birds perching on the glass dome is not reduced. 

Photoelectric pyranometers generate a signal from a photodiode as short-circuit current. The fast 

response of such photodiode pyranometers makes them important for applications where fast and 
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intense transients are involved, such as the measurement of cloud enhancement or ramping events. 

Photodiode pyranometers employ a diffuser above the detector (Figure 3-9) to achieve an approximate 

hemispherical response while omitting the glass dome to reduce cost. The application of a diffuser rather 

than a transparent glass dome makes the instrument measurably more dust-tolerant (Maxwell et al. 

1999). Whereas thermoelectric pyranometers tend to be spectrally flat, photoelectric sensors are 

spectrally selective because of their photodiode detector. The long-term stability of photodiode 

pyranometers can vary differently from thermopile-based pyranometers, as shown in Figure 3-10 and 

as further analyzed in Geuder et al. (2014). Evaluation of this stability is obviously contingent on the 

calibration procedure remaining constant over long periods. Not all institutions use the same procedure, 

so slight discontinuities can occur if the instrument is not always calibrated at the same institution. These 

instrument-specific behaviors dictate the need for regular calibrations as recommended by the 

manufacturers.  

 

Figure 3-8. Kipp & Zonen model CM22 pyranometers installed in ventilated CV2 enclosures. 

Photo by NREL 

 

   

Figure 3-9. Selected photodiode sensors with different diffusor geometries.  

Photos by DLR 

 

Pyranometers can also be used to measure diffuse radiation. The required device for this measurement 

is known as a diffusometer. It consists of a pyranometer and a shading attachment that blocks the direct 

radiation on its way to the sensor. Shading balls, shading disks, shading rings, or shadowbands are 

used for that purpose. Shading balls (Figure 3-4) and shading disks must track the sun; they cover only 

a small part of the sky corresponding to the angular region defined for measuring DNI (normally 5°). 

Shadowbands and shading rings must be manually adjusted on a daily basis to properly shade the sun 

and cover a larger fraction of the sky; they are further described in Sections 3.2.5 and 3.2.5.2. 
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Figure 3-10. Example of long-term calibration responsivity changes for two photodiode-based 
pyranometers (A and B) with an acrylic diffuser and a thermopile-based pyranometer (C) based on 
results from periodic NREL Broadband Outdoor Radiometer Calibration events.  

Image by NREL 

3.2.2 Pyrheliometer and Pyranometer Classifications 

Radiometer classification is useful for selecting the correct instrument for a particular use case and 

interpreting the data. Both the International Organization for Standardization (ISO) and WMO have 

established instrument classifications and specifications for the measurement of solar irradiance. The 

current ISO 9060 (ISO 9060 2018) classification is recommended because of some shortcomings in the 

WMO classification and the previous version of ISO 9060.  

Several instrument properties are used as the basis for these pyrheliometer and pyranometer 

classifications. The latest specifications for these radiometers are found in ISO 9060:2018 and are 
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summarized in Table 3-2 and Table 3-3 based on (Apogee 2019). The standard provides not only 

acceptance intervals but also corresponding guard bands, which are useful because the measurements 

on which the sensor specifications are based have nonnegligible uncertainties.  

The acceptance intervals provided by ISO 9060 give a general idea of the differences in data quality 

between instrument classes; therefore, the radiometer classes can be understood as accuracy classes. 

The 2018 standard also notes, however, that the acceptance intervals shown in the tables cannot be 

used for uncertainty calculations for measurements obtained at conditions that are different from those 

defined for the classification. For example, the temperature response limits are defined for the interval 

from −10°C to 40°C relative to the signal at 20°C. A measurement at 10°C will be connected to a different 

temperature response error than a measurement at 0°C or even more so at −20°C. For the other 

parameters, the same principle applies. In particular, the spectral clear-sky irradiance error used for the 

classification can deviate from the spectral irradiance error for other conditions, such as cloudy 

conditions or other air masses. For pyranometers, it must also be considered that the spectral error for 

diffuse or tilted radiation is different from the spectral error for global horizontal radiation. A more detailed 

discussion of the clear-sky spectral error can be found in Wilbert et al. (2019). 

The most important changes in the current ISO 9060 compared to the previous 1990 version (ISO 9060 

1990) are as follows: 

• Simple names are used for the four classes (AA, A, B, C), including Class AA that is introduced 

mainly for ACRs. 

• The clear-sky spectral error is used to classify the spectral properties of the radiometers, allowing 

photodiode-based radiometers to also be included in the ISO classification. Previously, spectral 

selectivity was used, which excluded photodiode radiometers. The spectral selectivity is defined by 

ISO as the deviation of the spectral responsivity from the average spectral responsivity between 

0.35–1.5 µm.  

• Additional radiometer classes are defined relative to their response time and their spectral 

responsivity. If the 95% response time is less than 0.5 seconds, the term “fast response” can be 

added to the name of the class. Similarly, “spectrally flat” radiometers are defined using spectral 

selectivity. If a radiometer has a spectral selectivity less than 3%, the term “spectrally flat” can be 

added to the name of the class (e.g., “spectrally flat Class A”). 

• For Class A pyranometers, individual testing of temperature response and directional response is 

required. 

• The final signal of a sensor can be used for classification after the application of specific correction 

functions (e.g., for temperature response) if these corrections are applied within the measurement 

system (processor within instrument or control unit). Processing errors are also used as a 

classification criterion.  

Including photodiode radiometers was considered helpful because only fast-response (a few 

microseconds) photodiode sensors can be used for accurate monitoring of extremely rapid fluctuations 

of solar irradiance. Under such circumstances—typically caused by ramping and cloud-enhancement 

events—side-by-side thermopile and photodiode radiometers can disagree by a significant margin 

(Gueymard 2017a; 2017b). Further, because the most accurate way to determine GHI involves the 

combination of DNI and DHI measurements (Michalsky et al. 1999; ISO 2018), the shading balls, 

shading disks, shading masks, and rotating shadowbands are also defined in the current ISO 9060. 
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Table 3-2. ISO 9060:2018 Specifications Summary for Pyrheliometers Used to Measure DNI 

Pyrheliometer Classification List 

Parameter Name of Class, Acceptance Interval 

Name of Class AA A B C 

Roughly Corresponding Class 
From ISO 9060:1990 

Not Defined Secondary 
Standard 

First Class Second Class 

Response time for 95% 
response 

No requirement <10 s <15 s <20 s 

Zero offset: 

(a) Response to 5-K/h change 
in ambient temperature 

(b) Complete zero offset 
including effect (a) and other 
sources 

 

±0.1 W/m2 

 

 

±0.2 W/m2 

 

±1 W/m2 

 

 

±2 W/m2 

 

±3 W/m2 

 

 

±4 W/m2 

 

±6 W/m2 

 

 

±7 W/m2 

Non-stability: Percentage 
change in responsivity per year 

±0.01% ±0.5% ±1% ±2% 

Nonlinearity: Deviation from the 
responsivity at 500 W/m2 
because of change in irradiance 
from 100 to 1000 W/m2 

±0.01% ±0.2% ±0.5% ±2% 

Clear-sky DNI spectral error ±0.01% ±0.2% ±1% ±2% 

Temperature response: 

Percentage deviation because 
of change in ambient 
temperature within interval from 
−10°C to 40°C relative to 20°C 

±0.01% ±0.5% ±1% ±5% 

Tilt response: Percentage 
deviation from the responsivity 
from 0° to 90° at 1000 W/m2 
irradiance 

±0.01% ±0.2% ±0.5% ±2% 

Additional signal-processing 
errors 

±0.1 W/m2 ±1 W/m2 ±5 W/m2 ±10 W/m2 

 
Even within each instrument class, there can be some measurement uncertainty variations. The user is 

expected to research various instrument models to gain familiarity with the design and measurement 

performance characteristics in view of a particular application (Myers and Wilcox 2009; Wilcox and 

Myers 2008; Gueymard and Myers 2009; Habte et al. 2014). Further, the accuracy of an irradiance 

measurement depends on the instrument itself as well as on its alignment, maintenance, data logger 

calibration, appropriate wiring, and other conditions or effects that degrade performance. The accuracy 

of radiometers is further discussed in Chapter 10. 
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Table 3-3. ISO 9060:2018(E) Specifications Summary for Pyranometers 

Pyranometer Classification List 

Specification 
 

Class of Pyranometer 

A B C 

Roughly Corresponding Class From ISO 
9060:1990 

Secondary 
Standard 

First Class Second Class 

Response time: 95% response <10 s <20 s <30 s 

Zero offset: 

(a) Response to −200 W/m2 net thermal radiation  

 

(b) Response to 5-K·h−1 change in ambient 
temperature 

 

(c) Total zero offset including the effects of (a), 
(b), and other sources 

 

±7 W/m2 

 

±2 W/m2 

 

 

±10 W/m2 

 

±15 W/m2 

 

±4 W/m2 

 

 

±21 W/m2 

 

±30 W/m2 

 

±8 W/m2 

 

 

±41 W/m2 

Non-stability: Change in responsivity per year ±0.8% ±1.5% ±3% 

Nonlinearity: Percentage deviation from the 
responsivity at 500 W/m2 because of change in 
irradiance from 100 to 1000 W/m2 

±0.5% ±1% ±3% 

Directional response for beam radiation (range of 
errors caused by assuming that the normal 
incidence responsivity is valid for all directions 
when measuring, from any direction, a beam 
radiation that has a normal incidence irradiance of 
1000 W/m2) 

±10 Wm−2 ±20 W/m2 ±30 W/m2 

Clear-sky GHI spectral error ±0.5% ±1% ±5% 

Temperature response: 

Deviation because of change in ambient 
temperature within the interval from −10°C to 
40°C relative to 20°C 

±1% ±2% ±4% 

Tilt response: Percentage deviation from the 
responsivity at 0° tilt because of tilt change from 
0° to 180° at 1000-W/m2 irradiance 

±0.5% ±2% ±5% 

Additional signal-processing errors ±2 W/m2 ±5 W/m2 ±10 W/m2 

 
Parallel to the ISO 9060 classification just described, WMO also offers its own similar classification. The 

WMO characteristics of operational pyrheliometers and pyranometers are presented for three 

radiometer classifications: 

• High quality: near state of the art, suitable for use as a working standard, maintainable only at 

stations with specialized facilities and staff 

• Good quality: acceptable for network operations 
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• Moderate quality: suitable for low-cost networks in which moderate to low performance is 

acceptable.  

The difference between the WMO and the outdated ISO 9060:1990 classifications is in the definition of 

spectral selectivity. The wavelength range used in the former is from 300 to 3000 nm, in contrast with 

350–1500 nm in the latter. The WMO limits for the selectivity for the different classes are the same or 

even stricter, as in the case of the highest pyranometer class. This led to the unfortunate situation that, 

apparently, no weather-proof pyrheliometer fulfills the requirements of the WMO classes even though 

the spectral errors of Class A field pyrheliometers are small. (Clear-sky spectral errors are approximately 

0.1% [Wilbert et al. 2019].) Typical pyranometers of the highest class in ISO 9060 (for both the 1990 

and the 2018 versions) are also excluded from the WMO classification (Wilbert et al. 2019). 

Due to the mentioned issues of the WMO classification and the outdated 1990 version of the ISO 9060 

classification, using the most recent version of ISO 9060 is recommended. 

3.2.3 Pyrheliometer and Pyranometer Calibrations 

As stated, the signal of field radiometers is a voltage or a current that is ideally proportional to the solar 

irradiance reaching the detector. A calibration factor is required to convert the current or voltage to solar 

irradiance. The calibration factor, Ccal, is the inverse of the responsivity, Rs. For example, the 

responsivity of a thermopile pyrheliometer is given in µV per W/m2. The irradiance, E, can be obtained 

from the voltage signal, Vpyr, and the instrument’s responsivity as: 

 E = Vpyr/Rs = Vpyr ∙ Ccal (3-1) 

These responsivities can vary over time, which requires periodic recalibrations, as demonstrated by the 

time-series plot of the determined responsivities of two pyrheliometers shown in Figure 3-11. The 

temporal variability can be caused by changes in the instrument (e.g., degradation), the specific 

meteorological conditions at the time and location of calibration, the stability of the calibration reference 

radiometer(s), the performance of the data acquisition system, and other factors included in the 

estimated uncertainty of each calibration result. The application of calibrations and the frequency of 

recalibrations is described in ISO/TR 9901 (2021), ASTM G183 (2023), and IEC 61724-1 (2021). A 

yearly or alternate-year recalibration cycle is recommended. As the calibration uncertainty might be 

higher than the relative change in calibration factor, ISO TR9901 provides three different options to use 

recalibration results.  

1. The new responsivity is applied for all data after the calibration. 

2. The new responsivity is only seen as a confirmation of the old responsivity if the change is small 

compared to the calibration uncertainty.  

3. The new responsivity is applied for all data after a specific point in time that might be even 

before the calibration, maybe because of a certain event.  

Note that the calibration uncertainty that must be considered for the overall measurement uncertainty 

will be different, depending on the used option. For research purposes, an alternate method is 

sometimes used, by which the irradiance during the period between two successive calibrations is 

calculated with a calibration factor that varies daily in a linear way between its two determinations (Abreu 

et al. 2023). 
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Figure 3-11. Calibration histories for two pyrheliometer control instruments spanning 23 years of 
Broadband Outdoor Radiometer Calibration events.  

Image by NREL 

 

The calibration of pyrheliometers and pyranometers is described in detail in international standards 

ASTM G167 (ASTM G167 2023), ASTM E816 (ASTM E816 2023), ASTM E824 (ASTM E824 2018), 

ASTM G183 (ASTM G183 2023), ISO 9059 (ISO 9059 1990), ISO 9846 (ISO 9846 1993), and ISO 9847 

(ISO 9847 2023). The calibration method described in ISO 9059 for pyrheliometers is based on 

simultaneous solar irradiance measurements with the test and reference pyrheliometers. ISO 9846 

describes a calibration method for a pyranometer using a reference pyrheliometer and another method 

based on a reference pyrheliometer and a reference pyranometer. ISO 9847 describes pyranometer 

calibrations using a reference pyranometer. While an updated version of ISO 9847 has been published 

in 2023, the two other ISO standards are currently under revision. 

Pyrheliometers are calibrated following ISO 9059 by comparing the output signal (e.g., a voltage) of the 

tracked test pyrheliometer to the reference DNI from one or a group of reference pyrheliometers. For 

each simultaneous measurement pair, a preliminary responsivity can be calculated as the ratio of the 

test instrument’s output signal to the reference DNI (Figure 3-12, right). After rejecting outliers and data 

collected during unstable conditions, an average responsivity can be determined. Because the 

responsivity of some older pyrheliometers shows a noticeable correlation with the solar zenith angle 

(SZA), specific angular responsivities can also be derived (Figure 3-12). For this calibration method, it 

is important that clouds do not mask the sun or the circumsolar region. The calibration can be affected 

if significant levels of circumsolar radiation prevail during the calibration. This risk increases with the 

instrument’s FOV; hence, Linke turbidities should be less than 6, according to the standard method. The 

Linke turbidity coefficient, TL, is a measure of atmospheric attenuation under cloudless conditions. It 

represents the number of clean and dry atmospheres that would result in the same attenuation as the 

real cloudless atmosphere. One method to derive the Linke turbidity from DNI is presented in Ineichen 

and Perez (2002). 
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Figure 3-12. Pyrheliometer calibration results for an Eppley Normal Incidence Pyrheliometer (NIP) 
summarizing (left) Rs compared to SZA and (right) Rs compared to local standard time.  

Image from NREL (2022) 

 

The WRR must be used as the traceable reference for the calibration of all terrestrial broadband 

radiometers, as stipulated by the Système International (SI). This internationally recognized 

measurement reference is a detector-based standard maintained by a group of electrically self-

calibrating ACRs at the World Radiation Center by the Physical Meteorological Observatory in Davos, 

Switzerland (Figure 3-5). The present accepted inherent uncertainty in the WRR is ±0.3% (Finsterle et 

al. 2011). All radiometer calibrations must be traceable to WRR, but that does not mean that all 

radiometers are calibrated directly against WRR. The calibration chain from the WRR to a field 

instrument can have several steps. For example, reference ACRs are used as national and institutional 

standards, and these instruments are calibrated by comparison to the WRR during international 

pyrheliometer comparisons conducted by the World Radiation Center once every 5 years. In turn, 

standard pyrheliometers are calibrated against these national standards with a well-defined uncertainty 

(Balenzategui et al. 2022).  

The WRR was established by WMO in 1978. From a historical perspective, it is the latest in a series of 

“pyrheliometric scales,” after the Ångström scale (ÅS; created in 1905), the Smithsonian scale (SS; 

created in 1913), and the international pyrheliometric scale (IPS; created in 1956). The relative 

differences among these scales can introduce a data bias on the order of 2%. The user should be aware 

of this potential bias in data measured before 1979, which are still useful to establish long-term trends, 

in particular (see Chapter 6). A correction is necessary to harmonize older datasets to the current scale, 

according to: 

• WRR = 1.026 (ÅS 1905) 

• WRR = 0.977 (SS 1913) 

• WRR = 1.022 (IPS 1956). 

Moreover, old irradiance data were typically reported in either one of two deprecated units: Langley 

(symbol: Ly) or calorie (symbol: cal). The conversion to SI units is: 1 Ly = 1 cal·cm−2 = 4.184 × 104 J·m−2, 

or 1 Ly·min−1 = 1 cal·cm−2·min−1 = 697.33 W·m−2. 

Over the last three decades, elaborate laboratory studies (involving advanced cryogenic radiometers) 

and experimental intercomparisons have been conducted to compare the radiometric watt per square 

meter (defined experimentally by the WRR scale) to the electric watt per square meter (defined by SI in 

an absolute sense), as described in some reports (e.g., Fehlmann et al. 2012; Walter et al. 2017) and 

summarized in Balenzategui, Fabero, and Silva (2019). The goal is to ultimately realize an official 

transition from the WRR scale to the electric SI scale for worldwide radiation measurements in the future. 

The current difference between the two scales is estimated at ≈0.3%, but it will take more studies and 
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international consultation under the WMO auspices9 to confirm this, and finally transform the wording in 

all calibration certificates from “traceability to WRR” to “traceability to SI.” Resolving this discrepancy is 

important because the calibration of PV reference cells and power rating of PV modules are normally 

done with traceability to SI units. In certain situations in which the utmost accuracy is required, an 

adjustment of 0.3% can be made to account for the difference; however, in the vast majority of field 

applications, other sources of uncertainty are far larger and the difference between these scales can be 

safely ignored. In parallel, this scale difference also slightly impacts the calculation of nondimensional 

ratios between a terrestrial irradiance component and its extraterrestrial counterpart, such as the 

ubiquitous clearness index (see Chapter 7), because the current solar constant value is derived from 

space measurements traceable directly or indirectly (i.e., after suitable corrections) to SI. If daily 

fluctuations in extraterrestrial irradiance of up to ±0.2% are also factored in (per Chapter 2), it is possible 

that systematic errors of up to ≈0.5% are introduced in various calculations, depending on solar activity. 

Pyranometers calibrated against traceable WRR reference radiometers make these pyranometer 

calibrations traceable to WRR. Pyranometers can be calibrated outdoors with three different methods. 

One option, as described in ISO 9846, is to compare the DNI output from a reference pyrheliometer 

(preferably ACR) to that derived from the test pyranometer using the shade-unshade method. The 

successive voltages, Vunshade and Vshade, are proportional to GHI (unshaded) and DHI (shaded), 

respectively. Using the reference DNI and the relationship between GHI, DHI, and DNI, as described by 

Eq. 2-2a, the responsivity, Rs, of the pyranometer under test for one measurement sequence can be 

derived: 

 Rs = [(Vunshade – Vshade)/cos(SZA)]/DNI (3-2) 

This method is described in more detail by (Reda, Stoffel, and Myers 2003). For this calibration method, 

virtually constant atmospheric conditions during the pair of shaded and unshaded measurements are 

required. Cloud cover must be very low, and the angular distance between clouds and the sun must be 

high. In addition to cloud cover, aerosol and water vapor variations could affect the calibration. This 

explains why only data collected for a low TL (less than 6) should be used for the calibration. 

Another option offered by ISO 9846 consists in comparing the voltage signal of the test pyranometer 

obtained in the GHI (unshaded) measurement configuration to that of the GHI calculated from 

independent DNI and DHI measurements from a reference pyrheliometer (e.g., ACR) and a shaded 

reference pyranometer. The Rs of a pyranometer under calibration for one simultaneous set of three 

measurements can be computed from their unshaded signal (Vunshaded): 

 Rs = Vunshaded/[DNI ∙ cos(SZA) + DHI] (3-3) 

Computing Rs this way is called the component-summation calibration technique. Again, TL should be 

less than 6, and a high angular distance of clouds from the sun should exist during the whole calibration 

period. 

The third option to calibrate pyranometers outdoors is described in ISO 9847. It compares a test 

pyranometer to a reference pyranometer while both sensors are in the same measurement position 

(either GHI or GTI). The Rs is then obtained as the ratio of the test signal to the reference irradiance. 

For outdoor pyranometer calibrations using a reference pyranometer, the sky conditions are less 

 

 

9 An Expert Team on Radiation References (ET-RR) exists within WMO to supervise the future transition from 

WRR to SI. It is currently anticipated that the switch to SI would not occur before the WMO general meeting of 

2027. 
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precisely defined than for the other methods described. The calibration interval is adjusted depending 

on the sky conditions. 

The indoor calibration methods from ISO 9847 use irradiance measurements under an artificial light 

source. For the first option, measurements are taken simultaneously after ensuring that the test and the 

reference pyranometer receive the same irradiance from an integrating sphere. This is done by switching 

pyranometer positions during the calibration procedure. The other option is to take consecutive 

measurements by mounting the test and the reference instrument one after the other in the same 

position under a direct beam. The indoor calibrations are carried out in a controlled environment 

independent from external meteorological conditions. If measurements with the reference and test 

pyranometers are made after each other, however, instabilities of the artificial light source increase the 

calibration uncertainty compared to outdoor calibrations. If simultaneous measurements are used, an 

additional uncertainty contribution comes from the fact that the test and the reference pyranometer might 

not receive the same irradiance from the artificial light source, though some of this error can be mitigated 

by switching the positions of the instruments during the calibration procedure. Further, the incident angle 

of the radiation is usually not well defined for indoor calibrations. Because of the pyranometer’s 

directional errors (Table 3-3), this is another source of calibration uncertainty; therefore, in general, 

thorough outdoor calibrations with accurate reference instruments have lower uncertainties than indoor 

calibrations. 

 

Figure 3-13. Pyranometer calibration results for a Kipp & Zonen CMP22 showing (left) Rs vs. SZA 
and (right) Rs vs. local standard time.  

Image from NREL (2022) 

 

The shade/unshade and component-summation techniques, when conducted throughout a wide range 

of SZAs, show that the pyranometer responsivity is correlated with SZA. The variation of Rs as a function 

of SZA is like a fingerprint or signature of each individual pyranometer (Figure 3-13). This means that 

the angular responsivities of different specimens of the same model can differ. Variations of pyranometer 

Rs can be symmetrical with respect to solar noon, or they can be highly skewed, depending on the 

mechanical alignment of the pyranometer, detector surface structure, and detector absorber material 

properties. For GHI and DHI measurements, the Rs for a 45° incidence angle is normally used. To 

improve the accuracy of GHI measurements, using an SZA and azimuth angle-dependent calibration 

factor for each individual measurement is also possible. This method, however, is applicable only to 

conditions with high direct radiation contribution to GHI, because the variation of responsivity with SZA 

is mostly caused by direct radiation and the associated cosine dependence. For situations when thick 

clouds mask the sun, or for DHI measurements, the angular distribution of the incoming irradiance 

cannot be approximated well by one incidence angle. For DHI measurements, it is recommended to use 

the Rs for a 45° incidence angle. 
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For accurate photodiode pyranometer calibration, further considerations beyond these standards are 

recommended because of the uneven spectral response. In particular, a specific calibration method is 

discussed in Section 3.2.5 for photodiode instruments equipped with a rotating shadowband. 

3.2.4 Correction Functions for Systematic Errors of Radiometers 

Some pyrheliometer and pyranometer measurement errors are systematic and can be reduced by 

applying correction functions. An example is the correction of directional errors, as mentioned just 

above. Some manufacturers provide one calibration constant for a pyranometer and additional 

correction factors for different intervals of SZA. This treatment of the incidence angle dependence has 

the same effect as using an incidence-angle-dependent responsivity. In practice, this approach is rarely 

used because of its additional complexity and dependence on sky conditions.  

Moreover, an additional temperature correction can be applied if the internal temperature of 

pyranometers or pyrheliometers is measured using a temperature-dependent resistor close to the 

sensor. Correction coefficients are often supplied by the manufacturer. 

Measurements from only black (as opposed to black-and-white) thermoelectric pyranometers can be 

corrected for the expected thermal offset using additional measurements from pyrgeometers (Figure 3-

4, right). Usage of pyrgeometers allows for the determination of the downward longwave irradiance 

between approximately 4.5 and 40 µm, based on their sensor (thermopile) signal and body temperature. 

The thermopile is positioned below a coated Si window that is transparent only to the specified infrared 

radiation wavelength range while excluding all visible, near-infrared, and far-infrared radiation. Most 

pyrgeometers must be positioned below a shading ball or disk to limit window heating by DNI. Ventilation 

units are also used for pyrgeometers, as in the case of pyranometers. If no pyrgeometer is available, 

which is the general situation,10 a less-accurate correction for the thermal offset can be made based on 

estimations of the thermal offset from the typically negative measurements collected during the night 

(Dutton et al. 2001; Gueymard and Myers 2009; Vignola, Long, and Reda 2009). Correction functions 

for photodiode pyranometers are presented in Section 3.2.5. 

3.2.5 Systems for Determining Solar Irradiance Components 

A measurement system that independently measures the three basic solar components—GHI, DNI, and 

DHI—offers the significant advantage that data quality tests relying on the closure equation can be 

performed (see also Eq. 2-2a):  

 DNI = (GHI – DHI) / cos(SZA) (3-4) 

This can be applied for data quality control and data flagging. Alternatives to solar trackers with a 

pyrheliometer and two pyranometers exist that reduce the overall cost of such a system and its operation 

while offering potentially acceptable data accuracy, depending on application. These alternatives are 

designed to reduce the complexity compared to an automatic solar tracker with pyrheliometer and 

shaded pyranometer and to reduce the overall power consumption. Such alternatives are described 

next. 

3.2.5.1 Rotating Shadowband Irradiometers 

Rotating shadowband irradiometers (RSIs) use a fast pyranometer that is periodically shaded by a small 

motorized shadowband, which rapidly sweeps across the detector’s FOV (Figure 3-14). The RSI’s 

 

 

10 Unfortunately, because they can also be useful to estimate the temperature of PV modules. 
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principle of operation is to alternatively sense GHI when unshaded and DHI when shaded. The DNI is 

calculated using the fundamental closure equation relating these three components, Eq. 3-4. 

   

  

Figure 3-14. Four commercially available RSIs (clockwise from top left): Irradiance Inc. model RSR2; 
Reichert GmbH RSP 4G; EKO RSB (Pó 2023); and CSP Services GmbH Twin-RSI.  

Photos by (clockwise from top left) Irradiance Inc.; CSP Services; EKO; and CSP Services 

 

RSIs are also referred to as rotating shadowband radiometers or rotating shadowband pyranometers, 

depending on instrument manufacturer. RSI is a generic term that refers to all such instruments 

measuring irradiance by use of a rotating shadowband. There are two types of RSIs: those with 

continuous rotation and those with discontinuous rotation. 

The operational principle of RSIs with continuous rotation is shown in Figure 3-15. At the beginning of 

each rotation cycle, the shadowband is below the pyranometer in its rest position. The rotation is 

performed with constant angular velocity and takes approximately 1 second. During the rotation, the 

irradiance is measured with a high and constant sampling rate (approximately 1 kHz). This measurement 

is called a burst or sweep. At the beginning of the rotation, the pyranometer measures GHI. The moment 

the center of the shadow falls on the center of the sensor, it approximately detects DHI; however, the 

shadowband covers some portion of the sky, so the minimum of the burst is less than DHI. Thus, so-

called shoulder values are determined by curve analysis algorithms. Such algorithms use the maximum 

of the absolute value of the burst’s slope to find the position of the “shoulder values.” The difference 

between GHI and the average of the two shoulder values is added to the minimum of the curve to obtain 

the actual DHI. Subsequently, DNI is calculated using GHI, DHI, and SZA (Eq. 3-4). All the RSIs shown 

in Figure 3-14 (except for the EKO RSB 2) work with a continuous rotation. 
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Figure 3-15. Burst (sweep) with sensor signal and the derived GHI, shoulder values, and DHI.  

Image from Wilbert (2014) 

 

RSIs with discontinuous rotation measure not the complete burst, but only four points. First, the GHI is 

measured while the shadowband is in the rest position. Then the shadowband rotates from the rest 

position toward the position just before it begins shading the diffuser, stops, and a measurement is 

taken. Then it continues the rotation toward the position at which the shadow lies centered on the 

diffuser, and another measurement is taken. The last point is measured in a position at which the shadow 

has just passed the diffuser. The measurement with the completely shaded diffuser is used equivalently 

to the minimum of the burst (Figure 3-15). The two measurements made when the shadow is close to 

the diffuser are used equivalently to the shoulder values to estimate the portion of the sky blocked by 

the shadowband. 

These two types of RSIs have advantages and disadvantages. An RSI with continuous rotation needs 

a detector with a fast response time (≈10 µs). Because a thermopile sensor cannot be used, typically a 

Si-photodiode is used instead. The instruments shown in Figure 3-14 (except bottom left) use the Si-

based LI-COR pyranometer models LI-200SA or LI-200R. Because of the variable spectral response of 

such Si sensors (Figure 3-2), the measurement accuracy of highest-class thermopile pyranometers 

cannot be reached. Correction functions (also called adjustment functions) for systematic spectral, 

cosine, and temperature errors must be applied to reach the accuracy required in resource 

assessments, albeit still not on par with the accuracy of thermopile instruments and with potentially 

varying performance under various climatic/spectral composition conditions (Geuder et al. 2016). 

Several research groups have developed correction functions that reduce systematic errors in the 

readings of RSI instruments built around a LI-200SA or LI-200R sensor. Whereas temperature 

correction is similar in all versions (King and Myers 1997; Geuder, Pulvermüller, and Vorbrugg 2008), 

the methods for the spectral and cosine corrections vary. King and Myers (1997) proposed functional 

corrections depending on air mass and SZA, primarily targeting GHI. This approach was further 

improved by Augustyn et al. (2002) and Vignola (2006), including diffuse and subsequently direct beam 

irradiance. The combination of the GHI correction of Augustyn et al. (2002) and of the diffuse correction 

from Vignola (2006) provides a complete set of corrections for LI-200SA-based RSIs. Independently, 

another method for DNI, GHI, and DHI correction was developed using functional corrections that 

include a particular spectral parameter obtained from GHI, DHI, and DNI (Geuder, Pulvermüller, and 

Vorbrugg 2008). Secondary corrections with dependence on air mass and SZA were also added. Other 

sets of correction functions have also been presented in Geuder et al. (2011); Vignola et al. (2017; 

2019); Lezaca, Meyer, and Heinemann (2018); and Forstinger et al. (2020).  
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RSIs with discontinuous rotation allow sufficiently long measurement times for each of the four points 

so that a fast-response thermopile detector can be used instead of a photodiode detector; thus, a more 

accurate pyranometer can be used and, most importantly, the spectral error inherent to photodiodes 

can be avoided. However, the discontinuous rotation is associated with alignment and timing issues 

compared to the continuous rotation. Whereas RSIs with continuous rotation are not affected by small 

azimuth alignment errors (within approximately ±5°), the azimuth alignment of RSIs with discontinuous 

rotation is crucial for their accuracy. Moreover, the accuracy of the sensor’s coordinates and sweep time 

is more important for the discontinuous rotation. If the shadowband stops in the wrong position, the DHI 

measurement is incorrect. Further, the longer duration of the DHI measurement procedure with a 

discontinuous rotation can also increase the measurement uncertainty. The four-point measurement 

takes longer than the continuous sweep; thus, if GHI and the sky radiance distribution change during 

the four-point measurement, the data used to determine DHI will have a larger uncertainty.  

DHI is typically determined by scheduling a sweep one to four times per minute. This frequency 

constitutes an effective trade-off between desirable sampling frequency and instrument wear. In 

contrast, GHI measurements can be sampled at a higher frequency whenever the shadowband does 

not rotate—for example, every second. The temporal variation of GHI also contains some information 

about any concomitant change in DNI. Different algorithms are used to determine the averages of DHI 

and DNI between two DHI measurements using the more frequent GHI measurements. Temporal 

variations detected by the higher-frequency GHI measurement can be used to trigger an additional 

sweep of the shadowband to update the DHI measurement under rapidly changing sky conditions. 

The initial higher uncertainty of RSIs compared to ISO 9060 Class A pyrheliometers and pyranometers 

is often compensated by some unique advantages. Their simplicity/robustness, low soiling susceptibility 

(Pape et al. 2009; Geuder and Quaschning 2006; Maxwell et al. 1999), low power demand, and 

comparatively lower cost (instrumentation and O&M) provide significant advantages compared to 

thermopile sensors and solar trackers, especially at remote sites without electric power from the grid.  

The accuracy of RSIs is approximately 2.5%–4% for GHI and 3%–9% for DNI, if proper calibration and 

correction functions are used (standard uncertainty, 1 sigma [Forstinger et al. 2022]). The lower 

uncertainty limit is only reached if the calibration conditions correspond well to the measurement 

conditions and for deployment at sunny sites. For comparison, in well-maintained stations with Class A 

thermopile pyrheliometer and pyranometers, a standard uncertainty of about 1.5% for DNI and 2% for 

GHI can be reached (see Chapter 10 for further discussion). The correction functions and the condition-

specific calibration reduce the uncertainties compared to uncorrected measurements that are based 

only on the manufacturer calibration of the photodiode pyranometer. Most instrument providers also 

offer postprocessing software or services that include these correction functions. Users should ask the 

manufacturer whether such postprocessing is part of the instrument package and is readily available. 

Special calibration techniques are applicable to the case of RSIs. LI-200SA or LI-200R pyranometers 

come with pre-calibration values of sensitivity from the manufacturer (LI-COR) for GHI, based on outdoor 

comparisons with an Eppley PSP with an accuracy stated as better than 5% (LI-COR 2001). Considering 

that the PSP has only limited performance (Gueymard and Myers 2009), an additional calibration (e.g., 

either by the RSI manufacturer or on-site using GHI, DHI, or DNI measured independently) of the RSIs 

can noticeably improve their accuracy and is strongly recommended (Wilbert et al. 2016). Because of 

the rather narrow and inhomogeneous spectral response of the photodiodes and the combined 

measurement of DHI and GHI, only some aspects of the existing ISO standards for pyrheliometer and 

pyranometer calibrations can be transferred to RSI calibration. Calibrating RSI instruments involves 

independently field-calibrating them, depending on the correction algorithm with either a global 

calibration constant or two or three individual constants for DNI, DHI, and GHI. Each of these steps is 

challenging because each irradiance component has a distinct spectral composition that can change 

during the day or from one location to another. Because of the spectral response of the Si detectors 
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and/or the diffusers, it is problematic to calibrate an RSI based on only a few short series of 

measurements. The current best practice is to consider a long enough calibration period (e.g., 8 weeks) 

to include the wide variety of meteorological conditions expected at the site where the RSI is planned to 

be used.  

Further information on RSIs can be found in Wilbert et al. (2023). More information about RSIs with 

discontinuous rotation can be found in Harrison, Michalsky, and Berndt (1994). Further general 

information on the accuracy of RSIs can be found in Chapter 7. 

3.2.5.2 Other Instruments Used To Derive Diffuse Horizontal Irradiance and  
Direct Normal Irradiance 

Beside RSIs, there are other instruments that can be used to derive DHI or DNI without a solar tracker. 

Several of these instruments, as well as an RSI, are currently in the process of benchmarking at 

CIEMAT’s Plataforma Solar de Almería in Tabernas and other sites (Blum et al. 2023). The reference 

data stems from a solar tracker with ISO 9060 Class A spectrally flat pyrheliometer and pyranometers. 

The tested systems are shown in Figure 3-16 and described below. 

 

Figure 3-16. Alternative radiometers to derive DNI or DHI without a solar tracker (from left to right): 
Delta-T SPN1, EKO MS-90, PyranoCam (all-sky imager plus CMP21 pyranometer [Blum et al. 2022]), 
and Sunto Technology CaptPro.  

Images by DLR 

 

The Delta-T SPN1 senses both DHI and GHI with an array of seven fast-response thermopile radiation 

detectors that are distributed in a hexagonal pattern under a glass dome. The detectors are positioned 

under diffuser disks and a special hemispherical shadow mask. The shape of the mask is designed such 

that for any position of the sun in the sky there will always be one or more detectors that are fully shaded 

from the sun and exposed to approximately half the diffuse radiance (for completely overcast skies). 

Moreover, one or more detectors are exposed to the full solar beam under any sun position. The 

minimum and the maximum readings of the seven detectors are used to simultaneously derive GHI and 

DHI. With this principle of operation and the closure equation, GHI, DHI, and DNI can be obtained 

without any moving parts and without needing alignment other than horizontal leveling. However, a well-

defined azimuthal orientation of the sensor might enable further accuracy enhancements obtained by 

correction functions in the future. Further, the SPN1’s low power demand (temperature-controlled dome 

prevents dew and frost) increases its suitability for operation at remote sites compared to DNI or DHI 

measurements involving two-axis trackers. Test results indicate that the accuracy of the SPN1’s GHI is 

comparable with RSIs, but its DNI and DHI readings have higher errors than those measured with RSIs 

(Vuilleumier et al. 2017; Blum et al. 2023). The SPN1 performance results obtained at six different 

locations worldwide can be found in (Badosa et al. 2014). An additional comparison with conventional 

radiometers is presented by (Habte et al. 2016). 

Another option for DNI measurements without tracking is the EKO MS-90 instrument (Figure 3-16), 

which is based on an earlier sunshine recorder sensor (MS-093). The revised design uses a rotating 

mirror within a fixed glass tube tilted to latitude (−58° to +58°). The mirror reflects the direct beam onto 
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a broadband pyroelectric detector that senses DNI four times per minute. The performance of the MS-

90 specimen deployed at NREL has been assessed under both clear-sky and all-sky conditions (Habte 

and Beuttell 2022). 

In the last years, all-sky imagers have also been used to derive solar irradiance (Kurtz and Kleissl 2017; 

Blum et al. 2022). If only the camera image alone is used, the accuracy of such estimates is still too low 

for their application in resource assessment. However, the combination of a thermopile pyranometer 

with an all-sky imager demonstrated accuracies for DHI and DNI similar to RSIs in tests at six different 

sites in different climates (Blum et al. 2023). In this method, a calibration factor for the sky images is 

determined using the collocated pyranometer while the camera detects thick clouds that mask the sun 

so that there is no direct radiation and DHI is equal to GHI. The site dependence of the accuracy of this 

method is expected to be better than that of RSIs because the color information of the imagery can be 

used to detect variations in the solar spectrum, which is not possible with RSIs. All-sky imagers can also 

be used to document the actual sky conditions and to evaluate further meteorological parameters of 

interest, such as cloud cover (Kazantzidis et al. 2012), aerosol optical depth (Kazantzidis et al. 2017), 

or precipitation (Kazantzidis et al. 2012). Moreover, all-sky imagers can also provide short-term radiation 

forecasts; hence, these instruments are further discussed in Chapter 9, Section 9.3.1 in the context of 

solar forecasting. 

Exemplary results of the benchmark of these instruments are shown in Figure 3-17. The results suggest 

two groups of instruments with similar accuracy. A higher accuracy is found for both RSIs and the 

imager-pyranometer combo compared to SPN1 and MS90. Besides their performance in terms of 

accuracy, these sensors’ robustness and reliability are of high importance for their general applicability, 

particularly at remote sites.  

For completeness and clarification, further options that are currently not recommended for DHI or DNI 

measurements should be mentioned. The Sunto Technologies “all-out” radiometer (Figure 3-16) uses 

various photodiodes in different orientations and tilts, and derives DNI and DHI from those signals. 

During a test conducted recently at CIEMAT’s Plataforma Solar de Almería in Tabernas, Spain, that 

sensor showed significant deviations (root mean square deviation [RMSD] of 18% for DNI and 48% for 

DHI), and malfunctioned after a few months of operation (Blum et al. 2023). Similar approaches have 

also been proposed with various PV reference cells (Gostein et al. 2020), but their accuracy is not 

known.  

Additionally, the widely used shading rings for thermopile pyranometers should be mentioned. Shading 

rings cover the complete solar path during a day as seen from a pyranometer. They are built a little bit 

wider than the 5° used for shading balls to cover the sun’s path on several consecutive days so that 

readjustments of the shading ring position are not required every day. Because a shading ring blocks a 

significant part of sky diffuse radiation, correction functions are necessary to determine the actual DHI 

from the instrument’s voltage. This explains why the accuracy of such a DHI determination is less than 

that of a DHI measurement with a shading disk or a shading ball, despite the near-daily personnel effort 

required for the adjustments. Therefore, these shading rings are not recommended when a new solar 

resource assessment station is projected and high-quality data are required. Nevertheless, many 

existing stations worldwide have provided long time series of data based on that configuration, which 

can thus be of value in various solar energy (or other) applications. In such cases, it is important to know 

whether the data stream has already been corrected for the shading ring’s sky obstruction, and whether 

appropriate quality control tests have been applied (Nollas, Salazar, and Gueymard 2023). Finally, many 

attempts have been made to estimate the daily integrated values of GHI or DNI from the vast archive of 

measurements obtained with legacy Campbell-Stokes sunshine recorders (Stanhill 1998; Painter 1981), 

but such modeled data have only a low temporal resolution and are not sufficiently accurate for most 

applications. 
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Figure 3-17. RMSD, mean absolute deviation (MAD), and bias for a radiometer benchmark in 
Tabernas conducted in 1 year.  

Image by DLR 

3.2.6 Photovoltaic Reference Cells for Outdoor Measurements of the 
Photovoltaic-Matched Irradiance 

Solar PV cells can be advantageously used as radiometer elements; when they are mounted in a 

suitable enclosure for measurement purposes, they are referred to as PV reference cells. Commercial 

products in this category are quite diverse, as shown in Figure 3-18. Their active cell area ranges from 

approximately 4 to 225 cm2 (from left to right). 

       

Figure 3-18. A variety of commercial outdoor PV reference cells.  

Photos by Anton Driesse, PV Performance Labs 

 

Although they can be physically diverse, PV reference cells share four main characteristics: 

• The output signal (usually the voltage measured across an internal shunt resistor) is proportional to 

the short-circuit current of the detector’s PV cells. The cell does not produce electrical power in this 

configuration, but the measured short-circuit current represents the amount of radiation that could 

be converted to electric power.  

• The detector’s PV cells are protected by a flat, transparent window, which creates reflections at the 

air-window interface, and consequently lower irradiance readings for radiation coming at higher 

angles of incidence. If reference cells were used as pyranometers, this would be considered a very 

poor directional response. However, this can also be seen as an advantage because this makes the 

reference cell readings more closely track the power output of a PV plant—especially when the 

window material matches the glass used in the plant’s PV modules. Figure 3-19 shows the variations 

in the angular response from four reference cells that are currently available commercially. 
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• Like photodiode pyranometers, the spectral response of PV reference cells is narrow and 

nonuniform (Figure 3-20). The spectral response is mainly defined by the PV cell used in the sensor. 

This differs substantially from the response of spectrally flat pyranometers, but allows the reference 

cells to track the PV plant output more closely. This works best when the technology of the reference 

cell—and its spectral response—matches the modules in the PV plant. In some reference cells, a 

filter glass is used to absorb some of the near-infrared light before it reaches the Si detector (PV 

cell), thereby creating an overall spectral response that more closely matches another cell type, 

such as amorphous Si or cadmium telluride. 

• In practice, the output signal of reference cells has a pronounced temperature dependency: the 

short-circuit current increases with temperature. This dependency is primarily a byproduct of both 

the spectral response and its temperature dependency, and therefore varies by technology (for 

instance, it is ≈0.04%/K for crystalline Si cells). Note that this is not the same as the much larger 

effect of temperature on PV module power. That is because PV modules operate at the maximum 

power point rather than in short circuit, and because their voltage and efficiency decrease 

significantly as temperature increases. Reference cell products nearly always include a temperature 

sensor, and they might offer temperature-corrected and/or uncorrected irradiance signals as output. 

 

Figure 3-19. Deviations of directional response for four commercial reference cells relative to the 
ideal cosine response.  

Measurements and graphics from Anton Driesse, PV Performance Labs 

 

Figure 3-20. Spectral response functions for selected PV devices.  

Image from Anton Driesse, PV Performance Labs  
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In the context of this handbook, only PV reference cells designed for long-term continuous outdoor 

measurements are of interest. This includes PV resource applications (Habte et al. 2018), for which a 

key issue is the method of calibration (Section 3.2.6.2). Other types of reference cells exist for indoor 

use only and do not have a protective window. It is also possible to use a regular full-sized PV module 

as a radiometer by measuring its short-circuit current. This method would behave like reference cells, 

but is outside the scope of this overview because of its many degrees of freedom. 

It is clear from the discussion above that reference cells are fundamentally different from most other 

types of radiometers discussed in this handbook. These differences must be known beforehand because 

they directly influence which type of radiometer is best suited for a given measurement objective. For 

instance, PV reference cells are not intended to measure the broadband irradiance (GHI or GTI), but to 

measure a quantity that equals, or closely approximates, the irradiance that is usable by PV modules 

and systems. This measurement is referred to here as PV-matched irradiance, and sometimes also 

called “effective irradiance” or “PV resource.” That quantity is such that the spectral response and 

directional response of reference cells approximate those of the PV modules of interest—or 

approximately match them to a useful degree. Overall, PV reference cells constitute a helpful source of 

solar resource data, especially for PV monitoring. Nevertheless, they still cannot replace broadband 

measurements in the context of general solar resource assessments. It is possible, however, that new, 

improved resource assessment methods specialized for PV applications will be developed and will rely 

partly or primarily on PV reference cells.  

Further considerations of the adequate applications for reference cells and PV-matched irradiance are 

offered in Sections 3.4.1 and 3.4.2. 

3.2.6.1 Standardization of Photovoltaic Reference Cells 

Because of their measurement characteristics, reference cells are not consistent with ISO or WMO 

pyranometer classifications (ISO 9060 2018; WMO 2018). Although many standards apply to PV 

reference cells directly or indirectly, there is no standard akin to ISO 9060 that would describe precisely 

and completely how reference cells should behave. In other words, there exists a definition of an ideal 

pyranometer but not of an ideal reference cell. Nevertheless, IEC 60904-2 (IEC 60904-2 2023) describes 

many useful requirements (e.g., linearity better than 0.5% and acceptance angle >160°) and 

recommendations for PV reference devices ranging from single cells to whole modules. One of the most 

important aspects of this standard is the extensive documentation requirement, which states that 

calibration reports must include spectral responsivity, temperature coefficient, and many other details 

about the device itself, as well as the calibration method and equipment used. Currently, most 

manufacturers of PV reference cells for outdoor use do not claim to abide by this standard. 

There is also a de facto World Photovoltaic Scale (WPVS) reference cell standard. This was first 

established in 1997 by a group of laboratories seeking to establish a reference scale similar to the WRR 

(Osterwald et al. 1999). WPVS cells conform to IEC 60904-2 and fulfill several very specific additional 

design criteria (e.g., physical dimensions and connections) that improve long-term stability and 

repeatability of measurements. Their high cost is more easily justified in a laboratory setting than for 

fieldwork; nevertheless, outdoor versions of WPVS cells are available. 

3.2.6.2 Calibration of Photovoltaic Reference Cells 

The responsivity of PV reference cells varies with wavelength, intensity and direction of the incident 

light, and temperature of the cell. The calibration value is the response of the device (usually measured 

in millivolts) under a precisely defined spectral irradiance: the AM1.5 global spectrum (IEC 60904-3, 

[IEC 60904-3 2019]) with a broadband irradiance of 1000 W/m2 and a device temperature of 25°C. 

When combined, these conditions are referred to as the standard test conditions (STCs), which apply 

equally to PV module ratings. A reference cell’s response is normally linear with irradiance; therefore, 
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the value of the response under the STCs is equal to the responsivity of the device in mV per 1000 W/m2 

or µV/(W/m2). 

IEC 60904-4 (IEC 60904-4 2019) describes four different methods for performing the calibration of 

primary reference devices with traceability to WRR using SI units, so the relationship of reference cells 

to broadband radiometers is well defined, but only for normally incident irradiance. All these methods 

consider the narrow spectral response of PV devices by calculating a spectral mismatch factor, which 

compensates for the fact that the light used during calibration does not normally correspond precisely 

to the AM1.5 global reference spectrum. Similar methods are found in ASTM E1125-16 (ASTM E1125 

2020).  

IEC 60904-2 describes how secondary or field reference cells can be subsequently calibrated by 

comparison to a primary reference device using either natural or simulated sunlight. When the spectral 

response of the primary reference cell is the same as that of the cell being calibrated, there is no spectral 

mismatch to be considered. Similar methods are found in ASTM E1362-15 (ASTM E1362 2019). 

Primary reference cells are usually calibrated at precisely 25°C so that no temperature correction is 

required; moreover, when identical devices are used for secondary or field calibrations, the effect of 

temperature cancels out. When there are differences in devices or device temperatures, however, a 

correction must be done as part of the calibration. Measurement procedures to determine the 

temperature coefficient are covered by IEC 60891 (IEC 60891 2021); essentially, they consist of 

measuring the response over a wide range of temperatures and determining the slope of a linear fit.  

In all calibration situations, the direction of the incident light is predominantly normal to the plane of the 

cell, implying a relatively small fraction of diffuse irradiance under very clear conditions. This minimizes 

the influence of the directional dependence, but in recent work this aspect has been analyzed more 

comprehensively, and the use of an angular mismatch factor has been proposed to further improve 

calibration consistency (Plag et al. 2018). More generally, however, any calibration adjustments for 

temperature, spectrum, or direction tend to have a small impact overall compared to the strong effects 

of temperature, spectrum, and direction in field measurements. 

The responsivity of reference cells is subject to drift (e.g., <0.3% per year [Viel 2006]), so recalibrations 

are recommended. IEC 61724-1 (2021) recommends a recalibration interval of maximum 2 years for 

accuracy Class A monitoring, and the interval recommended by the manufacturer should not be 

surpassed. Lower-accuracy monitoring systems can be recalibrated according to the manufacturer’s 

recommendation (e.g., every 3 years [Viel 2006]). 

3.2.6.3 Recent and Ongoing Research 

The key to the effective use of PV reference cells is to understand their special characteristics and to 

apply that knowledge when collecting, interpreting, and using the data they produce. One active area of 

research is to quantify these characteristics for product categories, product models, and individual 

instruments (Figure 3-21) (Driesse et al. 2015; Vignola et al. 2018; 2022). Directly related to this are 

studies attempting to apply this knowledge of characteristics to instrument calibration, uncertainty 

analysis, and modeling (Driesse and Stein 2017). In a recent comparison of commercial reference cells 

for outdoor use, it was found that the majority of calibration factors provided by manufacturers were 

quite accurate when compared to calibrations performed indoors at NREL (Driesse 2021). Nevertheless, 

that study confirmed previous observations to the effect that other characteristics, such as directional 

and spectral response, are not well documented and vary from model to model. These variations 

currently add to the uncertainty in short- and long-term integrated energy values measured using 

reference cells (Driesse, Gotseff, and Sengupta 2022), so efforts continue to promote further 

standardization (Habte et al. 2018). A specific proposal for the standardization of reference cells with 
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emphasis on outdoor use, referred to as the Baseline Performance Reference, is found in Driesse, 

Habte, and Sengupta (2023). 

 

Figure 3-21. Test facility to quantify PV reference cell characteristics and compare them with other 
types of radiometers.  

Photo by PV Performance Labs 

3.3 Rear Plane-of-Array Irradiance and Surface Albedo 
Measurements 

The RPOA, that is, the irradiance that is incident on the rear side of BPV modules, is becoming 

increasingly important because of the large quantity of bifacial modules being deployed. Methods of 

various complexity are being developed to determine the RPOA from models using inputs of either 

spectral or broadband albedo information (Berrian and Libal 2020; Chudinzow et al. 2019; Hansen et al. 

2017; Monokroussos et al. 2020; Patel et al. 2019; Arguez and Vose 2011; Sun et al. 2018). In practice, 

however, it is recommended to follow the RPOA measurement guidelines formulated in standard IEC 

61724-1 (IEC 2021c).  

RPOA consists primarily of scattered light from multiple sources including the ground, sky, and 

neighboring PV rows. RPOA depends strongly on the albedo of the surface below the PV array, the 

height and tilt of the array, and the diffuse light emanating from the fraction of the sky hemisphere viewed 

by the array’s rear side. Research has shown that the RPOA incident irradiance on the back of a 37° 

fixed-tilt system above light sandy soil is 130–150 W/m2 when the front side is illuminated with the 

AM1.5G reference spectrum (1000 W/m2) (Deline et al. 2017; Monokroussos et al. 2020; IEC 61215-1 

2021). Therefore, ≈12% of the total irradiance received by a BPV system under reference conditions is 

RPOA, most of which is ground-reflected light. Under realistic conditions, this fraction is highly variable 

depending on the system's geometry, surface type, and atmospheric conditions. 

RPOA can be measured directly or modeled based on albedo and irradiance data. Simple models for 

the RPOA typically use 2D or 3D view factor methods, whereas more advanced methods are based on 

raytracing or computer graphics. All methods require albedo, GHI and DHI, the PV system geometry 

(i.e., pitch, tilt, width, and height) and the solar position as inputs. The 2D view factor method has low 

computational demands as compared to raytracing, which makes it the most common method presently 

used to calculate RPOA in PV yield predictions. A disadvantage of the 2D view factor approach is that 

it is incapable of simulating complex geometries (e.g., PV mounting system), and therefore adjustment 

factors must be applied to the simulated RPOA before the data can be used in PV yield predictions. For 

single-axis trackers, case studies have shown that the results using the 2D view factor and 3D raytracing 

techniques are within approximately 2% and 1% of the measured bifacial gain, respectively (Riedel-

Lyngskær, Berrian, et al. 2020). 

3.3.1 Measurement of Rear Plane-of-Array Irradiance 

Studies on RPOA measurement have appeared only within the last few years, and as such, the best 

practice guidelines for irradiance monitoring in BPV systems are still evolving. The many challenges 

surrounding RPOA measurements are discussed comprehensively in Gostein et al. (2021). Rear-side 
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edge-brightening effects (Pelaez et al. 2019), nonuniform irradiance patterns that change with conditions 

(Deline et al. 2020; Janssen et al. 2017), and structural shading effects (Pelaez, Deline, Stein, et al. 

2019; Zhao et al. 2021) make it difficult to identify an RPOA sensor location that is representative of a 

PV array’s average back-side intensity. For this reason, the use of multiple RPOA sensors distributed 

on the back side is common. 

The spectral albedo of most natural materials is significantly different from the distribution of the incident 

solar spectrum, which creates large spectral mismatch factors for spectrally selective sensors placed 

on the back side (Mouhib et al. 2022; Blakesley et al. 2020; Gostein, Marion, and Stueve 2020; Riedel-

Lyngskær et al. 2022). These spectral effects make RPOA sensor type selection non-trivial (i.e., 

thermopile pyranometer vs. photodiode sensor vs. PV reference cell). The literature contains some 

RPOA measurement comparisons of pyranometers and reference cells mounted on different system 

types above various reflecting surfaces (Babal et al. 2020; Asgharzadeh et al. 2019; Pelaez et al. 2020; 

Riedel-Lyngskær, Berrian, et al. 2020; Riedel- Lyngskær et al. 2022). The difference between the 

pyranometer (flat spectral response) and reference cell (peaked spectral response) RPOA readings 

depends strongly on the spectral distribution of the local albedo compared to that of the PV material. 

The larger the difference of the RPOA spectrum from the GTI standard spectrum, the greater the 

spectral mismatch of Si PV devices will tend to be. For instance, the back-side spectral mismatch has 

been calculated for Si cells above different surfaces in Riedel-Lyngskær et al. (2022). Spectral mismatch 

factors greater than 1.20 (20%) were obtained over the studied vegetation, compared to near-unity 

factors for snow. This can be explained by the large difference between the broadband value of albedo 

for vegetation (≈0.2) and its value (≈0.5) in the NIR close to the peak (around 900 nm) of the Si spectral 

response curve. In comparison, the albedo of snow is more spectrally uniform (Figure 3-22). 

 

Figure 3-22. Spectral response of monocrystalline Si (top plot) and spectral albedo of three typical 
surfaces (Lite Soil, Green Grass, and Snow) extracted from the SMARTS library (bottom plot). The 
Lite Soil surface is used to define the AM1.5G standard spectrum.  

Image by C. A. Gueymard 

 

Some authors have proposed the use of full-size reference modules for irradiance monitoring of BPV 

systems (Riedel-Lyngskar et al. 2022; Braid et al. 2022). The advantage of this approach is that a PV 

panel used as a large-area sensor responds to the nonuniform irradiance and spectral effects much in 
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the same way as the power-generating panels in the array. Moreover, Pelaez, Deline, Stein, et al. (2019) 

and Korevaar et al. (2020) showed how ray-trace modeling can be used to identify the position of a 

single small-area RPOA sensor that is representative of the back-side array. 

Much of the PV community’s present knowledge surrounding RPOA measurement practices and 

considerations is codified in the latest revision of IEC 61724-1 (IEC 61724-1 2021) for PV monitoring. 

The key recommendations made in this IEC standard for RPOA measurements include: 

• Sensors should be mounted at the same tilt angle as the modules while minimizing shade on the 

modules. 

• Sensors should be positioned to avoid end-row brightening effects, localized shading, or enhanced 

illumination phenomena. 

• Multiple sensors should be installed to measure the spatially nonuniform illumination profile 

throughout the day.  

An example for the RPOA measurement in a BPV park is shown in Figure 3-23. The relative RPOA 

measurement errors due to objects in the RPOA pyranometer’s FOV can be comparably high. In one 

example, metallic roofs 50 m away from a pyranometer added ~5 W/m² to RPOA in the afternoon. For 

a coincident RPOA of 50 W/m², this 10% relative error is highly visible in the RPOA time series.  

IEC 61724-1 does not recommend a specific number of RPOA sensors per array, but only specifies a 

minimum number of sensors within a solar park depending on the BPV system size for the accuracy 

Class A monitoring setup defined in this standard. The minimum number of RPOA sensors in Class A 

monitoring systems is three times greater than for GTI. For example, 12 RPOA sensors are needed for 

a 200-MW BPV park. Logically, the number of sensors and their precise placement within an array are 

not mandated because the RPOA nonuniformity depends on ground properties and the array’s height, 

tilt angle, and pitch, making general recommendations difficult. The IEC standard states that bifacial 

reference cells can be used to determine the effective rear-to-front irradiance ratio, but it does not 

recommend the use of any specific sensor type for RPOA measurements (i.e., thermopile pyranometers, 

photodiode detectors, or reference cells). Nevertheless, the standard states that spectrally corrected 

RPOA measurement is optional, but does not provide clear guidance about how or when to make the 

implied corrections. Further information on the measurand and instrument selection for RPOA is 

provided in Sections 3.4.1.2 and 3.4.2.2. 

 

Figure 3-23. Example of multiple pyranometers (circled in red) used for RPOA monitoring of a south-
facing, fixed-tilt BPV system (left). Close-up view of RPOA sensor mounting (right). Note that the 
array’s length runs east-west and that the sensors are placed several meters away from the western 
or eastern array edges.  

Photos by Nicholas Riedel-Lyngskær 

 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

3-34 

The left part of Figure 3-24 shows exemplary diurnal GTI and RPOA measurements on a clear day near 

the vernal equinox (March 25, 2020) in Roskilde, Denmark (55.6°N, 12.1°E). Time-series measurements 

related to an equator-facing 25° fixed-tilt system and a horizontal single-axis tracker are shown. Both 

systems are in the middle of a multi-row field, and the RPOA sensors are mounted as shown in Figure 

3-23 to avoid edge-brightening effects. Under clear conditions and a common broadband albedo value 

(≈0.2), the figure shows that the front-side GTI is roughly an order of magnitude greater than its back-

side counterpart (i.e., RPOA). The right part of Figure 3-24 shows 1 year of back-to-front irradiance 

ratios (BFIR) for the equator-facing fixed-tilt system. RPOA is here the average irradiance from two 

pyranometers mounted on the back of the system (Figure 3-23). The histogram borders show the annual 

distributions of BFIR and GTI, whereas the color scale shows the density of BFIR and GTI observations 

clustered into 10 quantiles. The annual median BFIR is 7.4% for this fixed-tilt system. Note that the 

mean BFIR is skewed because of the high BFIRs that can occur when GTI is low. The broadband albedo 

at the site (normally ≈0.2 in the absence of snow) is comparable to many natural ground surfaces. 

Therefore, the distributions of annual BFIR shown in Figure 3-24 (right) might be similar to that in many 

utility-scale BPV parks. 

 

Figure 3-24. Diurnal plot of GTI (labeled as GPOA) and RPOA for fixed-tilt and single-axis tracker 
systems (left). Rear-to-front-side irradiance ratio versus POA from 1 year of measurements on a 
fixed-tilt bifacial system (right).  

Figures by Nicholas Riedel-Lyngskær  

 

Nonuniform irradiance patterns on the back side of BPV modules are created mainly from reflected 

irradiance near the array edges and from shading by the supporting structure. RPOA’s nonuniformity is 

also a complicated function of surface albedo, array height, tilt angle, and sky conditions. Field 

measurement campaigns of RPOA have been carried out on fixed-tilt systems (Deline et al. 2017; 

Pelaez, Deline, MacAlpine, et al. 2019; Kenny et al. 2018; Rossa, Martínez‐Moreno, and Lorenzo 2021). 

Additionally, several studies have examined the RPOA nonuniformity via simulation (Pelaez, Deline, 

Greenberg, et al. 2019; Kreinin et al. 2010; Hansen et al. 2017; McIntosh et al. 2019; Asgharzadeh et 

al. 2018). These studies have demonstrated that the nonuniformity of RPOA is caused by brightening 

at array edges (e.g., the east and west edges of an equator-facing fixed-tilt system) as well as dimming 

in areas shaded by structural support members (e.g., tracker torque tubes). Sensitivity studies have also 

shown that RPOA’s homogeneity tends to improve with increasing array height and row spacing and 

with an increased fraction of sky diffuse irradiance. The nonuniformity of RPOA tends to be highest for 

low-ground-clearance systems above high surface albedo during clear-sky conditions.  
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The spatially nonuniform nature of the incident irradiance on the back side means that the position of 

RPOA sensors can affect the bifacial performance ratio (PRBIFI) calculations. PRBIFI is an indicator of the 

energy output of a BPV system relative to the energy input available to it (i.e., both GTI and RPOA). The 

recommended formulae to calculate PRBIFI have been compiled in IEC 61724-1.  

Raytracing simulations using typical meteorological year data from over 700 locations have recently 

been performed to identify suitable RPOA sensor positions for single-axis tracker designs (Riedel-

Lyngskær and Andersen 2024). The red circles in Figure 3-25 show the simulated positions that have 

been found within ±5% of the annual average back-side irradiance at 70% of the locations studied. The 

one-in-portrait (1P) tracker is the only design for which the bottom of the torque tube has been found 

representative of the annual average RPOA.  

When assessing BPV performance at short time scales (e.g., intraday), it is recommended to install one 

RPOA sensor on the eastern half and one on the western half; this adequately captures diurnal RPOA 

variations such as those shown in Figure 3-24. Both the 1P and two-in-portrait (2P) designs show 

representative sensor positions at precisely half the distance between the torque tube and panel edge, 

whereas representative RPOA positions on 2P designs with a gap over the torque tube (2Pgap) are 10%–

20% further from the torque tube. The results for fixed-tilt bifacial systems are likely to vary from those 

for the single-axis tracker shown in Figure 3-25. Korevaar et al. (2020) performed raytracing simulations 

to identify representative RPOA sensor locations for fixed-tilt systems. They found that a sensor placed 

68% from the lowest edge gives readings that are most representative of the mean annual RPOA.  

Lastly, the electrical measurements of a 6.5-kWp BPV array are used to demonstrate how the RPOA 

sensor positions can induce uncertainty in PRBIFI calculations, and to validate the recommended RPOA 

positions for the 2Pgap design shown in Figure 3-25. The PV system analyzed here is mounted on a 2P 

single-axis tracker above grass in Roskilde. An array of 10 c-Si reference cells is mounted on the back 

of the tracker for high spatial resolution RPOA measurements. Six months of performance data are used 

to calculate the hourly PRBIFI distributions at the 10 reference cell positions located on the eastern half 

of the tracker system (Figure 3-26). The western and eastern halves of a 2P tracked system should 

normally yield symmetrical results, so long as the ground clearances and albedo are similar (Riedel-

Lyngskær, Petit, et al. 2020). Figure 3-26 shows that PRBIFI can vary by ≈3% when the two most distant 

RPOA sensor locations are considered. The reference cell closest to the torque tube (i.e., the axis of 

rotation) receives the least irradiance, and, therefore, RPOA data from this location will yield the highest 

PRBIFI values. The opposite is true of the reference cell farthest from the torque tube. This sensor tends 

to receive the most irradiance, thereby resulting in the lowest PRBIFI values. The horizontal red line in 

Figure 3-26 shows the average PRBIFI of all sensor locations, which closely corresponds to the PRBIFI 

value obtained when the RPOA sensor is mounted 60% of the distance between the torque tube edge 

and array edge. 
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Figure 3-25. Spatial diagram showing three common single-axis tracker designs (1P, 2P, and 2P with 
a gap over the torque tube). The red dots on each tracker show the discrete points that were found 
within ±5% of the annual average back-side irradiance at 70% of the locations studied.  

Figure by Nicholas Riedel-Lyngskær 

 

 

 

Figure 3-26. Measured hourly bifacial performance ratios of a 6.5-kWp single-axis tracker system 
using RPOA data from 10 different sensors positions in Roskilde, Denmark (55.6°N, 12.1°E). The 

black dots show the mean PRBIFI at each sensor position. The error bars show the interquartile 

ranges at each position, and the horizontal red line shows the grand mean of all sensor positions.  

Figure by Nicholas Riedel-Lyngskær 

3.3.2 Surface Albedo Measurements 

As discussed in Section 2.5.5.1, the surface albedo is the ratio between the total irradiance reflected 

and the total irradiance received by a horizontal surface (i.e., RHI/GHI). This quantity affects GTI for all 

tilted collectors, and is particularly relevant for the calculation of RPOA. RHI and GHI are measured by 

means of two independent pyranometers facing downward and upward, respectively. This two-

pyranometer arrangement, if attached together on a boom, makes up an albedometer, as shown in 

Figure 3-27. On a different spatial scale, the surface albedo is also routinely estimated by remote 

sensing, using reflectance observations from satellite sensors (Chapter 5). 
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Figure 3-27. Albedometer equipped with a glare screen for the down-facing RHI pyranometer.  

Photo by University of Applied Sciences Upper Austria 

 

The albedo value is representative of the surface just below the albedometer at any given moment in 

the case of ground-based measurements, or of a much larger pixel in the case of satellite-based 

estimates (Gueymard et al. 2021). Ultimately, the desired quantity is the spatially averaged albedo of 

the whole surface below the PV system. If that surface presents significant spatial inhomogeneities, the 

limited representativeness of the spatially averaged albedo value—or, even more so, that obtained from 

a single albedometer—increases the uncertainty of the albedo assessment. Therefore, the surface 

representativeness of albedo is a key factor that directly influences how it should be measured, either 

with radiometers installed just above the surface (typically at a height of 1.5–2 m) or from satellite-based 

sensors. This is of practical relevance to BPV projects, as the surface of interest is precisely delimited 

by the boundaries of the solar field.  

In the case of ground-based observations, the surface area for which the measured albedo value is 

representative is delimited by the FOV of the down-facing pyranometer and by shading objects within 

this FOV. As a rule of thumb, no shading object should exist at distances less than 13 m or 10 m when 

the albedometer is at a height of 2 m or 1.5 m, respectively. Moreover, the vertical mounting structure 

or vertical pole should face away from the equator relative to the instruments. The majority of the energy 

captured by the downward-facing instrument measuring RHI comes from a limited circular area centered 

around the instrument position. The installation height of the instrument determines the radius of that 

area. Figure 3-28 illustrates a scheme of the geometry involved in measuring albedo. As an example, 

the surface is split into two distinct areas: one with albedo a sustained by a cone defined by the 

instrument’s height h, view angle θa, and radius r, and the surroundings with a potentially different albedo 

s. This example assumes that the ground is an ideal diffusely reflecting surface. Hence, the emitted 

radiance, Lreflected, as seen from the RHI pyranometer is constant for all θ and , and is proportional to 

 GHI. With this simplifying assumption, the observed RHI can be expressed as follows: 

RHI = ∫ ∫ 𝐿reflected cos 𝜃 sin 𝜃 𝑑𝜃 𝑑𝜑

𝜋
2

𝜃=0

2𝜋

𝜑=0

 

 =  GHI (𝜌𝑎 ∫ cos 𝜃 sin 𝜃 𝑑𝜃
𝜃𝑎

0
+ 𝜌𝑠 ∫ cos 𝜃 sin 𝜃 𝑑𝜃

𝜋

2

𝜃𝑎
) (3-5) 
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which results in: 

 RHI = GHI(𝜌𝑎 sin2 𝜃𝑎 + 𝜌𝑠(1 − sin2 𝜃𝑎)) (3-6) 

Therefore, the total reflected irradiance measured by the instrument is a weighted average of the radiant 

energy flux reflected by the two areas, where the weighting factor is sin2θa, corresponding to the area 

defined by the partial FOV of the instrument when sensing the particular area of albedo a.  

 

Figure 3-28. Schematic of an albedometer installed at height h above a part of ground surface with 

albedo a. The FOV of the instrument has a half-angle θa, corresponding to a radius r at its base. The 

surrounding surface area has an albedo s. The obstructed angle by a possible glare screen (used 

to block direct beams when the sun is near the horizon) is .  

Image by SolarGIS 

 

Assuming that a and s in Eq. (3-6) are identical, the contribution of the circle defined by θa relative to 

RHI is F = sin2θa. Therefore, the surface closer to the instrument contributes much more to the measured 

energy than the farthest one, as could be expected. Since r = h·tan(θa), it is possible to evaluate the 

size of the area with a relative contribution F: 

 𝑟 = ℎ tan(sin−1 √𝐹) (3-7) 

Figure 3-29 shows the contribution of the surface to the measured RHI as a function of the radius of the 

area below the sensor for different installation heights. For the typical installation heights in PV projects 

(1.5–2 m), the contribution to the measured RHI increases rapidly with the radius, reaching values above 

85% below 5 m. Similar visualizations have been published previously, as in Gostein et al. (2021). 
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Figure 3-29. Percentage contributions of the circle-shaped area centered at the instrument's 
footpoint to the measured RHI as a function of its radius for different installation heights (legend 
shows height in m). The right plot shows a close-up of the left plot for selected installation heights. 

Table 3-4 gathers the radius of the circular areas under the albedometer for different installation heights 

and contributing factors F. Thus, for instance, 99% of the total reflected energy measured by an 

albedometer installed 1.5 m above ground comes from a circle-shaped area with a radius of 14.9 m (700 

m2). For the sake of comparison, the land area required for a PV plant of 5 MWp would be approximately 

105 m2 (assuming a fixed-tilt system and a 2-ha/MW coverage factor). Hence, an area of 700 m² could 

accommodate ≈35 kW of PV.  

If the instrument is equipped with a glare screen blocking an angle of 5°, it can sense (sin²(90°–5°)) = 

99.2% of RHI, and the radius of the observed area can be directly calculated as r = h·tan(90°–5°). The 

last row in Table 3-4 shows the results for this glare screen and installation heights up to 30 m. 

 

Table 3-4. Radius of the Circle-Shaped Area Under an Albedometer for Different Instrument Heights 
and Contributing Factors F 

h [m] 1 1.5 2 3 10 20 30 
Viewing Half-
Angle for F [°] 

r [m], (F = 90%) 3 4.5 6 9 30 60 90 71.6 

r [m], (F = 95%) 4.4 6.5 8.7 13.1 43.6 87.2 130.8 77.1 

r [m], (F = 99%) 9.9 14.9 19.9 29.8 99.5 199.0 298.5 84.3 

r [m], (glare 
screen with 5°, F 
= 99.2%) 

11.4 17.1 22.9 34.3 114.3 228.6 342.9 85 

3.3.2.1 Impacts of Albedo Errors on Bifacial Photovoltaic Yields  

To evaluate the importance and value of correctly measuring the surface albedo, it is useful to provide 

some examples of potential errors in yield calculations caused by erroneous albedo assumptions. For 

this purpose, a simplified calculation was carried out in Blum and Wilbert (2023) for a BPV plant in 
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Brandenburg, Germany, using default configurations in the PVWatts® simulation software.11 If the PV 

plant is built over 50% dry grass (assumed albedo ≈0.21) and 50% sand (albedo ≈0.45) the average 

albedo would be ≈0.33, but for the example, the albedometer is supposed to be incorrectly installed over 

the sandy area. Using this albedo value of 0.45 instead of 0.33, the yearly yield is overestimated by 

2.7%. A similar example for a PV park in Hamilton, Canada, assuming a combination of 50% wet soil 

(albedo ≈0.15) and 50% aged snow (albedo ≈0.7) in winter and purely wet soil during the rest of the 

year, leads to a 5.6% yield overestimation if a single albedometer above the snowy area is used (Blum 

and Wilbert 2023).  

Similarly, in Lara-Fanego et al. (2022), a particular modeled PV plant was analyzed and it was found 

that the deviation in the annual energy production can be as high as 2.5% for an uncertainty in the 

albedo estimation of 0.10. Another study of the effect of albedo changes on the yield for six PV parks 

was presented in Merodio et al. (2023) resulting in albedo sensitivity coefficients between 0.18% and 

0.3% yield change per 0.01 albedo change, which is in line with the other examples above. 

3.3.2.2 How To Determine a Representative Albedo Value for PV Modeling 

Obtaining representative albedo measurements for PV modeling of a planned or existing installation is 

not trivial. ISO TR 9901 and IEC 61724-1 provide rough recommendations for albedo measurements, 

but several issues are not addressed in these documents. The following recommendations are more 

elaborate, but refer to these documents whenever relevant.  

Representativeness of the Measurement Location and Duration 

Of all the parameters to consider when selecting the most appropriate location for installing an 

albedometer, representativeness is the most important. Ultimately, the objective is to characterize the 

surface albedo for the entire area covered by the bifacial modules. Therefore, if a single albedometer is 

used, it must be placed where the optical conditions of the surface to be sensed and the larger area 

occupied by the whole solar field are of similar nature and fit each other well. The spatial variability of 

ground albedo can be quite remarkable, especially over large areas (Gueymard et al. 2021; Wang et al. 

2015). It might be necessary to characterize the albedo of different zones, preferably using a few 

albedometers. The ground maintenance beneath the RHI pyranometer should mimic the maintenance 

practices that are carried out/planned during the PV plant operation. Satellite-based estimates are also 

useful because they can provide historical time series for almost any part of the planet and can be site-

adapted with ground observations (Lara-Fanego et al. 2022). Because the instantaneous albedo 

depends on the illumination conditions of the moment, as explained in Section 2.5.5.1, and because 

vegetation and other ground properties might change drastically even over short periods of time, a 

marked temporal variation pattern might appear. In particular, seasonal effects and faster (daily, 

minutely) changes caused by changing sun position, or variable sky conditions and ground properties 

(e.g., snow, soil humidity, or vegetation) are clearly visible. This is stated in ISO TR 9901, which also 

introduces the recommended practice of carrying out samplings that are then combined with long-term 

data, such as satellite data. Currently, despite the high spatial and temporal variability of surface albedo, 

most PV modeling software only use one estimate of the local albedo for the whole solar field and each 

month, or even season or year. Nonetheless, albedo time series cannot be simply characterized by 

short-term (days or weeks) measurement campaigns, even if the collected data are subsequently used 

to site-adapt long-term time series provided by a satellite (Lara-Fanego et al. 2022). The required 

duration of measurement campaigns to ensure proper albedo characterization depends on the 

characteristics of each location. Ideally, at least 1 year is recommended to correctly analyze seasonal 

 

 

11 Access the tool at pvwatts.nrel.gov/.  

file:///C:/Users/kwensuc/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/B3JWARAD/pvwatts.nrel.gov/
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albedo variability. At favorable sites, such as snow-free and monsoon-free areas that are permanently 

arid, it is possible to obtain a reliable statistical description with only several weeks or months of ground-

based albedo measurements.  

When dealing with inhomogeneous surfaces at small scale—for instance, near or within a solar power 

plant—another aspect of the albedo determination is that various surfaces exhibit pronounced 

directional effects, thus negating the assumed Lambertian (i.e., isotropic) behavior. To remedy this 

situation, particularly in the case of BPV applications, methods have been proposed to evaluate the 

angular effects of composite surfaces on the overall effective albedo (Ziar et al. 2019). 

Finally, when measuring albedo at a site during the design phase of a projected solar system, another 

critical question arises: Will the historical albedo at hand be conserved in the future, considering possible 

changes in the surface characteristics caused by the system’s construction (e.g., vegetation removal) 

or other factors? This question must be answered on a case-by-case basis by the designer. Similarly, 

after the construction of a PV plant, the ground is often bare, and it takes several months or longer for 

the vegetation to reach the long-term expected ground conditions, which may also differ from the 

previous conditions due to the change in microclimate caused by the solar array. This is of particular 

importance when preparing acceptance tests of PV plants. 

Mounting Structure and Height 

The height of the albedo measurement should be high enough to achieve a sufficient measurement area 

with low shading effects, but low enough to facilitate easy maintenance; therefore, heights between 1.5 

m and 2 m are recommended, at least if the expected snow heights allow this. In most cases, a height 

of 1.5 m is preferred for practical reasons because the radiometers’ maintenance is easier, and the 

required object-free area within the FOV of the RHI pyranometer is less. This recommendation is in line 

with ISO TR 9901, which recommends heights between 0.5 m and 2 m, and with IEC 61724-1, which 

recommends heights above 1 m. Note that ASTM E1918–21 (ASTM E1918 2023) is not appropriate in 

solar applications because of the recommended measurement height of only 0.5 m along with a short 

measurement period. 

Conversely, heights of 10 m or more are helpful to evaluate the albedo over a larger ground area, with 

the goal of comparing such data with airborne or spaceborne observations, for instance. Such heights 

bring along complex maintenance procedures, however (because of the requirement of frequent 

cleaning, in particular) so that this setup is rather limited to scientific applications. The albedometer’s 

mounting structure should be between the RHI pyranometer and the nearest pole to reduce the impact 

of the mounting structure as much as possible. 

Objects and Shadows in the FOV of the RHI Pyranometer 

Obstructions, reflections, or shading that might affect albedo measurements should be avoided. If 

objects, such as small bushes or rocks, are under most of the PV modules, it is recommended that such 

objects are also present under the RHI pyranometer in a similar distribution. If these objects are not 

present under the RHI pyranometer, their effect on the albedo measurements should be estimated and 

used to correct them. Only objects that are not characteristic of the surface under the PV modules and 

that are not specifically included in the PV simulation model should be considered obstructions. 

Reflections might be related to metal buildings (e.g., silos) and wind turbine masts (e.g., in the case of 

hybrid wind and solar plants). Finding a location without obstructions, reflections, or shading can be a 

complex puzzle if the instrument needs to be located inside a small, fenced area or PV park along with 

other instruments and structural elements. A useful tool for analyzing shadow casting is the online 
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Sundial tool of the Solar Radiation Monitoring Laboratory of the University of Oregon.12 NREL’s SAM 

PV simulation model can also be used to analyze complex shading effects.13 According to IEC 61724-

1, the area that should be free of objects and shadows is defined as ±80° from the RHI pyranometer. 

This shadow-free FOV corresponds to an 8.5-m radius if the instrument is at a height of 1.5 m, yielding 

F = 97%. In practice, it is often difficult to find fully object- and shadow-free areas of such a large 

extension, particularly if fences are needed (the extra length of fences that would be needed to avoid 

shadows is costly).  

For an RHI pyranometer at a height of 1.5 m, a 5-m radius or more without other objects is 

recommended, and it can be accepted that shadows fall in this area at times (5-m radius at 1.5 m height 

corresponds to a FOV of ±73.3° and F = 91.8%). If a larger radius than 5 m is feasible, this is 

advantageous. Requiring that the area below the pyranometer is always shadow-free might be 

impossible, meaning some shadows are usually unavoidable, particularly when the sun is low. 

Measurements taken while a significant part of the area below the RHI pyranometer is shaded should 

be sorted out. For instance, all albedo data points for SZA>85° can be systematically rejected when 

calculating the mean daily albedo. Other authors recommend excluding data with SZA > 60° (Merodio 

et al. 2023). This prevents egregious errors caused by both shading and the imperfect cosine response 

of pyranometers at large SZAs. A more specific filtering and rejection of suboptimal data can be done 

based on geometric considerations for the given layout of objects and RHI sensor. For instance, shading 

is acceptable at least within a half-hour of sunrise or sunset, as allowed by IEC 61724-1 for GTI 

measurements for PV monitoring, but longer intervals with shading can also be acceptable, depending 

on their impact on the daily or long-term mean albedo. The valid albedo measurements that have passed 

that quality control step should be for a long enough period.  

Instrumentation for Albedo Measurements 

The selection of the two radiometers constituting an albedometer is an important consideration. IEC 

61724-1 does not specify the instrument type for RHI measurements, but only for GHI measurements 

(see Section 3.4.2). The most common setup includes two spectrally flat pyranometers according to ISO 

9060, but IEC 61724-1 does not require that both are of the same model or even accuracy class. 

However, the accuracy of 1-minute data is affected if, for example, a fast-response GHI pyranometer 

and a slow-response RHI pyranometer are used. Because of the albedo’s spectral dependence, the 

application of two spectrally flat pyranometers allows for the highest accuracy (e.g., ISO TR 9901). This 

setup also avoids complications related to the calibration conditions, which deviate strongly for the RHI 

pyranometer because it is typically calibrated in the upward position, that is, based on GHI. The use of 

non-spectrally flat pyranometers (i.e., photodiodes) for RHI and/or GHI introduces additional spectral 

errors for the albedo measurement, which might be higher than the typical spectral errors in DHI or GHI 

measurements. This issue is further addressed in Chapter 4, Section 4.2.10. Using a reference cell to 

sense RHI is another possibility, but this would result in a quantity different from the true albedo, meaning 

further research and adaptations of the PV simulation models would be required before such a setup 

could be applied. 

To avoid any RHI overestimation caused by direct sunlight or specular reflections interfering with the 

down-facing pyranometer dome, a glare screen should always be used to protect the RHI pyranometer. 

Further Considerations for Albedo Measurements 

 

 

12 Access the tool at solardata.uoregon.edu/SunDialProgram.html.  

13 Access the tool at sam.nrel.gov/about-sam.html.  

http://solardata.uoregon.edu/SunDialProgram.html
https://sam.nrel.gov/about-sam.html
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Once the solar field has been installed, the artificial shadows cast by the modules and their supporting 

structures typically affect the surface albedo. These effects should be modeled internally in the PV 

simulation software. 

The albedo of a horizontal surface cannot be measured properly by tilted (POA) pyranometers (Dittmann 

et al. 2019). Similarly, measuring the albedo of a steep slope is prone to error because the GHI 

measurement then contains part of the ground-reflected radiation, and the RHI measurement might 

contain diffuse sky radiation. A method has been recently proposed to address this issue (Ramtvedt and 

Næsset 2023).  

To guarantee that the instruments perform optimally, the specific recommendations of the manufacturer 

concerning the installation, calibration, and the O&M of the radiometric instrumentation should be 

followed. In addition, the two radiometers constituting an albedometer are susceptible to soiling. Care is 

needed to protect the albedometer from flying debris during ground maintenance (e.g., mowing). Efforts 

should be made to regularly clean both instruments.  

Temporal and Spatial Averaging of Albedo Measurements  

Customarily, albedo data are measured at high temporal resolutions, just like GHI or GTI. However, the 

albedo data’s temporal resolution is typically degraded to become usable in PV modeling. The average 

value of albedo over a period of time “p”, p, is defined as (Wang et al. 2015): 

  𝜌𝑝 =
RHI𝑝

GHI𝑝
 (3-8) 

where GHIp and RHIp represent the average global and reflected irradiations over the same period, 

respectively. When RHI is not known, but the albedo and the global irradiance at a determined time “t”, 

GHIt and t, are known, the average albedo value can be determined as: 

 𝜌𝑝 =
∫ GHI𝑡𝑝𝑡

𝜌𝑡 ·𝑑𝑡

∫ GHI𝑡
⬚

𝑝
·𝑑𝑡

 (3-9) 

For example, in a practical case of a daily period and n valid measurements for which SZA is less than, 

for example, 85°, the daily mean value of albedo, d, can be directly estimated as the following weighted 

average: 

 𝜌𝑑 =
∑ RHI𝑖

𝑛
𝑖=1

∑ GHI𝑖
𝑛
𝑖=1

= ∑ 𝑤𝑖
𝑛
𝑖=1 · 𝜌𝑖 (3-10) 

where the weights wi are: 

 𝑤𝑖 =
GHIi

∑ GHIi
𝑛
𝑖=1

 (3-11) 

If the underlying albedo time series is not complete (because of data gaps, insufficient data quality, or 

shadows) gap-filling of the albedo time series should be considered. If areas of different albedo are 

present over the complete extent of a large PV plant, several albedo stations would be needed. 

Weighted averages of these area-specific albedos can then be used to obtain the spatially averaged 

albedo, particularly for use with PV modeling tools that do not allow multiple albedo inputs.  

3.4 Measurand and Instrument Selection 

In the previous sections of this chapter, several different options to measure solar radiation were 

presented. It was made clear that different radiation components can be measured and that different 

solar energy technologies require different measurements. The requirements also depend on the 

project’s phase and size.  
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A general recommendation about which kinds of measurements are desirable depending on a project’s 

phase and size has been given in the Preface, and is discussed in more detail in Chapter 11. In this 

section, the discussion is only about projects for which measurements are actually required. In that 

situation, the first important question is whether a radiometric station does exist nearby and would 

provide usable measured data over a long enough period. If several nearby solar plants or measurement 

stations are available, new measurements (and thus the installation of a new station) might not be 

necessary, thus saving substantial expenditures. According to IEC TC 62862-1-2 (IEC TS62862-1 

2017), a separation distance of 10 km can be considered safe for accurate extrapolation. There are 

special circumstances, however, under which a shorter distance would be preferable or a longer 

distance would be possible. For instance, from a geographical/meteorological point of view, the nature 

of the terrain and the required measurands are key factors to consider. On a mountainside, in particular, 

even a distance of 2 km might be too much for DNI, DHI, and surface albedo because they typically vary 

more with distance than GHI. Whether the nearby station’s data can be effectively used also depends 

on their quality and detailed technical information, which must be available. Contractual limitations must 

be considered, and access to the station is desirable. 

If no historical dataset exists or is satisfactory, and a large solar power plant is envisioned, a new station 

needs to be designed, procured, built, maintained, and its data stored and quality-controlled over a 

period of 1 year before a full analysis of the local solar resource can be done. All of this obviously 

requires a lot of planning and might slow down the project’s financing and construction itself. As a 

priority, the project managers and station designers will first need to select the radiation components 

and the instrumentation that will best support the data and uncertainty goals of the project during each 

specific project phase. The following subsections explain the most important aspects of the related 

decisions. Guidance is also provided to make an educated decision when having to choose between 

digital and analog sensors (Section 3.4.3) 

3.4.1 Selection of Measurands 

The measurand is the quantity to be measured. The measurands required for a solar project depend on 

the technology of interest and the project’s phase and size. No measurand can be measured exactly, 

and each method of measurement and instrument has its associated uncertainties and biases. 

Therefore, it is important to know the desired accuracy for the measurements and what methods and 

instruments are required to achieve the goals. Most often, there is a trade-off to resolve between desired 

accuracy, instruments’ performances and specifications, and budget limitations. The information in 

Table 3-5 provides guidance on the required and recommended radiation measurands for various 

applications. Further meteorological measurements such as wind, temperature, and soiling are 

discussed in Chapter 5.  

Each project phase might require different types of measurements, or the same measurements but with 

different accuracy requirements. For conciseness, this section only distinguishes between what is 

required before and after the construction of the solar installation. The technology options included in 

the table are self-explanatory, but the accuracy cases referred to as “basic” and “enhanced” are much 

more complex. They refer to the accuracy of the possible yield analysis and design optimization before 

the plant’s construction, and to the accuracy of the monitoring and forecasts during its operation. The 

goals to be set for the measurements and their uncertainty are influenced by many parameters, including 

technical, meteorological, financial, and legal boundary conditions. For instance, a large solar park will 

typically require higher accuracy because the investment's risk is also much higher. Adding radiometers 

obviously increases the instrumentation and operations budget, but this normally turns out to be a good 

investment: When considering the overall costs of acquiring the property, building the infrastructure, 

providing long-term labor for O&M, and underwriting the resources required for data processing and 

archiving, the additional equipment cost appears nominal in comparison. Ultimately, these equipment 

improvements will likely pay off by enhancing the project’s credibility and reducing the associated 
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financing costs. Better resource data can also improve the validation of system performance and help 

detect system problems at their early stages. More complex installations that, for example, apply newer 

technology options will also justify the need for higher yield accuracy and more refined performance 

analysis. Moreover, a project involving several different contractors might require more exhaustive 

monitoring measurements than a project that is built, operated, and owned by a single company, 

because the allocation of responsibilities for possible faults or underperformance is more important in 

this case. 

International standards and specifications that define requirements for monitoring or performance 

evaluation of solar installations or the creation of representative meteorological years (IEC TS 62862-1-

2 for concentrating solar thermal [CST] projects) are of great importance for the selection of the 

measurands. They are also particularly helpful for projects in which several companies are involved.  

Table 3-5 additionally mentions the standards that are most relevant for monitoring various solar 

technologies. To understand the table’s recommendations, the different applications of the 

measurements before and after construction must be considered. 
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Table 3-5. Required and/or Recommended Measurands for Different Solar Energy Technologies 
(* for large installations (>50 MW); ** for a fixed-tilt PV system at high latitudes) 

Project Phase/ 
Standards 

Accuracy 
Case 

Monofacial PV, 
Thermal Non-
Concentrating 

BPV Concentrating 
Solar Technology 

Before 
Construction of 
Large Solar 
Plants 

(based on IEC 
TS 62862-1-2) 

Basic GHI GHI, RHI (albedo), DHI GHI, and DNI or 
DHI 

Enhanced 

(large 
plants; 
complex 
atmosphere, 
terrain, 
technology) 

GHI, GTI/PV 
matched GTI (in 
the plane(s) that 
has/have been 
selected as 
promising 
option(s) or 
tracked), DNI*, 
DHI*, RHI 
(albedo)** 

GHI, DNI, DHI, RHI 
(albedo), GTI or PV-
matched GTI (in the 
plane(s) that has/have 
been selected as 
promising option(s) or 
tracked)  

DNI, GHI, DHI 

Monitoring and 
Operation for 
Large and 
Medium Solar 
Plants (for PV:  
IEC 61724-1;  
for CST:  
IEC 62862-3-2, 
IEC 62862-5-2, 
IEC 62862-3-3; 
for thermal 
collectors:  
ISO 9806) 

Basic  GHI  

GTI or PV-
matched GTI 

GHI 

GTI or PV-matched GTI  

RPOA (spectrally 
matched or broadband) 
or RHI (albedo)+DHI 

DNI or DHI and 
GHI for medium 
plants 

Enhanced GHI 

GTI  

PV-matched GTI 

DNI* 

DHI*  

RHI (albedo)**,  

GHI 

GTI 

PV-matched GTI 

RPOA (spectrally 
matched or broadband) 

RHI (albedo) 

DHI 

DNI* 

DNI 

GHI 

DHI 

3.4.1.1 Measurands Recommended Before Construction of Large Solar Plants 

Before the construction of large power plants, radiation measurements are used mainly to enhance 

the accuracy of satellite-derived long-term datasets with different site-adaptation methods (see Chapter 

7, Section 7.6). Typically, only broadband GHI and/or DNI datasets are used in solar resource 

assessments. Only a few satellite-derived datasets include spectral data (Mueller et al. 2012; Xie and 

Sengupta 2018). Such data are not available for the full globe, and common current PV simulation 

software cannot directly make use of spectral data. Still, spectral data could be useful for the selection 

of the most suitable module technology in a solar power plant and for increasing the accuracy of yield 

estimations for some technologies. However, the fact that typically broadband long-term datasets are 

used strongly affects the requirements for the measurands discussed in the following subsections for 

the different technologies. 

Monofacial Photovoltaic Plants and Non-Concentrating Solar Thermal: Basic Accuracy Case 

For monofacial PV plants and non-CST systems, the basic option recommends the measurement of 

broadband GHI only. Long-term GHI data can be obtained after site adaptation with those on-site 
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measurements. The conversion from GHI to GTI can be done subsequently with decomposition and 

transposition models (see Chapter 7, Section 7.3.2), but these add uncertainty. Measuring GTI for the 

anticipated tilt and orientation of the collectors, or measuring only the PV-matched irradiance would 

eliminate this added uncertainty, but currently this is only helpful as a supplementary measurement 

because long-term satellite-derived datasets typically do not provide these quantities. Moreover, specific 

site-adaptation methods have not been developed yet for them.  

Monofacial Photovoltaic Plants and Non-Concentrating Solar Thermal: Enhanced Accuracy Case 

In the enhanced accuracy case for these technologies, it is recommended to measure additional 

radiation variables, including GTI, as well as PV-matched GTI in the case of PV systems. Additional GTI 

measurements are advantageous for resource assessment because they might be used to select the 

best transposition (or decomposition and transposition) model for the site under scrutiny. One challenge 

for GTI measurements is selecting the right orientation and tilt of the GTI pyranometer before starting 

the measurement campaign. The optimal tilt and orientation depend on various factors: Latitude, 

meteorological conditions (cloudiness) at the site, shading effects, and electricity market value, among 

others. A preliminary estimate of the optimum tilt angle can be obtained from the global solar atlas14 or, 

more elaborately, from system simulations using satellite-derived irradiance data. 

GTI measurements are more accurate than modeled GTI estimates and can be used as direct input for 

detailed solar power plant modeling with appropriate simulation software. The PV-matched GTI 

measured using PV reference cells (Section 3.2.6) provides further advantages for PV modeling. PV 

power plant models include effects such as reflectance losses and spectral mismatches to derive the 

power output from broadband irradiance. Because modeling these effects adds uncertainties and 

systematic biases, the usage of reference cells offers an attractive alternative: If irradiance is measured 

under a flat glass cover, the reflectance losses do not need to be modeled; moreover, if the irradiance 

measurement is already weighted by the spectral response of the reference cell, then no spectral 

correction model is required. In other words, if the PV-matched GTI is measured, then the expected PV 

system output can be calculated with substantially fewer modeling steps, thus eliminating the uncertainty 

those would contribute. Therefore, including a tilted reference cell in a ground measurement station 

before the plant construction can be useful.  

Adding reference cells to the instrument lineup in a resource assessment station before finalizing all 

details of the plant’s design has possible drawbacks, however: The exact technology and design 

features (tracked vs. fixed, tilt and orientation angles) that will be eventually used in the power plant 

might not be known at that stage yet, as previously mentioned. This can be countered by deploying 

multiple reference cells, if necessary. Another important limiting factor is the available software used for 

PV yield simulations. Some do not let the user selectively bypass certain model calculation steps, which 

would be required for optimal use of PV reference cell irradiance measurements. Prior to deploying 

reference cells to measure GTI, therefore, the capabilities of the simulation software must be known, or 

the modeling software should be chosen accordingly.  

The uncertainty of PV yield calculations can also be decreased by measuring DNI and/or DHI in addition 

to GHI. The transposition procedure that derives GTI is significantly more accurate when measured DNI 

and/or DHI data are also available in addition to GHI, in particular for steep tilt angles (see Chapter 7, 

Section 7.3.2). Further, the additional availability of DNI data usually results in more accurate PV 

simulations because the impacts of incidence angle and shading affect the direct component, for the 

most part. A critical advantage of measuring GHI, DNI, and DHI with independent sensors is related to 

 

 

14 Access the solar atlas at globalsolaratlas.info/map. 

https://globalsolaratlas.info/map
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the quality control of the data and rapid detection of instrumental problems. Measuring the three 

components provides both the basis for the most rigorous data quality protocols and a certain 

redundancy for instrument failure, as described in Chapter 4. Depending upon the radiation component 

and the instruments, this advantage goes beyond what can be achieved with a redundant measurement 

of the same type. However, redundant measurements of the same component are also highly beneficial. 

Another advantage of measuring several radiation components is that it provides increased flexibility for 

the selection of the most appropriate solar technology option or mix. For instance, depending on the 

site’s terrain conditions, a mixture of tracked PV and fixed-tilt PV could prove advantageous. Similarly, 

measuring the albedo could help evaluate the eventual bifaciality gain, optimize the design of a BPV 

system, and enhance the accuracy of the PV yield predictions. 

The above recommendations on the measurands hold for both fixed and tracked PV systems, but in the 

latter case the importance of measuring DNI is greater than in the former case. Therefore, it is more 

likely that enhanced resource campaigns for tracked systems include DNI, and optionally DHI 

measurements, too. Tracked PV systems can also be influenced more by the albedo, and this is also 

the case for systems with large tilts (e.g., at high latitudes).  

Bifacial Photovoltaics 

For BPV, the measurands mentioned above for monofacial PV should be complemented by DHI and 

RHI data, even in the basic accuracy case, so that the albedo, RPOA, and bifacial gain can be estimated 

accurately.  

The above discussion regarding possible additional measurands for monofacial PV systems for the 

enhanced accuracy case is also relevant for the bifacial systems. In the enhanced accuracy scenario, 

additional DNI measurements are particularly valuable for bifacial systems. 

Concentrating Solar Thermal 

For CST projects in general, an IEC technical specification on the creation of annual solar datasets for 

plant simulation (IEC TS62862-1 2017) exists, as well as best practice documents (Hirsch et al. 2017). 

Here, only the DNI resource is typically used for modeling the plant yield, and in principle only a 

pyrheliometer would be sufficient for a resource assessment campaign. However, the basic option is to 

measure GHI and either DHI or DNI and not a measurement station with a solar tracker and a 

pyrheliometer, because this is much more complex and costly to operate than the various alternative 

options (discussed in Section 3.2.5) that do not need a solar tracker. The pros and cons of the tracker-

based solution vs. other measurement options are discussed below in Section 3.4.2.  

The enhanced accuracy case includes the separate measurement of all three components to enable 

the best data quality control methods. This is most important for CST projects because their capital costs 

are considerable, making them more difficult to finance. For better bankability, the uncertainty in the 

solar resource must be as low as possible, which can be achieved by measuring the three components 

independently and applying the most stringent quality control process. The measurement of circumsolar 

radiation is not included in this discussion, although it might be required, depending on the CST system; 

see Chapter 5 for more details. 

3.4.1.2 Measurands for Monitoring and Operation for Large and Medium Solar Plants 

To operate and monitor solar power plants, different measurements from the resource assessment 

phase are typically required.  

For PV plants, IEC standard 61724-1 defines the quantities to be measured for monitoring purposes. 

GTI (or PV-matched GTI) and GHI measurements are required for the highest accuracy level defined in 

the standard. GHI is always necessary to compare the on-site measurements with satellite-based 

radiation datasets. For BPV systems, the rear-side irradiance (RPOA) and/or albedo (see Section 3.3.2) 
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must also be measured. Diffuse irradiance measurements are recommended if RPOA is estimated using 

albedo data. The number of sensors of each type depends on the peak power of the PV system. The 

lower monitoring accuracy class only requires GTI measurements because the actual on-site GHI can 

be replaced by remote meteorological GHI or satellite-based GHI. This lower-accuracy class is typically 

not adequate for utility-scale PV plants, however.  

For the operation of CST projects, individual standards are available for different technologies as 

provided in Table 3-5 (IEC 62862-3 2018; IEC 62862-5 2022; IEC TS 62862-3-3 2020). They define the 

instrumentation that should be used for performance testing at the power plant. These standards can 

also be used as the basis for general monitoring of the installations, but the requirements for operation 

might be less strict. DNI is required for all cases; GHI and DHI are recommended to improve the quality 

control process of the radiation measurements. 

For flat-plate solar thermal collectors, ISO 9806 (ISO 9806 2017) requires GHI and GTI measurements 

for testing. Depending on the type of collector under test, longwave radiation might also have to be 

measured with a pyrgeometer in the collector’s plane. However, ISO 9806 is about testing rather than 

regular monitoring. In the latter case, the measurement of GTI and GHI suffices.  

3.4.2 Selection of Instruments 

For instrument selection at any stage of a project, it is generally safest to adhere to the available 

standards where applicable. This prevents technical complications and facilitates communication and 

the decision process.  

3.4.2.1 Instrument Selection Before the Construction of a Power Plant 

For resource assessment before the construction of a power plant, there are no standards that define 

which instrument type should be used for a specific measurand or solar energy technology. Hence, 

guidelines for the instrument selection suitable to this project phase are provided below for each 

measurand.  

For GHI and GTI, ISO 9060 classified pyranometers are recommended, and Class A pyranometers are 

preferable.  

For PV-matched GTI, usage of a PV reference cell or module that matches the characteristics of the 

envisioned PV technology is recommended. A spectroradiometer might alternatively be used. Although 

this is more costly and does not include the incidence angle effect of PV, it delivers more detailed 

spectral data so that a wide range of PV materials can be evaluated.  

For guidance on the instrument selection before the plant construction for RHI and RPOA, refer to 

sections 3.3.1, 3.3.2 and 3.4.2.2. 

If DNI or DHI measurements are needed, or if a highly accurate resource assessment is desired, the 

station designers must choose between a solar tracker and alternative measurement devices for DNI 

and DHI. If the best-achievable field measurement uncertainty is aimed for and if the required 

maintenance can be guaranteed, an ISO 9060:2018 Class A spectrally flat pyrheliometer in combination 

with ISO 9060:2018 Class A spectrally flat pyranometers for GHI and DHI on a two-axis tracker with a 

shading ball/disk are recommended. This is typically used for most PV projects of very large size (>100 

MW installed capacity) and for many utility-scale CST projects. In many publicly available datasets and 

publicly funded measurement campaigns, this kind of weather station is referred to as “Tier 1” station 

(ESMAP 2020). However, considering that a low uncertainty in the resource assessment results is key 

to the successful financing of a large project, station designers must consider not only the accuracy 

under optimum maintenance conditions, but also under the suboptimal conditions that may occur in field 

measurement campaigns despite best efforts. Measuring the three radiation components with a solar 

tracker, a pyrheliometer, and two pyranometers induces a significant maintenance effort. Without trained 
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personnel providing daily cleaning, visual detection, and prompt corrections in case of tracker 

malfunction or alignment errors, data gaps and increased uncertainties are common. Therefore, simple, 

less maintenance-intense instruments, such as RSIs, usually in combination with a thermopile 

pyranometer for GHI, can be a better option to determine the three radiation components. If the DHI or 

DNI measurement is only required for the calculation of RPOA, using a solar tracker can be seen as an 

unnecessary complication, and RSIs or other alternative DHI or DNI sensors with similar or better 

accuracy are recommended (see Section 3.2.5). This kind of weather station is often referred to as a 

“Tier 2” station. 

At the onset of the resource assessment campaign, that is, when the weather station is being procured, 

station designers might already have to decide whether its instruments could later become part of the 

power plant monitoring system. This is possible inasmuch as the resource assessment station’s design 

follows the best practices and standards, including those for the ulterior monitoring phase. It is stressed 

here that the best practices and standards for monitoring or system testing somewhat differ from those 

intended for the initial resource assessment phase. For example, one meteorological station is usually 

sufficient per project site, unless the solar field has an area that justifies the assumption of varying 

microclimates. The resource assessment station that operated earlier might not be in the same area. 

The cost of completely moving that station (or just its instruments) to the monitoring location can be 

potentially substantial, hence the costs and advantages vs. disadvantages of operating two distant 

stations rather than one should be evaluated.  

From another perspective, the use of pyranometer ventilation units needs to be considered carefully. At 

“greenfield” resource assessment sites, they add substantial cost because they need a larger power 

supply, whose costs might outweigh the expected benefits. From another perspective, as mentioned 

earlier, redundant measurements of the same radiation component can be of interest to avoid data gaps 

and increase accuracy.  

3.4.2.2 Instrument Selection for Operation and Monitoring for Large and Medium Solar Plants 

For monitoring and operation purposes, specific standards exist for solar energy technologies. They 

provide much more information on the required instruments than those available for resource 

assessment applications before plant construction. As such standards are technology-specific, the 

recommendations for instrument selection are discussed for each of the solar technologies. 

Photovoltaic Monitoring and Operation 

IEC standard 61724-1 for PV monitoring defines the instrument types allowed according to different 

monitoring accuracy classes. For front-side POA (GTI), PV monitoring Class A systems use ISO 9060 

spectrally flat Class A pyranometers or PV working reference devices per IEC 60904-2 (IEC 60904-2 

2023) with calibration uncertainties below 2%. For GHI, ISO 9060 spectrally flat Class A pyranometers 

are required for the highest monitoring class. For Class A monitoring of the RPOA of BPV systems, less-

accurate pyranometers and reference cells are allowed. Class B monitoring also allows less-accurate 

pyranometers or reference cells. This monitoring class can be of interest for small- or medium-sized 

power plants. In PV monitoring, the accuracy of yield predictions can be improved if using reference 

cells, as described above. Some of the PV simulation models that are used for PV monitoring or capacity 

testing can use the PV-matched GTI as input. Moreover, measurements with both pyranometers and 

reference cells can further improve the PV modeling accuracy. Note that the application of PV reference 

cells is in practice limited to PV-matched GTI and RPOA. They are not designed to sense GHI, and 

actually a few of them collect water when mounted horizontally, thus yielding large errors. If a low-cost 

substitute for a thermopile pyranometer is needed, a photodiode pyranometer is usually the better 

choice. IEC 61724-1 does not define which instruments must be used for RHI or DHI measurements. 

For DHI, that standard provides different examples, including trackers with shading disks or balls and 

RSIs. The recommendations above related to DNI or DHI measurement for solar resource assessments 
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also apply here. Trackers should only be used if the highest accuracy is required and if the highest 

degree of maintenance can be sustained. In most cases, other measurement methods to derive DHI or 

DNI are more appropriate; sensors such as RSIs or alternatives with similar or better accuracy should 

be used (see Section 3.2.5). For RHI, see the recommendations in Section 3.3.2.  

Concentrating Solar Thermal Monitoring and Operation 

Virtually all utility-scale CST plants use ISO 9060 Class A pyrheliometers to measure DNI for monitoring 

and operation. This also agrees with the CST-specific recommendations from the IEC standards for 

system testing mentioned in Table 3-5. ISO 9806 for tests of thermal collectors contains 

recommendations for various solar thermal systems, including concentrating collectors. In the latter 

case, the recommended instrumentation depends on the concentration ratio. For concentration ratios 

greater than 3, ISO 9060 Class A pyrheliometers or better should be used. For lower concentration 

ratios, ISO 9060 Class A pyranometers with shading rings and a GHI pyranometer can alternatively be 

used to calculate DNI, despite the disadvantages explained in Section 3.2.5 and the significantly higher 

uncertainties of such an indirect method. Other methods to derive DNI without using a solar tracker are 

considered sufficient for CST, particularly for smaller installations. This does not contradict the CST-

specific IEC standards nor ISO 9806, as these are for testing and might be too strict for general operation 

and monitoring. Compared to non-concentrating collectors, CST technologies depend more directly on 

continuous radiation measurements because of the control procedures of the installation (e.g., heat 

transfer fluid mass flows). Thus, monitoring DNI accurately is of interest even for small-scale 

installations, for which the data acquisition and maintenance costs contribute relatively more to the 

overall costs. At present, there is no consensus regarding the required number of DNI radiometers per 

CST plant. Typically, one to five DNI radiometers are used for utility-scale systems in practice.  

Monitoring and Operation of Non-Concentrating Solar Thermal Collectors 

For testing non-CST collectors, ISO 9806 mandates ISO 9060 Class A pyranometers for both GTI and 

GHI measurements. That standard addresses test procedures rather than monitoring per se; for the 

latter, the requirements might be less strict compared to the tests covered by the standard so that 

pyranometers of a lower class can be sufficient depending on the installed power. 

3.4.3 Selection of Instrument Output Type or Interface 

Until recently, nearly all radiometers provided a small, internally generated voltage or current as output 

signal. Many models are now available with an optional digital interface or with only a digital interface. 

A digital interface contains electronics to perform the analog-to-digital conversion and a microprocessor 

to manage the communication with the data logger. This leads to various internal and external aspects 

to consider when choosing such an instrument. 

Internally, the dedicated analog-to-digital converter can in principle be optimized and better matched to 

the detector signal than a generic external data logger. Further, the microprocessor makes it possible 

to apply calibration factors and carry out more sophisticated corrections—for example, to reduce 

temperature dependency, improve linearity, or compensate for thermal lag (i.e., reduce response time). 

On the other hand, the active electronic components generate a small amount of heat, which changes 

the thermal balance of the sensor. In some thermopile instruments, this may lead to the need for more 

temperature correction internally. If the energy consumption is more than ≈1 watt, it might have the 

beneficial side effect of reducing dew or frost formation, as has been observed on some digital reference 

cells. Finally, the presence of the microprocessor is key to the implementation of new internal features 

at only a small incremental cost, such as sensors for instrument tilt, air pressure, or internal humidity, 

which can be very useful for maintenance purposes.  

To which extent all the above factors influence the final accuracy of the irradiance measurement varies 

by make, model, and user, as usual. Both digital and analog pyranometers and pyrheliometers are 
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subject to the same accuracy classes defined in ISO 9060. Therefore, an analog Class A instrument 

and its digital version can be expected to achieve the same Class A level of measurement accuracy. 

However, a survey of manufacturer specifications for digital instruments suggests that the digital 

versions of some of their best instruments can actually outperform the analog version. 

The external factors that can help select between analog and digital instruments concern usability more 

than measurement accuracy. Mechanically, the connectors and cables are often similar to or the same 

as the analog versions, but length constraints might differ. All manufacturers have adopted the same 

communications standard, RS-485, which permits two-way serial communication (alternating 

send/receive) using two wires. Contrarily to analog interfaces, however, multiple digital instruments can 

be connected to the same two wires. This allows a cluster of sensors on a sun tracker or a weather 

tower to be connected together and to use a single cable leading to the data logger. Of course, the 

logger must also have an RS-485 interface, but one such interface can serve for multiple instruments. 

The information exchange on this physical connection almost always uses the Modbus protocol. With 

that in place, the instrument measures continually and stores the data (e.g., irradiance or temperature) 

in specific memory locations (registers), whereas the logger is programmed to periodically query those 

values and store them in a log file—together with any analog measurements it might be taking. Because 

the digital instrument’s calibration factor is stored in the instrument, this no longer needs to be manually 

entered in the logger program or updated when the instrument is replaced, thereby eliminating a 

potential source of error. However, it is always worth double-checking that the information stored on the 

sensor matches the calibration certificate in case of manufacturer/calibration facility error. 

Despite the widespread adoption of the RS-485 and Modbus standards for radiometers, there are 

differences in small but very essential details, such as the default and supported communication speeds 

(baud rate), default instrument address, or register numbers. Usually, a new instrument must be 

connected to a computer so that a manufacturer-specific software program can be used to configure the 

communication settings. Then the logger is programmed with the manufacturer-specific register 

numbers. The complexity of the setup task grows with the number of different sensors, sensor types, 

and manufacturers involved. Further, manufacturers continue to develop and improve their instrument 

software (firmware) and configuration programs, so the setup task details are bound to evolve over time.  

Despite the substantial differences noted above, the way by which these external factors might affect 

the choice of radiometer output type depends largely on the technical context. If the planned or existing 

infrastructure includes digital networks, such as in large PV power plants, then digital is the likely choice. 

Conversely, if the planned or existing infrastructure includes other analog instruments and compatible 

data loggers, then analog is probably more appropriate. There is one specific application, however, for 

which analog sensors are currently still the only option: for high-speed or precisely synchronized 

measurements every 10 ms or less. This is technically not impossible to achieve with digital electronics, 

but the available products are not designed with this high-speed capability. 

3.5 Measurement Station Design Considerations 

To collect useful solar resource data, the successful design and implementation of a solar resource 

measurement station or a network of stations require careful consideration of the elements discussed 

in this section. The measurement stations also often include additional meteorological instrumentation, 

such as anemometers, wind vanes, thermometers, or hygrometers. These measurements are described 

in Chapter 5. The general recommendations—such as station security and data logging—described in 

this section also apply to these instruments. Many aspects discussed in this section are also addressed 

in the CIMO guide (WMO 2018) and the World Bank’s Energy Sector Management Assistance Program 

(ESMAP) Terms of Reference for Solar and Wind Measurement Campaigns (ESMAP 2020). These 

guides contain some guidance on equipment design, documentation, reporting, etc. The ESMAP 

document distinguishes between the Tier 1 and Tier 2 weather stations, referring mainly to stations 
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including a solar tracker with measurements of DNI, DHI, and GHI (Tier 1), and stations where only two 

components are measured (Tier 2). This nomenclature is also used in the appendix of this chapter, 

which contains checklists for the various tasks to be performed from site selection to installation, as well 

as exemplary plans and photos of different types of stations. 

3.5.1 Location 

The primary purpose of setting up a solar resource measurement station before the construction of a 

solar power plant is to collect data that will ultimately be used by an analyst to accurately characterize 

the solar irradiance and relevant meteorological parameters at that specific location. Ideally, the 

instruments would be within the targeted analysis area. In some cases, however, separation distances 

might be tolerated depending on the complexities of local climate and terrain variations (Gueymard and 

Wilcox 2011). Less variability in terrain and climate generally translates into less variability in the solar 

resource over larger spatial scales. These effects should be well understood before determining the final 

location of a measurement station (see Chapter 6 for additional details on spatial variability and Chapter 

11 for more discussion of the effect of distance between the station and plant site). The proximity to the 

target area must be weighed against operational factors, such as the availability of power, 

communications, maintenance staff, security of the station against theft/vandalism/animals, and access 

for maintenance, as discussed in this chapter. Considerations should also include the possible effects 

of local sources of pollution or dust—for example, traffic on a nearby dirt road that could impact the 

measurements. 

Local solar radiation measurements are required for medium or large power plants (see Chapter 11). 

Further, measurements can be helpful for other solar energy purposes, such as testing power plant 

components or for PV power forecasting for many small PV systems in the vicinity of the measurement 

location. In power plants and for component or system tests, the position of the station must be such 

that the measurements reflect the conditions of the power system as accurately as possible. For large 

power plants, this means several distributed stations can be required. For PV systems, IEC 61724-

1:2021 defines the number and accuracy class of the required radiometers within the PV power plant, 

depending on the system’s peak power.  

When measurement stations are constructed in metropolitan areas, industrial areas, or near electrical 

substations or solar power plants, consideration should be given to possible sources of radio-frequency 

signals and electromagnetic interference that could impart unwanted noise in sensors or cables. For 

example, the same flat roof on a tall building that could provide an attractive unobstructed site for solar 

measurements could also soon become the ideal location for radio or television broadcast towers or 

other antennas. Such sites should be investigated for interference with the irradiance sensors and 

monitoring station. See Section 3.5.4 for additional information regarding proper shielding and 

grounding.  

Instrument placement is also an important consideration. If nearby objects—such as trees or buildings—

shade the instruments for some period during the day, the resulting measurement will not truly represent 

the available solar resource in a nearby unshaded part of the site. Distant objects—especially 

mountains—could be legitimate obstructions because the shadows they cast are likely to produce an 

influence beyond the instruments’ location. However, this shading effect must be documented and 

considered, as the station location might not be representative for the whole solar field or the satellite 

pixel. Conversely, nearby objects can potentially reflect solar radiation onto the instruments, resulting in 

measurements that do not represent the conditions for the power plant. Such cases could include a 

nearby wall, window, or other highly reflective object. The best practice is to locate instruments far from 

any objects in view of the instrument’s detector. The recommendations from WMO (2018) for radiation 

apply, if not otherwise stated. 
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The easiest way to determine the quality of solar access is to scan the horizon for a full 360° of azimuth 

and note the elevation of any objects protruding into the sky above the local horizon. Look for buildings, 

trees, antennas, power poles, and even power lines. Most locations will have some obstructions, but 

whether they will be significant in the context of the necessary measurements must be determined. 

Camera-based devices can be used to assess any obstructions, including far shading from mountains, 

trees, etc., and the assessment can be easily documented and quantified, such as seasonal shade 

effects. Generally, pyranometers have an insignificant sensitivity to sky blockage within approximately 

5° of elevation above the horizon. Pyrheliometers, however, are more sensitive because objects can 

completely block DNI, depending on the daily path of the sun throughout the year. The duration and 

amount of daily blockage are factors related to the object’s width and height above the horizon. On an 

annual basis, the number of blockage days depends on where along the horizon the object lies. To be 

a concern, the object must be in the area of the sun near sunrise or sunset, the time and azimuth of 

which vary throughout the year. For most of the horizon, objects blocking the sky will not be a factor 

because the sun rises in a limited angular range in the east and sets likewise in the west during sunset 

(e.g., at 40° N latitude, sunrise occurs approximately 60° from true north at the summer solstice and 

120° from true north at the winter solstice). The farther north in latitude (or south in the southern 

hemisphere) the site is located, however, the greater the angular range of these sunrise and sunset 

areas are of interest. Sun path charts as generated by appropriate tools15 provide the solar positions 

throughout the year. A solar horizon map, or even a sketch of obstructions by elevation and azimuth, 

can help determine the areas where horizon objects will affect the measurement (Figure 3-30). Such 

maps can be created with digital cameras and software. Several commercial products using curved 

mirrors and apps for smartphones exist. In addition, modern cell phones can take a 360° panorama 

picture, which can be very useful in understanding the obstructions on the horizon. 

 

 

15 One such tool, from the University of Oregon Solar Radiation Monitoring Laboratory, can be accessed at 

solardata.uoregon.edu/SunChartProgram.php.  

http://solardata.uoregon.edu/SunChartProgram.php
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Figure 3-30. Example shading analysis: horizon line from the perspective of a tracker-mounted 
pyranometer and sun path throughout the year (up) and resulting shading plot (bottom). 

Image from CSP Services GmbH 

 

Considerations for locating a station should also include a variety of environmental and other factors, 

such as wildlife habitats, migratory paths, drainage, antiquities or archeological areas, unexploded 

ordnance (UXO) threats in areas of previous armed conflict, and nearby industrial/mining/agricultural 

activities. Refer to WMO (2018) for further general guidance. A very important factor is the availability 

of communication infrastructure (mobile phone network or landline internet). Its non-presence may result 

in significant additional costs for satellite communication solutions. 

Generally, site selection is often a trade-off between desirable site features and what is actually 

achievable in reality. For example, a safe site with nearby presence of maintenance personnel, but with 

some amount of sensor shading is often preferable over a non-shaded site in which measurements are 

prone to interruption by theft or vandalism. 

In any case, the site selection should be carefully documented and explained in the station 

documentation, such as in the installation report. An example for a site selection checklist can be found 

in Appendix 0 of this chapter.  

3.5.2 Station Security and Accessibility 

Measurement stations can cost tens of thousands or even hundreds of thousands of dollars. Although 

the measurement equipment is typically not the target of thieves seeking property for resale, the 

common PV modules and batteries used for the station’s power supply are subject to theft and should 

be protected. Vandalism might be even more likely than theft. The less visible and accessible the station 

is to the public, the less likely it will be the target of theft or vandalism. For example, instruments mounted 
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on a secured rooftop are less likely to attract unwanted attention than those unprotected beside a 

highway. Lack of visibility is the best defense against vandalism. 

Security fences should be used if people or animals are likely to intrude. Within a fenced solar power 

plant, no additional fences are required. Fencing should be at least 1.8 m tall, preferably with barbed 

wire and fitted with locking gates in high-profile areas where intrusion attempts are likely. Less elaborate 

fences might suffice in areas that are generally secure and where only the curious need to be 

discouraged from meddling with the equipment. In remote venues with few human hazards, cattle fence 

paneling (approximately 1.2 m tall) might be advisable if large animals roam the area. The fencing should 

be sturdy enough to withstand the weight of a large animal that might rub against the compound or 

otherwise be pushed or fall against the fence. It might not be possible to keep smaller animals out of the 

station compound, and precautions should be taken to ensure that the equipment, cabling, and supports 

can withstand encounters with these animals. Rodents, birds, and other wildlife could move through the 

wires or jump over or burrow under fences. Signal cabling between modules or sensors at or near ground 

level is prone to gnawing by rodents and should be run through a protective conduit or buried. Any 

buried cable should be either specified for use underground or run through conduits approved for 

underground use. Underground utilities and other objects should be investigated before postholes are 

dug or anchors are sunk. 

If fences are used, they must be considered a potential obstacle that could shade the instruments and 

the albedo measurement area or reflect radiation to the instruments. All radiometers except RHI 

pyranometers should be positioned at least above the line between the horizon and the fence (including 

barbed wire), if only by a few millimeters, to prevent any shading of the sensor. In any case, they should 

be under an elevation of 3° as seen from the sensor, corresponding to Horizon Class 1 for all radiometers 

at all latitudes according to WMO (2018). An optical measurement plane for the station should be 

established such that the solar sensors are above all other equipment and infrastructure. This assumes 

that the pyranometer is mounted in a horizontal position and that the pyrheliometer is installed on a solar 

tracker. Tilted pyranometers should have an unobstructed view of the ground and sky in front of them. 

For albedo measurements, fences cause measurement errors if the area under the downward-facing 

pyranometer is shaded (see Section 3.3.2 for details). This must be considered for the station design. 

The recommendations from WMO (2018) concerning obstacles should be followed. Deviations between 

WMO (2018) and the actual station design are acceptable if these deviations affect not only the 

measurement station but also the solar energy system that is analyzed using the measurements. If 

nearby towers are unavoidable (e.g., wind mast of the weather station), the station should be positioned 

between the tower and the equator (e.g., to the south of the tower in the Northern Hemisphere) to 

minimize shading. The radiometers should be positioned as far as possible from the tower—at least 

several meters—so that the tower blocks as little of the sky as possible. Between the Tropics of Cancer 

and Capricorn, this distance must be large enough to also avoid noon time shading when the sun’s 

zenith angle appears to exceed 90°. Nevertheless, analog radiometer signal cables should be shorter 

than 50 m to avoid losses caused by line resistance. The tower should also be painted a neutral gray to 

minimize strong reflections that could contaminate the solar measurement. These guidelines assume 

that the tower is part of the measurement station proper and that the site operator has control of the 

placement or modification of the tower. Without that control, the radiometers should be placed as far as 

possible from the tower. 

Access to the equipment must also be part of a station’s construction plan. Because routine 

maintenance is a primary factor affecting data quality, provisions must be made for reasonable, safe, 

and easy access to the instruments. Factors could include ease of access to cross-locked property, 

well-maintained all-weather roads, and roof access that could be controlled by other departments. Safety 

must also be a consideration. Locations that present hazardous conditions—such as rooftops without 

railings or that require access using unanchored ladders—must be avoided. The same applies to the 

position of sensors: they must be accessible any time for safe cleaning and maintenance. 
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3.5.3 Power Requirements 

Ongoing measurements require a reliable source of electrical power to minimize system downtime from 

power outages. In some areas, power from the utility grid is reliable, and downtime is measured in 

minutes per year. In other areas, frequent and enduring power interruptions are routine. At remote sites, 

usually no access to the electric grid exists. Depending on the tolerance of the required analysis to 

missing data, precautions should be taken to ensure that gaps in the data stream from power outages 

do not seriously affect the results. The most common and cost-effective bridge for power outages is an 

uninterruptible power supply (UPS). The UPS can also filter out unwanted or harmful line voltage 

fluctuations that can occur for a variety of reasons. It has internal storage batteries that are used as a 

source of power in case of an AC power interruption. When the AC power is interrupted, internal circuitry 

makes an almost seamless switch from grid-connected AC power to AC provided through an inverter 

connected to the battery bank. When power is restored, the UPS recharges the internal battery from the 

AC line power. Power loss is detected quickly, as is switching to the battery, and it is measured in 

milliseconds or partial line cycles. Some equipment could be particularly susceptible to even millisecond-

long power interruptions during switching and should be identified through trial and error to avert 

unexpected downtime despite use of the UPS. 

The UPS is sized according to: 

• Operating power: How much can the UPS continuously supply either on or off grid-connected AC 

power? 

• Operating capacity: How long can the UPS supply power if the grid connection is interrupted? 

Users should estimate the longest occurring power outage and size the UPS for the maximum load of 

attached devices and the maximum period of battery capacity. Batteries should be tested regularly to 

ensure that the device can still operate per design specifications. This is most important in hot areas 

(such as deserts) because batteries could overheat and become inoperative (temporarily or 

permanently). Internal battery test functions sometimes report errors only when batteries are near 

complete failure and not when performance has degraded. A timed full-power-off test should be 

conducted periodically to ensure that the UPS will provide backup power for the time needed to prevent 

measurement system failure. 

At remote locations where utility power is not available, or in situations where the installation of a power 

line from the nearest grid access point to the weather station is more expensive than an off-grid power 

supply, local power generation with battery storage should be devised. Options for on-site electrical 

power generation include PV or small wind turbine systems (or both) combined with batteries and 

gasoline- or diesel-fueled generators. For typical solar measurement weather stations, combined 

PV+battery power supply has actually been established as a common solution that can generally be 

applied at most locations up to ≈45° latitude. The cost of such equipment has reduced to the point that 

a grid power connection with high-quality UPS is in many cases more expensive than off-grid systems, 

which are readily available in most countries. 

At autonomous sites, the renewable energy systems should be sized to provide enough energy for the 

maximum continuous load and power through several days of adverse conditions (cloudy weather 

and/or low wind speeds). This might be demanding at sites prone to persistent surface fog, for instance. 

The sizing is a function of the extremes of the solar climate and should consider the longest gap during 

reduced generation, the shortest recharge period available after discharge, and the generation capacity 

and storage necessary to provide uninterrupted power for the target location. Some oversizing is 

necessary to accommodate the unavoidable degradation of PV panels and battery storage, and 

consideration should be given to ambient temperature, which affects the ability of a battery to deliver 
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energy. Sizing calculators are available to help with this effort.16 Mechanisms to switch off non-vital 

equipment that consumes electricity in case of low power or battery state of charge can also be 

implemented. For example, ventilation/heating units can be automatically switched off when the UPS 

switches to battery mode, or when battery levels drop below a certain threshold. The time period when 

equipment is switched off should be logged because, for instance, ventilators can affect the readings of 

a pyranometer. Equipment should be specified and tested for self-power-on capability in the event of a 

power outage. This ensures that when power is restored, the equipment will automatically resume 

measurements and logging without operator intervention. This is an important consideration for remote 

locations where considerable downtime might occur before personnel can be dispatched to restart a 

system. 

3.5.4 Grounding and Shielding 

All equipment should be protected against lightning strikes and shielded from radio-frequency 

interference that could damage said equipment or reduce the validity of the measurements. Several 

references are available that describe techniques for grounding and shielding low-voltage signal cables; 

see, for example, Morrison (1998). Those who design solar resource measurement systems are urged 

to consult these references and seek expert technical advice. If digital sensors with onboard analog-to-

digital converters are used, their sensitivity to transients, surges, and ground potential rise must be 

considered; therefore, the power and communications lines should be isolated and surge-protected with 

physical isolation, surge protection devices, or other equivalent technology. 

In general, the following steps should be taken when designing and constructing a measurement station: 

• All equipment, even systems not connected to the power grid, benefits from proper grounding. 

• Use a single-point ground (e.g., a copper rod driven several feet into the ground) for all signal ground 

connections to prevent ground loops that can introduce noise or biases in the measurements. 

• Use twisted pair shielded cables for low-voltage measurements connected as double-ended 

measurements at the data logger. Double-ended measurements typically require separate logger 

channels for + and – signal input conductors. These inputs are compared to each other; therefore, 

the possibilities for electrical noise introduced in the signal cable are significantly reduced. Shields 

should be connected to the data logger measurement ground. 

• Physically isolate low-voltage sensor cables from nearby sources of electrical noise, such as power 

cables. Do not run signal cables in the same bundle or conduit as AC power cables. If a power cable 

must cross a signal cable, always position the two at right angles to each other. This case is not 

recommended, but this limited contact will minimize the possibility of induced voltages in the signal 

cable. Also, the data logger settings should be selected to avoid signal noise (the integration time 

of the voltage measurement adjusted to AC frequency). 

• Connect metal structures such as masts and tripods to a proper electrical ground to provide an easy 

path to the ground in the event of a lightning strike. This will help protect sensitive instruments. 

Electronic equipment often has a special ground lug and associated internal protection to help 

protect against stray voltages from lighting strikes. These should be connected with a heavy gauge 

wire to ground (12 American wire gauge or larger). Metal oxide varistors, avalanche diodes, or gas 

tubes can be used to protect signal cables from electrical surges such as lightning. These devices 

must be replaced periodically to maintain effectiveness. The replacement frequency is a function of 

 

 

16 See pvwatts.nrel.gov/. 

https://pvwatts.nrel.gov/
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the accumulated energy dissipated by the unit. The U.S. National Electric Code recommends a 

ground resistance of less than 5 ohms for “sensitive” electronic equipment. If that cannot be met 

with one rod, multiple rods should be used and bonded together. Ground resistance should be 

measured with a ground resistance tester using the three-pin or four-pin method.  

3.5.5 Data Loggers 

Most radiometers output a voltage, current, or resistance that is measured by the data logger, which 

comprises a voltmeter, ammeter, and/or ohmmeter, and usually some ports for counting pulses/switch 

closures. The measured output value is subsequently converted to the units of the measurand through 

a multiplier and/or an offset determined by calibration to a recognized measurement standard.  

Data loggers should be chosen to have a very small measurement uncertainty, such as 10 times smaller 

than the estimated measurement uncertainty associated with the radiometer. For example, a good data 

logger receiving a 10-mV output from a radiometer that has 1% uncertainty should have 0.1% 

uncertainty of reading (or full scale), corresponding to 0.010 mV, or 10 µV, at most. 

The logger should also have a measurement range that can cover the signal at near full scale to best 

capture the resolution of the data. For example, a sensor with a full-scale output of 10 mV should be 

connected to a logger with a range that is at least 10 mV. A logger with a 1-V range might be able to 

measure 10 mV but not with the desired accuracy and resolution. Most modern data loggers have 

several range selections, allowing the user to optimize the match for each instrument. Because of the 

nature of solar radiation, radiometers (e.g., pyranometers used for GHI measurements) can sometimes 

produce 200% or more of clear-sky readings under certain passing cloud-enhancement conditions, and 

the logger range should be set to prevent over-ranging during these sky conditions. Although the 

absolute GHI limit that can be reached during cloud-enhancement situations is a decreasing function of 

the measurement time step, this can be misleading. At 1-minute resolution, a safe limit seems to be 

1,800 W/m2 at most locations, but it could reach 2,000 W/m2 or more at a 1-second resolution with 

photodiode radiometers, or at exceptional locations even at 1-minute resolution (Cordero et al. 2023). 

Because the data logger measures near-instantaneous values regardless of its averaging or recording 

time step, the range should be set to accommodate the higher values described. See Gueymard (2017a; 

2017b) for more details. 

Some radiometers use amplifiers to increase the instrument output to a higher range to better satisfy 

signal range-matching requirements; however, such amplifiers will add system complexity and some 

uncertainty to the data with nonlinearity, noise, temperature dependence, or instability. High-quality 

amplifiers could minimize these effects and allow a reasonable trade-off between logger cost and data 

accuracy. Calibrations should be conducted for these radiometer systems by coupling the pyranometer 

or pyrheliometer with its uniquely associated amplifier. 

The logging equipment should also have environmental specifications that are compatible with the 

environment in which the equipment will be used. Loggers used inside an environmentally controlled 

building could have less stringent environmental performance specifications than loggers mounted 

outside in a desert or arctic environment. Equipment enclosures can create an internal environment 

several degrees above ambient air temperature because of solar heating (absorption by the enclosure 

materials), heat generated by electronic devices mounted inside, and lack of sufficient ventilation to help 

purge heat. 

The sampling and recording rates of the solar resource data should be determined from the desired 

data analysis requirements. The sampling rate refers to how often the logger samples the data in a given 

time interval. The recording rate is often also called the reporting rate or the time resolution and is the 

length of the time interval represented by one data point in the logger’s output file. The data point itself 

is generally an integrated value of several relatively instantaneous measurements. Monthly averages or 
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sums, daily, hourly, minute, or sub-1-minute data records can be of interest. Data loggers can generally 

be configured to produce output of instantaneous or integrated values at any reasonable time period 

consistent with the radiometer time-response characteristics. The design should consider the current 

requirements and, if practical, future needs for additional analyses. A high-temporal-resolution data-

logging scheme can be down-sampled or integrated into longer time periods—but not the other way 

around. Data-logging equipment, data transfer mechanisms, and data storage can generally handle 1-

minute data resolution, and this should be considered the recording rate in the data logger. A resolution 

of 1 minute or better is recommended to allow for accurate data quality control. Because most 

applications address the solar energy available over time, integrating data of sub-minute samples within 

the data logger is a common method of data output regardless of the final data resolution required by 

the analysis. For instance, 1-second signal sampling is recommended for irradiance measurements in 

the Baseline Surface Radiation Network (BSRN) (McArthur 2005) so that 60 samples are averaged to 

the reported 1-minute data. Along with the reported 1-minute average, the standard deviation over the 

period is also helpful to evaluate the short-term variability of the solar signal. Before deciding on a 

sample rate, the data logger program execution speed should be evaluated to ensure the logger can 

keep pace with the specification. The output of the instantaneous samples at longer intervals is much 

less likely to represent the available energy and should be avoided when configuring a data logger. If 

the size of a measured dataset is a defining issue (e.g., limited data communications throughput), the 

user can determine the lowest temporal resolution necessary for the application and optimize the data 

collection accordingly. Alternatively, or additionally, most modern data loggers have storage expansion 

options (e.g., SD cards), so that data at higher temporal resolution can be stored on an expansion 

storage medium and be collected manually in longer intervals. 

3.5.6 Data Communications 

Provisions should be made for automatically and frequently transferring data from the data logger to a 

data processing facility. This is the basis for adequately frequent data checks and timely corrections of 

outages and errors. Such frequent connections also allow for automatic data logger clock corrections 

when a local GPS device, which is preferred, is not available. Noticeable clock corrections of more than 

1 second should never be necessary. Historically, data have been captured, transferred, and processed 

in various ways. Today, electronics and telecommunications allow remote data collection from nearly 

any location. One option uses a physical connection between the logger and a computer that is used 

for further data analysis or that forwards the data via internet connection. To avoid a cable connection, 

a cellphone network can be configured to provide virtual internet links between a measurement station 

and the data center. Satellite uplinks and downlinks are also available for data transfers in areas that 

are not served by either wire- or cell-based phone service. Within the area of an observing station, 

wireless communications such as radio-frequency connectivity might be useful to minimize the need for 

long cables between radiometers and data loggers. Depending on the antennas, data can be transferred 

over distances of a few kilometers. Such distances can occur between the data logger and the control 

room in big solar power plants with several megawatts of electrical power. 

To prevent data loss due to connection problems, the memory of the data logger should be selected 

appropriately to hold data until the connection can be restored or personnel sent to correct the problem. 

Memory extensions are available for many data loggers with external cards, and in-memory storage 

capacity of several weeks is easily attainable.  

3.6 Station and Network Operations 

The protocols and procedures dictating station operations play a fundamental role in the assurance of 

data quality. These procedures must be established prior to the start of data collection, and a process 

must be put into place to carry forth and document adherence to the procedures. Data quality is in large 
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part established the moment the measurement is taken. If errors occur during the measurement, little 

can be done to improve fundamental quality. For example, a poorly maintained station with dirty optics 

or misaligned instruments will produce unreliable data with great uncertainties or systematic biases, and 

the magnitude of the problem is not likely to be discernable until days or weeks later. Often, one can 

only guess at which approximate a posteriori adjustments (if any) to make.  

In this context, data quality control involves a well-defined supervisory process by which station 

operators are confident that when a measurement is taken with unattended instruments, the instruments 

are in a state that produces data of known quality. This process largely encompasses the calibration, 

inspection, and maintenance procedures discussed in Section 3.6.2, along with log sheets and other 

items that document the condition of the station. It also includes a critical inspection or assessment of 

the data to help detect problems not evident from physical inspection of the instruments. 

When designing and implementing a data quality plan, it must be kept in mind that eventually the dataset 

will undergo third-party scrutiny for quality. In the best scenario (and a scenario that is certainly 

attainable), a data analyst will feel comfortable with the quality of the dataset and will be willing to move 

unhindered to the analysis at hand. The plan should eliminate as much as possible any doubts and 

questions about how the data were collected and whether the values they contain are suitable for the 

intended purpose. Implementation of the best practices contained in this handbook help eliminate doubts 

and minimize uncertainties that might jeopardize future projects. 

Specifically, the following steps should be implemented (the subsequent subsections contain additional 

details): 

• Define exact maintenance routines and frequencies and make them available as an easily 

understandable manual to the on-site maintenance personnel (in their local language). At remote 

locations with unskilled labor for simple sensor cleaning, this can be pictograms or example photos 

(ideally of the particular station to avoid any confusion). Initial thorough on-site training of 

maintenance personnel by the installation crew is crucial. 

• Perform regular on-site visits for sensor cleaning and a general visual inspection for obvious issues. 

These visits can be easily documented by integrating a button on the weather station that can be 

pressed upon sensor cleaning. An additional and more informative control measure is to have the 

technician take a close-up picture before and after each instrument’s cleaning event, along with the 

time stamp. These pictures can be easily transmitted to the server and stored for further use. 

• Perform frequent data inspections during the measurement period, ideally 5–7 days a week at sites 

subject to intense soiling. This should include a combination of automated quality control tests and 

visual inspection by an experienced operator, and can be supported by automated alarms and 

messages to the operator (e.g., power outages, strong deviation of redundant measurements). See 

Chapter 4 for details. 

• Perform regular maintenance visits by a skilled technician. These should be done at intervals of 

several months and include a general check of all equipment and functionality, as well as the 

exchange of consumables (filters, drying silica gel) and be documented with a report on the 

conducted activities. Refresher training for maintenance personnel should be incorporated in the 

site visit, and should be mandatory if personnel have changed. 

• Maintain consistent, up-to-date station documentation, including technical information 

(measurement site documentation, installation report, datasheets, as-built drawings, manuals, 

calibration certificates, maintenance procedures, cleaning log, maintenance log, sensor exchange, 

data logger program with history of changes, data logger configuration, inspection of the station 

infrastructure). 
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• Ensure that sensor calibrations are always valid. Earmark the sensors for recalibrations/exchange 

and implement a procedure to ensure that all recalibrations/exchanges are documented and the use 

of current calibration factors in the data processing is warranted. For any data time stamp, the 

information about which sensor with which calibration factor should be traceable, and the relevant 

certificate should be retrievable easily. The change of calibration factor of each individual radiometer 

should be documented so that problematic cases with steep changes are identified. 

• Perform regular reporting and data summaries with data quality review. 

3.6.1 Operations Personnel 

To maintain a defensible dataset that will withstand critical due diligence, qualified operations personnel 

must be selected based on the level of expertise required. Below is a summary of personnel at a typical 

station or network of stations. Depending on the size and complexity of the endeavor, more than one 

task may be assigned to a person.  

• Operations manager: This person must have a thorough understanding of the project scope and 

goals, bears responsibility for adhering to best practices, and will report to the entity funding the 

measurement campaign. 

• Information technology (IT) specialist: This position requires expertise in internet connectivity, 

computer configuration, cybersecurity, and other related areas. This person might be part of a 

corporate IT department with partial assignment to support the measurement campaign. The 

operations manager should make clear arrangements with this person or the IT department to 

ensure assistance will be available when needed. 

• Electronics technician: This person must have a working familiarity with all measurement equipment 

deployed at the station, configuration details, interconnectivity protocols, and likely failure scenarios. 

This technician may have the assigned duty of commissioning a new station after construction, 

ensuring that all equipment is working and the installation is robust. Good electronic and mechanical 

troubleshooting skills are a strong advantage. 

• Installation staff: This person is responsible for the proper physical construction of the station 

according to specifications and plans. This position often requires some physical strength as well 

as knowledge of mechanical fasteners, guy wire installation, mounting foundations, and ground 

preparation. This person should have experience with the local sourcing of supplies, such as 

concrete, fencing, tools, anchors, and miscellaneous hardware.  

• Data quality analyst: This position requires a deep understanding of the measurement 

fundamentals, how they relate to each other, likely characteristics and causes of measurement 

failure, and the skills to effectively handle and organize large datasets. 

• Equipment maintenance (cleaning) personnel: For remote installations, this part-time position is 

likely the most difficult fill, and without careful selection and planning, it can be a vulnerability on the 

path to station success. Maintenance at remote sites requires locating a qualified person nearby 

willing to perform duties that often necessitate a long drive for only a few minutes of work. The 

qualifications for maintenance are generally nontechnical, but they require someone with the interest 

and disposition to reliably complete the tasks. Finding a qualified person can be particularly difficult; 

moreover, cultural and language barriers can further complicate communication and supervision. 

Attractive candidates for the position often include teachers, family members of landowners, or 

reliable people recommended by local businesses. In all cases, the selected person must be trained 

in the equipment maintenance protocols and be provided with written documentation. Documented 

training and remote supervision will establish their qualifications to do the job. As a rule, 

compensating these people for time and vehicle mileage—rather than seeking volunteers—is a 
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necessary investment in the long run because it sets up a firm contractual commitment to perform 

all necessary maintenance duties. The contractual agreement may also include a mechanism of 

payment adjustment for insufficient cleaning and bonuses for cleaning schedule adherence. Without 

that formal relationship, it can become difficult to assert the need for reliable and regular attention.  

3.6.2 Equipment Maintenance 

Proper O&M practices are essential for acquiring accurate solar resource measurements. Several 

elements in a chain form a quality system. Collectively, these elements produce accurate and reliable 

solar resource data: station location, measurement system design, equipment installation, data 

acquisition, and O&M practices. Proper O&M requires long-term consistency, attention to detail, 

complete and transparent documentation, and a thorough appreciation for the importance of preventive 

and corrective maintenance of sensitive equipment. 

Calibrations are performed with clean instrument optics and a carefully aligned/leveled instrument. To 

properly apply the calibration factor, proper cleaning and other routine maintenance is necessary. All O&M 

should be carefully documented with log sheets or preferably with electronic databases that contain 

enough information to reveal problems and solutions or to assert that the instruments were in good 

health when inspected. It is advisable to implement a falsification-proof documentation mechanism such 

as a button on the equipment that is pushed before and/or after cleaning and other maintenance work 

to automatically register these events in a separate data column of the logger. This serves multiple 

purposes: it is objective proof of the maintenance staff’s presence at the site; it is a proof of maintenance 

visits during data scrutiny; and it helps identify the cleaning events in the data itself (looking for typical 

“downward spike” pattern). Time-stamped pictures taken before and after maintenance can be 

extremely useful to evaluate the importance of soiling and misalignment, for example. The O&M 

information enables an analyst to identify potentially bad data and provides important documentation to 

determine and defend the overall quality of the measurements. 

ISO TR 9901 and ASTM G183 provide information on radiometer operation and IEC 61724-1 also 

contains some requirements related to the pyranometer maintenance for optimum PV monitoring. These 

standards agree in most aspects, but the recommended frequencies of some tasks deviate. This is due 

to the site dependence of the required procedures (e.g., soiling, humidity) that complicates the 

formulation of a single solution. Depending on the frequency and complexity of a task, different 

personnel can be involved in the maintenance. Experts might only be available for monthly performance 

of semiannual tasks. 

The maintenance process includes: 

• Checking the alignment/leveling of the detector. Pyrheliometers must be accurately aligned with the 

solar disk for accurate DNI measurements. Pyranometer detectors must be horizontal for GHI and 

DHI measurements and accurately tilted (or aligned with a flat-plate collector) for GTI 

measurements. The radiometer orientation should be checked periodically using the features 

described earlier in this chapter. ISO TR 9901 and ASTM G183 recommend checks every working 

day of the week for GHI and DNI and monthly (ISO) or semiannual (ASTM G183) checks for GTI.  

• Cleaning the instrument optics. To properly measure solar irradiance, no contaminant should block 

or reduce the radiation falling on the detector. The outdoor environment provides many sources of 

such contamination, such as dust, precipitation, dew, frost, plant matter, insects, and bird droppings. 

The sensors should be cleaned regularly to minimize the effect of contaminants on the 

measurements. In many cases, this can require daily maintenance of radiometers, especially in the 

case of pyrheliometers. Different standards require or recommend different cleaning frequencies 

each weekday(ISO TR 9901, ASTM G183) or weekly (IEC 61724-1, only for pyranometers). 
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• Documenting obvious issues with the station. The whole measurement station should be examined 

each weekday for obvious issues such as condensation on window/dome/lens, damage, or wear 

(cables, connectors, windows, wind vane) (ISO TR 9901; ASTM G183) and proper working condition 

of the ventilators. Any defects should be noted and reported or corrected. 

• Check and change of desiccant. The change of the desiccant is required for some instruments. The 

color of the desiccant indicates if it is still able to absorb humidity. Whereas ASTM G183 

recommends monthly or quarterly changes, ISO TR9901 even recommends weekly control of the 

desiccant color. 

• Control ventilator filters. Weekly checks or, in the special case of clean environments, less-frequent 

(e.g., monthly) checks are recommended (ISO TR 9901, ASTM G183). 

• Documenting the detailed condition of the station. Monthly or semiannually detailed control of the 

station by an expert technician, including its sensors, loggers, and cables is recommended. During 

these visits the environmental conditions should also be noted (sky and weather conditions, any 

ground surface changes, such as vegetation removal or the presence of snow, etc.). 

Maintenance frequency depends on the prevailing environmental conditions that soil the instruments. 

This includes dust, rain, dew, snow, birds, and insects. It also depends on instrument type. Radiometer 

designs based on optical diffusers as the surface separating the inside of the instrument from the 

environment are less susceptible to dust contamination than instruments with clear optics, such as 

domed pyranometers (Myers et al. 2002). This is because fine soiling particles scatter much more than 

they absorb solar radiation. Absorption affects instruments with clear optics and diffusers the same way. 

In contrast, the scattering-induced soiling effect has less impact on instruments with diffusers because 

the latter can transmit most of the particle-induced scattered radiation. This radiation (mostly in the 

forward direction) reaches the detector in nearly the same way that radiation would enter a clean 

diffuser. Conversely, the scattering often causes the incoming radiation to miss the detector in 

instruments with clear optics because the latter is some distance away from the former. This is especially 

relevant for pyrheliometers (Geuder and Quaschning 2006). Soiling of windowed or domed radiometers 

can quickly affect their reading and increase their measurement uncertainty. This explains why 

thermopile radiometers must be cleaned very frequently (e.g., daily). As described earlier, using a 

ventilator for a pyranometer can reduce this risk of contamination; thus, it is important to consider the 

frequency and cost of maintenance for proper instrument specification. Although sensors with diffusers, 

such as RSIs, are not as prone to strong soiling effects, they still require regular cleaning (e.g., twice 

per month). Note that a diffuser below a clear entrance window/dome does not have an advantage 

compared to a thermopile below the same clear entrance window/dome. 

The examples that mention daily cleaning for sensors with clear optics and cleaning twice per month for 

sensors with diffusers as an outer surface are useful for many sites; however, different standards require 

or recommend different cleaning frequencies between daily (ISO TR9901) and weekly (IEC 61724-1), 

as explained above. It is recommended to determine the optimal cleaning interval for each site 

depending on the climate or seasonal effects at similar sites or, for example, by analyzing the immediate 

effect of cleaning on the measurement signal. Depending on the noted period after which soiling 

significantly influences the measurement, the cleaning interval can be adjusted so that the degradation 

in sensitivity is limited to an acceptable level (e.g., <1% for high-quality stations). Each cleaning period 

and the state of the sensors should be documented, and the measurement values should be checked 

to evaluate the effect of cleaning on the recorded values. 

Radiometers should be carefully cleaned at each inspection, even if soiling appears minimal. Cleaning 

is generally a very short procedure. A recommendation for the cleaning procedure is as follows. First, 

remove any loose particles from the entrance window with a soft brush or compressed air. Then clean 

the entrance window, dome, or diffuser with a dry cloth. If dirt remains after this step, wet a second cloth 
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with distilled water (or methyl hydrate), and wipe the window/diffusor/dome clean. If ice sticks to the 

surface, try melting the ice with one’s hands. Avoid using a hair dryer to melt the ice because the heat 

can crack the cold optics. More aggressive methods might damage the entrance windows and are 

therefore not recommended. 

Collimators without entrance windows (as used in active cavity radiometers and at least one new 

commercially available low-cost pyrheliometer) greatly reduce the accumulation of dust on the sensor’s 

entrance optics, but they could still be affected by, for example, insects or spiders that enter the 

collimators, causing strong signal reductions. Even a single fiber of a spiderweb can significantly reduce 

the signal; therefore, such collimators must be inspected frequently.  

At remote sites that could be too difficult to maintain during extended periods, a higher-class windowed 

instrument might not be optimal, despite its potential for better measurements. The cost of maintenance 

for a remote site could dominate the cost of setting up and operating a station. This aspect should be 

anticipated when planning a measurement campaign. Often, less maintenance-intensive sensors with 

initially lower accuracy than windowed instruments can be a better choice, at least until the station 

becomes permanently serviceable on a sufficiently frequent basis. 

Additional spot inspections should be conducted after significant weather events (e.g., dust storms, 

snowstorms, heavy rainfall, rainfall during periods with high aerosol loads, or thunderstorms). 

Radiometer optics might not necessarily be soiled within a 24-hour period, but the effects of soiling can 

be best mitigated with frequent inspection.  

A general conclusion is that a conservative maintenance schedule will support the credibility of the 

measurement dataset and provide the analyst with a base of justification when assigning confidence 

intervals for the data. 

3.6.3 Data Inspection 

The collection of quality data cannot occur without careful and ongoing inspection of the data stream for 

evidence of error or malfunction. Although the maintenance procedures discussed in the previous 

section rely heavily on the physical appearance of the equipment to detect malfunction, some sources 

of error are so insidious that they cannot be revealed by simple physical observation; thus, an operations 

plan must include a careful inspection of the data itself for unrealistic values that might appear only with 

mathematical analysis. As with the inspections during equipment maintenance, inspection of data 

should be done with a frequency great enough to avoid prolonged error conditions that would impose a 

significant bias on the eventual statistical characterization of the dataset. The methods for data quality 

control are presented in Chapter 4. 

3.6.3.1 Metadata and Record-Keeping 

The interpretation and application of solar resource measurements depend greatly on the efforts to 

record and include metadata relevant to the observations. This includes site location; quantitative local 

horizon surveys with a device visualizing the solar path during the year; data acquisition system(s); input 

signal channel assignments; radiometer types, models, serial numbers, calibration histories, and 

installation schemes; and information on eventual postprocessing of the data and maintenance records. 

For example, online metadata are available from NREL’s Solar Radiation Research Laboratory.17 Such 

metadata should be included with the archiving of the measured solar resource data. Examples of issues 

that must be documented include damaged or misaligned sensors, maintenance works on the 

 

 

17 See www.nrel.gov/midc/srrl_bms. 

http://www.nrel.gov/midc/srrl_bms


Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

3-66 

instruments, detection of soiled sensors and subsequent sensor cleaning, obstructed sensors, 

temporarily erroneous calibration constants in the program code, loose electrical connections, and data 

logger clock errors. These events are frequently not detected automatically or sometimes are not even 

detectable by automatic quality control screening tools; thus, manual on-site checks are required. The 

metadata should not necessarily be limited to error conditions or corrections. Information about unusual 

weather events, animal activity, or even significant flora blooms or vegetation die-off events might prove 

useful in future analyses that could benefit from knowledge of the measurement environment. Such 

supplementary information could convey to an auditor that the station operators were thorough in 

recording station details.  

When deciding on a metadata archival method, some consideration should be given to the pros and 

cons of paper (physical) versus electronic storage. Paper, though not immune to peril, is a simple form 

that can be read for decades or even centuries. Electronic formats, which are invaluable for easy access 

and extraction for computer analyses, are too often subject to catastrophic loss through myriad 

electronic mishaps. Further, changes in the format of once-commonplace electronic storage schemes 

might also render historic metadata unreadable or inaccessible. Using both methods simultaneously 

solves many of these problems, but it can create new issues with the additional labor of double entry or 

possible inconsistencies between the two methods. A well-structured photo documentation is very 

useful, such as regular photographs of sensor alignments and equipment condition. Collecting such 

photos is facilitated by modern communication; for instance, most people do have a smartphone (even 

in remote locations), or can be supplied with one at low additional cost. 

Figure 3-31 shows a sample paper log that a maintenance technician is required to complete on-site 

during the maintenance visit. Such a log can complement the information of the recommended 

maintenance button or even substitute it with fully reliable personnel. The log not only provides a 

checklist to ensure a complete inspection but also serves as permanent documentation for the station 

archive. The time zone should be clearly defined and agreed upon with the maintenance technician. To 

avoid additional effort and possible errors by the maintenance technician, the time zone of the 

maintenance log is recommended to be consistent with the civil time. The civil time is the standard time 

in the time zone of the station, including possible adjustments for daylight saving time. It is more 

cumbersome for the data analyst to adjust this information to Coordinated Universal Time (UTC) or local 

standard time that is used in the logger, but at least this adjustment is only necessary once and not 

every day or each summer day. A paper log can be difficult to read when local operators are using a 

different script/language—in some cases local languages that virtually no one can understand or 

translate. Nonetheless, a well-maintained file of paper logs even in a foreign language can provide 

valuable evidence of careful attention to site maintenance. 
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Figure 3-31. Sample paper maintenance log sheet to be filled out by a technician on-site during a 
maintenance visit. 

Image from NREL 

 

Figure 3-32 shows a (partial) online log form that allows the maintenance technician to remotely access 

a database interface. Each item in the prescribed maintenance checklist is reported to complete the 

documentation for the station visit. The log sheet streamlines much of the documentation with codes 

and checkmarks, and it provides space for freehand comments to describe unusual conditions. For both 

paper and online logs, protocols must be in place to ensure that the technician is actually performing 

the tasks that appear in the logs. At a minimum, station management must be aware of the possibility 

that a dishonest technician might develop creative ways to falsify a work product. There are ways to 

remotely verify that the maintenance protocol is being followed. In many cases, when instruments are 

cleaned, an anomaly appears in the data while the sky irradiance is blocked. The analyst can look at a 

data plot at the logged time of the visit, and if no disruption appears, further investigation could be 

warranted. Some systems provide a momentary switch or button that the technician is required to push 

when arriving on-site. This action places a flag in the data stream verifying that the technician was on-

site for the inspection. Remote video cameras can also be a valuable means to verify a proper inspection 

or to detect the cause of data anomalies. 
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Figure 3-32. Sample online interface for documenting maintenance.  

Image from NREL 

 

Analysts—whether associated with station operations or employed in a later due-diligence process—

are helped immensely by ample documentation of station O&M. The documentation, in addition to 

providing specific information, also indicates the extent of the maintenance protocol. This gives the 

analyst confidence that problems are discovered and corrected in a minimal amount of time. Further, 
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the documents show that even at well-run stations with a few inevitable malfunctions, best practices and 

high-quality data govern operations. 

Complete documentation includes thorough information in a dedicated metadata archive about the 

instruments, including manufacturer and model, serial number, calibrations (current and historical), 

deployment location and configuration, repairs, and inventory or storage details. Of particular 

importance is the record of instrument calibrations and the associated certificate, traceability, and 

statement of uncertainty. The calibration record is fundamental to the measurement itself and the 

assignment of uncertainties to the measured data. Absent a current calibration certificate, a 

knowledgeable analyst performing validation or due diligence on a dataset will likely reject any statement 

of uncertainty, rendering the measurements highly questionable.  

3.6.4 Data Aggregations and Summaries 

Solar irradiance measurements for renewable energy applications are becoming more common, and in 

some electric utility applications, they are required. These measurements are also important for 

applications in energy efficiency and climate research. Measurement station design includes data 

loggers and their configuration, as described in Section 3.5.5. Ideally, the station designers will have 

knowledge in advance about the form (necessary parameters, time resolution, period of record, 

acceptable uncertainty limits, etc.) of the data required to complete the planned analyses to satisfy the 

project objectives, but this is not always the case. Further, it is quite common for datasets to be accessed 

for uses other than their original purpose; thus, the value of a dataset could be significantly enhanced if 

it is in a more generic form that is easily adaptable or convertible to other more specific forms. This 

typically relates to the frequency of the measurements, which could range from sub-minute to monthly 

or even yearly. Generally, extensive documentation and metadata facilitates later adaptation to other 

uses than originally intended, because with complete information and well-structured data, any 

information subset can easily be generated.  

As noted in Section 3.5.5, the time resolution of the measurements can be increased without significantly 

increasing the costs for data transfer and storage when compared with the overall costs of operating a 

station. A high time resolution enables efficient data quality control and detailed data analysis; those 

values can be easily converted to longer timescales. Therefore, it is recommended that the station saves 

data at 1-minute intervals.18 Many commercially available data loggers are capable of sampling the 

instruments at 1 Hz and then calculate the average of the samples to obtain a 1-minute irradiance value 

in W/m² (or some other chosen time interval), as well as its standard deviation.  

Aggregating solar irradiance and meteorological measurements over various timescales requires careful 

attention to the described measurand and its units. Irradiance data can be integrated over the time or 

averaged, which is in general straightforward, but the averaging or integration interval must be well 

defined (e.g., only positive solar elevation angles). For albedo time series and other derived parameters, 

simple averaging is not possible (see Section 3.3.2). Also, methods for estimating the measurement 

uncertainties of temporal aggregates are needed (see Chapter 10).  

 

 

18 Data recording at time intervals as short as 1 second has been needed for research applications requiring 

special attention to the radiometer performance specifications; see Sengupta and Andreas (2010).  



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

3-70 

REFERENCES  

Abreu, E.F.M., C.A. Gueymard, P. Canhoto, and M.J. Costa. 2023. “Performance Assessment of 

Clear-Sky Solar Irradiance Predictions Using State-of-the-Art Radiation Models and Input Atmospheric 

Data from Reanalysis or Ground Measurements.” Solar Energy 252: 309–21. 

https://doi.org/10.1016/j.solener.2023.01.051. 

Apogee. 2019. “New ISO 9060 Pyranometer Classifications.” 

https://www.apogeeinstruments.com/content/ISO_9060_Apogee_Comparison.pdf. 

Arguez, A., and R.S. Vose. 2011. “The Definition of the Standard WMO Climate Normal: The Key to 

Deriving Alternative Climate Normals.” Bulletin of the American Meteorological Society 92 (6): 699–

704. https://doi.org/10.1175/2010BAMS2955.1. 

Asgharzadeh, A., B. Marion, C. Deline, C. Hansen, J.S. Stein, and F. Toor. 2018. “A Sensitivity Study 

of the Impact of Installation Parameters and System Configuration on the Performance of Bifacial PV 

Arrays.” IEEE Journal of Photovoltaics 8 (3): 798–805. 

https://doi.org/10.1109/JPHOTOV.2018.2819676. 

Asgharzadeh, A., F. Toor, B. Bourne, M.A. Anoma, A. Hoffman, C. Chaudhari, S. Bapat, et al. 2019. 

“A Benchmark and Validation of Bifacial PV Irradiance Models.” In 2019 IEEE 46th Photovoltaic 

Specialists Conference (PVSC), 3281–87. Chicago, IL, USA: IEEE. 

https://doi.org/10.1109/PVSC40753.2019.8981272. 

ASTM E816. 2023. “ASTM E816-15 Test Method for Calibration of Pyrheliometers by Comparison to 

Reference Pyrheliometers.” ASTM International. https://doi.org/DOI: 10.1520/E0816-15. 

ASTM E824. 2018. “ASTM E824-10R18E1 Test Method for Transfer of Calibration From Reference to 

Field Radiometers.” ASTM International. https://doi.org/DOI: 10.1520/E0824-10R18E01. 

ASTM E1125. 2020. “ASTM E1125-16 Test Method for Calibration of Primary Non-Concentrator 

Terrestrial Photovoltaic Reference Cells Using a Tabular Spectrum.” ASTM International. 

https://doi.org/10.1520/E1125-16R20. 

ASTM E1362. 2019. “ASTM E1362-15 Test Methods for Calibration of Non-Concentrator Photovoltaic 

Non-Primary Reference Cells.” ASTM International. https://doi.org/10.1520/E1362-15R19. 

ASTM E1918. 2023. “ASTM E1918-21 Test Method for Measuring Solar Reflectance of Horizontal and 

Low-Sloped Surfaces in the Field.” ASTM International. https://doi.org/10.1520/E1918-21. 

ASTM G167. 2023. “ASTM G167-15 Test Method for Calibration of a Pyranometer Using a 

Pyrheliometer.” ASTM International. https://doi.org/DOI: 10.1520/G0167-15. 

ASTM G183. 2023. “ASTM G183-15 Practice for Field Use of Pyranometers, Pyrheliometers and UV 

Radiometers.” ASTM International. https://doi.org/DOI: 10.1520/G0183-15. 

Augustyn, J., T. Geer, T. Stoffel, E. Kern, R. Little, F. Vignola, and R. Kessler. 2002. “Improving the 

Accuracy of Low Cost Measurement of Direct Normal Solar Irradiance.” In Proceedings of the Solar 

Conference, 329–34. American Solar Energy Society; American Institute of Architects. 

Babal, P., M. Korevaar, S. Franken, J. Mes, T. Bergmans, and K. Wilson. 2020. “Uncertainties in 

Irradiance Measurements of Sensors to POA rear of Bifacial Solar Panels.” In 2020 47th IEEE 

Photovoltaic Specialists Conference (PVSC), 0959–63. Calgary, AB, Canada: IEEE. 

https://doi.org/10.1109/PVSC45281.2020.9301008. 

https://doi.org/10.1016/j.solener.2023.01.051
https://www.apogeeinstruments.com/content/ISO_9060_Apogee_Comparison.pdf
https://doi.org/10.1175/2010BAMS2955.1
https://doi.org/10.1109/JPHOTOV.2018.2819676
https://doi.org/10.1109/PVSC40753.2019.8981272
https://doi.org/DOI:%2010.1520/E0816-15
https://doi.org/DOI:%2010.1520/E0824-10R18E01
https://doi.org/10.1520/E1125-16R20
https://doi.org/10.1520/E1362-15R19
https://doi.org/10.1520/E1918-21
https://doi.org/DOI:%2010.1520/G0167-15
https://doi.org/DOI:%2010.1520/G0183-15
https://doi.org/10.1109/PVSC45281.2020.9301008


Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

3-71 

Badosa, J., J. Wood, P. Blanc, C. N. Long, L. Vuilleumier, D. Demengel, and M. Haeffelin. 2014. 

“Solar Irradiances Measured Using SPN1 Radiometers: Uncertainties and Clues for Development.” 

Atmospheric Measurement Techniques 7 (12): 4267–83. https://doi.org/10.5194/amt-7-4267-2014. 

Balenzategui, J.L., F. Fabero, and J.P. Silva. 2019. “Solar Radiation Measurement and Solar 

Radiometers.” In Solar Resources Mapping: Fundamentals and Applications, edited by Jesús Polo, 

Luis Martín-Pomares, and Antonio Sanfilippo, 15–69. Springer International Publishing. 

https://doi.org/10.1007/978-3-319-97484-2_2. 

Balenzategui, J.L., M. Molero, J.P. Silva, F. Fabero, J. Cuenca, E. Mejuto, and J. De Lucas. 2022. 

“Uncertainty in the Calibration Transfer of Solar Irradiance Scale: From Absolute Cavity Radiometers 

to Standard Pyrheliometers.” Solar 2 (2): 158–85. https://doi.org/10.3390/solar2020010. 

Berrian, D., and J. Libal. 2020. “A Comparison of Ray Tracing and View Factor Simulations of Locally 

Resolved Rear Irradiance with the Experimental Values.” Progress in Photovoltaics: Research and 

Applications 28 (6): 609–20. https://doi.org/10.1002/pip.3261. 

Blakesley, J. C., G. Koutsourakis, S. Douglas, J. K. L. Holder, J. Torry, F. A. Mukadam, A. Schmid, 

and R. S. J. Abrams. 2020. “Effective Spectral Albedo from Satellite Data for Bifacial Gain 

Calculations of PV Systems.” In Proceedings of the 38th European Photovoltaic Solar Energy 

Conference and Exhibition https://doi.org/10.4229/EUPVSEC20202020-5CO.9.3. 

Blum, N.B., S. Wilbert, B. Nouri, J. Lezaca, D. Huckebrink, A. Kazantzidis, D. Heinemann, L. F. 

Zarzalejo, M.J. Jiménez, and R. Pitz-Paal. 2022. “Measurement of Diffuse and Plane of Array 

Irradiance by a Combination of a Pyranometer and an All-Sky Imager.” Solar Energy 232: 232–47. 

https://doi.org/10.1016/j.solener.2021.11.064. 

Blum, N., F. Maas, J. Stührenberg, R. Broda, P. Matteschk, M. Meinel, B. Nouri, et al. 2023. “A 

Benchmark of Simple Diffuse and Direct Irradiance Measurement Systems.” Presented at the 40th 

European Photovoltaic Solar Energy Conference and Exhibition. Lisbon, Portugal.  

Blum, N., and S. Wilbert. 2023. “Effect of Erroneous Albedo Data on Yield Estimation of Bifacial PV 

Systems.” DLR workshop.  

Braid, J.L., J.S. Stein, B.H. King, C. Raupp, J. Mallineni, J. Robinson, and S. Knapp. 2022. “Effective 

Irradiance Monitoring Using Reference Modules.” In 2022 IEEE 49th Photovoltaics Specialists 

Conference (PVSC), 1073–78. Philadelphia, PA, USA: IEEE. 

https://doi.org/10.1109/PVSC48317.2022.9938851. 

Chudinzow, D., J. Haas, G. Díaz-Ferrán, S. Moreno-Leiva, and L. Eltrop. 2019. “Simulating the Energy 

Yield of a Bifacial Photovoltaic Power Plant.” Solar Energy 183: 812–22. 

https://doi.org/10.1016/j.solener.2019.03.071. 

Cordero, R.R., S. Feron, A. Damiani, E. Sepúlveda, J. Jorquera, A. Redondas, G. Seckmeyer, J. 

Carrasco, P. Rowe, and Z. Ouyang. 2023. “Surface Solar Extremes in the Most Irradiated Region on 

Earth, Altiplano.” Bulletin of the American Meteorological Society 104 (6): E1206–21. 

https://doi.org/10.1175/BAMS-D-22-0215.1. 

Deline, C., S. Ayala Pelaez, S. MacAlpine, and C. Olalla. 2020. “Estimating and Parameterizing 

Mismatch Power Loss in Bifacial Photovoltaic Systems.” Progress in Photovoltaics: Research and 

Applications 28 (7): 691–703. https://doi.org/10.1002/pip.3259. 

Deline, C., S. MacAlpine, B. Marion, F. Toor, A. Asgharzadeh, and J.S. Stein. 2017. “Assessment of 

Bifacial Photovoltaic Module Power Rating Methodologies—Inside and Out.” IEEE Journal of 

Photovoltaics 7 (2): 575–80. https://doi.org/10.1109/JPHOTOV.2017.2650565. 

https://doi.org/10.5194/amt-7-4267-2014
https://doi.org/10.1007/978-3-319-97484-2_2
https://doi.org/10.3390/solar2020010.
https://doi.org/10.1002/pip.3261
https://doi.org/10.4229/EUPVSEC20202020-5CO.9.3
https://doi.org/10.1016/j.solener.2021.11.064
https://doi.org/10.1109/PVSC48317.2022.9938851
https://doi.org/10.1016/j.solener.2019.03.071
https://doi.org/10.1175/BAMS-D-22-0215.1
https://doi.org/10.1002/pip.3259
https://doi.org/10.1109/JPHOTOV.2017.2650565


Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

3-72 

Dittmann, S., L. Burnham, S-Y Oh, A. Benlarabi, J-H Choi, M. Ebert, B. Figgis, R. Gottschalg, K-S 

Kim, and T. Reindl. 2019. “Comparative Analysis of Albedo Measurements (Plane-of-Array Horizontal 

Satellite) at Multiple Sites Worldwide.” Albuquerque, NM: Sandia National Laboratory. 

https://www.osti.gov/servlets/purl/1601744. 

Driesse, A. 2018. “Radiometer Response Time and Irradiance Measurement Accuracy.” 35th 

European Photovoltaic Solar Energy Conference and Exhibition, Brussels, Belgium: 1679-1683. 

https://doi.org/10.4229/35THEUPVSEC20182018-6DO.10.6. 

Driesse, A. 2021. “PV Reference Cells for Outdoor Use: An Investigation of Calibration Factors.” 

NREL-SR-5D00-80437. National Renewable Energy Lab. (NREL), Golden, CO (United States). 

https://doi.org/10.2172/1823768. 

Driesse, A., P. Gotseff, and M. Sengupta. 2022. “PV Reference Cells for Outdoor Use: Comparison of 

First-Year Field Measurements.” NREL/SR-5D00-82086. National Renewable Energy Lab. (NREL), 

Golden, CO (United States). https://doi.org/10.2172/1866986. 

Driesse, A., A. Habte, and M. Sengupta. 2023. The Baseline Performance Reference for Irradiance in 

PV System Applications. NREL/TP-5D00-86847. Golden, CO: NREL. https://doi.org/10.2172/2000739. 

Driesse, A., and J. Stein. 2017. “Site-Specific Evaluation of Errors and Uncertainty in Irradiance 

Measurements.” Poster presented at the 33rd European Photovoltaic Solar Energy Conference, 

Amsterdam, The Netherlands. https://doi.org/10.13140/RG.2.2.14876.39044. 

Driesse, A., W. Zaaiman, D. Riley, N. Taylor, and J.S. Stein. 2015. “Indoor and Outdoor Evaluation of 

Global Irradiance Sensors.” 31st European Photovoltaic Solar Energy Conference, Hamburg, 

Germany: 14–18. https://doi.org/10.4229/EUPVSEC20152015-5CO.5.3. 

Dutton, E.G., J.J. Michalsky, T. Stoffel, B.W. Forgan, J. Hickey, D.W. Nelson, T.L. Alberta, and I. 

Reda. 2001. “Measurement of Broadband Diffuse Solar Irradiance Using Current Commercial 

Instrumentation with a Correction for Thermal Offset Errors.” Journal of Atmospheric and Oceanic 

Technology 18 (3): 297–314. https://doi.org/10.1175/1520-0426(2001)018<0297:MOBDSI>2.0.CO;2. 

ESMAP. 2020. “Termsof Reference Solar and Wind Measurement Campaign in XXX.” Energy Sector 

Management Assistance Program. 

https://documents1.worldbank.org/curated/en/398831592957111931/pdf/ESMAP-Terms-of-

Reference-for-Solar-and-Wind-Measurement-Campaign.pdf. 

Fehlmann, A., G. Kopp, W. Schmutz, R. Winkler, W. Finsterle, and N. Fox. 2012. “Fourth World 

Radiometric Reference to SI Radiometric Scale Comparison and Implications for On-Orbit 

Measurements of the Total Solar Irradiance.” Metrologia 49 (2): S34. https://doi.org/10.1088/0026-

1394/49/2/S34. 

Finsterle, W., et al. 2011. “WMO International Pyrheliometer Comparison, IPC-XI.” WMO Instruments 

and Observing Methods (IOM) Report No. 108, https://library.wmo.int/idurl/4/46449. 

Forstinger, A., S. Wilbert, A. Driesse, N. Hanrieder, R. Affolter, S. Kumar, N. Goswami, et al. 2020. 

“Physically Based Correction of Systematic Errors of Rotating Shadowband Irradiometers.” 

Meteorologische Zeitschrift 29 (1): 19–39. https://doi.org/10.1127/metz/2019/0972. 

Forstinger, A., S. Wilbert, A. Driesse, and B. Kraas. 2022. “Uncertainty Calculation Method for 

Photodiode Pyranometers.” Solar RRL 6 (5): 2100468. https://doi.org/10.1002/solr.202100468. 

Fröhlich, C. 1991. “History of Solar Radiometry and the World Radiometric Reference.” Metrologia 28 

(3): 111–15. https://doi.org/10.1088/0026-1394/28/3/001. 

https://www.osti.gov/servlets/purl/1601744
https://doi.org/10.4229/35THEUPVSEC20182018-6DO.10.6
https://doi.org/10.2172/1823768
https://doi.org/10.2172/1866986
https://doi.org/10.2172/2000739
https://doi.org/10.13140/RG.2.2.14876.39044
https://doi.org/10.4229/EUPVSEC20152015-5CO.5.3
https://doi.org/10.1175/1520-0426(2001)018%3c0297:MOBDSI%3e2.0.CO;2
https://documents1.worldbank.org/curated/en/398831592957111931/pdf/ESMAP-Terms-of-Reference-for-Solar-and-Wind-Measurement-Campaign.pdf
https://documents1.worldbank.org/curated/en/398831592957111931/pdf/ESMAP-Terms-of-Reference-for-Solar-and-Wind-Measurement-Campaign.pdf
https://doi.org/10.1088/0026-1394/49/2/S34
https://doi.org/10.1088/0026-1394/49/2/S34
https://library.wmo.int/idurl/4/46449
https://doi.org/10.1127/metz/2019/0972
https://doi.org/10.1002/solr.202100468
https://doi.org/10.1088/0026-1394/28/3/001


Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

3-73 

Geuder, N., R. Affolter, B. Kraas, and S. Wilbert. 2014. “Long-Term Behavior, Accuracy and Drift of LI-

200 Pyranometers as Radiation Sensors in Rotating Shadowband Irradiometers (RSI).” Energy 

Procedia 49: 2330–39. https://doi.org/10.1016/j.egypro.2014.03.247. 

Geuder, N., and V. Quaschning. 2006. “Soiling of Irradiation Sensors and Methods for Soiling 

Correction.” Solar Energy 80 (11): 1402–9. https://doi.org/10.1016/j.solener.2006.06.001. 

Geuder, N., R. Affolter, O. Goebel, B. Dahleh, M. Al Khawaja, S. Wilbert, B. Pape, and B. 

Pulvermueller. 2016. “Validation of Direct Beam Irradiance Measurements From Rotating 

Shadowband Irradiometers in a Region With Different Atmospheric Conditions.” Journal of Solar 

Energy Engineering 138 (5): 051007. https://doi.org/10.1115/1.4034070. 

Geuder, N., M. Hanussek, J. Haller, R. Affolter, and S. Wilbert. 2011. “Comparison of Corrections and 

Calibration Procedures for Rotating Shadowband Irradiance Sensors.” SolarPACES Conference, 

Granada, Spain. 

Geuder, N., B. Pulvermüller, and O. Vorbrugg. 2008. “Corrections for Rotating Shadowband 

Pyranometers for Solar Resource Assessment.” Optical Modeling and Measurements for Solar Energy 

Systems II, edited by Benjamin K. Tsai, SPIE Conf. 70460F. San Diego, CA. 

https://doi.org/10.1117/12.797472. 

Gostein, M., B. Marion, and B. Stueve. 2020. “Spectral Effects in Albedo and Rearside Irradiance 

Measurement for Bifacial Performance Estimation.” 47th IEEE Photovoltaic Specialists Conference 

(PVSC), 0515–19. Calgary, AB, Canada: IEEE. https://doi.org/10.1109/PVSC45281.2020.9300518. 

Gostein, M., S. Ayala Pelaez, C. Deline, A. Habte, C.W. Hansen, B. Marion, J. Newmiller, M. 

Sengupta, J.S. Stein, and I. Suez. 2021. “Measuring Irradiance for Bifacial PV Systems.” 48th 

Photovoltaic Specialists Conference (PVSC), 0896–0903. Fort Lauderdale, FL, USA: IEEE. 

https://doi.org/10.1109/PVSC43889.2021.9518601. 

Gostein, M., B. Stueve, R. Clark, P. Keelin, M. Grammatico, and M. Reusser. 2020. “Field Trial of 

Meteorological Station Using PV Reference Cells.” 47th IEEE Photovoltaic Specialists Conference 

(PVSC), 0520–23. Calgary, AB, Canada: IEEE. https://doi.org/10.1109/PVSC45281.2020.9300799. 

Gueymard, C.A. 2017a. “Cloud and Albedo Enhancement Impacts on Solar Irradiance Using High-

Frequency Measurements from Thermopile and Photodiode Radiometers. Part 1: Impacts on Global 

Horizontal Irradiance.” Solar Energy 153: 755–65. https://doi.org/10.1016/j.solener.2017.05.004. 

———. 2017b. “Cloud and Albedo Enhancement Impacts on Solar Irradiance Using High-Frequency 

Measurements from Thermopile and Photodiode Radiometers. Part 2: Performance of Separation and 

Transposition Models for Global Tilted Irradiance.” Solar Energy 153: 766–79. 

https://doi.org/10.1016/j.solener.2017.04.068. 

Gueymard, C.A., V. Lara-Fanego, M. Sengupta, and A. Habte. 2021. “Surface Albedo Spatial 

Variability in North America: Gridded Data vs. Local Measurements.” Solar Energy 227: 655–73. 

https://doi.org/10.1016/j.solener.2021.05.012. 

Gueymard, C.A., and D.R. Myers. 2009. “Evaluation of Conventional and High-Performance Routine 

Solar Radiation Measurements for Improved Solar Resource, Climatological Trends, and Radiative 

Modeling.” Solar Energy 83 (2): 171–85. https://doi.org/10.1016/j.solener.2008.07.015. 

Gueymard, C.A., and J.A. Ruiz-Arias. 2015. “Validation of Direct Normal Irradiance Predictions under 

Arid Conditions: A Review of Radiative Models and Their Turbidity-Dependent Performance.” 

Renewable and Sustainable Energy Reviews 45: 379–96. https://doi.org/10.1016/j.rser.2015.01.065. 

https://doi.org/10.1016/j.egypro.2014.03.247
https://doi.org/10.1016/j.solener.2006.06.001
https://doi.org/10.1115/1.4034070
https://doi.org/10.1117/12.797472
https://doi.org/10.1109/PVSC45281.2020.9300518
https://doi.org/10.1109/PVSC43889.2021.9518601
https://doi.org/10.1109/PVSC45281.2020.9300799
https://doi.org/10.1016/j.solener.2017.05.004
https://doi.org/10.1016/j.solener.2017.04.068
https://doi.org/10.1016/j.solener.2021.05.012
https://doi.org/10.1016/j.solener.2008.07.015
https://doi.org/10.1016/j.rser.2015.01.065


Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

3-74 

Gueymard, C.A, and S.M Wilcox. 2011. “Assessment of Spatial and Temporal Variability in the US 

Solar Resource from Radiometric Measurements and Predictions from Models Using Ground-Based 

or Satellite Data.” Solar Energy 85 (5): 1068–84. https://doi.org/10.1016/j.solener.2011.02.030. 

Habte, A., and W. Beuttell. 2022. Solar Radiometer Instrumentation Evaluation: Cooperative Research 

and Development (Final Report, CRADA Number CRD-16-00619). NREL/TP-5D00-81853. National 

Renewable Energy Laboratory, Golden, CO; EKO Instruments USA Inc., San Jose, CA (United 

States). https://doi.org/10.2172/1841135. 

Habte, A.M., M. Sengupta, Y. Xie, M.R. Dooraghi, I.M. Reda, A. Driesse, C.A. Gueymard, S. Wilbert, 

and F. Vignola. 2018. Developing a Framework for Reference Cell Standards for PV Resource 

Applications. NREL/TP-5D00-72599. National Renewable Energy Laboratory, Golden, CO. 

https://doi.org/10.2172/1487333. 

Habte, A., M. Sengupta, A. Andreas, S. Wilcox, and T. Stoffel. 2016. “Intercomparison of 51 

Radiometers for Determining Global Horizontal Irradiance and Direct Normal Irradiance 

Measurements.” Solar Energy 133: 372–93. https://doi.org/10.1016/j.solener.2016.03.065. 

Habte, A., M. Sengupta, I. Reda, A. Andreas, and J. Konings. 2014. Calibration and Measurement 

Uncertainty Estimation of Radiometric Data. NREL/CP-5D00-62214. National Renewable Energy 

Laboratory, Golden, CO.  

Hansen, C.W., R. Gooding, N. Guay, D.M. Riley, J. Kallickal, D. Ellibee, A. Asgharzadeh, B. Marion, F. 

Toor, and J.S. Stein. 2017. “A Detailed Model of Rear-Side Irradiance for Bifacial PV Modules.” 44th 

Photovoltaic Specialist Conference (PVSC), 1543–48. IEEE. 

https:doi.org/10.1109/PVSC.2017.8366707. 

Harrison, L., J. Michalsky, and J. Berndt. 1994. “Automated Multifilter Rotating Shadow-Band 

Radiometer: An Instrument for Optical Depth and Radiation Measurements.” Applied Optics 33 (22): 

5118. https://doi.org/10.1364/AO.33.005118. 

Hirsch, T., J. Dersch, T. Fluri, G. Barberena, S. Giuliano, F. Hustig, R. Meyer, M. Seitz, and E. Yildiz. 

2017. “SolarPACES Guideline for Bankable STE Yield Assessment.” http://www.solarpaces.org/wp-

content/uploads/SolarPACES_Guideline_for_Bankable_STE_Yield_Assessment_-_Version_2017.pdf. 

IEC 60891. 2021. “IEC 60891:2021 Photovoltaic Devices - Procedures for Temperature and Irradiance 

Corrections to Measured I-V Characteristics.” https://webstore.iec.ch/publication/61766. 

IEC 60904-2. 2023. “IEC 60904-2:2023 Photovoltaic Devices - Part 2: Requirements for Photovoltaic 

Reference Devices.” https://webstore.iec.ch/publication/68536. 

IEC 60904-3. 2019. “IEC 60904-3:2019 Photovoltaic Devices - Part 3: Measurement Principles for 

Terrestrial Photovoltaic (PV) Solar Devices with Reference Spectral Irradiance Data.” 

https://webstore.iec.ch/publication/61084. 

IEC 60904-4. 2019. “IEC 60904-4:2019 Photovoltaic Devices - Part 4: Photovoltaic Reference Devices 

- Procedures for Establishing Calibration Traceability.” https://webstore.iec.ch/publication/31500. 

IEC 61215-1. 2021. “IEC 61215-1:2021 Terrestrial Photovoltaic (PV) Modules - Design Qualification 

and Type Approval - Part 1: Test Requirements.” 

IEC 61724-1. 2021. “IEC 61724-1:2021 Photovoltaic System Performance - Part 1: Monitoring.” 

IEC 62862-3. 2018. “IEC 62862-3-2:2018 Solar Thermal Electric Plants - Part 3-2: Systems and 

Components - General Requirements and Test Methods for Large-Size Parabolic-Trough Collectors.” 

IEC 62862-5. 2022. “IEC 62862-5-2:2022 Solar Thermal Electric Plants - Part 5-2: Systems and 

Components - General Requirements and Test Methods for Large-Size Linear Fresnel Collectors.” 

https://doi.org/10.1016/j.solener.2011.02.030
https://doi.org/10.2172/1841135
https://doi.org/10.2172/1487333
https://doi.org/10.1016/j.solener.2016.03.065
https://doi.org/10.1109/PVSC.2017.8366707
https://doi.org/10.1364/AO.33.005118
http://www.solarpaces.org/wp-content/uploads/SolarPACES_Guideline_for_Bankable_STE_Yield_Assessment_-_Version_2017.pdf
http://www.solarpaces.org/wp-content/uploads/SolarPACES_Guideline_for_Bankable_STE_Yield_Assessment_-_Version_2017.pdf
https://webstore.iec.ch/publication/61766
https://webstore.iec.ch/publication/68536
https://webstore.iec.ch/publication/61084
https://webstore.iec.ch/publication/31500


Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

3-75 

IEC TS 62862-3-3. 2020. “IEC TS 62862-3-3:2020 Solar Thermal Electric Plants - Part 3-3: Systems 

and Components - General Requirements and Test Methods for Solar Receivers.” 

IEC TS62862-1. 2017. “IEC TS62862-1-2:2017 Solar Thermal Electric Plants - Part 1-2: General - 

Creation of Annual Solar Radiation Dataset for Solar Thermal Electric (STE) Plant Simulation.” 

Ineichen, P., and R. Perez. 2002. “A New Airmass Independent Formulation for the Linke Turbidity 

Coefficient.” Solar Energy 73 (3): 151–57. https://doi.org/10.1016/S0038-092X(02)00045-2. 

Iqbal, M. 2012. An Introduction to Solar Radiation. Elsevier. https://doi.org/10.1016/B978-0-12-

373750-2.50002-1. 

ISO 9059. 1990. “ISO 9059:1990 Solar Energy — Calibration of Field Pyrheliometers by Comparison 

to a Reference Pyrheliometer.” 

ISO 9060. 1990. “ISO 9060:1990 Solar Energy — Specification and Classification of Instruments for 

Measuring Hemispherical Solar and Direct Solar Radiation.” 

———. 2018. “ISO 9060:2018 Solar Energy — Specification and Classification of Instruments for 

Measuring Hemispherical Solar and Direct Solar Radiation.” 

https://www.iso.org/obp/ui/en/#iso:std:iso:9060:ed-2:v1:en. 

ISO 9806. 2017. “ISO 9806:2017 Solar Energy — Solar Thermal Collectors — Test Methods.” 

ISO 9846. 1993. “ISO 9846:1993 Solar Energy — Calibration of a Pyranometer Using a 

Pyrheliometer.” 

ISO 9847. 2023. “ISO 9847:2023 Solar Energy — Calibration of Pyranometers by Comparison to a 

Reference Pyranometer.” 

ISO/TR 9901. 2021. “ISO/TR 9901:2021 Solar Energy — Pyranometers — Recommended Practice 

for Use.” https://www.iso.org/standard/81937.html. 

Janssen, G., R. Gali, K. de Groot, A. J. Carr, B. B. Van Aken, and I. G. Romijin. 2017. “Impact of 

Inhomogenous Irradiance at the Rear of Bifacial Panels on Modelled Energy Yield.” 33rd European 

Photovoltaic Solar Energy Conf. and Exhibition, Amsterdam, The Netherlands. 

https://doi.org/10.4229/EUPVSEC20172017-5BV.4.31. 

Kazantzidis, A., P. Tzoumanikas, A.F. Bais, S. Fotopoulos, and G. Economou. 2012. “Cloud Detection 

and Classification with the Use of Whole-Sky Ground-Based Images.” Atmospheric Research 113: 

80–88. https://doi.org/10.1016/j.atmosres.2012.05.005. 

Kazantzidis, A., P. Tzoumanikas, E. Nikitidou, V. Salamalikis, S. Wilbert, and C. Prahl. 2017. 

“Application of Simple All-Sky Imagers for the Estimation of Aerosol Optical Depth.” In AIP Conf. 

Proceedings, 140012. Abu Dhabi, United Arab Emirates. https://doi.org/10.1063/1.4984520. 

Kenny, R.P., E. Garcia Menendez, J. Lopez-Garcia, and B. Haile. 2018. “Characterizing the Operating 

Conditions of Bifacial Modules.” In AIP Conference Proceedings 020014. Lausanne, Switzerland. 

https://doi.org/10.1063/1.5049253. 

King, D.L., and D.R. Myers. 1997. “Silicon-Photodiode Pyranometers: Operational Characteristics, 

Historical Experiences, and New Calibration Procedures.” 26th IEEE Photovoltaic Specialists 

Conference: 1285–88. Anaheim, CA, USA: IEEE. https://doi.org/10.1109/PVSC.1997.654323. 

Kipp and Zonen. 2017. “Instruction Manual for the SHP1 Smart Pyrheliometer of Kipp & Zonen.” 

https://www.kippzonen.com/Download/596/Manual-Smart-Pyrheliometer-SHP1-English. 

https://doi.org/10.1016/S0038-092X(02)00045-2
https://doi.org/10.1016/B978-0-12-373750-2.50002-1
https://doi.org/10.1016/B978-0-12-373750-2.50002-1
https://www.iso.org/obp/ui/en/#iso:std:iso:9060:ed-2:v1:en
https://www.iso.org/standard/81937.html
https://doi.org/10.4229/EUPVSEC20172017-5BV.4.31
https://doi.org/10.1016/j.atmosres.2012.05.005
https://doi.org/10.1063/1.4984520
https://doi.org/10.1063/1.5049253
https://doi.org/10.1109/PVSC.1997.654323
https://www.kippzonen.com/Download/596/Manual-Smart-Pyrheliometer-SHP1-English


Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

3-76 

Korevaar, M., P. Babal, S. van Nieuwkerk, K. Wilson, and J. Mes. 2020. “Simulation and Validation of 

Bifacial Irradiance Sensor Mounting Position.” 37th European Solar Energy Conference (EUPVSEC), 

Lisbon, Portugal: 7–11. https://doi.org/10.4229/EUPVSEC20202020-5BO.6.6. 

Kreinin, L., N. Bordin, A. Karsenty, A. Drori, D. Grobgeld, and N. Eisenberg. 2010. “PV Module Power 

Gain Due to Bifacial Design. Preliminary Experimental and Simulation Data.” 35th IEEE Photovoltaic 

Specialists Conference: 002171–75. Honolulu, HI, USA: IEEE. 

https://doi.org/10.1109/PVSC.2010.5615874. 

Kurtz, B., and J. Kleissl. 2017. “Measuring Diffuse, Direct, and Global Irradiance Using a Sky Imager.” 

Solar Energy 141: 311–22. https://doi.org/10.1016/j.solener.2016.11.032. 

Lara-Fanego, V., C.A. Gueymard, T. Cebecauer, and M. Suri. 2022. “Effectiveness of Short Ground-

Based Measurement Campaigns of Surface Albedo.” 8th World Conference on Photovoltaic Energy 

Conversion: 999–1003. https://doi.org/10.4229/WCPEC-82022-4BO.16.4. 

Lara-Fanego, V., J.A. Ruiz-Arias, A. Skoczek, C.A. Gueymard, T. Cebecauer, and M. Suri. 2022. 

“Annual Energy Production Uncertainty of Bifacial PV Plants Caused by Inaccuracies in Albedo Data: 

Case Studies Using SAM.” 49th Photovoltaics Specialists Conference (PVSC), Philadelphia, PA, 

IEEE. https://doi.org/10.1109/PVSC48317.2022.9938944. 

Lezaca, J., R. Meyer, and D. Heinemann. 2018. “Study of an Extended Correction Algorithm for 

Rotating Shadowband Irradiometers (RSI) Based on Simultaneous Thermal GHI Measurements.” In 

AIP Conf. Proceedings, 190009. Santiago, Chile. https://doi.org/10.1063/1.5067194. 

LI-COR. 2001. “Calibration Procedures for LI-COR Spectroradiometers, Radiation Sensors & Lamps.” 

Application Note #109. https://licor.app.boxenterprise.net/s/e3kud5scodpe9jeerypj (last accessed 

22.5.24) 

Löf, G.O.G., J.A. Duffie, and C.O. Smith. 1966. “World Distribution of Solar Radiation.” Solar Energy 

10 (1): 27–37. https://doi.org/10.1016/0038-092X(66)90069-7. 

Maxwell, E.L., S.M. Wilcox, C. Cornwall, S.H. Alawaji, B. Marion, M. bin Mahfoodh, and A. Al-Amoudi. 

1999. Progress Report for Annex II--Assessment of Solar Radiation Resources in Saudi Arabia 1993-

1997. NREL/TP-560-25374, National Renewable Energy Laboratory, Golden, CO. 

https://doi.org/10.2172/14391. 

McArthur, L. J. B. 2005. “Baseline Surface Radiation Network (BSRN) – Operation Manual Version 

2.1.” World Climate Research Programme. https://epic.awi.de/id/eprint/45991/1/McArthur.pdf. 

McIntosh, K.R., M.D. Abbott, B.A. Sudbury, and J. Meydbray. 2019. “Mismatch Loss in Bifacial 

Modules Due to Nonuniform Illumination in 1-D Tracking Systems.” IEEE Journal of Photovoltaics 9 

(6): 1504–12. https://doi.org/10.1109/JPHOTOV.2019.2937217. 

Merodio, P., F. Martínez‐Moreno, R. Moretón, and E. Lorenzo. 2023. “Albedo Measurements and 

Energy Yield Estimation Uncertainty for Bifacial Photovoltaic Systems.” Progress in Photovoltaics: 

Research and Applications 31 (11): 1130–43. https://doi.org/10.1002/pip.3728. 

Michalsky, J., E. Dutton, M. Rubes, D. Nelson, T. Stoffel, M. Wesley, M. Splitt, and J. DeLuisi. 1999. 

“Optimal Measurement of Surface Shortwave Irradiance Using Current Instrumentation.” Journal of 

Atmospheric and Oceanic Technology 16 (1): 55–69. https://doi.org/10.1175/1520-

0426(1999)016<0055:OMOSSI>2.0.CO;2. 

Michalsky, J., E.G. Dutton, D. Nelson, J. Wendell, S. Wilcox, A. Andreas, P. Gotseff, et al. 2011. “An 

Extensive Comparison of Commercial Pyrheliometers under a Wide Range of Routine Observing 

Conditions.” Journal of Atmospheric and Oceanic Technology 28 (6): 752–66. 

https://doi.org/10.1175/2010JTECHA1518.1. 

https://doi.org/10.4229/EUPVSEC20202020-5BO.6.6
https://doi.org/10.1109/PVSC.2010.5615874
https://doi.org/10.1016/j.solener.2016.11.032
https://doi.org/10.4229/WCPEC-82022-4BO.16.4
https://doi.org/10.1109/PVSC48317.2022.9938944
https://doi.org/10.1063/1.5067194
https://licor.app.boxenterprise.net/s/e3kud5scodpe9jeerypj
https://doi.org/10.1016/0038-092X(66)90069-7
https://doi.org/10.2172/14391
https://epic.awi.de/id/eprint/45991/1/McArthur.pdf
ttps://doi.org/10.1109/JPHOTOV.2019.2937217
https://doi.org/10.1002/pip.3728
https://doi.org/10.1175/1520-0426(1999)016%3c0055:OMOSSI%3e2.0.CO;2
https://doi.org/10.1175/1520-0426(1999)016%3c0055:OMOSSI%3e2.0.CO;2
https://doi.org/10.1175/2010JTECHA1518.1


Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

3-77 

Michalsky, J.J., M. Kutchenreiter, and C.N. Long. 2017. “Significant Improvements in Pyranometer 

Nighttime Offsets Using High-Flow DC Ventilation.” Journal of Atmospheric and Oceanic Technology 

34 (6): 1323–32. https://doi.org/10.1175/JTECH-D-16-0224.1. 

Monokroussos, C., Q. Gao, X.Y. Zhang, E. Lee, Y. Wang, C. Zou, L. Rimmelspacher, J. Bonilla 

Castro, M. Schweiger, and W. Herrmann. 2020. “Rear‐side Spectral Irradiance at 1 Sun and 

Application to Bifacial Module Power Rating.” Progress in Photovoltaics: Research and Applications 

28 (8): 755–66. https://doi.org/10.1002/pip.3268. 

Morrison, R. 1998. Grounding and Shielding Techniques. New York: John Wiley and Sons. 

Mouhib, E., P.M. Rodrigo, L. Micheli, E.F. Fernández, and F. Almonacid. 2022. “Quantifying the Rear 

and Front Long-Term Spectral Impact on Bifacial Photovoltaic Modules.” Solar Energy 247: 202–13. 

https://doi.org/10.1016/j.solener.2022.10.035. 

Mueller, R., T. Behrendt, A. Hammer, and A. Kemper. 2012. “A New Algorithm for the Satellite-Based 

Retrieval of Solar Surface Irradiance in Spectral Bands.” Remote Sensing 4 (3): 622–47. 

https://doi.org/10.3390/rs4030622. 

Myers, D. R., and S. M. Wilcox. 2009. Relative Accuracy of 1-Minute and Daily Total Solar Radiation 

Data for 12 Global and 4 Direct Beam Solar Radiometers. NREL/CP-550-45374. National Renewable 

Energy Laboratory, Golden, CO. https://www.nrel.gov/docs/fy09osti/45374.pdf. 

Myers, D.R., S.M. Wilcox, W.F. Marion, N.M. Al-Abbadi, M. Mahfoodh, and Z. Al-Otaibi. 2002. Final 

Report for Annex II--Assessment of Solar Radiation Resources In Saudi Arabia, 1998-2000. 

NREL/TP-560-31546. National Renewable Energy Laboratory, Golden, CO. 

https://www.osti.gov/servlets/purl/15000263. 

Nollas, F.M., G.A. Salazar, and C.A. Gueymard. 2023. “Quality Control Procedure for 1-Minute 

Pyranometric Measurements of Global and Shadowband-Based Diffuse Solar Irradiance.” Renewable 

Energy 202: 40–55. https://doi.org/10.1016/j.renene.2022.11.056. 

NREL. 2022. “Broadband Outdoor Radiometer Calibration Shortwave BORCAL-SW 2022-02.” 

National Renewable Energy Laboratory, Golden, CO. 

https://aim.nrel.gov/Calibrations/BORCAL/SRRL/report/2022-02_NREL-SRRL-BMS.pdf. 

Osterwald, C. R., S. Anevsky, K. Bücher, A. K. Barua, P. Chaudhuri, J. Dubard, K. Emery, et al. 1999. 

“The World Photovoltaic Scale: An International Reference Cell Calibration Program.” Progress in 

Photovoltaics: Research and Applications 7 (4): 287–97. https://doi.org/10.1002/(SICI)1099-

159X(199907/08)7:4<287::AID-PIP259>3.0.CO;2-I. 

Painter, H. E. 1981. “The Performance of a Campbell-Stokes Sunshine Recorder Compared with a 

Simultaneous Record of the Normal Incidence Irradiance.” Meteorological Magazine 110 (1305): 102–

109. 

Pape, B., J. Batlles, N. Geuder, R. Zurita Pinero, F. Adan, and B. Pulvermüller. 2009. “Soiling Impact 

and Correction Formulas in Solar Measurements for CSP Projects.” 15th SolarPACES International 

Symposium, Berlin, Germany. 

Patel, M. Tahir, M. Ryyan Khan, Xingshu Sun, and Muhammad A. Alam. 2019. “A Worldwide Cost-

Based Design and Optimization of Tilted Bifacial Solar Farms.” Applied Energy 247: 467–79. 

https://doi.org/10.1016/j.apenergy.2019.03.150. 

Pelaez, S.A., C. Deline, P. Greenberg, J.S. Stein, and R.K. Kostuk. 2019. “Model and Validation of 

Single-Axis Tracking With Bifacial PV.” IEEE Journal of Photovoltaics 9 (3): 715–21. 

https://doi.org/10.1109/JPHOTOV.2019.2892872. 

https://doi.org/10.1175/JTECH-D-16-0224.1
https://doi.org/10.1002/pip.3268
https://doi.org/10.1016/j.solener.2022.10.035
https://doi.org/10.3390/rs4030622
https://www.nrel.gov/docs/fy09osti/45374.pdf
https://www.osti.gov/servlets/purl/15000263
https://doi.org/10.1016/j.renene.2022.11.056
https://doi.org/10.1002/(SICI)1099-159X(199907/08)7:4%3c287::AID-PIP259%3e3.0.CO;2-I
https://doi.org/10.1002/(SICI)1099-159X(199907/08)7:4%3c287::AID-PIP259%3e3.0.CO;2-I
https://doi.org/10.1016/j.apenergy.2019.03.150
https://doi.org/10.1109/JPHOTOV.2019.2892872


Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

3-78 

Pelaez, S.A., C. Deline, S.M. MacAlpine, B. Marion, J.S. Stein, and R.K. Kostuk. 2019. “Comparison 

of Bifacial Solar Irradiance Model Predictions With Field Validation.” IEEE Journal of Photovoltaics 9 

(1): 82–88. https://doi.org/10.1109/JPHOTOV.2018.2877000. 

Pelaez, S.A., C. Deline, B. Marion, B. Sekulic, J. Parker, B. McDanold, and J.S. Stein. 2020. “Field-

Array Benchmark of Commercial Bifacial PV Technologies with Publicly Available Data.” 47th IEEE 

Photovoltaic Specialists Conference (PVSC): 1757–59. Calgary, AB, Canada: IEEE. 

https://doi.org/10.1109/PVSC45281.2020.9300379. 

Pelaez, S.A., C. Deline, J.S. Stein, B. Marion, K. Anderson, and M. Muller. 2019. “Effect of Torque-

Tube Parameters on Rear-Irradiance and Rear-Shading Loss for Bifacial PV Performance on Single-

Axis Tracking Systems.” 46th Photovoltaic Specialists Conference (PVSC): 1–6. Chicago, IL, USA: 

IEEE. https://doi.org/10.1109/PVSC40753.2019.9198975. 

Plag, F., I. Kröger, S. Riechelmann, and S. Winter. 2018. “Multidimensional Model to Correct PV 

Device Performance Measurements Taken under Diffuse Irradiation to Reference Conditions.” Solar 

Energy 174: 431–44. https://doi.org/10.1016/j.solener.2018.08.072. 

Pó, M.. 2023. “Solar Irradiance beyond a Shadow of a Doubt.” Power and Energy Solutions. 

https://pes.eu.com/wp-content/uploads/2023/05/PES-S-2-23-EKO.pdf. 

Ramtvedt, E.N., and E. Næsset. 2023. “A Simple Slope Correction of Horizontally Measured Albedo in 

Sloping Terrain.” Agricultural and Forest Meteorology 339: 109547. 

https://doi.org/10.1016/j.agrformet.2023.109547. 

Reda, I. 1996. Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World 

Radiometric Reference. NREL/TP-463-20619. National Renewable Energy Laboratory, Golden, CO. 

https://www.nrel.gov/docs/legosti/fy96/20619.pdf. 

Reda, I., T. Stoffel, and D. Myers. 2003. “A Method to Calibrate a Solar Pyranometer for Measuring 

Reference Diffuse Irradiance.” Solar Energy 74 (2): 103–12. https://doi.org/10.1016/S0038-

092X(03)00124-5. 

Riedel-Lyngskær, N., and N. Andersen. 2024. “Strategies for Rear Irradiance Monitoring in Tracked 

Bifacial Systems.” Presented at the 2023 PV Performance Modeling Workshop, Salt Lake City, Utah. 

Solar Energy (submitted). 

Riedel-Lyngskær, N., D. Berrian, D. Alvarez Mira, A. Aguilar Protti, P. Behrensdorff Poulsen, J. Libal, 

and J. Vedde. 2020. “Validation of Bifacial Photovoltaic Simulation Software against Monitoring Data 

from Large-Scale Single-Axis Trackers and Fixed Tilt Systems in Denmark.” Applied Sciences 10 (23): 

8487. https://doi.org/10.3390/app10238487. 

Riedel-Lyngskær, N., M. Petit, D. Berrian, P.B. Poulsen, J. Libal, and M.L. Jakobsen. 2020. “A Spatial 

Irradiance Map Measured on the Rear Side of a Utility-Scale Horizontal Single Axis Tracker with 

Validation Using Open Source Tools.” 47th IEEE Photovoltaic Specialists Conference (PVSC): 1026–

32. https://doi.org/10.1109/PVSC45281.2020.9300608. 

Riedel-Lyngskær, N., M. Ribaconka, M. Pó, A. Thorseth, S. Thorsteinsson, C. Dam-Hansen, and M.L. 

Jakobsen. 2022. “The Effect of Spectral Albedo in Bifacial Photovoltaic Performance.” Solar Energy 

231: 921–35. https://doi.org/10.1016/j.solener.2021.12.023. 

Riedel-Lyngskar, N., M. Bartholomaus, J. Vedde, P. Behrensdorff Poulsen, and S. Spataru. 2022. 

“Measuring Irradiance With Bifacial Reference Panels.” IEEE Journal of Photovoltaics 12 (6): 1324–

33. https://doi.org/10.1109/JPHOTOV.2022.3201468. 

https://doi.org/10.1109/JPHOTOV.2018.2877000
https://doi.org/10.1109/PVSC45281.2020.9300379
https://doi.org/10.1109/PVSC40753.2019.9198975
https://doi.org/10.1016/j.solener.2018.08.072
https://pes.eu.com/wp-content/uploads/2023/05/PES-S-2-23-EKO.pdf
https://doi.org/10.1016/j.agrformet.2023.109547
https://www.nrel.gov/docs/legosti/fy96/20619.pdf
https://doi.org/10.1016/S0038-092X(03)00124-5
https://doi.org/10.1016/S0038-092X(03)00124-5
https://doi.org/10.3390/app10238487
https://doi.org/10.1109/PVSC45281.2020.9300608
https://doi.org/10.1016/j.solener.2021.12.023
https://doi.org/10.1109/JPHOTOV.2022.320146
https://doi.org/10.1109/JPHOTOV.2022.320146


Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

3-79 

Rossa, C., F. Martínez‐Moreno, and E. Lorenzo. 2021. “Experimental Observations in Mismatch 

Losses in Monofacial and Bifacial PV Generators.” Progress in Photovoltaics: Research and 

Applications 29 (12): 1223–35. https://doi.org/10.1002/pip.3447. 

Sanchez, G., M. L. Cancillo, and A. Serrano. 2016. “An Intercomparison of the Thermal Offset for 

Different Pyranometers.” Journal of Geophysical Research: Atmospheres 121 (13): 7901–12. 

https://doi.org/10.1002/2016JD024815. 

Sanchez, G., A. Serrano, and M. L. Cancillo. 2017. “Effect of Mechanical Ventilation on the Thermal 

Offset of Pyranometers during Cloud-Free Summer Conditions.” Journal of Atmospheric and Oceanic 

Technology 34 (5): 1155–73. https://doi.org/10.1175/JTECH-D-16-0163.1. 

Sengupta, M., and A. Andreas. 2010. “Oahu Solar Measurement Grid (1-Year Archive): 1-Second 

Solar Irradiance; Oahu, Hawaii (Data).” https://doi.org/10.5439/1052451. 

Stanhill, G. 1998. “Estimation of Direct Solar Beam Irradiance from Measurements of the Duration of 

Bright Sunshine.” International Journal of Climatology 18 (3): 347–54. 

https://doi.org/10.1002/(SICI)1097-0088(19980315)18:3<347::AID-JOC239>3.0.CO;2-O. 

Sun, X., M.R. Khan, C. Deline, and M.A. Alam. 2018. “Optimization and Performance of Bifacial Solar 

Modules: A Global Perspective.” Applied Energy 212: 1601–10. 

https://doi.org/10.1016/j.apenergy.2017.12.041. 

Viel, L. 2006. “Silicon Solar Radiation Sensor Type SOZ-03.” NES Sensors GmbH. 

http://ctsteknik.dk/upload_dir/shop/soz-03datasheetuk-898892.pdf. 

Vignola, F. 2006. “Removing Systematic Errors from Rotating Shadowband Pyranometer Data.” In 

Proc. of the 35th ASES Annual Conference, Denver, CO. 

Vignola, F., C.N. Long, and I. Reda. 2009. “Testing a Model of IR Radiative Losses.” In Optical 

Modeling and Measurements for Solar Energy Systems III, edited by Benjamin K. Tsai, SPIE Conf. 

741003. San Diego, CA. https://doi.org/10.1117/12.826325. 

Vignola, F., J. Michalsky, and T.L. Stoffel. 2020. Solar and Infrared Radiation Measurements. Second 

edition. Boca Raton: CRC Press, Taylor & Francis Group. 

Vignola, F., J. Peterson, R. Kessler, M. Dooraghi, M. Sengupta, and F. Mavromatakis. 2018. 

“Evaluation of Photodiode-Based Pyranometers and Reference Solar Cells on a Two-Axis Tracking 

System.” 7th World Conference on Photovoltaic Energy Conversion (WCPEC): 2376–81. Waikoloa 

Village, HI: IEEE. https://doi.org/10.1109/PVSC.2018.8547299. 

Vignola, F., J. Peterson, R. Kessler, S. Snider, P. Gotseff, M. Sengupta, A. Habte, A. Andreas, and F. 

Mavromatakis. 2022. “Reference Cell Performance and Modeling on a One-Axis Tracking Surface.” 

49th Photovoltaics Specialists Conference (PVSC): 0146–53. Philadelphia, PA, USA: IEEE. 

https://doi.org/10.1109/PVSC48317.2022.9938920. 

Vignola, F., J. Peterson, F. Mavromatakis, S. Wilbert, A. Forstinger, M. Dooraghi, and M. Sengupta. 

2019. “Removing Biases from Rotating Shadowband Radiometers.” In AIP Conf. Proceedings, 

190017. Casablanca, Morocco. https://doi.org/10.1063/1.5117714. 

Vignola, F., J. Peterson, S. Wilbert, P. Blanc, N. Geuder, and C. Kern. 2017. “New Methodology for 

Adjusting Rotating Shadowband Irradiometer Measurements.” In AIP Conf. Proceedings, 140021. Abu 

Dhabi, United Arab Emirates. https://doi.org/10.1063/1.4984529.  

Vuilleumier, L., C. Félix, F. Vignola, P. Blanc, J. Badosa, A. Kazantzidis, and B. Calpini. 2017. 

“Performance Evaluation of Radiation Sensors for the Solar Energy Sector.” Meteorologische 

Zeitschrift. https://doi.org/10.1127/metz/2017/0836. 

https://doi.org/10.1002/pip.3447
https://doi.org/10.1002/2016JD024815
https://doi.org/10.1175/JTECH-D-16-0163.1
https://doi.org/10.5439/1052451
https://doi.org/10.1002/(SICI)1097-0088(19980315)18:3%3c347::AID-JOC239%3e3.0.CO;2-O
https://doi.org/10.1016/j.apenergy.2017.12.041
http://ctsteknik.dk/upload_dir/shop/soz-03datasheetuk-898892.pdf
https://doi.org/10.1117/12.826325
https://doi.org/10.1109/PVSC.2018.8547299
https://doi.org/10.1109/PVSC48317.2022.9938920
https://doi.org/10.1063/1.5117714
https://doi.org/10.1063/1.4984529
https://doi.org/10.1127/metz/2017/0836


Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

3-80 

Walter, B., R. Winkler, F. Graber, W. Finsterle, N. Fox, V. Li, and W. Schmutz. 2017. “Direct Solar 

Irradiance Measurements with a Cryogenic Solar Absolute Radiometer.” AIP Conference Proceedings 

1810 (1): 080007. https://doi.org/10.1063/1.4975538. 

Wang, D., S. Liang, T. He, Y. Yu, C. Schaaf, and Z. Wang. 2015. “Estimating Daily Mean Land 

Surface Albedo from MODIS Data: Estimating Daily Mean Albedo from MODIS.” Journal of 

Geophysical Research: Atmospheres 120 (10): 4825–41. https://doi.org/10.1002/2015JD023178. 

Wilbert, S., N. Geuder, M. Schwandt, B. Kraas, W. Jessen, R. Meyer, B. Nouri, A. Forstinger and F. 

Vignola. 2023. “Best Practices for Solar Irradiance Measurements with Rotating Shadowband 

Irradiometers.” https://elib.dlr.de/198919/1/RSI_BestPractices_v2.pdf. 

Wilbert, S., W. Jessen, A. Forstinger, A. Driesse, F. Vignola, M. Sengupta, A. Habte, L. Zarzalejo, and 

A. Marzo. 2019. “Application of the Clear Sky Spectral Error for Radiometer Classification in ISO 

9060.” In Proceedings of the ISES Solar World Congress 2019, 1–11. Santiago, Chile: International 

Solar Energy Society. https://doi.org/10.18086/swc.2019.44.08. 

Wilbert, S., S. Kleindiek, B. Nouri, N. Geuder, A. Habte, M. Schwandt, and F. Vignola. 2016. 

“Uncertainty of Rotating Shadowband Irradiometers and Si-Pyranometers Including the Spectral 

Irradiance Error.” In AIP Conf. Proceedings, 150009. Cape Town, South Africa. 

https://doi.org/10.1063/1.4949241. 

Wilcox, S.M., and D.R. Myers. 2008. Evaluation of Radiometers in Full-Time Use at the National 

Renewable Energy Laboratory Solar Radiation Research Laboratory. NREL/TP-550-44627. National 

Renewable Energy Laboratory, Golden, CO. https://doi.org/10.2172/946331. 

WMO. 2018. “Guide to Instruments and Methods of Observation.” World Meteorological Organization 

WMO. https://library.wmo.int/index.php. 

Xie, Y., and M. Sengupta. 2018. “A Fast All-Sky Radiation Model for Solar Applications with 

Narrowband Irradiances on Tilted Surfaces (FARMS-NIT): Part I. The Clear-Sky Model.” Solar Energy 

174: 691–702. https://doi.org/10.1016/j.solener.2018.09.056. 

Zhao, C., J. Xiao, Y. Yu, and J-N Jaubert. 2021. “Accurate Shading Factor and Mismatch Loss 

Analysis of Bifacial HSAT Systems through Ray-Tracing Modeling.” Solar Energy Advances 1: 

100004. https://doi.org/10.1016/j.seja.2021.100004. 

Ziar, H., F. Fatih Sönmez, O. Isabella, and M. Zeman. 2019. “A Comprehensive Albedo Model for 

Solar Energy Applications: Geometric Spectral Albedo.” Applied Energy 255: 113867. 

https://doi.org/10.1016/j.apenergy.2019.113867. 

  

https://doi.org/10.1063/1.4975538
https://doi.org/10.1002/2015JD023178
https://elib.dlr.de/198919/1/RSI_BestPractices_v2.pdf
https://doi.org/10.18086/swc.2019.44.08
https://doi.org/10.1063/1.4949241
https://doi.org/10.2172/946331
https://library.wmo.int/index.php
https://doi.org/10.1016/j.solener.2018.09.056
https://doi.org/10.1016/j.seja.2021.100004
https://doi.org/10.1016/j.apenergy.2019.113867


Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

3-81 

APPENDIX. DESIGN EXAMPLES AND CHECKLISTS, FROM 
SITE SELECTION TO INSTALLATION 

A-1. Examples of Meteorological Sensor Configurations and  
Station Layouts 

Figure 3A-1–Figure 3A-7 show plans of exemplary layouts for Tier-1 and Tier-2 stations, partly including 

albedo measurements. The examples also illustrate the following selected design considerations: 

• Easy access to the sensors that need to be cleaned regularly without additional equipment (no 

ladders) must be considered. 

• When installing near the equator (within the tropics), sun elevation and azimuth must be considered 

with special attention when designing the station layout to avoid shading in the irradiance sensors. 

Over the course of the year, objects cast shadings in all directions, (e.g., the wind mast needs to be 

far enough away from the irradiance sensors so that its top does not shade the sensors when the 

sun is in the north/south sky quadrant [for stations in the Northern/Southern Hemisphere, 

respectively]). 

• A station’s optical reference plane should be defined at the level of the actual radiometer sensors; 

anything above that will be in the view of the sensors. Regular checks must ensure that no other 

nearby instrument, equipment, or support will intrude above that plane and adversely affect the 

measurements. Some unavoidable allowances must be made for certain equipment, such as a 

shading-ball assembly. More distant items, such as a wind tower, must also be tolerated. All other 

items, such as equipment boxes, hand railings, fencing, proximate meteorological instruments, 

conduits, cabling, etc., should be positioned below the measurement plane. This means that the 

measurement plane must be planned for a position above all other necessary equipment at the site 

and the radiometer supports designed accordingly. 
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Figure 3A-1. Exemplary station design for a station in the Northern Hemisphere, with close-up of the 
sun tracker.  

Image from CSP Services 
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Figure 3A-2. Exemplary station design for a station in the Northern Hemisphere, with close-up of the 
wind mast. 

Image from CSP Services 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

3-84 

 

Figure 3A-3. Exemplary station design for a station in the Northern Hemisphere: general layout.  

Image from CSP Services 
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Figure 3A-4. Example station design for a Tier-2 station in the Northern Hemisphere with an 
albedometer (RHI pyranometer at 1.5-m height).  

Image from CSP Services 
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Figure 3A-5. Exemplary station design for a Tier-2 station in the Northern Hemisphere with an 
albedometer (RHI pyranometer at 1.5-m height).  

Image from CSP Services 
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Figure 3A-6. Exemplary station design for a Tier-1 station in the Northern Hemisphere with an 
albedometer (RHI pyranometer at 1.5-m height).  

Image from CSP Services 
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Figure 3A-7. Exemplary station design for a Tier-2 station in the Northern Hemisphere with a 3-m 
wind mast.  

Image from CSP Services 
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A-2. Site Selection Checklist Examples 

Table 3A-1. Site Selection Checklist 

Key Information 

Date of site visit  

Site visit performed by 

Name and title:  

Position: 

Telephone: 

Email: 

Location, site name 

(Country, city, street address, or 
description of location) 

 

Coordinates and altitude 

°N: 

°S: 

m above sea level: 

Name of site owner   

Client representative (if present) 

Name and title: 

Position: 

Telephone: 

Email: 

Interview partner (local contact) 

Name and title: 

Position: 

Telephone: 

Email: 

Site Checklist 

Criteria/Measure Description Yes/No Notes 

Dimensions 
Minimum 
area 
available 

Minimum area requirement for weather 
stations (typically 10 × 10 m², may be 
larger with albedo measurement or other 
specific measurements) 

  

Nearby objects, 
shading 

Unobstructed 
horizon 

Is the horizon free of nearby objects such 
as trees or buildings that could shade the 
instruments or affect the other 
measurements (e.g., wind speed)? 

  

Surface 
installation 

Firm natural 
ground  

Firm ground suitable to enable secure 
locking of the equipment on the ground 
(anchors or foundations). Note the type of 
ground: naturally grown soil or artificially 
(manmade) filled soil, bedrock, loose soil 
or sand, grass cover, gravel. 

  

Horizontally 
leveled  

Is the site approximately (visual 
judgement) horizontally leveled and flat? 
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Excavation 
for 
foundations 
possible  

Is it possible and permitted to lay 4–5 
small foundations, each approximately 1 
× 1 m² and 0.3 m deep? 

  

Fencing of 
the site 
possible  

Is it possible and permitted to fence the 
compound? Note if the location is already 
fenced (take photos). 

  

No drifting 
sand, 
landslide  

Is there danger of drifting sand or 
landslides/rockfalls? 

  

No flooding 
possible  

Might the terrain be flooded during heavy 
rainfalls? 

  

Rooftop 
installation 

Easy access 
to rooftop 
installation 

- Authorization from building owner to 
access building on weekends, holidays, 
or after hours. 

- Interior or exterior stairs with adequate 
safety railings OR adequate wall area for 
permanent and sturdy ladder installation 
with approved safety features. 

- Adequate interior or exterior routes for 
transporting equipment crates for station 
assembly (note minimum height and 
width along route). 

  

Suitable roof 
substrate 

Strong roof underlayment adequate to 
bear, without damage, the weight of: 

- Equipment and personnel. 

- Heavy anchors to secure the installation 
OR adequate material for drilling anchor 
points.  

Approximate weight should be 
determined prior to site investigations. 

  

Power and 
grounding 

- Available conduits to building interior for 
power or cabling if necessary. 

- Available electrical ground for noise 
suppression and lighting protection (e.g., 
a nearby water pipe or access to run wire 
across the roof and down a wall to an 
area suitable for a grounding rod). 

  

Security 
Lockable rooftop door or gate to limit 
access by unauthorized people from 
building interior or building perimeter 

  

Surroundings 
Industrial 
areas or 
power plants  

Check whether any industrial production 
site or power plant is located within a few 
kilometers, which may cause emissions 
of smoke, vapor, dust or other 
aerosols/particles. Note any visible 
industry with notable emissions; ask local 
staff to confirm. 
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Sources of 
smoke or 
vapor  

Check whether any source of smoke or 
water vapor columns is located in the 
environment. Note also if seasonal fires 
(natural or not) can be expected. 

  

Quarry or 
mine  

Check if quarries or mines in the 
environments may be causing pollution 
by lifting dust 

  

Main road, 
dirt road, 
tracks  

Check presence of nearby roads (less 
than 100 m away) and indicate type 
(paved/unpaved, main traffic or seldom 
used) 

  

Settlements, 
towns, city  

 
  

Agricultural 
area  

Agricultural activities, main crops, use of 
fire to clear fields, dust lifted by 
machinery, animal feeding, 
slaughterhouse, breeding farm 

  

Swamp, 
lake, river, 
ocean  

Large water bodies like rivers or lakes 
  

Sand dunes  
Presence of sand dunes within a few 
kilometers 

  

Animal 
population  

Animal population in the area that might 
have an impact on the measurements 
(monkeys, birds, termites, insects like 
bees, wasps, etc.); ask the local staff 
about animal migration in the region. In 
what period do nomads pass through the 
region and with what animals? 

  

Reflections 
or light 
sources in 
the vicinity 

Check whether any reflecting surfaces 
like mirrors, glazing, shiny metal 
surfaces, PV panels, etc., or artificial light 
sources are in the vicinity that might 
cause reflections or radiation on the 
measurement equipment (take photos) 

  

Vegetation 
presence 

Note whether vegetation can influence 
the measurements due to growth or 
seasonal changes (take photos) 

  

Future 
adverse 
development 

Inquire about potential future 
development that could impact horizon 
view, impose construction traffic, or force 
moving the station 

  

Other  

Any other observations with potential 
impact on the measurements. In case of 
doubt about an influence, please 
annotate the observation. 

  

Mobile phone 
network 
coverage 

2G, 3G, 4G, 
5G network 
available  

Check for mobile phone networks by 
searching manually for network 
providers. Note signal strength for each 
provider available. 
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Accessibility 
Accessible 
by car  

Check whether the site is easily 
reachable by car for 
installation/maintenance. Note any road 
conditions, including seasonal weather, 
which might require use of four-wheel-
drive or high-clearance vehicles. 

  

Land use rights 
Permit 
available  

Check/ask if the land use permits are 
given from the landowner and who must 
be contacted 

  

Maintenance  
Maintenance 
staff 
available  

Check/ask/estimate the availability of 
local maintenance staff (on-site 
maintenance team) 

  

Security 

Measures 
against theft 
or vandalism 
required 

Check/ask/estimate the risk of theft or 
vandalism. Check/ask if a safety guard or 
similar is required or available to watch 
the equipment. Note if measures are 
already taken (existing fence or safety 
guards present). 

  

UXO 
Is the site in an area affected by 
previous/current armed conflict, and is 
there a potential risk from UXO? 

  

Photographic 
documentation 

Overview 
photos taken 

Photos that show the overall site and 
surroundings 

 Time when 
photos were 
taken: 

Panoramic 
photos  

Panoramic image showing the horizon 
over a full 360° 

  

360° photo 
series 

Photo series showing the horizon over a 
full 360° 

  

Marker for 
north and 
south 
direction 
visible in the 
photos 

In the notes, add the kind of marker that 
was used (e.g., “North: red bag”; “South: 
flag”; “blue safety jacket”). 
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A-3. Site Preparation Procedure 

For this task, a handheld GPS system is needed to ensure the correct alignment of the foundations. 

Figure 3A-8 and Figure 3A-9 show photos of a station before the installation of the measurement 

equipment.  

 

   

Figure 3A-8. Fence picture examples. 

Photos by CSP Services 

 

 

 

Figure 3A-9. Built foundations with threaded bolts.  

Photo by CSP Services 
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A-4. Example Installation Checklist 

Table 3A-2. Example Installation Checklist 

Component  Work Item 
Checked  

Comments 
Yes No 

North-south 
line 

The station’s north-south line 
established and clearly marked 
prior to construction. 

   

Foundations, 
fence 

Foundations correctly prepared X   

Threaded bolts correctly prepared X   

Fence correctly prepared X   

Project signs attached X   

Support 
structure with 
control box 

PV mounting supports adjusted X   

Horizontally leveled X   

Wiring, cables 

Visual examination X   

Fuses okay X   

All sensors connected X   

All cables orderly fixed X   

Solar tracker 

Shading assembly installed X  

 Horizontal leveling X  

East/west alignment completed X  

Radiometers 

Sensors installed X   

Operability of each sensor X   

Correct leveling X   

Barometric 
pressure 
sensor 

Sensor installed X   

Pressure exchange vent X  Installed inside main control cabinet 

Precipitation 
sensor 

Sensor installed and leveled X   

Operability of sensor X   

Temperature 
and humidity 
sensor 

Sensor fixed to frame X   

Wind tower, 
wind speed 
and direction 
sensors 

Mast extended X  Extended to length of 10 m 

Guy wires safely attached and 
tense 

X   

Grounding cable connected X  To metal rod driven into ground 

Wind sensors installed X   
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Component  Work Item 
Checked  

Comments 
Yes No 

North orientation of wind direction 
sensor 

X   

Cable fixed to sensors, tower, and 
box 

X   

Operability of sensors X   

PV soiling 
measurement 
system 

Mounting structure leveled and 
aligned to south 

X   

PV panels installed X   

Tilt angle adjusted X  8° from horizontal 

Module temp. sensors installed X   

Operability of system X   

Panels cleaned X   

LTE router 
SIM card inserted X  Data connection to server established 

Server connection X  Connection to server confirmed 

Data logger 

Operation system installed X  Version: CR1000X Std.05.00 

Correct sensor constants in 
program  

X  
Compared against photographs of 
installed sensors 

Correct coordinates in program X  Obtained from GPS 

Data logger program installed X  
Program name:  

ExampleStation_str_Enc.CR1X 

Data logger clock correct 

Correct security code entered (if 
used) 

X  

Local standard time, no daylight 
saving  

Time: e.g., UTC +0 
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A-5. Exemplary Final Operational Checklist 

Table 3A-3. Exemplary Final Operational Checklist 

Data Checkout:  

Instrument Signal Name Instantaneous 
Reading w/ Units 

Reasonable? Varying 
Regularly? 

Primary pyranometer Global Raw       

Secondary pyranometer Secondary_Irradiance       

Barometric pressure (wait 15 
minutes) 

Press       

Air temperature  AirTemp_C       

Relative humidity RH       

Wind speed WS_ms       

Wind direction WDir       

Rain gauge Rain_mm       

Battery voltage Batt_Volt       

Logger panel temperature Panel_Temp_C      

…     
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A-6. Exemplary Photographic Documentation Checklist 

Table 3A-4. Exemplary Photographic Documentation Checklist 

Needed Picture Received 

Fence and foundation with north reference  

Station and wind mast foundations  

Wind mast preparations/setup  

Wind mast foundations, ground cable fixed to ground bolt, 
protective tube for wind mast cables 

 

Wind direction sensor north mark aligned with mounting 
cantilever and north direction 

 

Wind sensors installed on wind mast  

Wind mast erected; wind direction sensor oriented to north  

Serial number of all pyranometers  

Serial number of pyrheliometer (if available)  

Leveling of all pyranometers  

Tracker leveling (if available)  

Serial number of tracker (if available)  

Installed tracker (if available)  

Shading assembly alignment (shadow on pyranometer) (if 
available) 

 

Pyrheliometer alignment (if available)  

Sun sensor serial number (if available)  

Rain sensor picture  

Rain sensor serial number  

Rain sensor leveling  

Temperature, relative humidity sensor picture  

Temperature, relative humidity sensor serial number  

Control box interior  

LTE router  

Antenna  

Power supply PV system  

Mounting structure, solar tracker, sensors, and control box 
from four sides 

 

Final station installation as seen from all sides including 
fence 

 

Locked gate (if applicable)  
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Executive Summary 

The quality of solar irradiance measurements depends on several factors, including instrument 

characteristics, maintenance practices, and location. Even for high-quality stations adhering to accepted 

best practices, erroneous measurements are inevitable when measuring solar irradiance long term, 

such as errors due to soiling, snow, or instrument misalignments. Thus, assessing the data quality and, 

subsequently, flagging suspicious or erroneous measurements is crucial for applications requiring solar 

irradiance data with the lowest estimated uncertainty. This is becoming increasingly important as the 

accuracy of modeled irradiance data is approaching that of measured irradiance. This chapter provides 

an introduction to quality assessment and control concepts, as well as an overview of methods for 

different time scales—namely, instantaneous, daily, and long-term measurements. Additionally, many 

specific elements of quality assessment and control procedures are discussed, covering measurements 

from tilted radiometers, photodiodes, spectral sensors, and photovoltaic reference cells. This chapter 

concludes with an introduction to the data quality cycle concept and a summary of future development 

needs. 

4.1 Introduction 

All measurements are subject to errors. In particular, due to the challenging nature of making solar 

irradiance measurements, they are more prone to errors than other meteorological quantities, such as 

temperature, humidity, or wind speed (Journée and Bertrand 2011). Considering the inherent difficulties 

in measuring solar irradiance, it is crucial that in-depth quality control (QC) procedures are applied to 

ensure that the sources of errors are quickly mitigated to minimize the influence on data quality. 

Additionally, post-measurement data quality assessment should be conducted to eventually obtain a 

high-quality dataset with a low amount of erroneous data. Data assessment and QC serve two main 

purposes, namely, flagging suspicious or erroneous data with the aim of enhancing the quality of the 

dataset and using this information to provide feedback to station operators, allowing for corrective QC 

actions to be taken. Within the solar resource community, there is no strict definition of quality 

assessment or QC, and thus these terms have often been used interchangeably. In this handbook, the 

term “quality control” is normally indicative of procedures that are used regularly by station operators 

with the aim of improving data collection through corrective actions. Compared to this QC definition, the 

term “data quality assessment” rather describes the post-measurement evaluation of a dataset, often 

relying on the process of flagging periods of potentially erroneous data to eventually obtain a high-quality 

dataset. Whereas in this chapter the QC acronym is predominantly used, most of the procedures 

described here are applicable to both QC and quality assessment. 
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Removing potentially erroneous data is becoming increasingly important as the accuracy of modeled 

data approaches that of high-quality measurements under clear-sky conditions (Gueymard 2012) and 

as measured data are frequently used to assess the quality of satellite-based irradiance estimates. In 

particular, using flawed measurement data for the task of benchmarking satellite-derived irradiance 

might lead to incorrect conclusions. For instance, Urraca et al. (2017) revealed a change in annual bias 

of up to 25 W/m2 in satellite-based irradiance data depending on whether the reference measurements 

had undergone quality assessment. This emphasizes the need for stringent procedures to ensure the 

highest possible quality of ground measurements to undertake sensible validation or benchmarking of 

modeled datasets (Forstinger et al. 2021). Whereas many data providers perform detailed QC and 

assessments of the collected data, this is not the general case; even if they do, the applied procedures 

might either be inadequate or not done systematically. Thus, users are strongly urged to always conduct 

some level of independent quality assessment of the data and available metadata. 

QC procedures of broadband irradiance measurements made with thermopile radiometers are 

discussed in Sections 4.2 to 4.4. These three sections present QC methods according to time scale; 

namely, Section 4.2 covers QC of instantaneous irradiance data, Section 4.3 covers daily irradiance 

data, and Section 4.4 covers QC methods for long-term irradiance data. A brief introduction to related 

QC concepts is given in Section 4.5, including QC of measurements from photodiode-based 

radiometers, photovoltaic reference cells, and spectral sensors. The concept of a data quality cycle is 

presented in Section 4.6. An outlook is presented in Section 4.7 with recommendations for future 

research. 

4.1.1 Data Flagging 

Different QC tests or procedures can be applied to data from different sensors, depending on the nature 

of their measurement type (global horizontal irradiance [GHI], direct normal irradiance [DNI], diffuse 

horizontal irradiance [DHI], etc.). For each QC test, each data point can be flagged depending on the 

test conditions. The corresponding flag is often set to 1 (True) when the test detects an issue and 0 

(False) if not. Some flagging schemes combine multiple flags into an overall flag, for example, a 

descriptive value from 0 to 99 (e.g., Maxwell et al. [1993]), depending on which tests failed and to what 

extent. One ideal flagging method would use such a “super flag” as a proxy for the individual uncertainty 

of each data point, which is highly desirable. A flag with a low number would translate into a low 

uncertainty, etc. In any case, the numerical value of all flags should give practical information about the 

applicability of each QC test and the confidence that can be given to its results. 

Some QC tests involve only data from one sensor (e.g., limit tests), whereas other tests involve 

comparisons of collocated and concomitant data from different sensors. In the latter case, the QC tests 

flag the data as suspicious without necessarily indicating which measurement is in error. Employing a 

third sensor can help automatically determine which sensor is in error and reset the flags of the 

unaffected sensor. For this reason, redundant collocated sensors are recommended and can provide a 

valuable QC tool. 

If measurements are intended for a broad range of users, the guidelines or best practice rules below 

should be applied to maintain the integrity of the data while providing a useful assessment of data quality. 

• No data point should be changed or discarded in the original data files. 

• Corrected data should be provided separately (e.g., with clearly erroneous data removed or 

corrected for time stamp errors). 

• Modified data should also be provided separately with proper flagging and/or documentation (e.g., 

with offset corrections applied or gaps filled). 
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• Information on the data quality should be provided, allowing end users to make informed decisions 

about which data points are safe to use for their application. 

• Original data files should be archived separately to serve as backup if necessary. 

• Available metadata, including calibration and maintenance records, should be made available upon 

request. 

4.1.2 Station’s Tier System 

The majority of recent QC tests have been developed for research-grade stations that measure GHI, 

DHI, and DNI separately at 1-minute resolution, often referred to as “Tier-1” stations. This is the ideal 

case, as each component can be evaluated by deriving it from the two other components (Forstinger et 

al. 2021). Although such stations can produce the most accurate solar irradiance measurements, they 

require expensive solar trackers to align the pyrheliometer with the sun and continuously shade the 

diffuse radiometer with a shading ball. 

Consequently, solar resource assessment campaigns, which are of a temporary nature by design, often 

do not feature such setups but rather measure only GHI and DHI by use of either one pyranometer for 

each component (using a shadowband to obtain DHI) or a dedicated instrument (such as an SPN1 or 

rotating shadowband irradiometer [RSI]; see Chapter 3) to obtain DHI and/or DNI without a tracker. This 

two-component arrangement is usually referred to as a “Tier-2” station. It is important to note that, for 

such stations, many of the QC tests discussed in the following sections cannot be applied, and the QC 

procedure is weakened. Specific QC procedures for stations that measure diffuse irradiance using a 

shadowband are provided by Nollas et al. (2023), although a large fraction of the procedure is also 

applicable to Tier-1 stations. 

Finally, there are many stations that only measure GHI or global tilted irradiance (GTI). Because of the 

lack of measurement redundancy and the need to derive DHI and DNI from models, this represents the 

worst-case scenario in terms of the effectiveness of QC procedures. This simple case is normally 

referred to as a “Tier-3” station. Many national meteorological institutes feature networks of automatic 

weather stations that may qualify as Tier-3 stations, which tend to receive very little maintenance due 

to the large number of stations and/or budget or personnel constraints. 

4.1.3 Sensor Redundancy 

Employing redundant sensors can be helpful when assessing data quality and is recommended for near-

real-time QC. Particularly, for Tier-2 or Tier-3 stations that only feature a single sensor, it is difficult to 

detect possible degradation over time, except by comparing the results of two successive calibration 

events. Redundant sensors are also useful for Tier-1 stations, where redundant measurements can be 

used to determine which measurement is in error (e.g., when indeterminant comparison tests flag 

multiple measurements). At Tier-3 stations measuring GHI only, redundancy is useful to avoid data 

breaks and estimate the confidence that can be placed into the data time series. Nevertheless, both 

instruments could be affected by the same issue (e.g., prolonged soiling caused by snow, frost, or dust), 

which would temporarily eliminate the redundancy advantage. 

4.2 Automated Tests of Instantaneous Irradiance Data 

Basic checks of irradiance measurements can be made retrospectively for individual data points. Some 

of these checks can be used in near-real time by software without human supervision; these tests are 

often referred to as “automatic tests.” The aim of these tests is to flag data points that appear suspicious 

or are truly erroneous based on automated comparisons with physical limits, redundant measurements, 

consistency with the closure equation, or other appropriate tests. 
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It is important to stress that automatic QC and assessment procedures are insufficient on their own and 

should be employed in conjunction with visual data inspection by an expert (Forstinger et al. 2021). This 

additional visual inspection is important because automatic tests are unable to detect all types of 

potential problems and are generally less effective during periods with low solar irradiance or low solar 

elevation periods (i.e., periods with high measurement uncertainty). In contrast, a trained person can 

easily detect anomalous features in color plots or other visualizations. Additionally, automatic checks do 

not usually provide information on the type of error or ways to correct suspect data. For example, it is 

common that the time zone is specified incorrectly, thus causing systematic errors in solar position; this, 

in turn, results in good measurement data being flagged as incorrect by automatic tests, although the 

error is easily correctable if detected. 

Further, irradiance limits are often empirically developed based on data from a few stations only, and 

thus might be somewhat site-dependent. To be applicable to the majority of situations in practice, this 

section only discusses limits that are applicable to a large variety of climates. Users should be advised 

that more restrictive tests might be suitable for their specific location. Additionally, because of increased 

measurement uncertainty, most tests are not applicable to irradiance measurements below 50 W/m2 

(Long and Shi 2008) or when the solar elevation is below 2° (Journée and Bertrand 2011). 

4.2.1 Time Resolution 

Temporal resolution has a significant influence on the plausibility of irradiance measurements (Long and 

Shi 2008). Generally, the longer the data’s averaging time, the narrower the testing limits can be. For 

instance, the maximum possible irradiance is lower for data with 15-minute resolution than for data with 

1-minute resolution. This is due in part because the short-term variability is averaged out over longer 

time steps (e.g., differences in sensor time response) and because of the occurrence of cloud 

enhancement events, which are noticeable in 1-minute data but not detectable at averaging times of 15 

minutes or longer (Schade et al. 2007). During cloud enhancement events, GHI can significantly exceed 

the clear-sky estimate or even the extraterrestrial value. As noted by Nollas et al. (2023), it is important 

that these values are not filtered out. Nevertheless, longer averaging times tend to be less effective from 

a QC perspective because a mixture of good and bad data could then exist and would not be detectable. 

Hence, shorter time steps (e.g., 1-minute) are typically preferred for QC procedures. 

During the last decades, the general recommendation has been to log irradiance data at 1-minute 

resolution, and as a consequence, most recent QC tests have been developed for 1-minute data. Unless 

otherwise noted, the tests described in the following sections are suitable for that resolution. In any case, 

it is important to select suitable test limits according to the time resolution. Noticeably, Espinar et al. 

(2011a) provide range limits for multiple time resolutions, ranging from 1-minute to monthly data; 

similarly, Journée and Bertrand (2011) provide limits for 10-minute data. Some QC tests can also be 

applied to the same dataset at different temporal aggregation levels. For example, Tregenza et al. (1994) 

evaluated 10-minute average data even though the data was available at 1-minute resolution. 

Comparing 1-minute data and 10-minute or 15-minute averaged data can also be useful for detecting 

cloud enhancement events. 

4.2.2 Limit Tests 

The most widely used QC checks are the Baseline Surface Radiation Network (BSRN) Global Network-

recommended QC tests from Long and Dutton (2002). These checks consist of various limits and 

comparison tests and were later updated and published in Long and Shi (2006) and (2008). The BSRN 

limit tests are summarized in  

Table 4-1.  and specify two sets of upper and lower limits for the three irradiance components.  

The first set of BSRN limits is denoted “physically possible limits,” that is, irradiance values that can 

never be exceeded. The second set corresponds to “extremely rare limits,” which are stricter than the 
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physically possible limits but might flag a very small fraction of correct data. The choice of which set of 

limits to use depends on the application, that is, the stricter extremely rare limits are recommended for 

high-accuracy applications. The limit checks are applicable to all sky conditions, including nighttime, so 

there are no domain restrictions. The negative lower limit values are necessary to account for negative 

nighttime thermal offsets caused by longwave radiation cooling, which varies depending on instrument 

type (see Section 3.2.1). It is emphasized that the limits described in  

Table 4-1.  apply to 1-minute measurements obtained with thermopile radiometers with a time constant 

of a few seconds. For faster instruments (e.g., photodiode sensors) or for measurements recorded at 

higher frequency (e.g., 1 second), cloud enhancement situations can result in valid GHI data far 

exceeding the assumed “upper limit,” according to newer data obtained with various collocated 

instruments (Gueymard 2017a). Moreover, considering that some even more extreme cloud 

enhancement situations have been recently recorded over exceptional areas (Cordero et al. 2023), it is 

likely that these limits will have to be revised into a more comprehensive framework. Similarly, it is 

stressed that the limit values for GHI and DHI in  

Table 4-1 assume either that the concerned pyranometers are nearly offset-free or, if not, that an 

appropriate offset correction has been applied to all their data (daytime and nighttime) before applying 

the tests (Long and Shi 2008). Many models of thermopile pyranometers have an offset larger than 4 

W/m2, and thus would not pass the test without preliminary correction. The ideal way to correct the offset 

is exemplified in (Gueymard and Myers 2009), but involves the concurrent measurement of net 

longwave irradiance. Because this type of measurement only exists at rare research-class stations, an 

alternate method must be followed in practice. To that effect, the simple method explained by Nollas et 

al. (2023) is recommended. 

 
Table 4-1. BSRN Limit Checks  

Source: Long and Shi (2008). Limits are in W/m2. 
 

Component 

Physically Possible  Extremely Rare 

Lower 
Limit 

Upper Limit 
 Lower 

Limit 
Upper Limit 

GHI −4  1.5 ⋅ 𝐸𝑇𝑅 ⋅ cos1.2 𝑍 + 100  −2  1.2 ⋅ 𝐸𝑇𝑅 ⋅ cos1.2 𝑍 + 50 

DHI −4  0.95 ⋅ 𝐸𝑇𝑅 ⋅ cos1.2 𝑍 + 50  −2  0.75 ⋅ 𝐸𝑇𝑅 ⋅ cos1.2 𝑍 + 30 

DNI −4  𝐸𝑇𝑅   −2  0.95 ⋅ 𝐸𝑇𝑅 ⋅ cos0.2 𝑍 + 10 

 
Further, Nollas et al. (2023) developed an empirical lower limit for GHI and DHI, which corresponds to 

heavily overcast or thunderstorm conditions. The empirical equation is provided in Eq. (4-1 and is only 

a function of the solar zenith angle, Z, up to 90°. Given the very low minimum irradiance at high zenith 

angles, the limit should only be applied to irradiance data that has been corrected for thermal offsets. 

GHImin = DHImin = (6.5331 − 0.065502 𝑍 + 1.8312 ⋅ 10−4 𝑍2)/(1 + 0.01113 𝑍) (4-1) 

Long and Shi (2008) also propose a lower limit for DHI, corresponding to the ideal scenario of an aerosol-

free and cloud-free atmosphere for which scattering is only due to interaction with air molecules 

(Rayleigh scattering). This limit is known as the “Rayleigh limit” (RL) and can be expressed as: 

𝑅𝐿 = cos 𝑍 (209.3 + 0.046725𝑃 − 708.3 cos 𝑍 + 1128.7 cos2 𝑍 − 911.2 cos3 𝑍
+ 287.85 cos4 𝑍) 

(4-2) 

where P is the surface pressure in millibars or hPa. During non-overcast periods (DNI>10 W/m2), the 

noticeably higher Rayleigh limit is recommended (though this requires an estimate of DNI). Notably, 
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Nollas et al. modified the DHI limit from RL to RL–1 to compensate for any possible inaccuracy. The GHI 

and DHI limit conditions and domain restrictions are presented in Table 4-2. 

 

Table 4-2. GHI and DHI Lower Limits  

Source: Nollas et al. (2023). Note that usage of GHImin/DHImin requires that an appropriate thermal offset 
correction is applied to thermopile instruments. 
 

Test Passing Condition Domain 

GHI Lower Limit GHI > GHImin 𝑍 < 90° 

DHI Lower Limit 

(cloudy) 
DHI > DHImin 

DNI < 10 W m2⁄  

𝑍 < 90° 

DHI Lower Limit 

(cloudless) 
DHI > 𝑅𝐿 − 1 

DNI ≥ 10 W m2⁄  

GHI > 50 W m2⁄  

𝑍 < 90° 

𝐾𝑡 < 0.8 

 

4.2.3 Comparison Tests 

The second type of tests consists of comparison tests, based on comparisons between multiple 

irradiance measurements and the physical relationships that connect them. One drawback of these 

tests, however, is that they are non-definitive: if a test fails, it does not provide information about which 

of the involved irradiance components is potentially in error. 

The BSRN comparison tests are shown in Table 4-6. The closure test is based on the closure equation 

(Eq. 2-2 in Section 2.5) and compares the measured GHI to the calculated GHI derived from DNI and 

DHI. The strength of the closure tests results from this comparison between the same quantity from two 

independent sources, which constitutes a particularly useful type of redundancy. 

 

Table 4-6. BSRN Comparison Tests  

Source: Long and Shi (2008). Irradiance values are in W/m2. 
 

Test Passing Criteria Domain 

Closure 

(low zenith) 
|

GHI   

 (DHI + DNI  cos 𝑍)
− 1| < 0.08 

(DHI + DNI  cos 𝑍) > 50 

𝑍 < 75° 

Closure 

(high zenith) 
|

GHI   

 (DHI + DNI  cos 𝑍)
− 1| < 0.15 

(DHI + DNI  cos 𝑍) > 50 

75° < 𝑍 < 93° 

Diffuse Ratio 

(low zenith) 
𝐾 < 1.05 𝑍 < 75° & GHI > 50 

Diffuse Ratio 

(high zenith) 
𝐾 < 1.10 75° < 𝑍 < 93° & GHI > 50 

 
The second BSRN comparison test asserts the diffuse fraction 𝐾 = DHI  GHI⁄ . Theoretically, the upper 

limit for the diffuse fraction is 1, that is, diffuse irradiance can never exceed global irradiance. However, 
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in practice, during cloudy periods when the diffuse and global irradiance are physically identical, K may 

exceed 1 because of measurement uncertainties, particularly at high zenith angles and/or low irradiance 

conditions. For this reason, the upper limit for the diffuse fraction in Table 4-6 is allowed to be slightly 

greater than 1. An upper limit of 1.1 was first proposed by de Miguel et al. (2001), whereas the BSRN 

limits use two different values depending on zenith angle. The BSRN diffuse fraction limit is higher at 

high solar zenith angles to account for the higher measurement uncertainties of the two pyranometers. 

Recently, Nollas et al. (2023) argued that the static diffuse fraction limits just discussed are too simplistic. 

Instead, they propose defining the upper limits based on an uncertainty-dependent approach, thus 

calculating the limits explicitly rather than relying on empirical estimations. The drawback of this method 

is that it requires knowledge of the instruments used and their uncertainties, although the authors 

provide uncertainty values for two of the most commonly used pyranometers. 

4.2.4 Normalized Irradiance Tests 

It is often helpful to normalize irradiance values by the extraterrestrial irradiance, as this removes most 

of the values’ intraday dependence on the solar zenith angle. Similar to Eq. 2-2, the closure equation 

can be represented in the normalized K-space by dividing the individual terms by extraterrestrial 

radiation (ETR): 

𝐾𝑡 = 𝐾𝑛 + 𝐾𝑑           (4-3) 

where Kt is the clearness index (or total transmittance), and Kn and Kd are the direct and diffuse 

transmittance, respectively. Based on that K-space closure equation, Maxwell et al. (1993) reasoned 

that Kn should never exceed Kt because diffuse irradiance cannot be negative. The authors also defined 

a test for the normalized closure equation similar to the BSRN closure test, although this is less widely 

used. 

Multiple upper limit values have been proposed for Kt. For example, Journée and Bertrand (2011), for 

10-minute data, and Geuder et al. (2015), for 1-minute data, both used a value of 1.0, whereas 

Forstinger et al. (2021) used a value of 1.35. In contrast, Nollas et al. (2023) argued that these limits 

were too restrictive, resulting in incorrect flagging of cloud enhancement events, and instead suggested 

a limit of 1.4 for 1-minute data measured with thermopile radiometers. 

 

Table 4-7. Overview of Recommended K-Tests  

Site altitude is in m. 
 

Test Passing Criteria Domain 

Kt Upper Limit 

(Nollas et al. 2023) 
𝐾𝑡 < 1.4 𝑍 < 90° 

Kn-Kt Comparison 

(Maxwell et al. 1993; Forstinger et 
al. 2021) 

𝑲𝒏 < 𝑲𝒕 

𝐆𝐇𝐈 > 𝟓𝟎 𝐖 𝐦𝟐⁄  

𝐾𝑛 > 0 

𝐾𝑡 > 0 

Kn Upper Limit 

(Gueymard and Ruiz-Arias 2016) 
𝐾𝑛 <

(1100 + 0.03 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒)

𝐸𝑇𝑅
 

GHI > 50 W m2⁄  

𝐾𝑛 > 0  

Kd Upper Limit 

(Perez-Astudillo et al. 2018; 

Nollas et al. 2023) 

𝐾𝑑 < 0.6 
𝑍 < 90° 
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Similarly, several upper limits have been proposed for the diffuse transmittance, Kd. Journée and 

Bertrand (2011) used an upper limit of 1 (assuming diffuse irradiance can equal the extraterrestrial 

irradiance), Tregenza et al. (1994) used a value of 0.8, and Perez-Astudillo et al. (2018) used an even 

more restrictive limit of 0.6. The limit of 0.6 was verified by comparison to 1-minute experimental data 

by Nollas et al. (2023) and is thus the recommended limit. The test criteria and conditions are shown in 

Table 4-7. Maxwell et al. (1993) used paired values of a maximum Kt for each Kn in a dataset to 

determine a more plausible upper limit for Kd. One argument against applying a threshold limit on 𝐾𝑑 is 

that it might be overly restrictive at high solar zenith angles and in any case very similar to the extremely 

rare BSRN limit. This specific topic would thus require further verification. 

4.2.5 Tracker and Shadowband Misalignment Tests 

At research-grade stations, measurements of diffuse and direct irradiance are normally done with a 

shaded pyranometer and a pyrheliometer mounted on a single solar tracker. Even slight misalignment 

of the solar tracker will cause incorrect measurements of both irradiance quantities and needs to be 

detected. One method is to assess the relationship between the diffuse fraction (K) and Kt. Specifically, 

during quasi-clear-sky conditions, there is limited scattering, and consequently, K should be low, while 

Kt should be high. Thus, if both K and Kt are high, the tracker must not be shading the diffuse instrument 

correctly, as these are mutually exclusive conditions. Long and Shi (2008) developed a test for this 

condition, defining near-clear-sky conditions as periods when the ratio of the clear-sky index (ratio of 

GHI to clear-sky GHI) exceeds 0.85 and K < 0.85. Geuder et al. (2015) proposed a similar (albeit more 

restrictive) test, which relied on Kt instead of the clear-sky index, as presented in Table 4-8. Perez-

Astudillo et al. (2018) proposed an even stricter test based on the same method, although this test might 

flag too many good data points. 

Additional tracker or RSI shadowband misalignment tests were proposed by Geuder et al. (2015) and 

Forstinger et al. (2021). For those calculations, Forstinger et al. (2021) used the following 

approximations: GHIclear = 0.8 ⋅ ETR  cos 𝑍 and DNIclear = 0.688 ⋅ ETR, where ETR is the extraterrestrial 

radiation, as defined in Section 2.3. 

For DHI measurements obtained from a thermopile pyranometer with an adjustable shadowband 

attachment, tests are more elaborate. These shadowbands require manual adjustment for changing 

solar declination every 2 to 3 days to maintain appropriate sun shading of the pyranometer detector. 

When this adjustment is not done in due time, the misaligned shadowband will cover less and less of 

the diffuse radiometer over time, so some fraction of the direct irradiance will reach the sensor. To detect 

such instances, Nollas et al. (2023) developed a method that compares the measured K with values 

from empirical diffuse fraction models. Specifically, the method flags any measurement for which the 

absolute difference between the measured and estimated diffuse fraction exceeds a certain threshold. 

That threshold is defined as 0.1 for clear-sky periods and 0.35 otherwise. The test is valid for Z<80°. 
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Table 4-8. Tracker or RSI Shadowband Misalignment Tests  

Irradiance input values are in W/m2.  
 

Test’s Author Passing Criteria Domain 

Long and Shi (2008) 𝐾 < 0.85  
GHI  GHIclear > 0.85⁄  

DHI > 50 W/m2 

Forstinger et al. (2021) 

(GHIclear − GHI)

(GHIclear + GHI)
> 0.2 

OR 

(DNIclear − DNI)

(DNIclear + DNI)
< 0.95 

𝑍 < 85° 

Geuder et al. (2015) 𝐾 ≤ 0.96   𝐾𝑡 > 0.6 

 

4.2.6 Step Change Rates 

Another method for detecting implausible irradiance data is to assess the rate of change between two 

consecutive measurements. The step change can be calculated as the absolute value of the measured 

irradiance at the current time step minus the value of the measured irradiance at the previous time step. 

For GHI, Espinar et al. (2011b) suggest a step change limit of 1000 W/m2 for 1-minute data, whereas 

Shafer et al. (2000) recommend a limit of 800 W/m2 for 5-minute data. Similarly, Lorenz et al. (2022) 

also suggest using a 1000 W/m2 threshold for 1-minute tilted irradiance (GTI) measurements. Journée 

and Bertrand (2011) proposed other limits for 10-minute measurements and Z ≤ 88°. Specifically, their 

proposed maximum acceptable rate limits are 0.75, 0.65, and 0.35 for Kt, Kn, and Kd, respectively. The 

maximum limits represent what can be expected under actual weather conditions and usual instrument 

responsivity. Higher change rates are typically indicative of data logger or instrument malfunction. 

4.2.7 Station-Specific Limits 

The above QC tests and limits were developed to cover a wide range of climates and latitudes and thus 

might not always be stringent enough. Stricter limits can be advantageously developed for individual 

sites or small areas based on long-term data. For this reason, Long and Shi (2008) proposed several 

configurable climatological limits to complement the BSRN limit checks in  

Table 4-1. . These configurable limits were implemented into the QCRad Fortran software (Long and 

Shi, 2006). The advantage of configurable limits is that they can be tailored to the conditions of a specific 

site, whereas the drawback is that a minimum of 1 or 2 years of historical data is typically necessary to 

determine them.  

Configurable limits are also central to the SERI-QC software developed by the National Renewable 

Energy Laboratory (NREL) (Maxwell et al. 1993). SERI-QC relies on empirical envelopes in Kn-Kt space, 

within which a preponderance of data points are expected to lie. Measurements outside this envelope 

are assigned a two-digit flag, indicating the magnitude and direction of such departures. In the SERI-

QC software, different envelopes must be defined for each month and for three bins of solar zenith 

angle. While the method’s usefulness is recognized, it has seen limited usage outside of NREL. This is 

likely about to change, however, because the method is being expanded to estimate measurement 

uncertainty (Wilcox et al. 2023; 2022), and its C language code is being converted to Python for user 

friendliness, flexibility, and wider public adoption. 

In parallel, Younes et al. (2005) developed an expectancy envelope in K-Kt space and provided a 

statistical method for constructing the upper and lower limits by fitting a second-degree polynomial 
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based on hourly irradiance data. Journée and Bertrand (2011) extended that method to accept 10-

minute data and eliminated the need for manual inputs. Recently, Nollas et al. (2023) further extended 

the method to make it suitable for 1-min data (conducive to significantly higher variability) by combining 

two different sets of envelopes, developed statistically, to help cover a large variety of climatic and 

altitudinal situations. This suggests that, although K-space envelopes can result in stricter QC tests, 

they are not necessarily applicable to all stations without further empirical adjustments. 

4.2.8 Horizon Shading 

Solar irradiance monitoring stations should ideally be sited at locations that do not have significant 

obstructions of the horizon, such as those resulting from nearby hills, mountains, or structures. The 

general recommendation is to choose a site where horizon-blocking is less than 5° in all directions, 

although this is not always possible. In any case, it is recommended to flag all irradiance measurements 

for which the sunup positions are below the effective horizon line. When the sun is blocked by an 

obstacle on the ideal horizon, DNI is 0, and GHI = DHI, within instrumental error. Even though these 

measurements are perfectly correct from a solar assessment standpoint because they reflect the actual 

local conditions, it is generally undesirable to use such measurements for validation of radiation models 

or satellite-derived datasets. 

The local horizon profile can be measured using a survey compass and inclinometer, although such 

information is often not available. Fortunately, estimates of the local horizon profile can be retrieved 

freely from multiple online services. For example, the Photovoltaic Geographical Information System 

(PVGIS) offers users the option of downloading a local horizon profile, either using their website or an 

application programming interface (API) (JRC 2023). The PVGIS API has been incorporated into pvlib 

(Holmgren et al. 2018) and can be accessed as shown in Figure 4-1 (for a test site at 45° north latitude 

and 9° east longitude). 

 

Figure 4-1. Example of retrieving the local horizon profile from PVGIS using pvlib python 

 

MINES Paris offers a similar web processing service (WPS),19 which computes the local horizon profile 

from a geolocation (latitude, longitude, altitude) and ground offset (e.g., the height of an instrument 

above ground). The service relies on data from a digital elevation model (DEM), either the Shuttle Radar 

Topography Mission (SRTM) at 90-m resolution or the 30-m ASTER dataset (Gschwind et al. 2020). 

The calculated horizon line has an azimuthal resolution of 1° and is available for the coverage area of 

the SRTM dataset, i.e., at latitudes comprised between 56°S and 60°N. The service can be accessed 

 

 

19 Access at http://geocatalog.webservice-energy.org/geonetwork/srv/eng/main.home.  

http://geocatalog.webservice-energy.org/geonetwork/srv/eng/main.home


Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

4-11 

using HTTP requests, which must be formatted correctly.20 Two examples of horizon shading are given 

in Figure 4-2. In these plots, the colored scatter points correspond to the maximal value of 𝐾𝑛 as a 

function of the solar azimuth and elevation angles. The light gray areas are orientations for which DNI≈0, 

corresponding to shading situations. The red curve is the horizon line calculated with the aforementioned 

WPS tool.  

The top panel of Figure 4-2 corresponds to measurements made at the Carpentras BSRN station 

between 2015 and 2018 There is a good match between the gray area and the SRTM-based horizon, 

showing the accuracy of the latter’s calculation. As a contrasting example, measurements from the Oak 

Ridge National Laboratory (ORNL) station21 between 2015 and 2019 are displayed in the bottom panel 

of Figure 4-2. In this case, there are significant differences between the gray area and the SRTM-based 

horizon line. The shape of the gray area clearly suggests that the shadows are caused by buildings and 

trees surrounding the station. This demonstrates the limitation of the SRTM-based horizon line because 

it does not consider objects such as trees or buildings, which contribute to near-shading. In this case, a 

high-resolution DEM (from image stereography or LiDAR data) would be a better option (Mira et al. 

2022). Alternatively, a data-driven approach such as the one proposed by Lorenz et al. (2022) would be 

useful to infer the horizon line from measurements. Finally, a simple photographic method is exemplified 

in Section 3.5.1. 

 

 

20 The specific format of the command is described in this example: http://toolbox.1.webservice-

energy.org/service/wps?service=WPS&request=Execute&identifier=compute_horizon_srtm&version=1.0.0&DataI

nputs=latitude=43.79;longitude=6.22;altitude=-999;ground_offset=2&RawDataOutput=result. 

21 Access at https://midcdmz.nrel.gov/apps/sitehome.pl?site=ORNL. 

http://toolbox.1.webservice-energy.org/service/wps?service=WPS&request=Execute&identifier=compute_horizon_srtm&version=1.0.0&DataInputs=latitude=43.79;longitude=6.22;altitude=-999;ground_offset=2&RawDataOutput=result
http://toolbox.1.webservice-energy.org/service/wps?service=WPS&request=Execute&identifier=compute_horizon_srtm&version=1.0.0&DataInputs=latitude=43.79;longitude=6.22;altitude=-999;ground_offset=2&RawDataOutput=result
http://toolbox.1.webservice-energy.org/service/wps?service=WPS&request=Execute&identifier=compute_horizon_srtm&version=1.0.0&DataInputs=latitude=43.79;longitude=6.22;altitude=-999;ground_offset=2&RawDataOutput=result
https://midcdmz.nrel.gov/apps/sitehome.pl?site=ORNL
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Figure 4-2. Representation of maximal values of the ratio 𝑲𝒏 (referred to as “DNI/ETR” in the color-
code scale) as a function of sun position for two sample stations (top: Carpentras BSRN, 2015–
2018, bottom: ORNL, 2015–2019). Gray areas correspond to directions affected by shading (DNI≈0), 
and red lines represent the horizon line calculated with SRTM data.  

Image by Yves-Marie Saint-Drenan 

4.2.9 Tests for Tier-3 Stations 

The previous sections focused on Tier-1 and Tier-2 stations, where at least two irradiance components 

are determined independently. There are far more stations in the world where only one component is 

measured. Such Tier-3 stations measure GHI or GTI with either a thermopile pyranometer or a 

photodiode sensor. A similar situation exists at stations measuring the ground albedo, obtained as the 

ratio between reflected horizontal irradiance (RHI) and GHI, the quality of which needs to be assessed 

separately. 

To assess the quality of GHI measurements, not much can be done besides the physical limits described 

in  

Table 4-1. , taking into account that fast sensors or measurements obtained at different intervals than 

one-minute might require limit adjustments. Because of this scarcity of QC tests for GHI-only situations, 

it might be tempting to compare such measurements to “high-performance” satellite-derived irradiance 

data. With this approach, the latter product now becomes the reference to test the validity of 

measurements—the opposite of the normal situation. There is some evidence that this “inverse” method 

can indeed detect periods during which an instrument with poor maintenance would have been heavily 
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soiled (e.g., during a few days), resulting in a strongly biased signal (Urraca et al. 2017; 2019; 2020). 

Whether this approach can be useful in detecting other typical QC issues remains to be investigated. 

4.2.10 Tilted Irradiance 

In recent years, the rapid development of utility-scale solar power plants has increased the need for 

local measurements of GTI, either on a fixed tilt or in tracking mode. The quality of GTI data is of 

prominent importance in solar energy utilization. Two issues have hindered efforts toward improving the 

quality of such data so far: (1) GTI sensors are normally calibrated in the horizontal position, either 

indoors or outdoors, which can introduce systematic errors when they are actually used in a tilted 

position, particularly if under different climate conditions than at the calibration site; and (2) all QC 

procedures published so far have mainly focused on the three basic components, excluding GTI. 

Noticeably, Lorenz et al. (2022) developed modified limit checks for tilted irradiance similar to those from 

BSRN. These authors also implemented an additional flag if a step change larger than 1000 W/m2 is 

encountered between two consecutive time steps, similar to what was proposed for GHI by Espinar et 

al. (2011a). Further, Tregenza et al. (1994) proposed QC tests of tilted irradiance by comparing to the 

modeled tilted irradiance calculated with the Perez et al. (1990) transposition model. Specifically, 

measurements that deviated more than 200–250 W/m2 from the modeled estimate were flagged. Lorenz 

et al. (2022) took a similar approach and used an absolute deviation of 200 W/m2, but also specified 

additional checks in case tilted irradiance measurements were available for multiple orientations. 

To illustrate the various problems that might arise when dealing with GTI data, a 2-year time series of 

1-minute data has been assembled, using recent measurements recorded at NREL’s Solar Radiation 

Research Laboratory in Golden, Colorado22 (latitude: 39.742°N, longitude: 105.18°W, elevation: 1829 

m). That station is unique in the world for its installation that includes a wide variety of radiometers with 

remarkable redundancy, its advanced calibration methods, the detailed logging of all known instrumental 

issues, and for the meticulous care that each instrument receives in terms of maintenance. In particular, 

each instrument is checked and cleaned each working day (The emphasis is important here because 

no cleaning occurs during weekends or holidays; thus, periods of up to 3 consecutive days can occur 

without cleaning.) The example below shows comparisons between collocated instruments that sense 

the same radiometric quantity, have been calibrated the same way using NREL’s advanced methods, 

and have received the same care. Overall, such comparisons can be understood as the best-case 

scenario that would seldom, if ever, occur in practice. 

Measurements on an equator-facing latitude tilt (e.g., 40° at Golden) are of critical importance in the 

context of solar power plants using fixed-tilt panels or collectors. For this case study, such GTI 

measurements made with two photodiode sensors (SP-Lite 2 and LI-200R) are compared to those of a 

high-quality reference thermopile pyranometer (CMP22), and their difference is plotted against zenith 

angle in Figure 4-3. Four features are readily apparent here: (1) There are many outliers; (2) the 

photodiode readings have systematic bias, mostly in the case of the SP-Lite2; (3) the difference (in 

absolute value) abruptly increases for Z > 80°; and (4) there is a curious difference pattern for Z between 

about 70° and 85°. Point (1) can be mostly attributed to issues caused by snow or ice accumulation 

(particularly during weekends) on the sensors or to differential effects of albedo enhancement 

(Gueymard 2017b). Point (2) is critical because even small biases of just a few percentage points in the 

annual resource can have ruinous consequences in the operation of solar power plants, such as during 

the performance guarantee verification procedure. Point (3) is in large part the consequence of the 

interaction between the respective cosine errors of the instruments, but also reflects the fact that relative 

 

 

22 See https://midcdmz.nrel.gov/apps/sitehome.pl?site=BMS.  

https://midcdmz.nrel.gov/apps/sitehome.pl?site=BMS
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errors are typically larger when the irradiance is low. Point (4) is probably the result of either (i) some 

intricate snow/ice reflection or shading process; or (ii) some structure around the sensors either casting 

a shadow or reflecting differentially on them. The latter circumstances can also occur anywhere and 

thus need to be detected through appropriate QC tests. These results, obtained under near-ideal 

conditions, illustrate the difficulties associated with the development of a robust QC methodology for 

field GTI measurements, especially when only a single radiometer exists locally. 

 

Figure 4-3. Percentage difference vs. solar zenith angle between two photodiode sensors against a 
reference CMP22 pyranometer for 1-minute GTI on a 40° tilt at NREL’s Solar Radiation Research 
Laboratory 2020–2021  

Image by C.A. Gueymard 
 

In parallel, the measurement of surface albedo has become more prevalent with the rapid market 

penetration of bifacial photovoltaic (PV) systems. At NREL, two specimens of the same instrument’s 

make and model are used to sense the upwelling (RHI) and downwelling (GHI) fluxes. The albedo, r, is 

simply the ratio of those two quantities. Here, obviously, unphysical values (i.e., r ≤ 0 or r ≥1) have been 

removed for clarity. Such values are typically obtained when the GHI sensor is completely obstructed 

by snow or under very low-sun conditions, respectively. Measurements from a CMP11 reference 

thermopile assembly are compared here with those from a lower-performance CM3 thermopile 

pyranometer and an LI-200 photodiode. The results in Figure 4-4 show that the CM3 albedometer tends 

to overestimate the albedo by a few percentage points up to 𝑍≈80°, but this might not be a real problem 

in practice. Conversely, the LI-200 readings are highly biased with considerable dispersion. This is 

attributed to the limited and non-uniform spectral response of the photodiode detector. The latter 

interacts in a complex way with the specific spectral albedo of the surface, which changes over time 

depending on weather and season (green vs. dry grass, snow, ice, water, etc.), as discussed in Section 

3.3.1. From this plot, it is obvious that a photodiode-based albedometer should not be used to 

characterize the broadband albedo, as needed in various solar or non-solar applications. Nevertheless, 

it can also be argued that this specific type of measurement is spectrally more representative of the 

reflected radiation that a bifacial PV system would receive from the ground. In that sense, a photodiode-

based albedometer is arguably more adapted to PV applications, although this remains to be 
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demonstrated in practice (see also Section 3.3.1). In any case, the question is still how to assess the 

quality of albedo measurements made with either type of detector. 

 

Figure 4-4. Percentage difference vs. solar zenith angle between two sets of identical radiometers 
against a reference CMP11 pyranometer combo for 1-minute surface albedo at NREL’s Solar 
Radiation Research Laboratory 2020–2021  

Image by C.A. Gueymard 

4.2.11 Software 

Several software solutions can help assess the quality of solar irradiance measurements, ranging from 

Python packages to stand-alone desktop applications. Within the Python package ecosystem, three 

noteworthy projects exist: pvanalytics, libinsitu, and pybsrnqc. All of the aforementioned packages 

contain a range of automatic checks for instantaneous irradiance data and are open source (i.e., free to 

use). The packages can be easily installed from the Python Packaging Index (PyPI) and, given that they 

are community-developed projects, allow for the quick addition of newly developed procedures. Their 

features are described below. 

• pvanalytics is an affiliated package of pvlib that provides functions for quality control, filtering, and 

feature labeling for PV power and irradiance data. Specifically, for solar irradiance QC, functionality 

includes the detection of data shifts, stuck values, and nighttime periods, as well as automatic limit 

and comparison checks.23  

• libinsitu includes tools to transform solar irradiance measurements in various formats to NetCDF 

files compliant with the Climate and Forecast conventions. It also provides tools to retrieve and 

manipulate those NetCDF files. In addition to supporting many of the automatic checks described 

 

 

23 The documentation is available at https://pvanalytics.readthedocs.io, and the source code is hosted on GitHub: 

https://github.com/pvlib/pvanalytics. 

https://pvanalytics.readthedocs.io/
https://github.com/pvlib/pvanalytics
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in this chapter, libinsitu provides visualization capabilities important for QC and a function generating 

the multiplot summarizing all important QC tests (see Section 4.2).24 

• pybsrnqc is a Python package dedicated to deriving and employing site-specific quality checks 

based on the BSRN QC method discussed above.25  

As mentioned previously, work is also ongoing to convert the SERI-QC software into an open-source 

Python package. 

Lastly, the commercial software Solargis Analyst is worth mentioning. The software is a stand-alone 

desktop application that allows users to visualize and perform quality assessments of solar irradiance 

data without programming skills. 

4.3 Daily Visual Inspection of Irradiation Data 

In the previous section, precise methods of data inspection were described in the context of a single set 

of measurements taken at a single point in time. The methods presented there are a fundamental first-

pass regimen to assess quality, but by expanding the temporal view of the data, a trained analyst can 

almost always gain greater insight into problematic factors not apparent in the context of a single 

measurement. This is partly because: 

• Measurements at a single point in time can mask problems if random and opposing errors cancel 

each other. 

• Subtle problems may not seem significant until they occur in aggregate, indicating a systematic 

error. 

• Errors caused by rapidly changing conditions can be detected at a short time scale but might not 

carry through to other temporally proximate measurements (e.g., they can be dismissed as fleeting 

behavior of instruments). 

• Some types of subtle errors cannot be detected by current automatic checks, such as calibration 

issues and cosine response errors. 

 

Similar to the transition from immediate data inspection to a daily regimen, a similar transition can be 

made to an even broader scale (monthly or yearly), as described in Section 4.4. The subsections below 

describe the value and necessity of a daily data inspection routine as part of the data quality cycle 

described in Section 4.6. 

4.3.1 Daily Visualization Routine 

To expedite and facilitate the visualization of data, as much of the process as possible should be 

automated. Particularly, the more streamlined the process is, the more likely it is to be performed. With 

training and experience, a qualified data analyst can then inspect the daily data in detail from dozens of 

stations within an hour or two. 

 

 

24 A detailed description and usage examples of the Python library can be found at: 

https://libinsitu.readthedocs.io, and the source code is available on GitLab: https://git.sophia.mines-

paristech.fr/oie/libinsitu. 

25 The documentation and source code are available on GitHub: https://github.com/LE2P/pybsrnqc. 

https://libinsitu.readthedocs.io/
https://git.sophia.mines-paristech.fr/oie/libinsitu
https://git.sophia.mines-paristech.fr/oie/libinsitu
https://github.com/LE2P/pybsrnqc
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The following steps should be carried out on a daily basis to ensure a high quality of measurements and 

catch potential errors as quickly as possible. 

Step 1: Confirm the station is operational. Determine that measurement data from all sensors are 

present. If data are missing, investigate these likely causes: communication errors, data logger failure, 

sensor malfunction, power failure at the station, or failure of automated data preprocessing. 

Step 2: Inspect data visualizations. Data are most easily viewed when presented in context with other 

related measurements. Figure 4-5 shows GHI, DNI, and DHI measurements from an RSI. The 

experienced analyst can easily determine sky conditions throughout the day under examination and 

identify any anomalies. For example, Figure 4-5 shows a typical clear day profile, although with a 

conspicuous disruption in the measurements. In this case, the investigation revealed that a cleaning 

event occurred at approximately 10:30 and momentarily blocked the sun, causing a sharp reduction in 

the instrument’s output. 

Further inspection of Figure 4-5 shows a discontinuity in the profile from before the cleaning to after 

when the measurement was markedly higher. Maintenance logs revealed that a dust storm passed 

through the area the night before, depositing an unusual amount of dust on the sensor. The effect of 

cleaning is clearly evident in this plot. 

 

Figure 4-5. Cleaning effect on an RSI using a photodiode sensor with diffusing optics. After cleaning 
(indicated by the sudden irradiance drop), DHI appears not significantly different, while DNI 
increases by ≈5%.  

Image by NREL 

 

During automated quality checks of measurements at a single time stamp (Section 4.2), it is most likely 

that only the disturbance from the cleaning event itself would have been flagged, but not the data before 

the cleaning. This can occur because the RSI uses only one sensor, and any soiling will affect all three 

components with similar attenuation. Hence, when the procedure in Section 4.2 is applied, the 

relationships among measurements can appear normal, although at an attenuated level. It is stressed 

here that soiling is a quasi-constant issue at dusty or polluted sites. Excessive flagging of data periods 

apparently affected by soiling would lead to exaggerated loss of data. It is preferable to attribute a higher 

uncertainty to such affected data and to correct them appropriately (e.g., by applying a linear correction 

between two successive cleaning events).  
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The scenario evident in Figure 4-5 clearly underscores the need for visual data inspection in the context 

of a day. Without this process, the measurements affected by dust at this station could possibly have 

remained undiscovered. 

Step 3: View the data in the context of other measurements. Because many radiometric stations include 

instruments for other meteorological quantities, the opportunity exists to put the solar data in yet a 

broader context. The automated inspection preparation software should include daily plots and 

summaries of those meteorological parameters. At such a station, the analyst can view all plots 

simultaneously, as shown in Figure 4-6. 

 

Figure 4-6. Graphical interface showing colocated measurements from a monitoring station 

Image by GroundWork Renewables 

 

The plots can show the analyst evidence of changing weather conditions and how various 

measurements are affected. As in the case of Figure 4-6, it is very beneficial that the analyst is provided 

with an interactive graphical interface. This allows for quickly investigating potential erroneous 

measurements in a different context, e.g., looking at trends in the measurement over longer time periods 

or comparing two sensors. 

Step 4: Examination of the maintenance logs. Station logs recorded by the station personnel should be 

brought up for continuous viewing during the data inspection. The logs should ideally include photos 

(e.g., bubble level before and after leveling, and station surroundings). This provides an easy reference 

for data comparison with the observations also logged by the station personnel at the time of the visit. 

The time of the cleaning event is an easy and effective check on several aspects of the data. The time 

can be verified in the data plots by the presence of a brief discontinuity in the solar irradiance values, as 

shown in Figure 4-5 (an exception being for DNI under overcast skies). Discrepancies in time stamps 

should be investigated in the context of these possible problems: (1) The station clock is incorrect; (2) 

the maintenance personnel are not accurate in their log-keeping; or (3) if a verification dip in irradiance 

is not apparent, the station personnel might not be accomplishing their duties as assigned. For an 

overview of maintenance procedures, see Section 3.6. 
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4.4 Long-Term Irradiation Data 

After the implementation of the different procedures presented in the previous sections, a large share 

of faulty measurements should have been successfully identified. However, some faulty measurements 

might pass the automatic tests or might not be detectable on a short-term time scale, so further post-

measurement quality assessment is recommended. Undetected faults might, for example, include time 

shifts, shadows, or calibration issues. In such cases, analyzing a long-term dataset can help spot some 

measurement problems that have not been detected by usual QC procedures. More generally, as 

discussed below, a long-term data analysis is recommended because it provides insight into the source 

of errors responsible for any data quality flag. 

To show the advantages of the long-term analysis of solar radiation measurements, detailed inspection 

of the closure equation (Eq. 2-2) as a function of time is represented in Figure 4-7. In this plot, the ratio 

between measured GHI and calculated GHI derived from measurements of diffuse and direct normal 

components is represented as a function of time (only values for a solar zenith angle less than 75° are 

displayed). The color represents the local density of the scatter points. As a reminder, the closure 

equation is evaluated using the three component tests proposed by Long and Shi (2008) (Table 4-6). 

The acceptable limits are represented by the two red dashed and dashed-dotted lines in Figure 4-7. The 

light gray dashed line represents the optimal unity value for the ratio. 

 

 

Figure 4-7. Ratio between measured GHI and calculated GHI from the diffuse and direct components 
as a function of time for instances when GHI is greater than 50 W/m2 and SZA is less than 75°. 
Calculated GHI is denoted as GHI*. 

Data source: BSRN Chesapeake Light station, 2015–2016 

 

Two different regimes can be observed in Figure 4-7. After 2015-09, the ratio is distributed around 1, as 

expected from a high-quality measurement system. Before that date, however, the ratio is biased, with 

a mean value slightly greater than 0.9. The transition between the two regimes is very sudden and 

corresponds most probably to either a change of one or more instruments or their calibration. It is also 

interesting to note that most of the biased values in the earlier period are within the tolerance of the 

Long and Shi (2008) test (red dashed lines), so these values would not have been identified without the 

visual analysis of long-term data. Interpreting this data analysis also points to the importance of 

recording the station’s operations and maintenance activities. 

It is possible to apply the same methodology to the global and diffuse components by selecting only 

instances when the measured DNI is low. An example is given in Figure 4-8, where the global-to-diffuse 

irradiance ratio is represented as a function of time for instances when DNI is lower than 1 W/m2. As the 
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direct component is almost equal to zero, the diffuse component and the global horizontal irradiance 

should be equal. The same features from Figure 4-7 can be observed in Figure 4-8. This brings the 

conclusion that the assumed calibration issue affects the global or diffuse instruments and not the 

pyrheliometer. 

 

  

Figure 4-8. Ratio between measured GHI and DHI denoted in the figure as (DIF) as a function of time 
for instances when DNI is less than 1 W/m2, GHI is greater than 50 W/m2 and SZA is less than 75°.   

Data source: BSRN station Chesapeake Light, 2015–2016 

 

The last example illustrates the importance of comparing different analyses to infer the origin of an error. 

This principle has been applied to all QC tests in the collage of plots displayed in Figure 4-9. The left 

column of the multiplot includes different visualizations of the measurements (time series and two-

dimensional date-time-of-day heatmap), as well as the closure analysis described above. The two 

middle columns are visual representations of standard tests, including those proposed by Long and 

Dutton (2002), Long and Shi (2008), and Maxwell et al. (1993), where the gray dashed lines illustrate 

the threshold of the different tests. The right column includes the metadata of the station, statistical 

distributions of the three components, and horizontality and shadow analyses.26  

 

 

26 A detailed description of these plots is not provided for the sake of conciseness, but refer to 

https://assessingsolar.org and https://git.sophia.mines-paristech.fr/oie/libinsitu for further information; the code for 

generating these plots is also available at https://github.com/AssessingSolar/solar_multiplot. 

 

https://assessingsolar.org/
https://git.sophia.mines-paristech.fr/oie/libinsitu
https://github.com/AssessingSolar/solar_multiplot
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Figure 4-9. Example of a multiplot tailored for a single dashboard on a large screen, representing 
the visual support of different QC tests. The gray dashed lines correspond to the different tests.  

Data source: SAURAN’s University of Fort Hare station, 2017–2021 

 

The data displayed in Figure 4-9 originates from a different station than that illustrated in Figure 4-7 and 

Figure 4-8. The two lower plots of the left panel clearly indicate that this station is also affected by a 

calibration problem. In addition, some abnormally high diffuse radiation values are visible in the third 

and fifth plots of the left panel, as well as in other plots involving this component. These high DHI values 

are caused by a misalignment of the shading ball. Further examples of typical errors and how to 

diagnose them using the long-term visualization tool illustrated in Figure 4-9 are currently under 

preparation and will be described on a dedicated website as part of the International Energy Agency 

(IEA) PVPS Task 16 activities.27 

4.5 Methods for Other Types of Instruments 

Most QC algorithms and procedures have been dedicated to broadband measurements of GHI, DHI, 

and DNI. However, with the growth of PV systems, spectrally selective and spectrally resolved 

measurements are even more widespread. This section discusses how QC procedures must be 

modified for such measurements and summarizes the currently available methods on this topic. 

4.5.1 Photodiode Pyranometers 

Photodiode pyranometers are low-cost alternatives to thermopile instruments, and, as such, they are 

expected to have greater measurement uncertainties. Although in principle the types of tests discussed 

above are all applicable, the thresholds for those tests must pass a larger range of values to 

accommodate expected systematic errors, especially spectral and directional errors, or to take into 

 

 

27 See https://assessingsolar.org. 

https://assessingsolar.org/
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account their faster response. In some situations, two different thresholds might be needed: one that 

flags values if the systematic error grows too large, and the other to flag likely anomalous 

measurements. These devices inherently respond extremely fast to changes in irradiance (µsec 

compared to 1–30 seconds for thermopile-based radiometers); therefore, tests for step changes may 

also need to be relaxed. 

The body, entrance optics (diffuser), and bubble level of photodiode pyranometers are often physically 

smaller than their thermopile counterparts. This can make it more difficult to level these instruments, or 

in the case of GTI measurements, to align them to the desired tilt and orientation. Therefore, it is 

especially important to check the data for systematic errors due to misalignment. 

Calibration of photodiode pyranometers is also challenging due to their non-uniform spectral response. 

The spectrum of the light source for indoor, and composition of the atmosphere at the time of outdoor 

calibration, is not always representative of the conditions of routine measurements. Spectral response 

is therefore a major contributor to the measurement uncertainty of these instruments (Reda 2011). 

Finally, because they are low-cost devices, it is perhaps more likely to find that redundant devices are 

deployed. These can be compared directly to each other with much smaller tolerance thresholds to 

detect anomalies, and if the duplicate instruments are independently mounted and aligned, this 

comparison can also identify misalignments. 

4.5.2 Photovoltaic Reference Cells 

QC tests for solar irradiance measurements made with PV reference cells are much less discussed than 

those for radiometers designed for broadband irradiance, presumably because these measurements 

are usually a means to an end (for example, to evaluate the performance of PV modules) rather than 

an end goal (Vignola et al. 2022). Limit tests similar to those for GHI, and especially GTI, can certainly 

be used, but thresholds must be adjusted based on the performance specifications and estimated 

measurement uncertainties of the devices. 

When PV reference cells are deployed together with PV modules or systems—as they frequently are—

a form of redundancy is inherently present. For example, one can use the reference cell output to 

simulate the PV module or system power and compare with the measured power using suitable 

thresholds. Nevertheless, having additional reference cells and/or additional module output 

measurements improves the ability to distinguish between normal deviations and abnormal conditions. 

For a single reference cell, or for a more objective/independent assessment, the maximum expected 

output can be calculated using broadband clear-sky irradiance estimates as input. Essentially, this is 

similar to the first steps in a PV system simulation: transposing DNI and DHI to GTI, subtracting reflection 

losses, and making a spectral mismatch adjustment. This clear-sky reference cell output value can then 

be used to set a tighter upper threshold on the range of expected values for tests. 

4.5.3 Spectral Data 

Hoyer-Klick et al. (2008) developed a method for calculating upper and lower limits for spectral 

irradiance measurements. The limits were determined by simulating a “very clear atmosphere with low 

extinction conditions.” Similarly, lower limits for spectral measurements can be determined by simulating 

a “turbid atmosphere with large extinction conditions.” The method uses the SMARTS clear-sky spectral 

model (Gueymard 2001; 2019) for the spectral simulations. Another approach, also based on SMARTS, 

was followed by (Marzo et al. 2021). This method includes automatic comparative tests, threshold tests, 

and various visual inspections. 
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4.6 Data Quality Cycle 

A successful QC process requires elements of near-real-time data acquisition, quality assessment, and 

operations feedback. As shown in Figure 4-10, information flows from data acquisition to quality 

assessment, where various procedures are applied to determine post-measurement data quality. The 

results of the quality assessment phase are analyzed and formed into feedback that goes back to the 

data acquisition module. Data acquisition is thoroughly covered in Chapter 3. 

 

 

Figure 4-10. Illustration of the data quality cycle  

Image by Adam R. Jensen, DTU 

 

The activities in the data quality cycle shown in Figure 4-10 can take several forms. For example, quality 

assessment could be the daily site inspection, and the operations feedback could be a simple procedure 

that corrects the equipment issues (e.g., instrument realignment). Alternatively, the post-measurement 

quality assessment could be a daily summary of data quality flags, and the analysis would then provide 

a determination of a specific instrument problem that is transmitted back to maintenance personnel, 

instructing them to correct deficiencies (e.g., sensor leveling) or to further troubleshoot problems. The 

faster the cycle runs, the sooner problems will be detected and corrected. This reduces the amount of 

erroneous data collected during failure modes. Conversely, if the site is inspected infrequently, an easily 

correctable error, such as an instrument misalignment, can result in a large portion of the dataset being 

contaminated with substandard measurements. More than one data quality cycle can—and likely will—

run at any time, each with a different period and emphasis—for example, daily inspection, weekly quality 

reports, and annual data review. For larger networks, it is often helpful to have both on-site personnel 

to handle maintenance and address problems and a central facility that runs in-depth QC of the data 

and reports data issues. The data quality cycle is critically important to the success of a measurement 

program, and thus it should be well-defined and funded to maintain consistent data quality over time. 

4.6.1 Operations Feedback 

The final component of the data quality cycle (Figure 4-10) consists of operation’s feedback after the 

quality assessment. Intuitively, the discovery of any error requires corrective action. Even though this 

can be a simple text message or phone call to the station’s maintenance personnel, a more formal 

procedure should take place to document the problem being addressed, the corrective plan, who was 

assigned the work, and its final resolution. The documentation need not be exhaustive but rather can 
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contain pertinent details that will allow a future reader to reconstruct the circumstances, particularly 

when evidence of data errors remains in the archive. Notably, adding photo documentation can be 

particularly helpful. 

The type of error condition encountered will dictate the type of response and feedback. When corrective 

action is necessary, a positive approach to the situation can help maintain a productive work 

environment. It can be important to reassert the technician’s capabilities and training and that the project 

managers have confidence in their abilities. When the corrective action is complete, the station’s 

personnel should report back the results of their activities, the cause of the problem, and if any downtime 

occurred at the station. This discussion shows that non-technical issues (such as human relationships) 

also contribute to the implementation of the data quality cycle, and ultimately to the success of any solar 

radiation measurement campaign—particularly in challenging environments. 

4.6.2 Logging Quality Control Results 

All findings during quality inspection procedures should be logged for the station’s permanent records. 

It is useful to create a special flag accounting for issues detected during the daily inspection or from the 

long-term data inspection. This “manual” inspection flag defaults to False, that is, no errors, and if a 

potential error is detected, the flag is changed to True for the corresponding period. If possible, a note 

should be added stating the type of problem (physical sensor issue or measurement error), the likely 

cause of the error, and what corrective actions have been taken.  

With this paradigm, the station record will include documentation of all positive conditions at the station, 

along with the occasional negative findings. It is important to document that all inspections have been 

made and to affirm conditions at a well-run station. This assumes the data inspection is being performed 

by trusted personnel who will not bypass any steps in the process. 

The procedure just described is essential for resource assessment stations because of the financial 

issues at stake. The personnel supporting such a station and the analyst controlling and/or utilizing the 

data are bound to remain in close contact, which is an essential part of the process. The QC procedure 

is similar in the case of permanent stations designed to provide high-quality irradiance data over the 

long term (e.g., in the context of institutional research-class or meteorological networks). The difficulty 

here, however, is that the typical end user (e.g., a scientist not affiliated with the institution) does not 

usually have access to all data quality documentation and, therefore, might not be able to exploit the 

data at its fullest unless the data portal also allows public access to data quality statements. 

4.7 Outlook 

Automated and visual quality control and assessment methods are of utmost importance for downstream 

data processing, as well as upstream (e.g., maintenance and retrospective corrective measures related 

to measurements, sensors, installation, and maintenance procedures). However, the development and 

related expert consensus for these procedures mostly pertain to pyranometric reference instruments 

from scientific/academic institutions in meteorological, atmospheric, and solar energy research domains. 

It is imperative that development continues to extend these procedures and expert consensus to solar 

energy-related measurements in the realms of industry and participatory sciences. These 

measurements could be derived from reference cells, photodiodes, PV modules, etc. With the 

unprecedented growth of PV systems worldwide, the quality of solar radiation measurements and their 

energy derivatives is already crucial for numerous industrial applications, such as maintenance 

monitoring for improved efficiency and forecasting for better integration into power grids. Data quality is 

also vital because these rapidly expanding sources of data are and will be increasingly utilized by 

research institutions in addition to those provided by the scientific networks of reference. 
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In this new context of industry and participatory sciences, measurement instruments vary significantly 

in terms of manufacturing sources, quality, and nature, compared to those used in scientific networks. 

For example, the temporal resolutions of these instruments often differ from the conventional 1-minute 

interval of reference instruments. Moreover, the orientations of these instruments often deviate from 

horizontal or normal incidence, with sometimes no precise information. Their metadata and maintenance 

procedures are likewise of widely varying quality or even nonexistent. 

Whereas some of the QC methods described in this chapter can be readily adapted to these new diverse 

in-situ measurement sources, research and development efforts are still in progress to improve the 

existing methods. Moreover, expert discussions are necessary to establish effective means of qualifying 

such data and achieving broad consensus on their adoption and usage. 

Emerging research avenues seek to address these new requirements, such as methods involving 

machine learning, applied notably to anomaly detection. These methods can integrate other 

simultaneous and collocated data sources, such as those from satellites or numerical weather prediction 

or reanalysis models. To support these data-driven developments, it is crucial to create a database that 

collects these new data as comprehensively as possible, thus extending the very important initiative 

undertaken by Task 16 of the IEA PVPS program (Forstinger et al. 2023), which focuses on research-

grade radiometric networks of reference. 

Lastly, it is worth noting the close methodological relationship between these new QC methods and the 

currently very active research and development efforts regarding short-term solar forecasting and gap-

filling techniques. Indeed, automated QC procedures can be established based on smart thresholding 

of deviations between the current value with the imputation from an appropriate gap-filling method or 

the predicted value from some forecasting method. In particular, gap-filling methods potentially offer 

alternative values for measurements deemed questionable based on the results of the QC procedure. 

Some of these methods have recently been analyzed and compared under the auspices of PVPS Task 

16 (Blanc and Silva 2023). Ultimately, the synergy between these different domains should be leveraged 

to accelerate the implementation of more-versatile QC methods. 
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Executive Summary 

Solar irradiance is the most important meteorological input parameter for solar energy, but additional 

meteorological quantities are required for accurate yield predictions, performance analysis, and optimal 

plant and grid operation and design. Different individual parameters will be needed for different 

technologies. 

• Wind speed, wind direction, and gust 

• Ambient air temperature  

• Relative humidity  

• Atmospheric pressure 

• Precipitation type and amount (rain, snow, hail) 

• Aerosols and water vapor 

• Spectral irradiance  

• Ultraviolet (UV) irradiance 

• Circumsolar irradiance 

• Attenuation between the heliostat and the receiver of solar tower plants 

• Soiling of solar collectors  

• Surface albedo. 

These quantities might affect the design of the solar installation (e.g., wind loads) and its efficiency (e.g., 

temperature, soiling) or can help improve the solar radiation datasets (e.g., aerosols and water vapor).  
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Further parameters related to agricultural crops, such as the photosynthetically active radiation (PAR), 

are required for agrivoltaic projects, and the importance of some of the above variables is different for 

agrivoltaics because of their effects on the photovoltaic (PV) system and plant growth.  

For each of these quantities, measurement methods exist, and the appropriate instruments can be 

added to a radiometric station. Numerical weather prediction (NWP) models provide wind, temperature, 

humidity, pressure, precipitation, surface albedo, and water vapor data. Satellite data can be used to 

determine or model surface albedo, precipitation, aerosols, water vapor, spectral irradiance, circumsolar 

irradiance, and atmospheric extinction between the heliostat and the receiver on a concentrating solar 

thermal (CST) tower. Finally, soiling losses can be approximated based on meteorological data such as 

precipitation or particulate matter.  

 

Figure ES 5-1. Exemplary measurement options for the discussed variables  

Images by DLR at CIEMAT’s Plataforma Solar de Almería and by University of Applied Sciences  
Upper Austria 

5.1 Introduction 

Solar radiation is the fuel of solar energy systems and the driver of their production. However, solar 

installations are also affected by other meteorological variables. The influence of ambient air 

temperature on photovoltaic (PV) efficiency is a well-known example. Recently, other parameters such 

as soiling have also gained interest. The following parameters are discussed in this chapter:  

• Wind speed, wind direction, and gust 

• Ambient air temperature  

• Relative humidity  

• Atmospheric pressure 

• Precipitation type and amount (rain, snow, hail) 
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• Aerosols and water vapor 

• Spectral irradiance  

• Ultraviolet (UV) irradiance 

• Circumsolar irradiance 

• Attenuation between the heliostat and the receiver of solar tower plants 

• Soiling of solar collectors 

• Surface albedo. 

This chapter provides definitions for these quantities, describes their effect on solar energy systems, 

and documents how they are measured and modeled. Moreover, some further variables required for 

agrivoltaics are introduced and their importance explained in that context. 

Various atmospheric or meteorological quantities affect the design of solar installations (e.g., wind loads) 

and their efficiency (e.g., temperature, soiling), or can be used to improve the development of modeled 

solar radiation datasets (e.g., aerosols and water vapor). Typically, many experiments and models have 

been used to quantitatively understand the effect of these variables on different solar energy systems. 

Solar energy system models used for such purposes are described in Chapter 11, which also provides 

recommendations on the required or optional datasets for different project phases. Overviews of the 

effects of these meteorological parameters on PV systems are presented in an International Energy 

Agency (IEA) Photovoltaic Power Systems Programme report (Reise et al. 2018) and in Bonilla Castro 

et al. (2020). A discussion of the influence of different meteorological variables on concentrating solar 

power (CSP) can be found in Chhatbar and Meyer (2011). The IEA Solar Power and Chemical Energy 

Systems program has prepared a guideline for the meteorological data required for different project 

phases for CSP, including the proper selection and subsequent impact of key meteorological variables 

(Silva et al. 2021).  

In practice, meteorological measurements are typically made in parallel with solar radiation 

measurements, as described in detail in Chapter 3. In particular, Section 3.5 of Chapter 3 provides 

information on how these additional instruments should be included in a solar resource assessment 

measurement station. Data quality control for these measurements is also required. The uncertainty of 

the datasets should also be known. Several radiation datasets presented in Chapter 8 include some of 

the variables discussed in this chapter, which reduces the required effort for data collection and merging. 

Additional data sources for some meteorological quantities are provided in the following sections. 

5.2 Wind 

Wind speed, gust, and wind direction are important for the design and performance of solar power plants 

and electricity grids. Wind speed and direction are often represented by the horizontal components of 

the wind velocity. The gust is the maximum wind speed during each time interval consistent with the 

measuring device performance specifications. For many applications, an interval of 3 seconds is 

adequate (WMO 2018).  

Wind loads, and in particular wind gusts, must be considered for the design of solar collectors and 

overhead power transmission and distribution lines. In tracked solar collectors, high wind gusts or 

speeds during operation might also require moving the collectors to their stowed position to minimize 

wind load and avoid damage. From a different perspective, cooling effects are strongly related to wind 

(convection). Cooling increases the efficiency of PV, but decreases that of thermal collectors because 

of increased thermal losses. For some specialized applications in CSP testing (e.g., convective receiver 

losses), the three-dimensional wind velocities are also of interest. 
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Wind speed and gust can be measured using anemometers. Cup anemometers and propeller 

anemometers consist of a rotor whose frequency of rotation corresponds to the wind velocity. Ultrasonic 

anemometers measure the wind speed, gust, and direction. Many ultrasonic anemometers emit an 

ultrasonic signal over a constant, short distance and measure the time the signal needs to reach a 

detector. Using several measurement paths, the wind direction or the three-dimensional wind vector can 

be derived. 

Mechanical sensors used to determine the wind direction are called wind vanes. The vane’s position is 

read by, for example, a potentiometer coupled with the wind vane. Propeller anemometers often include 

a wind vane. Recommendations on wind measurements can be found in the Guide to Meteorological 

Instruments and Methods of Observation (WMO 2018), also known as the Commission for Instruments 

and Methods of Observation (CIMO) guide. In solar power applications, it is often impossible to measure 

the wind velocity solely by following the CIMO guide. Because wind measurements at an existing or 

potential solar power plant site must represent the conditions affecting the collectors, measurements 

might be taken much closer to obstacles (buildings, trees, etc.) than required for meteorologically 

representative wind measurements intended for other purposes. For resource assessment, one 

measurement at 3-m or 10-m height integrated with the resource assessment weather station is 

considered sufficient (the measurement height must be determined depending on the collectors' 

expected height). In existing power plants with tracked collectors, it is recommended to monitor the wind 

at different heights and at more than one site in the solar field. This is mainly because the wind speed 

in different parts of a solar field varies as a function of its geometrical coarseness. The windward side 

will usually experience higher wind speeds than the leeward side. Especially in power plants where wind 

has an influence on operation (tracked PV, CSP) it is important to know the wind load on the structures, 

so that wind sensors should be placed such that the highest wind speed occurring in the solar field are 

always recorded. Chapter 3, Section 3.5 provides information on how wind measurements should be 

included in a measurement station for resource assessment and yield predictions. 

Ultrasonic anemometers are widely used in PV simply because most sites are unstaffed and sonic 

sensors do not have any moving parts, thus mitigating the need for regular scheduled maintenance that 

is required with mechanical sensors. Ultrasonic anemometers commonly include an embedded digital 

compass used to correct wind direction data; this significantly simplifies sensor installation as compared 

to mechanical wind directions sensors, because these require meticulous alignment to measure 

accurate wind direction. In contrast, mechanical anemometers typically have lower initiation thresholds 

than sonic sensors and can thus measure lower wind speeds, which might be a significant advantage. 

In addition to measurements, modeled wind data are available based on either historical time series or 

forecasts. Such modeled data are typically required if long-term radiation datasets are needed, typically 

because of the absence of long-term ground measurements from a nearby site. Many numerical weather 

prediction (NWP) models and reanalysis datasets provide wind data. Examples are the Modern-Era 

Retrospective analysis for Research and Applications, Version 2 (MERRA-2) from the National 

Aeronautics and Space Administration (NASA) (Bosilovich et al. 2016); the North American Regional 

Reanalysis (Mesinger et al. 2006); the Climate Forecast System Reanalysis (CFSR) from the National 

Centers for Environmental Prediction; and ERA5 from the European Centre for Medium-Range Weather 

Forecasts (see also Chapter 8, Section 8.3.1). A global, albeit limited, validation of the wind speed 

predicted by five reanalyses has shown that their accuracy is highly variable and might not be sufficient 

for demanding applications (Ramon et al. 2019). Users should always be aware that wind is highly 

variable on a small scale and strongly affected by obstacles, structures, and terrain features, so that 

wind measurements taken at, or modeled for, a specific location might differ from the conditions just a 

short distance away. 

In general, the spatial and temporal resolution of reanalysis data is coarse compared to satellite-derived 

irradiance data; therefore, upscaling methods are needed to increase the spatial resolution of wind data 
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and match it with that of the solar data. Sometimes, however, reanalysis data are readily part of solar 

radiation datasets. The upscaled MERRA-2 wind data, for instance, is disseminated through 

https://nsrdb.nrel.gov, and it is also accessible through the National Renewable Energy Laboratory’s 

(NREL’s) System Advisor Model (SAM), which is a techno-economic model (Blair et al. 2018). In the 

latter, wind information is a weather input. Like MERRA2, ERA5 includes east- and northward 

components (U and V) of wind speed, but at a finer 0.25 by 0.25° grid spatial resolution. Moreover, its 

sister product, ERA5-Land, provides the same information at 0.1 by 0.1° (or ≈9 km) resolution, but only 

over land surfaces. 

5.3 Ambient Air Temperature and Relative Humidity 

Ambient air temperature is an important factor for calculating the efficiency of solar power plants and 

the maximum load of electric power transmission lines. Although PV module temperatures are typically 

directly measured, ambient temperature and wind speed are commonly used to model cell temperature 

for performance monitoring, capacity testing, and energy assessments (Driesse et al. 2022). High 

temperatures reduce the efficiency of many common types of PV modules, the thermal losses of thermal 

collectors, and the efficiency of a thermal power plant’s cooling system. Transmission lines expand when 

heated due to the increasing air temperature, which also increases their electrical resistance, and hence 

the electric losses. Temperature and temperature changes are also relevant for the selection of the 

appropriate materials for a power plant, considering aging processes. Air temperature is often 

represented by dry-bulb temperature, defined by the temperature of air when shielded from radiation, 

wind, and moisture. 

Relative humidity is the ratio (usually reported in percentages) between the observed vapor pressure 

and the saturation vapor pressure with respect to water at the same temperature and pressure (WMO 

2018). The saturation vapor pressure is a sole function of ambient temperature, and it can be obtained 

using one of many empirical formulae; see Alduchov and Eskridge (1996) and Gueymard (1993). 

Relative humidity has an impact on the cooling processes in thermal power plants and the efficiency of 

thermal receivers, depending on receiver technology, such as air receivers. It is also associated with 

soiling processes through the formation of dew and the accumulation of particles on solar collectors and 

solar radiation sensor optics. Moreover, similarly to temperature, relative humidity influences aging 

processes.  

Thermometers and hygrometers are used to measure dry-bulb temperature and relative humidity, 

respectively. Currently, temperature-dependent resistors, or bandgap sensors, are used in the 

construction of thermometers. Capacitance or resistance changes in the sensor material directly 

correspond to changes in humidity, thus providing the basis for measurement. Often, combined sensors 

(hygro-thermometers) are used and placed in a multiplate naturally ventilated radiation shield to 

minimize solar heating-related temperature bias and protect the sensor from rain and snow. Aspirated 

solar radiation shields can alternatively be used to further reduce radiative errors in air temperature 

measurements at stations that are installed on a highly reflective surface or that commonly experience 

wind speeds less than 3–4 m/s (Huwald et al. 2009). 

Higher accuracy of temperature and relative humidity can be reached with more sophisticated 

measurement methods, but this is usually not required in solar energy applications. Recommendations 

on temperature and relative humidity measurements can be found in the CIMO guide (WMO 2018). 

The prediction of temperature and relative humidity is included in the output of many NWP or reanalysis 

models. Because of the coarse resolution of such data, upscaling is typically necessary to match 

satellite-based radiation data. To that end, an elevation correction of temperature and humidity needs 

to be applied. As an example, the upscaling method used in the production of the National Solar 

https://nsrdb.nrel.gov/
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Radiation Database (NSRDB) is presented below. According to Hemond and Fechner (2015), the 

correction for temperature uses a lapse rate of 6.5°C per kilometer: 

 𝐴𝑖𝑟_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝐶𝑜𝑎𝑟𝑠𝑒_𝑝𝑖𝑥𝑒𝑙_𝑎𝑖𝑟_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝐸 • (
6.5

1000
) (5-1) 

where E is the location’s elevation (in meters) relative to the upscaled grid. 

To upscale the relative humidity data, a multistep procedure has been devised for the NSRDB: the 

specific humidity is interpolated using a combination of nearest-neighbor temporal interpolation and 

second-degree inverse-distance weighting. Additional steps are taken to estimate relative humidity from 

the interpolated specific humidity. The saturation vapor pressure in Pa is calculated using a method 

described in Tetens (1930): 

𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑣𝑎𝑝𝑜𝑟_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 610.79 • exp (
𝐴𝑖𝑟_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝐴𝑖𝑟_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒+238.3
• 17.2694) (5-2) 

where air temperature is in °C. Then the mixing ratio (w), which is the mass of water vapor per mass of 

dry air, is calculated using a method described by DeCaria28: 

 𝑤 =
ℎ

(1−ℎ)
  (5-3) 

where h is the specific humidity 2 meters above ground level in kg kg-1. The next step is to estimate the 

saturation mixing ratio (ws) using a method described by DeCaria29 and the National Weather Service30: 

𝑤𝑠 =
621.97•(

𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑣𝑎𝑝𝑜𝑟_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

1000
)

𝑆𝑢𝑟𝑓𝑎𝑐𝑒_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒−(
𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑣𝑎𝑝𝑜𝑟_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

1000
)
 . (5-4) 

The surface pressure is also obtained from MERRA-2 and the corresponding upscaling scheme, as 

discussed in Section 0, Eq. 5-6. Finally, relative humidity is calculated from31: 

 RH =
𝑤

𝑤𝑠
. (5-5) 

In general, it is advised to interpolate dew point and ambient temperatures separately and then calculate 

relative humidity at the place of interest. 

5.4 Atmospheric Pressure 

Atmospheric pressure has a direct effect on cooling processes in thermal plants and CSP receiver 

technologies, particularly on the power block efficiency. Pressure variations influence the aging 

processes of components with sealed volumes; however, pressure data are also used for intermediate 

calculations in solar resource assessments, such as the calculation of solar position, atmospheric 

transmittance, dew point, or relative humidity.  

 

 

28 See http://snowball.millersville.edu/~adecaria/ESCI241/esci241_lesson06_humidity.pdf.  

29 See http://snowball.millersville.edu/~adecaria/ESCI241/esci241_lesson06_humidity.pdf.  

30 See https://www.weather.gov/media/epz/wxcalc/mixingRatio.pdf.  

31 See https://www.weather.gov/media/epz/wxcalc/mixingRatio.pdf.  

http://snowball.millersville.edu/~adecaria/ESCI241/esci241_lesson06_humidity.pdf
http://snowball.millersville.edu/~adecaria/ESCI241/esci241_lesson06_humidity.pdf
https://www.weather.gov/media/epz/wxcalc/mixingRatio.pdf
https://www.weather.gov/media/epz/wxcalc/mixingRatio.pdf
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The atmospheric pressure on a given surface is defined as the force per unit area resulting from the 

weight of the atmosphere aloft (WMO 2018). Atmospheric pressure can be measured with mercury 

barometers, aneroid barometers, hypsometers, or electronic barometers. For solar energy applications, 

electronic barometers are of the most interest. Such barometers use piezoelectric materials, an aneroid 

capsule that changes its form or position depending on pressure, or a resonator whose mode of vibration 

depends on pressure. The displacement of the aneroid capsule can be detected using capacity or 

resistance changes. The recommendations for pressure measurements by the CIMO guide (WMO 

2018) can be used in solar energy applications.  

As mentioned in the previous section, surface pressure can be obtained from NWP and reanalysis data 

such as MERRA-2. Pressure data might also need to be upscaled. For example, to upscale the surface 

pressure and relative humidity data in the NSRDB, a combination of linear temporal interpolation and 

second-degree inverse-distance weighting is used. An elevation correction is carried out using the 

method described in McIntosh (1978) with elevation E in m and pressures in mbar: 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 𝐶𝑜𝑎𝑟𝑠𝑒_𝑝𝑖𝑥𝑒𝑙_𝑠𝑢𝑟𝑓𝑎𝑐𝑒_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + 

                                    [1013.25 • {1 − (1 −
𝐸

44307.69231
)

5.25328
}]. (5-6) 

5.5 Precipitation 

Precipitation (rain, hail, or snow) is another relevant quantity in solar energy applications. Because of 

the possible strong effects of precipitation, not only historical data and measurements, but also 

forecasts, are of interest. In the form of rain, precipitation can wash dirty collectors, but it can also cause 

efficiency loss resulting from droplets on exposed optical surfaces, especially in concentrating 

technologies. Rain-induced cooling effects tend to increase the efficiency of PV modules, but it reduces 

that of thermal plants. Moreover, precipitation can strongly influence aging processes. Large hail with 

diameter of more than about 4 cm (Rand et al. 2020) can damage solar collectors and other plant 

components. For this reason, hail data are important for site risk assessment and system design. 

Measurements and forecasts of hail events allow to stow trackers when needed. If water enters the 

insulation material of hot pipes, a prolonged efficiency loss occurs until the wet insulation is replaced. 

The effect of rain on transmission lines is less important because its cooling effect and the weight 

increase mostly compensate each other. Ice loads on transmission lines can be of critical importance, 

however, and have even resulted in catastrophic failures in the recent past, such as during the January 

1998 North American ice storm (Phillips 2002).  

The presence of snow can have either positive or negative effects on solar energy production. Snow in 

the vicinity of a PV installation or flat-plate thermal collectors could increase production because of the 

higher surface albedo and increased reflected irradiance (Andrews et al. 2013; Burnham et al. 2019). In 

some cases, this increase in reflected irradiance can combine with cloud enhancement situations and 

lead to substantial spikes in incident irradiance (Gueymard 2017). In turn, these spikes can have 

negative impacts on the normal operation of PV plants (do Nascimento et al. 2019; Järvelä et al. 2020). 

On the other hand, it is more likely that accumulated snow on collectors will lead to yield reductions, 

increased wear and tear, and even pose a danger because of the increased load on the supporting 

structure and snow sliding down onto underlying areas (Andenæs et al. 2018). In concentrating systems, 

no irradiance gains can exist because only direct radiation is used. 

Rain is often measured with tipping bucket rain gauges. The raindrops are collected by a horizontal 

aperture of known small area, and the droplets fall on a lever. When the droplets trickle onto the lever, 

a signal is produced when the weight of the droplets causes the lever to move or “tip.” Such rain gauges 

can measure only liquid precipitation. In areas where snow is common, heated systems must be 
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considered, in which the aperture is heated and melts frozen precipitation almost immediately. In parallel 

to the common mechanical tipping buckets, optical pluviometers also exist. The lever can be replaced 

by a laser and an appropriate sensor to detect the droplets. Another optical measurement method for 

all types of precipitation uses an open measurement volume, which directly detects the falling raindrops 

or snowflakes in the air with an optical scattering method. A light source emits light, and a sensor detects 

the scattered light under a specific scattering angle. The number of pulses detected by the sensor 

corresponds to the number of particles, and the pulsing pattern helps determine the size of the droplets 

and distinguish between snow, rain, and other forms of precipitation. A haptic rain sensor detects and 

quantifies rain intensity and accumulation using vibration signals. The CIMO guide (WMO 2018) 

contains recommendations for precipitation measurements that are also of interest in solar applications. 

Precipitation data can also be obtained from NWP or reanalysis predictions, which is of great interest 

for the operation and design of solar energy systems despite the lower accuracy compared to 

measurements (De Leeuw et al. 2015; Zhao et al. 2021).  

In relation to precipitation, it is of practical importance to know how long raindrops, and even more so, 

snow, can remain on the surface of solar collectors; thus, data about snow cover is of interest. Examples 

of global snow cover products include those from the Interactive Multisensor Snow and Ice Mapping 

System (produced by the U.S. National Ice Center), the Microwave Integrated Retrieval System, the 

National Oceanic and Atmospheric Administration’s Microwave Surface and Precipitation Products 

System, and the JAXA Satellite Monitoring for Environmental Studies (produced by the Japan 

Aerospace Exploration Agency). Products with a European focus are available from the CryoLand 

Copernicus Service. Some global snow products have been intercompared recently (Chiu et al. 2020). 

Other options are reanalysis data (e.g., ERA5, ERA5-Land, Copernicus Atmosphere Monitoring Service 

[CAMS], or MERRA-2) and databases with snow depth information from in situ measurements, such as 

the European Climate Assessment and Dataset project.32 More detailed data regarding snow conditions 

might be also available from the national weather service of each country. 

When designing installations for snowy regions, precautions should be followed to optimize the solar 

system’s performance—see Andenæs et al. (2018) for architectural considerations. Obstructions to the 

sliding path of snow is the system characteristic that has the most notable effect (Pawluk et al. 2019). 

In particular, it is recommended to use frameless PV modules and to ensure that there is enough 

clearance between them and the underlying surface so that snow can slide off easily (Bogenrieder et al. 

2018; Riley et al. 2019). It is good to increase the tilt angle to facilitate this process and to arrange the 

panels in landscape-oriented layouts to prevent the bypass diodes from becoming ineffective during 

periods of partial shading (Heidari et al. 2015). The possible benefit of mechanically removing snow 

accumulations depends on location or climate. In high-latitude regions characterized by long cloudy 

winters, snow clearing does not seem to be beneficial (Stridh 2012), but it might be of value in sunnier 

regions where the potential winter production is higher (Heidari et al. 2015). Other clearing methods like 

applying surface coatings or using electrostatic forces or thermal absorbers are promising, but further 

research and development is needed to prove their value (Pawluk et al. 2019). In Jahn et al. (2022), a 

suggested limit for snow accumulation on panels is 0.7 m. It is also noted that in Sweden the installer 

recommendation is to not actively remove snow from modules because the guarantee often becomes 

void if the modules are serviced mechanically. 

How much loss can be expected because of snow? Existing studies based on a limited number of sites 

have reported annual production losses ranging from 0–25% and monthly losses as high as 100% 

(Andrews et al. 2013; Becker et al. 2008; Sugiura et al. 2003; Townsend and Powers 2011). In their 

 

 

32 See https://www.ecad.eu/.  

https://www.ecad.eu/
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review article Pawluk et al. (2019) found that annual losses caused by snow coverage are less than 

10% in most climates. Many models have been developed to estimate the snow loss as a function of 

weather and installation characteristics, such as Lorenz et al. (2012) Marion et al. (2013), and Townsend 

and Powers (2011). Such results are site-specific, so little is known about their general validity; therefore, 

it is difficult to predict the potential impact of snow on the performance of future projects. Because of a 

lack of general snow-loss models, the major PV modeling software products on the market do not 

support such calculations beyond a simple scaling, such as in PVWatts® (Dobos 2014). Ryberg and 

Freeman (2015), however, incorporated the snow model from Marion et al. (2013) into NREL’s SAM. In 

a 30-year simulation using NSRDB data for 239 locations across the United States, the modeled snow 

loss varied from 0–4% in areas with only occasional snow to 15–25% in areas with abundant snow. 

These limited results can be considered today’s best practice for snow-loss modeling. They are also in 

line with the results from a Canadian study presented in a recent report on soiling losses (Schill et al. 

2022). 

5.6 Aerosols and Water Vapor 

Some solar energy applications can benefit from the knowledge of spectral aerosol optical depth (AOD), 

single-scattering albedo, asymmetry factor, scattering phase functions, and total column water vapor. 

The latter is often referred to as precipitable water (PW) or integrated water vapor (IWV). These 

variables can be used to simulate clear-sky broadband or spectral irradiance, as explained further in the 

following sections, and could aid in understanding the spatiotemporal variability of the radiation field. 

Precise knowledge of these variables at any site or instant can be used to improve modeled solar 

radiation datasets and to conduct site adaptations. For solar tower power plants, these variables are 

also helpful to model the slant-path radiation attenuation between the heliostats and the receiver.  

 

Figure 5-1. AERONET sun photometric station at CIEMAT’s Plataforma Solar de Almería  

Photo from DLR 

 

Sun photometers are typically used to determine these variables, although spectroradiometers have 

been used occasionally to this purpose as well (Cachorro et al. 2009). One type of sun photometer 

measures spectral direct normal irradiance (DNI(𝜆)) and the spectral sky radiance at several 

wavelengths (Figure 5-1.). Simpler sun photometers sense only the spectral DNI. Both instruments 

consist of one or more photodetectors positioned behind different spectral filters and a collimator system. 

Additional polarization filters are optionally used. Solid-state sensors, such as photodiodes, are used for 
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signal detection. For sun photometers that measure only spectral DNI, a sun tracker is required. For sky 

radiance measurements, more elaborate pointing systems are used.  

Because these aerosol properties are highly wavelength-dependent, it is necessary to make 

measurements at more than a single wavelength. Sun photometers are primarily used to monitor aerosol 

properties, but they normally have a dedicated channel (near 940 nm) to also determine PW. 

The direct-sun irradiance measurements are used to derive basic information on aerosols. First, the 

total atmospheric optical depth (TOD) is calculated at the measurement wavelengths using the spectral 

DNI measurements, the extraterrestrial spectral irradiance at the top of the atmosphere ETR(𝜆), and the 

airmass, m. 

                      TOD(𝜆) =
1

𝑚
ln (

ETR(𝜆)

DNI(𝜆)
)

⬚
 (5-7) 

The AOD at these wavelengths is then determined by subtracting the optical depths of all other 

atmospheric constituents, such as molecules, water vapor, ozone, or nitrogen dioxide. Most optical 

depths are obtained from separate sources (e.g., satellite retrievals or atmospheric models), whereas 

the water vapor optical depth is derived from the collocated PW measurement. The Ångström exponent, 

𝛼𝐴𝑛𝑔, can then be derived and used to calculate the AOD at different wavelengths. Ångström’s law is 

described in Eq. 5-8 as a function of wavelength 𝜆 and reference wavelength 𝜆0 = 1 µm: 

                      AOD(𝜆) = AOD(𝜆0) (
𝜆0

𝜆
)

𝛼𝐴𝑛𝑔
 (5-8) 

To determine 𝛼𝐴𝑛𝑔, the spectral AOD for at least two wavelengths must be known. In a separate step, 

the direct-sun measurements can be combined with the concomitant sky radiance measurements to 

derive the aerosol single-scattering albedo, asymmetry factor, aerosol phase function, and other 

parameters using inversion algorithms (NASA 2006).  

The two main sun photometer networks in the world are the Aerosol Robotic Network (AERONET)33 and 

SKYNET.34 These networks are important for solar resource assessment because of the relatively large 

number of available observing stations and the applied quality assurance and calibration methods (Giles 

et al. 2019).  

The proper determination of aerosol properties (most importantly, AOD) and water vapor can be done 

only if the solar disk is not obscured by clouds; therefore, cloud-detection algorithms are used to post-

process the raw data and generate usable data. With AERONET, for example, the spectral DNI 

measurements are taken in direct-sun triplets. In a triplet, three series of measurements are made in 

rapid succession. In each series, all different filters are used. Cloud episodes can be detected by 

comparing the total optical depth derived from the spectral data of the three series to each other and to 

defined limits (Giles et al. 2019; Smirnov et al. 2000). This cloud-screening process relies on the higher 

temporal variability and higher value of cloud optical depth compared to AOD.  

Data from measurement networks are available in different levels of quality control. In addition to cloud 

screening, the quality-control procedures involve various other criteria. With AERONET, for instance, 

the best data quality (Level 2) includes manual outlier rejection and correction for the change of the 

calibration constants before and after a measurement period of approximately 1 year (Holben et al. 

2006). Unfortunately, this regular calibration process, as well as other experimental difficulties that might 

 

 

33 See http://aeronet.gsfc.nasa.gov/new_web/index.html.  

34 See https://www.skynet-isdc.org/.  

http://aeronet.gsfc.nasa.gov/new_web/index.html
https://www.skynet-isdc.org/
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arise in the field, result in data breaks of various duration (sometimes of many months) at all stations. 

Despite this important issue, the instrument’s calibration is of central importance for overall data 

accuracy. When available, the highest-quality data should be used. 

In practice, it is rare that ground measurements of aerosols and water vapor are available for the site or 

period under scrutiny; thus, it is generally necessary to rely on other sources of data. Aerosol data can 

be retrieved from spaceborne observations, such as those sensed by the Moderate Resolution Imaging 

Spectroradiometer (MODIS) instrument on board the Terra and Aqua satellites (Bright and Gueymard 

2019; Wei et al. 2019). Another source of data is provided by reanalysis models, such as CAMS or 

MERRA-2 (Gueymard and Yang 2020; Kosmopoulos et al. 2018). Similarly, water vapor information can 

be retrieved from satellite sensors like the Global Ozone Monitoring Experiment–2 (GOME-2), the 

Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), and MODIS 

spaceborne instruments (Beirle et al. 2018; Bright et al. 2018), or from reanalysis models (Mishra 2020). 

Although AOD and PW are derived mostly from polar-orbiting satellites, several retrievals are developed 

with geostationary satellites too (Kaufman et al. 2002). This trend has accelerated in the last few years 

because of the launch of more-advanced sensors on board such satellites, such as Himawari-8 (Fu et 

al. 2023b), the Geostationary Operational Environmental Satellite (GOES) (Fu et al. 2023a), or Meteosat 

(Ceamanos et al., 2023). For both aerosol and water vapor, more details about the available sources of 

data and their accuracy are provided by Gueymard (2019a). 

For most solar energy projects, aerosol and water vapor data are required only for radiation modeling 

(i.e., as an intermediate step). No strict recommendation is given to systematically collect such modeled 

or measured data; however, aerosol and water vapor data can help answer questions related to the 

quality of model-derived irradiance data, especially DNI data. Moreover, such data are linked to the solar 

spectrum, which is of interest in PV applications (see Section 5.7). Further, aerosol data are related to 

soiling, circumsolar radiation, and beam attenuation between the heliostats and the receiver in solar 

tower power plants, as discussed in Sections 5.9 to 5.11.  

5.7 Spectral Irradiance 

Most sections in this handbook relate to the solar resource in terms of broadband shortwave fluxes, that 

is, solar irradiance in the spectral range of about 280–4000 nm. Considering the rapid deployment of 

new solar technologies and the diversification of their physical principles, spectral solar irradiance data 

and models are sometimes necessary to address specific aspects of the solar resource in PV, 

photobiological, and photochemical processes. Hence, the demand for spectral information has 

considerably increased in recent decades, at least at the level of high-end research and 

experimentation. New investigations show that neglecting spectral and angular details can lead to 

significant deviations in PV power modeling (Lindsay et al. 2020). 

As with broadband irradiance, the need for spectral irradiance data can be fulfilled with either 

measurements or models. As mentioned in Chapter 2, Section 2.5.6, a few reference clear-sky spectra 

have also been standardized for a potentially large number of applications—most importantly PV. 

Because cloudy conditions are connected to irradiance that is normally lower, highly variable, and 

extremely difficult to characterize, no equivalent cloudy-sky reference standard spectrum exists.  

For solar PV applications, reference spectra are particularly useful to, for example: (1) obtain a 

performance rating following the industry’s best practices, such as standard test conditions, which 

prescribe a reference spectrum (Emery et al. 2013; Institute for Energy 2010); (2) determine PV spectral 

mismatch factors when the actual spectral conditions differ from the reference spectrum defined by 

ASTM G173-03 (ASTM G173 2020) or the International Electrotechnical Commission (IEC) 60904-3 

(Braga et al. 2019; Mambrini et al. 2015; Müllejans et al. 2005; Myers and Gueymard 2004); or (3) 

evaluate how well solar simulators agree with a reference spectrum, according to, for example, IEC 
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60904-9 (Bliss et al. 2010; Meng et al. 2011; Sarwar et al. 2014). One issue with reference spectra is 

that they are developed for specific atmospheric conditions and geometric configurations (Gueymard et 

al. 2002) and thus might not correspond to observable natural conditions at all locations of interest or 

during some periods of the year. To ease this, subordinate standard spectra have been proposed 

(Jessen et al. 2018). These spectra are referenced in ISO standard 9060:2018 (ISO 9060 2018) to 

evaluate spectral mismatch factors or spectral errors in radiometers. 

Under natural conditions, the solar spectrum continuously varies in both magnitude and relative 

distribution. It is mostly affected by solar zenith angle (SZA) (and thus by air mass) and a few variable 

atmospheric constituents, most importantly AOD and PW. An increase in air mass or AOD modifies the 

shape of both direct and global spectra in a way referred to as “red shift” because short wavelengths 

are attenuated more than longer ones, whereas an increase in PW does the opposite and results in a 

“blue shift.” 

Obtaining accurate outdoor solar spectra for experimental PV research or for the validation of solar 

radiation models requires high-quality measurements obtained with carefully maintained 

spectroradiometers. Different types of instruments exist, depending on their detection method: (1) 

scanning monochromators, (2) charge-coupled device (CCD) arrays, and (3) diode arrays. In the field, 

CCD-array (solid-state) instruments are preferable because they are faster, lighter, more compact, and 

more reliable than scanning (optomechanical) instruments. The latter are normally more accurate and 

are typically considered laboratory instruments for indoor measurements. Like broadband radiometers, 

field spectroradiometers can be deployed for unattended operation because their casing is 

weatherproof. They can be mounted on a sun tracker and equipped with an appropriate collimating tube 

to sense the direct normal spectrum. If mounted horizontally or on a tilt, they sense the global horizontal 

or global tilted spectrum, respectively. Examples of such mounting options are shown in Figure 5-2. This 

figure displays a group of three instruments because they cover different spectral bands: one has a 

silicon-based detector and covers the typical spectral range from approximately 350–1100 nm, another 

covers the UV (300–400 nm), and the last covers near-infrared in the range of 900–1700 nm. The 

combination makes it possible to sense the spectrum in an extended range—approximately 300–1700 

nm—which might be necessary to investigate some advanced solar cells, for instance. 

  

Figure 5-2. (Left) Three field spectroradiometers mounted on a solar tracker to sense the direct 
normal spectrum. (Right) The same three spectroradiometers mounted horizontally to sense the 
global horizontal spectrum.  

Photos by NREL (left) and Christian Gueymard (right) 
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Figure 5-3 displays the direct normal spectra observed (at regular intervals) by a field spectroradiometer 

during a clear summer morning at NREL’s Solar Radiation Research Laboratory in Golden, Colorado, 

at an elevation of 1829 m. When comparing spectra observed under contrasting sun positions (high sun 

versus low sun), the red shift mentioned earlier clearly appears. Two strong atmospheric absorption 

bands—caused by oxygen (near 760 nm) and water vapor (near 940 nm)—are also clearly visible.  

Considering the significant costs associated with the deployment, calibration, and maintenance of 

spectroradiometers, only a few solar laboratories in the world can continuously operate such instruments 

for long periods. In most cases, the spectral databases collected are considered proprietary and can be 

difficult to obtain. A few exceptions exist, such as the public domain databases offered by NREL.35 

 

 

Figure 5-3. Series of DNI spectra measured during a clear summer morning by a field 
spectroradiometer mounted on a sun tracker at NREL. The extraterrestrial spectrum is also 
indicated to emphasize some important atmospheric absorption bands.  

Image by C. Gueymard, based on NREL data 

 

 

 

35 See https://midcdmz.nrel.gov/apps/spectra.pl?BMS.  

https://midcdmz.nrel.gov/apps/spectra.pl?BMS
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Because easily accessible measured data is rare, it is more convenient to depend on radiative models 

and obtain the solar spectrum at any location and any instant. One early spectral model used in solar 

engineering was SPECTRAL2 (Bird 1984). The Python library pvlib (Holmgren et al. 2018) has a 

subroutine that implements the SPECTRAL2 model. The SPECTRAL2 model’s limited resolution, 

capabilities, and performance prompted the development of the Simple Model of the Atmospheric 

Radiative Transfer of Sunshine (SMARTS) model (Gueymard 2001; 1995), which has been thoroughly 

validated (Gueymard 2019b; 2008). It has been used to develop the current reference spectra 

mentioned in Chapter 2, Section 2.5.6. To operate a spectral radiation model such as SMARTS, precise 

information about atmospheric constituents such as AOD and PW is necessary, but this is essentially 

the same information as would be needed to obtain only broadband clear-sky irradiances with a simpler 

radiation model. The most accessible sources of data, particularly regarding aerosols, are discussed in 

detail by Gueymard (2019). Figure 5-4 compares the direct normal spectrum predicted by SMARTS for 

an airmass of ≈1.5 to measurements obtained with two collocated spectroradiometers at NREL’s 

radiometric station in Golden, Colorado. 

 

Figure 5-4. Direct normal spectrum at airmass ≈1.5 measured with two spectroradiometers at 
NREL’s radiometric station in Golden compared with predictions from the SMARTS model (top 
panel). Percentage difference between the SMARTS predictions and the two separate measurement 
streams (bottom panel).  

Image by C. Gueymard, based on NREL data 

 

Many spectral radiation models, such as SMARTS, are limited to the prediction of clear-sky spectra. 

Modeling the spectral radiation under all-sky conditions is a challenge because of the need to balance 

the computational burden and errors attributed to the resolution of the spectral bands. As a result, high-

spectral-resolution models designed to solve spectral radiation based on fundamental physics—such 

as the line-by-line model (Clough et al. 2005)⎯are often time-consuming in computing the absorption 

coefficients of the molecular species in the atmosphere. Adding to the complexity of the radiative transfer 
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calculations is the cloud scattering involving highly complex interactions between clouds, the over- and 

underlying atmosphere, and land surface. An efficient solution—implemented in the TMYSPEC model 

(Myers 2012)—is to empirically develop regressions that link numerically between long-term 

observations of broadband and spectral solar radiation. More rigorous models based on the solution of 

the radiative transfer equation precompute cloud extinction, reflection, and emission for possible cloud 

conditions and incident and outgoing solar directions and then integrate the results with the clear-sky 

solution (Minnis et al. 2011). The computational efficiency of those models can be substantially improved 

when the precomputations are parameterized by plain functions of cloud optical and microphysical 

properties (Xie et al. 2016). On the other hand, the models can be extended to cover the computation 

of spectral irradiance—for example, the Fast All-sky Radiation Model for Solar applications with 

Narrowband Irradiances on Tilted surfaces (FARMS-NIT) (Xie et al. 2019; Xie and Sengupta 2018) 

precomputed a cloud lookup table using the 32-stream DIScrete Ordinates Radiative Transfer (DISORT) 

model (Stamnes et al. 1988) and the parameterization of cloud optical properties developed by Baum 

et al. (2011) and Hu and Stamnes (1993). The cloud bidirectional reflectance distribution function 

(BRDF) and bidirectional transmittance distribution function (BTDF) are stored in a lookup table 

containing data for 2002 wavelengths within the spectral range from 0.28–4.0 m. Surface radiances in 

the spectral bands are analytically solved from the radiative transfer equation for five independent 

photon paths using the optical thickness of the clear-sky atmosphere provided by SMARTS and the 

cloud BRDF and BTDF.  

Spectral data are typically required only for “high-end” solar energy applications. For thermal collectors 

using current technology, spectral information does not need to be collected for each individual project, 

and the application of standard spectra suffices. For large PV plants, however, the site-specific spectral 

effects should be considered to increase accuracy. This can be done best if spectral data are available. 

Because of the high costs of spectral measurements, the state of the art is to introduce the spectral 

effects via modeling approaches, such as applying satellite-derived spectra to calculate spectral 

mismatch factors or spectral derate factors for use in PV simulation models (Pelland and Gueymard 

2022). This procedure is generally empirical and can be improved, so related research is required. 

Additionally, spectral irradiance data are useful in related solar technology developments, and they are 

also relevant as an intermediate product to understand specific effects, such as soiling, beam 

attenuation near the ground, or measurement error of various radiometers.  

5.8 Ultraviolet Irradiance  

Although UV constitutes only a small portion of the solar spectrum, the high energy of the photons 

contained at wavelengths less than 400 nm can cause degradation of materials, such as those used in 

the construction of PV modules. More generally, UV irradiance information can be useful in many 

research and development applications, such as PV and CSP material degradation, service life 

prediction, monitoring lamps in accelerated weathering chambers, aging tests in solar simulators, and 

climate-related research using predictions from appropriate models or actual data from weather stations; 

therefore, high-quality measured and modeled UV databases are often required for various locations 

with differing climatic conditions. Such data sources typically provide accurate inputs for these 

applications.  

The UV spectral ranges of interest are defined in various standards and publications. ASTM G113-16 

(ASTM G113 2022) defines UV irradiance for natural weathering applications as the amount of 

electromagnetic radiation greater than 295 nm and less than the visible electromagnetic radiation. 

According to ASTM G177 (ASTM G177 2020), the total UV is defined from 280–400 nm, and it is 

subdivided into UV-A (320–400 nm) and UV-B (280–320 nm). The World Health Organization (WHO 

2016), however, defines these ranges slightly differently, using 315–400 nm for UV-A and 280–315 nm 

for UV-B. Other definitions can be found in the literature or in the specifications for UV radiometers. In 
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weathering and durability studies, for instance, radiant UV doses are reported from 295–400 nm or 295–

385 nm (Habte et al. 2019).  

 

Figure 5-5. UV global spectrum measured with a QASUME II spectroradiometer at the PMOD/WRC 
laboratory (elevation 1589 m) under high-sun conditions compared with standards ASTM G173 (low 
UV) and G177 (high UV) in (left) linear scale and (right) logarithmic scale.  

Image by C. Gueymard, based on PMOD-WRC data 

 

The varying definitions that currently exist may introduce confusion, especially because the UV 

irradiance magnitude is highly dependent on wavelength. This is shown in Figure 5-5, where actual 

measurements of spectral global horizontal irradiance (GHI) conducted at the Physikalisch-

Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC) with a QASUME II 

spectroradiometer are compared with the reference global tilted irradiance spectra promulgated in 

standards ASTM G173 (for moderate air mass, AM1.5) and G177 (for low air mass, AM1.05). As shown, 

at less than approximately 0.33 µm, the irradiance magnitude varies considerably for only small 

incremental changes in wavelength, clearly indicating the need for an excellent wavelength calibration 

of UV radiometers. A consensus on the range of UV irradiances applicable for solar energy conversion 

technologies is desirable, but such a consensus has not yet been reached. 

Some information disseminated by WHO about the UV irradiance distribution is valuable because of its 

relevance to solar energy applications. In particular, clean snow reflects up to ≈80% of UV, and more 

than ≈90% of UV irradiance can be transmitted through thin clouds. Further, WHO emphasizes the 

relationship between site elevation and UV irradiance, stating an increase of 4% in UV irradiance for a 

300-m increase in altitude. Additionally, most of the daily UV dose is said to be received during a 4-hour 

period centered on local solar noon. 

As stated in Hülsen and Gröbner (2007), spectroradiometers are the best instruments for measuring UV 

irradiance, but they are expensive and require high maintenance. High-end instruments, called double 

monochromators, are less sensitive to stray-light issues than simpler instruments based on CCD 

technology, and they are necessary to sense the UV accurately at less than ≈320 nm, but they are also 

extremely delicate and expensive; therefore, in most cases, only broadband UV radiometers are used 

in applications that do not demand spectral information. All UV radiometers can be calibrated so that 
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they are traceable to one of the existing National Metrological Institutes through a calibrated reference 

lamp. Further, some institutions, such as the World Meteorological Organization (WMO), help maintain 

traceability through a commonly accepted calibration methodology and through regular 

intercomparisons using standard reference spectroradiometers maintained and operated by the 

PMOD/WRC. In general, an annual calibration interval is recommended because UV radiometers are 

susceptible to atmospheric constituent changes, degradation and stability issues, and other 

uncertainties (Webb et al. 2006).  

Many types of broadband UV radiometers exist, as described in Hülsen et al. (2020). There are also 

multiwavelength narrowband filter radiometers that measure solar irradiance at a few wavelengths in 

the UV spectrum, but they require an intricate absolute calibration process that involves model 

simulations (Kerr and Fioletov 2008). 

Measuring UV is difficult because such measurements are prone to high measurement uncertainty, 

resulting from factors such as stray-light contamination, calibration error, or directional response 

deviation. On the other hand, measured and/or modeled GHI data of fairly low uncertainty is relatively 

abundant for many locations. Many studies have attempted to parameterize the global UV irradiance 

(UV-B and/or UV-A)—for example, by considering the empirical relationship between global UV 

irradiance and other readily available quantities, such as GHI (Fioletov et al. 1997; Habte et al. 2019; 

McArthur et al. 1999; Schwander 2002). A standard practice to estimate UV in two different bands from 

GHI has been recently promulgated in ASTM G222 (ASTM G222 2021). Some studies have used 

radiative transfer models (Evans 1998; Koepke 2009; Madronich and Flocke 1997; Mayer and Kylling 

2005; Ricchiazzi and Gautier 1998), while others have used satellite instruments, such as the Ozone 

Monitoring Instrument (OMI), to estimate surface UV irradiance (Herman et al. 1999; Krotkov et al. 1998; 

Levelt et al. 2006; Peeters et al. 1998; Tanskanen et al. 2006). 

5.9 Soiling 

Soiling occurs when airborne particles, such as dust or pollutants, or nearly opaque obstructions, such 

as bird droppings or leaves, settle on and adhere to the surface of solar energy systems. The 

accumulation of particulate matter is the result of a multifactorial phenomenon that arises from the 

interplay of various elements and processes operating across different spatial and time scales. Soiling 

can greatly reduce the efficiency of solar collectors (Shaik et al. 2023). In the case of PV systems or 

non-concentrating thermal collectors, this is caused by the reduction of light transmitted through the 

collector’s front glass cover. For concentrating collectors, soiling may reduce both the specular 

reflectance of the mirrors and the transmittance of receiver envelope tubes or transparent covers. On 

the other hand, beyond its effect on energy production, soiling is one of the most relevant factors for 

reducing the performance of radiometers. For any solar radiation measurement station, an appropriate 

sensor cleaning schedule is of utmost importance for obtaining reliable data (see Chapter 3, Section 

3.6.2). 

The action of various atmospheric agents, like temperature, wind, or relative humidity, modulates the 

sequence of soiling depending on the physical and chemical properties of the different particle species 

present, such as their size distribution, density, or composition (Bergin et al. 2017; Ilse et al. 2018; 

Micheli et al. 2019; Micheli and Muller 2017). However, as part of the complexity of this phenomenon, 

not all variables involved always act the same way. An important example is that of precipitation, which 

can cause either the deposition of airborne particles (a process known as wet deposition) or their 

removal. Nonetheless, it should be noted that the literature in this field has not been able to propose a 

clear threshold of daily rain accumulation above which the natural cleaning process caused by rainfall 

takes place (Pelland et al. 2018). Thus, soiling has a global dimension, with a heterogeneous distribution 

in space and time and, in general, it depends on local ambient conditions, time of year, and 

characteristics of each solar system. Given the complexity of the soiling process and its effects on 
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energy production, it is difficult to model, and it is difficult even to measure its effects accurately. 

Therefore, the potential losses caused by soiling are one of the most intricate sources of uncertainty to 

estimate in solar projects (Muller and Rashed 2023). Nonetheless, the economic losses caused by this 

issue worldwide are estimated at several billion dollars per year (Ilse et al. 2019). Therefore, it is 

essential for the solar industry to better understand the soiling process and its impacts on solar systems 

because it is unavoidable. Moreover, soiling produces significant direct losses and contributes to the 

degradation of solar components. Soiling effects can be mitigated by different methods, generally classified 

into preventive and corrective measures (Schill et al. 2022). The costs of soiling mitigation being 

substantial, mitigation measures must be designed appropriately for each individual case to achieve an 

optimum cost-benefit ratio. Reviews of actual soiling effects on solar power plants can be found in (Ilse 

et al. 2019; Maghami et al. 2016; Sarver et al. 2013). For PV technology most particularly, the 

comprehensive review in the IEA PVPS Task 13 report of (Schill et al. 2022) is recommended. 

Usually, soiling is quantified in terms of what is commonly known as the soiling ratio (SR), or 

“cleanliness.” The soiling ratio is defined as the ratio of the solar plant’s output power under soiling 

conditions to the power under clean condition generated by the same component under identical 

operation conditions (Schill et al. 2022). The soiling loss (SL) is simply the complement of the soiling 

ratio, SL = 1–SR. The soiling ratio is 1 when the component is completely clean (SL = 0) and 0 when 

solar energy cannot reach the receiver because of extreme soiling (SL = 1). Figure 5-6. displays a time 

series of daily averages of observed soiling ratios evaluated at a PV plant over 2 years, along with the 

rain events and their daily accumulation. Another widely used quantity is the soiling rate, which describes 

the rate of change of cleanliness over time. In the case of flat-plate panels, soiling rates are 

approximately 10 times less than in the case of reflectors of concentrating systems for the same 

conditions, because the forward-scattered light still contributes to the PV or flat-plate collector yield 

(Bellmann et al. 2020), while largely missing the receiver in a concentrating system. 

 

 

Figure 5-6. Average daily soiling ratio and daily accumulated precipitation observed at a PV plant, 
2013–2014  

Image by SolarGIS 

 

The cleanliness can be measured using different techniques. For PV, two methods, both based on the 

use of a pair of clean and soiled PV devices (constituted of identical reference modules or PV cells), are 
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defined in detail in IEC 61724-1, Annex C. As described there, a method for monitoring soiling losses at 

low equipment cost consists of measuring the short-circuit current of the reference soiled PV device and 

comparing it to that of its clean counterpart. The soiling ratio can then be estimated, assuming that the 

power output is proportional to the short-circuit current, which is appropriate for low soiling 

inhomogeneity over the module’s surface (Dunn et al. 2013). Care should be taken when making soiling 

measurements using reference cells because soiling is often not uniform, particularly near the edges of 

the reference device. Because reference cells have a proportionally larger edge-to-area ratio than a PV 

module, the soiling ratio might then not be accurate. A measurement using the short-circuit current of a 

pair of PV modules can be inaccurate if the module’s surface is not homogeneously soiled (Gostein et 

al. 2015). In such cases of heterogeneous soiling (e.g., along the edges or sides of the modules), the 

use of the short-circuit current method might underestimate the actual impact of soiling on the actual 

power output. In that configuration, either the current-voltage curves of both a clean and a soiled module 

must be analyzed for an accurate estimation of the soiling ratio, or the power outputs from both modules 

obtained with maximum power point trackers must be compared. Care must be taken if only a single 

module or cell is used for the estimation of the cleanliness by comparing its performance before and 

after cleaning, because the external conditions might have changed in the meantime. Moreover, the 

module or cell temperature can be affected by the cleaning process itself.  

A practical recommendation for short-circuit-based measurements is to avoid the soiled module 

accumulating too much soiling, as this will more likely lead to an inhomogeneous soiling distribution, 

with increased soiling near the bottom. Moreover, because of the changed surface properties 

(roughness, humidity, etc.), too-high soiling losses might also lead to other unwanted effects, such as 

saturation or different particle adhesion properties.  

Proper installation and maintenance of any soiling measurement system are critical for preventing a too-

low signal-to-noise ratio in the measurement of soiling ratios and rates. In particular, the regular cleaning 

of the clean reference glass sheet or reference module/cell is of great importance. Automatic cleaning 

of the reference device is complex, whereas manual cleaning is time-consuming. Soiling ratio 

calculations should be performed immediately after the clean module is cleaned (Peterson et al. 2022). 

Several days after the clean module is cleaned, its cleanliness should be already called into question, 

because during that time several days’ worth of soiling has been accumulated. In field measurements, 

a perfectly clean state is often unattainable because of practical limitations (lack of clean water, 

inappropriate/unclean wiping material, inappropriate detergents, unfavorable weather conditions during 

cleaning, etc.), and thus residual soiling of the clean reference device might remain even after cleaning. 

This can largely be overcome by determining a calibration value for the clean device immediately after 

each cleaning, which is then used only until the next cleaning event. 

When installing a soiling measurement system based on a dual reference device (clean vs. soiled), 

extreme care must be taken to ensure that its two components are in the same plane. Non-coplanar 

devices receive different amounts of light at any given time. This modifies the comparison of the two 

devices and masks the desired effects of soiling. Upon installation, it is also advised to observe the 

soiling ratio over the course of a clear day to ensure that the soiling ratio does not change, at least for 

incidence angles below ≈50°. If well-designed and implemented, soiling measurements with the clean-

and-soiled-device method can reach a low measurement uncertainty of ≈1% or better (Dunn et al. 2013; 

Peterson et al. 2022).  

A shortcoming of the soiling measurement system described above is the need for frequent cleaning of 

the reference PV device. Soiling sensors with PV device pairs and automatic cleaning systems for the 

clean PV device are offered commercially, but their reliability has not been fully proven, and any 

imperfect cleaning can strongly affect their accuracy. Therefore, sensors requiring less maintenance 

without such automatic cleaning systems have been developed. One such method that can be applied 

to either PV or CSP uses a photodiode behind a glass sheet and a detector that senses the scattered 
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radiation; see, for example, (Korevaar et al. 2017) for PV systems. Soiling on the glass sheet increases 

the detector signal that can be converted into a transmittance or reflectance reduction. Another optical 

approach is based on taking images of particles on a glass sample with reference marks from within an 

enclosure (Gostein et al. 2018). If the sun is used as the light source, soiling attenuates the incoming 

radiation, and the reduction of the image brightness by each particle can be translated into a soiling 

loss. To further increase accuracy, this system also uses LEDs placed next to the camera that illuminate 

the dust particles at night. The images’ brightness increases due to dust particles on the glass surface 

and is used to correct the soiling loss measured, using the sun as a light source. Nevertheless, these 

two indirect measurement methods of soiling loss have shown lower accuracy compared to well-

maintained soiling sensors with pairs of PV devices (Morley et al. 2020). Other methods are currently 

under development—for example, using a lamp that periodically illuminates a PV reference cell 

(Campos et al. 2022; Muller et al. 2021). The lamps are protected against soiling so that the change of 

the lamp-induced reference cell signal can be used to determine the PV soiling. 

For CSP mirrors, one option to measure the soiling loss is to use handheld reflectometers and regularly 

measure the reflectance of working mirrors or sample mirrors. Transmissometers can be used to monitor 

soiling effects on CSP entrance windows. These measurements are time-consuming and expensive; 

therefore, automatic methods have been developed for reflectance (Heimsath et al. 2019; Wolfertstetter 

et al. 2014) and transmittance (Wolfertstetter et al. 2020b), respectively. 

Further, methods based on the analysis of digital pictures of soiled collectors are under development. 

These may potentially be applied to surveillance cameras overseeing large parts of a solar field or to 

airborne observations with unmanned air vehicles (Winkel et al. 2022; Wolfertstetter et al. 2020a). Other 

image-based methods use highly resolved microscopic images and detect individual particles on the 

surface, but such methods are subject to significant uncertainty, that is, caused by variable results 

depending on image analysis software or the specific methodology employed by various operators 

(Smestad et al. 2023). 
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Figure 5-7. Several cleanliness measurement options for PV and CSP  

Photo by DLR 

 

Some of the aforementioned measurement options are shown in Figure 5-7. For fixed-tilt and tracked 

reference cells, the orientation of the soiling sensors is crucial and should be as close as possible to 

that of the plant itself. Further, the test material must be similar—or ideally identical—to that in the power 

plant; therefore, the photo shows two different types of reference cells. 

Effects related to the incidence angle, for example, can cause the soiling rate to change strongly 

throughout the day. Even if the component is not cleaned, positive soiling rates (increase of cleanliness) 

occur, at least momentarily, if the time resolution is too high; therefore, soiling rates are reported most 

frequently at a daily resolution. To properly determine the soiling rate, it is important to compare data 

points collected under similar conditions. For instance, the cleanliness measured at noon under clear-

sky conditions should not be compared to that of the next days if measured under cloudy conditions or 

at a different sun elevation. Soiling rate analysis techniques are discussed in Peterson et al. (2022). 

Several systems are commercially available for the measurement of cleanliness and soiling rate. Soiling 

measurements are recommended during the site selection process, especially if no soiling data are 

available from nearby sites, and continue to be desirable during plant operation. Depending on the 

soiling levels at a PV plant and the peak power of a PV plant, for instance, IEC 61724-1 defines a certain 

number of required soiling measurements.  
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Soiling rate results are not widely available in the public domain, and only a few datasets are available 

from data portals.36  

Modeling the soiling phenomenon is a potential way to greatly reduce the costs associated with 

measuring soiling data. One approach analyzes the solar power production data to derive the soiling 

losses; see, for example, Brenner et al. (2023) and Micheli et al. (2022). A challenge for these 

approaches is to separate the soiling effect from other losses and from the yield modeling uncertainty. 

The other soiling modeling approach is based on meteorological data and allows the user to rapidly 

provide both long-term historical and forecasting datasets at any site. Soiling models are mainly based 

on particle concentration and precipitation, though other meteorological data are also required in 

general. Existing models (Coello and Boyle 2019; Kimber et al. 2006; Micheli and Muller 2017; Picotti 

et al. 2018; Wolfertstetter et al. 2019) are currently further enhanced and adapted to create soiling maps 

and soiling forecasts based on atmospheric dust transportation models (Micheli et al. 2019). Schill et al. 

(2022) presents an exhaustive review of different existing soiling models for PV applications. The models 

are classified into four categories, namely: linear regression models, semi-physical models, artificial 

intelligence models, and geospatial models. Some of those models have been also evaluated in 

independent research works (Bessa et al. 2022; Polo et al. 2021). In general, the performance of the 

different models differs significantly. In fact, many are adjusted according to the particular conditions of 

a specific location. Further, only few evaluation studies have a global coverage, as well as very few 

comparative studies between models and sites (Pelland et al. 2018). A fundamental reason for the lack 

of this type of study is the notable scarcity of publicly available measurements that can be used as 

reference.  

All of this contributes to the difficulty in estimating the soiling model’s uncertainty, which is challenging 

to isolate from the other sources of uncertainty that are attached to the cleaning events, the 

observational data, and the input data (For instance, the latter are usually associated with huge spatial 

and temporal averages compared to the scales of the soiling phenomenon.) This makes the estimation 

of soiling losses one of the most difficult sources of uncertainty to consider in solar projects. As such, 

there is room for improvement in this field of knowledge. However, modeled soiling data can be obtained 

from various groups, including several companies that offer data commercially.  

5.10 Circumsolar Radiation 

As discussed in Chapter 2, Section 2.5.2, circumsolar radiation is the scattered radiation received from 

the angular region close to the sun. Most of the circumsolar radiation is included in DNI measurements 

from pyrheliometers with a 5º field of view, but typically only a smaller part of the measurement can be 

used by focusing collectors; therefore, information on circumsolar radiation is important for CSP plant 

yield assessments and the design of any type of concentrating power plant. High circumsolar radiation 

contributions to DNI can reduce the efficiency by 10% or more compared to the efficiency for low 

circumsolar radiation contributions, even for DNIs greater than 200 W/m². Using typical estimates of the 

average circumsolar radiation conditions can lead to errors of several percentage points in the long-

term plant yield (e.g., approximately 2% for an exemplary tower plant in the United Arab Emirates 

[Wilbert 2014]). 

Different techniques are available to measure circumsolar radiation. For instance, a method based on 

two commercial instruments: a camera-based “sun and aureole measurement system” and a sun 

 

 

36 See https://www.nrel.gov/pv/soiling.html or https://energydata.info/ (which includes recent stations in West 

Africa, e.g., https://energydata.info/dataset/benin-solar-radiation-measurement-data).  

https://www.nrel.gov/pv/soiling.html
https://energydata.info/
https://energydata.info/dataset/benin-solar-radiation-measurement-data
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photometer (Gueymard 2010; Wilbert et al. 2013). Another camera-based method is also used in Schrott 

et al. (2014). A different system uses two pyrheliometers with contrasting acceptance angles (Wilbert et 

al. 2013). Alternatively, and much more simply, circumsolar radiation can be measured with unmodified 

rotating shadowband irradiometers (RSIs) by analyzing the irradiance signal collected during the rotation 

of the shadowband (Wilbert et al. 2018).  

Only camera-based systems can measure the sunshape. This quantity (not to be confused with the 

shape of the sun disk itself) is defined as the normalized radially averaged radiance profile as a function 

of the angular distance from the apparent sun center. The other radiometric systems can derive the 

circumsolar contribution to DNI, which can in turn be used to estimate the sunshape. Because of the 

high costs, maintenance and calibration constraints, and analysis difficulties, so far, the existing camera-

based systems have been limited to high-end scientific studies. In contrast, RSI- and pyrheliometer-

based methods are already commercially available.  

Circumsolar radiation measurements are available for several sites (Bendt and Rabl 1980; Noring et al. 

1991; Wilbert 2014; Wilbert and Guillot 2013). For nearby plant projects, or for projects in a similar 

climate, such measurements might be sufficient for plant yield calculations. For other regions and 

climates, measurement campaigns are recommended for site assessment, CSP technology selection, 

acceptance testing, or optimization of plant operation.  

An alternative to costly in situ measurements is modeling, though obtaining long-term information on 

circumsolar radiation to help the development of a power plant project at an early stage might require 

substantial modeling effort. Reinhardt et al. (2014) presented a model for the influence of thin ice clouds 

(cirrus), which considerably increase the circumsolar contribution. The effect of aerosols can also be 

modeled (Eissa et al. 2018). More recent work using specialized radiative models to evaluate the 

difference between the true and apparent DNI can be found in Räisänen and Lindfors (2019), Sun et al. 

(2020), and Xie et al. (2020). Abreu et al. (2023) also recently presented a model to evaluate the 

circumsolar contribution for various view angles and its effect on CSP systems. In any case, so far, 

modeled circumsolar data are not routinely available for site assessment, which means that each 

developer must use one of these models and obtain the appropriate input data, which can be 

cumbersome. More research is necessary before the circumsolar contribution can be easily determined 

by analysts at any location and any instant in solar resource assessments. 

5.11 Beam Attenuation Between Heliostats and Receivers in  
   Tower Power Plants 

Among all CSP technologies, tower power plants present a specific challenge because atmospheric 

constituents tend to attenuate the radiation beams along their path from the heliostats to the solar 

receiver on the tower. This attenuation might significantly impact the efficiency of this technology (Figure 

5-8). During clear days, the optical losses over a 1-km slant range can be less than approximately 5%. 

Under hazy, humid conditions, however, more than 50% can be lost; thus, attenuation data must be 

available for the plant design, plant yield analysis, and plant operation. Under extreme conditions, high 

extinction levels could prevent towers from being an economically feasible technology option.  
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Figure 5-8. (Left) CIEMAT’s CESA 1 solar tower on a clear day and (right) on a hazy day  

Photos by DLR 

 

Beam attenuation along a slant path can be evaluated with scatterometers or transmissiometers 

(Hanrieder et al. 2015). Camera-based methods also exist (Ballestrín et al. 2018), and at least three 

such options are commercially available. Hanrieder et al. (2020; 2016) and Sengupta and Wagner 

(2012) presented models to derive the attenuation based on only conventional DNI measurements. Polo 

et al. (2017; 2016) estimated the attenuation based on aerosol data. Mishra et al. (2020) assessed the 

sensitivity of three existing attenuation models for different atmospheric conditions and evaluated the 

feasibility of using satellite data as additional inputs. The methodology of retrieving atmospheric 

extinction based on aerosol information has been recently extended to the estimation of world extinction 

maps (Salmon et al. 2022). A main difficulty for modeling and measuring extinction resides in the 

estimation of the vertical profile of the aerosol concentration. 

Hanrieder et al. (2017) presented an overview of measurement, modeling methods, and the effect of 

attenuation on CSP plants. A sensitivity analysis of the potential impact of the extinction in CSP tower 

plants production has been modeled with SAM for different climatic and boundary conditions (Polo et al. 

2017; 2016). 

For prefeasibility and feasibility studies, the existing attenuation models should be applied to obtain a 

first estimate of the extinction levels at the site(s) of interest. The extinction varies over time, depending 

on aerosol and humidity conditions; thus, the frequency of situations of high turbidity and/or high 

humidity becomes a relevant factor. Under clear conditions, the existing models can provide sufficient 

accuracy. Under hazy conditions with insufficient local atmospheric data on aerosols or humidity, the 

uncertainties can be quite high. In that case, measurements are recommended for reasonable plant 

yield estimates. For acceptance tests and plant operation, particularly at sites that are frequently 

impacted by hazy conditions, measurements are recommended. 
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5.12 Surface Albedo 

The surface albedo is a measure of the relative amount of incident energy that is reflected upward by 

the surface (i.e., the ratio of the reflected irradiance to the total incident irradiance). Properly 

characterizing the surface albedo is especially important in applications that benefit from surface 

reflections, most importantly when collectors are mounted vertically or when using bifacial PV panels. 

The latter are precisely designed to exploit the irradiance that reaches their rear side—mostly in the 

form of ground reflection. Albedo has been defined in Chapter 2, Section 2.5.5.1, and its measurements 

have been discussed in Chapter 3, Section 3.3.2.  

In addition to ground-based measurements, albedo information is also generated using either satellite 

data or reanalysis models, as discussed in a review of available albedo datasets (Gueymard et al. 2019). 

Among satellite sources, MODIS has received considerable attention; its albedo products (which include 

spectral and directional information) are used extensively in a variety of disciplines. One difficulty for the 

future is that the two MODIS instruments have now reached their end of life, with no immediate 

replacement. 

In reanalysis models, albedo is obtained as a spatiotemporal quantity using NWP methodologies that 

combine various sources of meteorological information, such as satellite observations, surface 

measurements, and radiative transfer models. Satellite and reanalysis albedo data are of great interest 

because of their spatial and temporal continuity, long-period historical data, and global reach. However, 

they have a low spatial resolution (several hundred meters to tens of km), which can be problematic 

particularly for such a spatially variable quantity (Gueymard et al. 2021). For this reason, they may not 

only deviate significantly from the average value but also describe an erroneous spatiotemporal 

distribution. Figure 5-9 shows an example of the strong underestimation of the albedo estimated by the 

MERRA-2 reanalysis for a ground station in Denmark close to a fjord. The MERRA-2 estimate is less 

than half the ground measurement. This is a consequence of the coarse resolution of the MERRA-2 grid 

(≈50 km by 60 km), which largely affects the albedo for the station’s pixel because of the low albedo of 

sea water. According to Lara-Fanego et al. (2022b), a 10% error in ground albedo can result in 

deviations of up to 2.5% in the estimated annual energy production of a generic bifacial PV plant. 

A small set of eight sources of gridded global albedo data (Table 5-1), seven of which are publicly 

available, was compared to 29 ground stations in Lara-Fanego et al. (2022a). In this comparison, the 

worst results were found in winter, because snow might not accumulate evenly over the surface area. 

The comparison showed that sources with a coarser resolution, like ERA5 or MERRA-2, are typically 

less accurate. A notable exception to this finding was the Satellite Application Facility on Climate 

Monitoring (CMSAF) database, which has a 25-km resolution. Remarkably, MODIS-based observations 

reached the lowest deviations in the comparison. 
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Figure 5-9. Time series of measured albedo at a ground station in Denmark modeled with MERRA-2. 
The latter’s pixel that includes the station also includes a large fraction of sea water, which explains 
the low and roughly constant albedo.  

Image by SolarGIS 

 

Table 5-1. Selected Albedo Datasets Evaluated in Lara-Fanego et al. (2022a)  

All datasets are in the public domain except SGClim, commercially available from Solargis. 
 

Dataset Name  Source Time Resolution Spatial Resolution 
[km] 

CMSAF  Satellite, CLARA-A2-SAL 5 d 25 

GLASS  Satellite, AVHRR  8 d  5.6 

MCD43A3  Satellite, MODIS  1 d  5.6 

Mines ParisTech Satellite, MODIS  Monthly mean  
(2004–2011) 

≈5.6 

NSRDB  Satellite, MODIS  1 d 4 

SGClim  Satellite, MODIS, and  
Solargis method 

Monthly mean  
(2006–2015)  

1  

ERA5  ECMWF, reanalysis  1 h ≈30 

MERRA2  NASA, reanalysis 1 h  ≈55 

5.13 Other Parameters Relevant for Agrivoltaics 

The increasing competition for land resulting from population growth and associated rising demands for 

food and energy is one main barrier for large-scale PV development, because of PV’s large land 

requirements. Agrivoltaic systems integrate crop production and PV power generation, and thus offer a 

potential solution to the land-saving problem. For this technology, the resource assessments must 

address the additional radiation parameters required for the crops and the effects of PV shading on crop 

production. A shading analysis is necessary to establish a correlation between growth indicators, crop 

quality, and PV system characteristics (e.g., the PV cover ratio). Important factors related to crop growth 

are the altered microclimate parameters and the installation’s impacts on irrigation, water conservation, 

and economic viability. In agriculture, various meteorological metrics are used to optimize the operation 
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of agricultural crops and equipment. Compared to other PV systems, the importance of some of the 

previously described parameters is enhanced in the case of agrivoltaics.  

What follows is a presentation of the different variables specific to agrivoltaics and specific measurands. 

Measurement guidelines for these quantities, including meteorological station classes and 

instrumentation, are summarized in the Guide to Agricultural Meteorological Practices (WMO 2012). 

Remote sensing and geographic information system (GIS) applications for agrometeorology, as well as 

forecasting requirements, are included in the guidelines.  

Temperature strongly affects the crop growth rate depending on plant type and development stage 

(Moragues and McMaster 2012). Usually, a minimum, maximum, and optimum temperature for each 

crop type is known. Between the minimum and optimum temperatures, the specific crop increases its 

growth rate. In contrast, temperatures higher than the optimum lower the plant growth rate, whereas at 

temperatures above the maximum, no crop growth is possible. The optimum temperature is usually 

higher during the vegetative development than during the reproductive period of the crop (Hatfield et al. 

2011). In some agrivoltaic experiments, a lower mean air temperature was observed below the PV 

modules because of the additional shade compared to reference conditions without PV modules. On 

the other hand, the temperature also strongly depends on the height of the mounted modules and the 

corresponding airflow below the modules and ultimately the resulting prevented convection. Therefore, 

in the case of low-mounted modules and low wind speeds, the average air temperature as well as 

humidity below the PV modules might increase. In general, however, air temperature around agrivoltaic 

installations is significantly lower than with stand-alone PV systems because of the presence of crops 

(Mamun et al. 2022). 

Relative humidity affects the evaporation and transpiration of the crops and thus has an impact on 

growth and water requirements. For instance, dry conditions imply an increase in crop transpiration, so 

that the cell growth might slow down if dry conditions persist. If plant transpiration increases, a potential 

mineral deficiency of the crops results from decreased nutrient transport (Nederhoff 2009). Relative 

humidity also influences the health of the crops: a high relative humidity induces a decrease in 

transpiration and increases the risk for fungal diseases (Cadenas Tortosa et al. 2003). 

Wind speed, wind direction, and wind loads play an important role in agrivoltaic installations. Larger 

agrivoltaic systems can change the wind speed profile. In several studies, plant growth under PV panels 

was significantly impacted by wind speed, regardless of the height of the ground clearance. On the other 

hand, crop growth under PV systems can cause differences in wind direction. Wind speed also affects 

plant evaporation and can increase water demand. In addition, strong winds can cause damage to plants 

(Mamun et al. 2022) . 

Agricultural maintenance work can negatively impact the PV power output, increasing the soiling of the 

PV surface and decreasing the transmittance of the top glass cover (Ketzer et al. 2020; Sekiyama and 

Nagashima 2019). On the other hand, vegetation below solar collectors might also decrease dust 

deposition in comparison to a bare soil surface. 

The amount and distribution of precipitation has a major impact on plant growth and yields, so that its 

distribution over time and area is usually measured. Especially for agrivoltaic systems, rainwater 

harvesting with electricity production might enable a self-watering and self-powering approach (Santra 

et al. 2020). The angle of incidence of rainfall is also a key factor (Elamri et al. 2018; Elamri et al. 2018; 

Weselek et al. 2019). Overflow during heavy rainfall can lead to soil erosion and the formation of gullies. 

This problem occurs mainly in the early development phase, when the soil is not covered, or is barely 

covered, by vegetation. In addition, the type of precipitation is a crucial factor for agrivoltaic systems. 

For example, hail events can damage not only the PV system but also the corresponding crop, although 

the crop can be protected from hail by the overarching modules. 
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Figure 5-10. Various instruments for agrivoltaic applications. Foreground, from left to right: PAR 
spectrometer, pyranometer, six UV and PAR sensors. Background: wind mast with pyranometer, 
relative humidity and wind sensors.  

Photo by DLR 

 

To characterize the solar resource, the common GHI is used not only for PV modeling but also for 

analyzing plant growth and yield, and thus needs to be measured or estimated. However, for 

photosynthesis and optimal crop growth, solar irradiance in the wavelength 400–700-nm range—the 

photosynthetically active radiation (PAR)—is most relevant. This spectral range can be absorbed mainly 

by plant pigments chlorophyll a and b and carotenoids (La Notte et al. 2020). Specific PAR radiometers, 

also called quantum sensors, are available for these measurements. They are typically photodiode-

based sensors with flat quantum response in the PAR wavelength interval. Moreover, PAR 

spectroradiometers are available for wavelength resolved radiation measurements in the PAR range, 

mostly for research purposes (Figure 5-10). 

The photosynthetic photon flux density (PPFD) indicates the number of active photons per second 

incident on a unit surface in the PAR range and is expressed in µmol/(m2∙s). This quantum PAR quantity 

should not be confused with the radiometric PAR, which is the solar irradiance limited to 400–700 nm, 

expressed in W/m2. The conversion between the quantum and radiometric PAR units depends on 

atmospheric conditions and thus relies on experimental data. For the global PAR, Dye (2004) obtained 

a conversion factor varying between 4.23 and 4.68 µmol/J, with a mean value of 4.56 µmol/J, which is 

close to the conventional fixed value of 4.57 µmol/J obtained originally by McCree (1972). In parallel, 

calculations with the SMARTS model (which can estimate both spectral PPFD and radiometric PAR 

under cloudless skies) show that this unit conversion is also a function of SZA, and peaks for SZA 

around 70–80°, depending on atmospheric conditions. For the diffuse PAR, a fixed conversion factor of 

4.24 µmol/J was proposed by McCree (1972). Experimental all-sky results (Dye 2004), as well as 

SMARTS clear-sky simulations, indicate that the conversion factor for diffuse radiation is actually much 

more variable than for global radiation. 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

5-29 

 

 

Figure 5-11. (a) Ratios of PPFD (diffuse and global) normalized by their broadband counterparts (DHI 
and GHI, respectively) as a function of SZA, as measured during 1 month at the NREL station in 
Golden, Colorado. (b) PPFD diffuse ratio as a function of clearness index based on the same 1-
minute data.  

Image by C. Gueymard, based on NREL data 

 

As PAR measurement stations are scarce, quantum or radiometric global PAR data are usually derived 

from GHI measurements or from satellite observations. This is generally achieved using empirical 

models (see a review in [Gardea et al. 2021]), typically assuming a linear relationship between GHI and 

PAR. Based on one month of measured 1-min data obtained at NREL’s Solar Radiation Research 

Laboratory in Golden, Colorado (latitude: 39.742°N, longitude: 105.18°W, elevation: 1829 m),  

Figure 5-11a indeed shows that the ratio between global PPFD and GHI is relatively constant, with most 

values around 2 µmol/J. For the diffuse PPFD, however, its ratio with DHI is much more variable, 

depending on SZA and atmospheric conditions, making its prediction much more difficult.  

Figure 5-11b, however, shows that the PPFD diffuse fraction has a relationship with the clearness index, 

Kt, that closely resembles that of the broadband diffuse fraction, DHI/GHI, as discussed further in 

Chapter 7, Section 7.3.1. Therefore, the separation models mentioned there should provide reasonable 

estimates of the diffuse PPFD from its global counterpart.  

Many plants have a strong preference for diffuse light because it can reach its lower parts much more 

effectively than direct light. Hence, a quantification of the natural diffuse PAR fraction is of importance. 

A serious difficulty is that measurements of the PAR components (diffuse or direct) are extremely rare. 

Thus, the empirical method just mentioned above is currently the best way to obtain estimates of the 

diffuse PPFD.  

To improve the light distribution under the PV system at plant level, agrivoltaic systems might include 

PV modules that are distributed in a checkerboard pattern (Figure 5-12) or special PV modules with 

transparent spaces between the cells. Raytracing simulations are considered the best way to evaluate 

the global and diffuse PPFD at various plant levels for complex designs (Vindel et al. 2018). Recently, 

however, new computer graphics techniques have been developed to obtain visual and quantitative 

results in a fraction of the considerable computer time required by raytracing (El Boujdaini et al. 2023). 

(a) (b) 
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Figure 5-12. Example of agrivoltaic experiment in a greenhouse of Fundación UAL-Anecoop in Spain  

Photo by DLR 

 

The daily light integral (DLI) is the PAR irradiation integrated over a day, expressed in mol/(m2∙day). 

Plants can be roughly divided into high-light, medium-light, and low-light demanding crops. Different 

thresholds for the corresponding optimal and sufficient DLI levels for each plant species can be found 

in the literature; see, for example, Cossu et al. (2020). Light quality for optimal plant growth refers to 

quantities affecting the photoreceptors that control photomorphogenesis. Whereas the blue and red 

parts of the solar spectrum are mainly used for photosynthesis (because the chlorophyll can absorb the 

most radiation in that spectral range), the green part of the spectrum penetrates further into the leaves 

and canopy, because chlorophyll absorbs less in the green area. Light quality for plant growth is 

therefore usually indicated by the red/far-red ratio (R/FR, also R:FR) and/or the blue/far-red ratio. Very 

low R/FR ratios can cause the “shade avoidance syndrome,” in which plants try to compensate by stem 

elongation (Franklin 2008; Xu et al. 2021). R/FR ratios are of interest but are not required for all 

agrivoltaic projects. These ratios can be measured with spectroradiometers.  

Potential evapotranspiration is defined as the amount of water that evaporates from the soil-air interface 

and from plants when the soil is at field capacity. Actual evapotranspiration is defined as the evaporation 
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at the soil-air interface, plus the transpiration of plants, under the existing conditions of soil moisture. 

Measurement and modeling (Almorox et al. 2015) of evaporation from the soil, and of transpiration from 

vegetation, remains of great importance in agricultural meteorology and therefore also in agrivoltaics 

(WMO 2012).  

The daily average soil temperature beneath PV systems has been found to decrease significantly 

following their installation, as compared with full-sun exposure (Marrou et al. 2013). The dynamic 

radiation heat transfer process affects the evaporation rate of the soil and thus the soil temperature (Roy 

and Ghosh 2017). Soil moisture affects root growth and plant water requirements; consequently, a 

change in soil moisture resulting from agrivoltaic installation has been detected (Mamun et al. 2022). A 

drastic soil moisture increase can result from the rain runoff from the PV panels, causing uneven water 

circulation at the lower panel edge compared to the sheltered area (Elamri et al. 2018). This does not 

occur in the case of vertical panels, however.  

Different soil nutrients are crucial for plant growth. The right level of phosphorus, iron, calcium, or even 

nitrate (nitrogen) in the soil is essential for good soil quality.  

In controlled agrivoltaic systems like greenhouses, the carbon dioxide (CO2) concentration is a relevant 

factor for optimizing crop growth (Sánchez-Guerrero et al. 2005) because the photosynthetic activity is 

a direct function (Valera et al. 2016). Moreover, the CO2 concentration usually drops with time, which 

can be avoided by CO2 enrichment (Valera et al. 2016). Therefore, such measurements might be of 

interest.  
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Executive Summary 

Although the solar resource is relatively abundant on a global scale, it is also variable over time and 

space. This inherent variability is the root cause of the difficulty of harnessing the solar resource 

efficiently and using some form of storage (or other techniques) to flatten the peaks and valleys of the 

power production and ultimately make production closer to the power demand curve. 

This chapter examines the most important causes of variability, in addition to the unavoidable natural 

variations caused by the Sun-Earth geometry (e.g., day/night alternation and seasons). The discussion 

is conducted in terms of atmospheric processes and weather or climatic patterns at various temporal 

scales, from the very short term to multidecadal. These include impacts on the cloud and aerosol 

regimes. Although the focus is mainly on temporal variability, some information is also provided about 

spatial variability. 

Aside from the main results of the literature, some simple statistical tools commonly used to quantify 

variability are explained and concrete examples are given in this chapter. The discussion extends to the 

critical topics of quantifying solar resource trends and how their current estimates should be extrapolated 

to evaluate the future solar resource, as the latter is needed for the proper design and financing of major 

solar power plants. 

6.1 Introduction and Background 

As discussed in previous chapters, the solar resource is inherently variable, which makes solar energy 

utilization challenging in practice. To improve this situation, the variability in the solar resource must be 

evaluated by various means in terms of both time and space. The temporal variability, discussed in 

Section 6.2, is probably the most important aspect because of its direct connection with various sources 

of uncertainty in solar resource assessments, and to the whole topic of solar forecasting, which is 

discussed further in Chapter 9. In comparison, the spatial variability has received less attention in the 

literature, as overviewed in Section 6.3. 

In general terms, variability characterizes the relative or absolute change experienced by a variable 

during a specific period (temporal variability) or over a specific area (spatial variability). It is often 

expressed either as the coefficient of variation (COV) for variables having a normal distribution (Calif 

and Soubdhan 2016) or as the variance for any other known statistical distribution, or even as the 

interquartile range when the distribution is unknown. COV is obtained by dividing the standard deviation 

by the mean of the population or sample. Variance measures how far each number in a dataset is from 
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the mean and is the square of the standard deviation. The interquartile range characterizes the spread 

of the middle half of a distribution, between the 25th and 75th percentiles. 

Temporal variability can be analyzed at various timescales (Bengulescu et al. 2018). Similarly, spatial 

variability is also a function of spatial scale. These quantitative aspects are detailed in Section 6.4. 

Finally, Sections 6.5 and 6.6 discuss other aspects of temporal variability, namely the practical 

importance of obtaining synthetic data at high temporal resolution and the impact of variability on solar 

energy production, respectively. 

In addition to its temporal and spatial aspects, the variability in the solar resource is also dependent on 

the irradiance component under scrutiny. It is typically different for direct normal irradiance (DNI), global 

horizontal irradiance (GHI), and global tilted irradiance (GTI) because the direct component varies much 

more than the diffuse component at all temporal or spatial scales. As a result, the term “variability” must 

be specified precisely as it relates to both the analyzed period (e.g., yearly variability of daily GHI, long-

term variability of DNI) and a given geographic area (e.g., spatial variability of DNI over an area of 50 

by 50 km), thus resulting in the necessity of a detailed definition (e.g., spatial variability of daily GTI over 

an area of 4 by 4 km). 

6.2 Temporal Variability 

Solar radiation is variable at widely different timescales, from quasi-instantaneous to multidecadal. This 

variability is caused by weather influences at scales up to ≈10 years and climatic or other influences at 

longer timescales. More details on the causes of variability at different scales are given in the following 

subsection. 

6.2.1 Very Short Timescale 

Over periods of ≈1 second to ≈1 hour, the main cause of variability is the passage of clouds and, thus, 

the alternance of sunny and cloudy periods. A typical situation is that of scattered cumulus clouds with 

a blue-sky background. The passage of each cloud obscuring the sun’s disc generates a ramp, 

alternatively up and down. When the sun’s disc is completely obscured by a thick cloud, direct normal 

irradiance (DNI) reduces to 0, whereas the diffuse radiation field does not change much, so global 

horizontal irradiance (GHI) becomes small but not 0. The ramping process is sharp and strongly affects 

the immediate photovoltaic (PV) output locally (Kreuwel et al. 2020; Lappalainen and Valkealahti 2017; 

Lave et al. 2015), but is typically attenuated when considering a large area because of the spatial 

smoothing and aggregation effects (Ellis et al. 2021; Hoff and Perez 2012). An extreme case of ramping 

involves multiple cloud layers or complex sun-cloud geometries that result in the cloud enhancement 

phenomenon (sometimes referred to as “overirradiance”), during which GHI can reach extremely high 

values (even exceeding their extraterrestrial counterpart by a substantial margin) over a period of up to 

a few minutes (Cordero et al. 2023; Gueymard 2017). The sudden change in GHI and its large excursion 

in magnitude make it difficult to obtain accurate measurements, depending in large part on the time 

constant of the radiometer (Gueymard 2017; Martins et al. 2022). These occurrences have been found 

relatively frequently under a variety of climates (do Nascimento et al. 2019; Inman et al. 2016; Kreuwel 

et al. 2020; Yordanov et al. 2015) and have potentially significant impacts on the design, operation, and 

safety of PV inverters (Allen and Hobbs 2022; Burger and Rüther 2006; Chen et al. 2013; Luoma et al. 

2012). Just like with the ramping phenomenon, cloud enhancement events are smoothed out when 

considering their average effect over a large area (Järvelä et al. 2020).  

6.2.2 Intra-Daily Timescale 

During daylight periods, solar irradiance is determined in large part by the sun geometry, the position of 

which can be calculated accurately, including in the distant future. For typical solar applications, it is 
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thus possible to estimate the variation in the top-of-atmosphere irradiance with a high degree of 

precision. Using appropriate radiation models and high-quality atmospheric inputs (see Chapter 7), it is 

also possible to estimate the clear-sky surface irradiance with reasonable accuracy at various temporal 

and spatial timescales. Apart from sun geometry, which only induces smooth and predictable variations 

in surface irradiance, rapid changes in atmospheric constituents are the other relevant source of solar 

irradiance variability at intra-daily or longer timescales. Obviously, temporal variations in cloudiness 

represent the main cause of that variability, which is difficult to resolve with models. Additionally, abrupt 

variations in irradiance can be caused by the passage of thick smoke or dust clouds, but these are 

relatively infrequent events, although some specific regions can be more prone to such events. In 

general, sun geometry combines with the characteristics of the local cloud field at any instant to 

determine the solar irradiance variability.  

6.2.3 Monthly and Seasonal Timescales 

In addition to the expected progressive variations in sun geometry, weather and climatological patterns 

typically affect the solar resource on a monthly basis. For instance, in temperate climates, summer is 

typically less cloudy than winter, while the opposite can be true over semitropical areas. Moreover, close 

to the equator, the alternance of dry and wet periods is driven by the annual variation between south 

and north of the Intertropical Convergence Zone (ITCZ), which results in large spatiotemporal variations 

in the radiation field (Marie-Joseph et al. 2013; Vindel et al. 2020). Over the tropical Indian Ocean and 

Pacific regions, an approximately periodic variation pattern, referred to as the Madden-Julian Oscillation 

(Madden and Julian 1971), also moves from west to east every 30–60 days. In regions around the North 

Atlantic Ocean, the variability patterns on monthly and subseasonal timescales are of a chaotic nature, 

and are, at present, unpredictable. 

6.2.4 Interannual Timescale 

At timescales longer than about a year, various weather and/or climate patterns interact and typically 

have a chaotic impact on atmospheric conditions and ultimately on the surface irradiance and the solar 

resource. Various cycles have been detected and studied for decades, as the next subsections discuss 

in reasonable detail. Nevertheless, it is always difficult to predict how these cycles will continue to 

interact during the next few decades. As mentioned in Chapter 2, the ≈11-year sun cycle also has direct 

impact on all forms of solar irradiance, but its magnitude is typically much lower than the uncertainty of 

usual radiometric measurements. This impact can be neglected in practice. 

6.2.4.1 Cloudiness Variability 

Some years might be cloudier than others because of natural variations in weather- or climate-induced 

phenomena, yielding interannual variations in the solar resource. These are important to consider 

because they ultimately determine the variations in the annual production of any solar power plant, 

which ultimately determines its yield—a key performance indicator. The two major climate components 

of interannual variability are the El Niño-Southern Oscillation (ENSO) and the North Atlantic Oscillation 

(NAO). Both directly affect cloudiness, and thus the solar resource, with significant spatial and seasonal 

underpinnings (Bloomfield et al. 2022; Correia et al. 2020; Laguarda et al. 2020; McFarlane et al. 2013; 

Murari et al. 2020; Pozo-Vazquez et al. 2011). ENSO is characterized by the succession of warmer (El 

Niño) and colder (La Niña) periods of ocean temperatures over the equatorial Pacific ( 

Figure 6-1). Each period typically lasts 1–4 years, but La Niña periods are typically longer than El Niño’s. 

The El Niño years tend to bring more moisture to various land areas (particularly over North and Central 

America), and therefore more cloudiness and precipitation, whereas Australia can be affected by drier 

weather. As a result, it has been shown that, for instance, the response of DNI to the ENSO intensity in 

the southwestern United States is detectable, and ultimately impacts the operation and power production 
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of concentrating solar power (CSP) systems (Mohammadi and Goudarzi 2018). The strength of the 

ENSO cycle is characterized by the Oceanic Niño Index (ONI),37 which represents the 3-month running 

mean of sea surface temperature anomalies in the ENSO region (5oN–5oS, 120o–170oW), based on 30-

year base periods updated every 5 years. A time series of ONI during the last three decades appears 

in Figure 6-2. 

ENSO is also related to the Madden-Julian Oscillation. Because of this direct link, and of ENSO’s larger 

scale, it is more predictable. For instance, when ENSO goes into a strong positive phase during a 

specific year, it often remains in this so-called El Niño phase the following year. 

 

 

 

Figure 6-1. Temperature anomaly over the oceans in Dec. 1997 during an El Niño period (top) and in 
Dec. 1988 during a La Niña period (bottom)  

Image from NOAA 

 

 

37 See https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php.  

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
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Figure 6-2. Time series of ONI since 1990.  

The red and blue curves indicate El Niño and La Niña periods, respectively.  

Image by C. Gueymard from NCEP-NOAA data 

 

NAO is a climatic pattern whose empirical discovery dates back several centuries ago. Whereas ENSO 

is essentially a cycle that is powered by the warm temperatures of the Pacific Ocean, NAO affects 

climate variability throughout the Arctic and northern Atlantic, affecting a large part of Europe, up to 

coastal regions of Siberia. NAO’s amplitude peaks during winter because of the strong activity in the 

atmosphere, typically resulting in substantial cloudiness during that season, particularly from December 

through March. Like with ENSO, an NAO index exists, but has various flavors depending on the source 

and season used for the data (Hurrell et al. 2003). The connection between the NAO index and GHI has 

been studied over various areas, including the British Isles (Colantuono et al. 2014; Correia et al. 2020), 

the Mediterranean (Pozo-Vazquez et al. 2011), and Europe (Chiacchio and Wild 2010). Although ENSO 

and NAO are two different mechanisms that follow different cycles, their interaction can lead to 

remarkable anomalies, depending on the intensity of their respective phases (King et al. 2023; Mu et al. 

2022; Wu and Zhang 2015). 

In addition to ENSO and NAO, two somewhat lesser-known cycles are the Pacific Decadal Oscillation 

(PDO) and the Atlantic Multidecadal Oscillation (AMO), whose impacts on cloudiness have been 

investigated by (Schwartz et al. 2014) and (Brown et al. 2016; Mann et al. 1995), respectively. Recently, 

however, the underlying mechanism behind the AMO cycle has been scrutinized again, with the 

conclusion that it might not exist as an actual cycle per se, but could be the result of volcanic forcing 

(Mann et al. 2021). Current research in climate science attempts to separate the various effects (on 

cloudiness and the irradiance incident at the surface, most importantly) induced by internal climate 

variability from those induced by climate forcing signals (Chtirkova et al. 2022; Folini et al. 2017; Lehner 

and Deser 2023). 

6.2.4.2 Impacts of Volcanic Aerosols 

Debris from volcanic eruptions affect the solar resource over large areas (at the country, continental, or 

global scale) and have radiative effects that can last up to a few years, depending on the eruption’s 

strength and location. The main impact of volcanic aerosols on the solar resource arises when significant 

amounts of sulfur dioxide (SO2) gas are ejected into the stably stratified stratosphere. Smaller volcanic 

eruptions do not reach the stratosphere, and thus they have only short-lived, local effects. SO2 reacts 
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with water vapor and is converted into droplets of sulfuric acid that scatter solar irradiance very 

efficiently. These particles increase the total aerosol optical depth (AOD) and affect DNI more than GHI. 

The AOD of the droplets decreases exponentially with a decay time of approximately 1 year (Crowley 

and Unterman 2013; Robock 2000). Overall, the droplets can stay in suspension for several years after 

an eruption. For instance, El Chichón (1982) and Pinatubo (1991) impacted the solar resource globally 

for up to ≈3 years. Figure 6-3 shows a time series of the stratospheric AOD at 550 nm induced by various 

volcanic eruptions since 1850. 

 

Figure 6-3 Estimated stratospheric AOD at 550 nm of volcanic aerosols over the Northern 
Hemisphere induced by eruptions, 1850–2012  

Image by C. Gueymard, based on National Aeronautics and Space Administration Goddard Institute for 
Space Studies data 

 

Once they have reached the stratosphere, volcanic aerosols spread relatively rapidly (for instance, both 

the El Chichón and Pinatubo aerosol clouds circled the globe in 3 weeks), meaning their impacts can 

be felt over a large part of the planet, with some regional variations in intensity. This intensity can be 

quantified by the atmospheric transmission factor (ATF), introduced by (Ellis and Pueschel 1971). The 

ATF is routinely calculated from the DNI measurements that have been continuously carried out at the 

Mauna Loa observatory (MLO, located on the big island of Hawaii) since 1958. The daily ATF has been 

studied by (Dutton et al. 1985) using this definition: 

 ATF = 
1

3
∑

𝐸𝑏𝑛(𝑚)

𝐸𝑏𝑛(𝑚−1)
𝑚=5
𝑚=3  (6-1) 

where Ebn(m) is the measured DNI at airmass m. Because of this definition, ATF is not a function of m, 

contrary to the direct transmittance, Kn, discussed in other chapters. Just like Kn, however, ATF is found 

to be a direct inverse function of AOD (the higher the AOD, the lower the ATF), making it strongly 

sensitive to variations in volcanic aerosols. The monthly evolution of ATF at Mauna Loa appears in 

Figure 6-4, based on National Oceanic and Atmospheric Administration (NOAA) measurements, clearly 

showing the strong impact from El Chichón and Pinatubo. Interestingly, El Chichón had a measurably 

stronger attenuation effect than Pinatubo at MLO, though Figure 6-3 suggests otherwise, since 

Pinatubo’s AOD peaked higher. This is possibly because the data behind the latter figure are only 

estimates for the whole Northern Hemisphere, whereas Figure 6-4 is based on precise data for a single 

site at low latitude. In contrast to the significant effects of major eruptions, the natural background ATF 
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is only affected by very small seasonal or long-term variability. This is because MLO is an isolated high-

elevation site with no significant local sources of aerosols and only rare or small impacts from 

transoceanic dust or pollution plumes.  

 

Figure 6-4. ATF at Mauna Loa, Hawaii, as impacted by large volcanic eruptions  

The thin horizontal line indicates the long-term average (0.925).  

Image by C. Gueymard, based on NOAA data 

 

Most solar resource datasets do not extend far enough into the past to cover any large volcanic event. 

One exception is the National Solar Radiation Database (NSRDB) (Wilcox et al. 2007), whose data can 

be used to estimate the effect this eruption had on the solar resource (Vignola et al. 2013). The reduction 

in DNI reached up to ≈20% at midlatitude sites in the Northern Hemisphere a few months after the 

eruption, which in turn had an even larger negative impact on the electricity production of CSP plants 

(Michalsky et al. 1994). 

The risk of major volcanic eruptions with a worldwide effect has been estimated from analysis of ice 

core samples from the thickest parts of the Antarctic and Greenland ice sheets. Ice rarely or never melts 

there, so the accumulated snow is covered and compressed into layers of ice over time. These layers 

can be counted like tree rings and analyzed chemically—including the amount of sulfuric acid that has 

been deposited from year to year. The mass of sulfuric acid deposited depends linearly on the sulfuric 

acid mass load in the atmosphere. Analyzing layers 2,000 years back in time, it has been found that the 

likelihood of volcanic eruptions causing high concentrations of sulfuric acid causing a global average 

AOD of 0.1 or higher is 16.5% per decade. Similarly, for AODs of 0.2 of higher, the likelihood is 8% per 

decade (Sigl et al. 2015). For comparison, these authors estimated that the Pinatubo eruption had a 

maximum global average AOD of 0.18.  

Way before irradiance or aerosol measurements began, the Tambora eruption of 1815 injected a mass 

of sulfuric acid into the stratosphere that was estimated to be more than four times that of Pinatubo. For 

such cases, the paleoclimatic studies suggest that the linear relationship between the mass load of 

stratospheric sulfate and its AOD does not apply anymore. Thus, the AOD for Tambora has been 

estimated to be only 0.45. More generally, the relationship between the stratospheric AOD from 

eruptions larger than Pinatubo and the corresponding stratospheric mass load of sulfuric acid is 

estimated to follow a two-thirds power law. 
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Figure 6-5. Total AOD on Feb. 12, 2022, over South America, as predicted by CAMS (top) and over 
South America and western Africa by MERRA-2 (bottom)  

Images by ECMWF-Copernicus and NASA 

6.2.4.3 Impacts of Smoke Aerosols 

Wildfires occur in many regions of the globe, although tropical regions are typically more prone to them. 

These events release smoke plumes that can travel vast distances (Lee et al. 2005; Rahim et al. 2017; 

Rogers and Bowman 2001), as can be visualized in Figure 6-5 for an exemplary case on a day when 

wildfires occurred in both South America and western Africa. Here, the total AOD (mostly smoke) is 

predicted by two different reanalyses, the Copernicus Atmosphere Monitoring Service (CAMS) from the 

European Centre for Medium-Range Weather Forecasts (ECMWF) and NASA’s Modern-Era 

Retrospective analysis for Research and Applications, Version 2 (MERRA-2), which both assimilate 

aerosol observations from various satellites to improve the modeled predictions. Along the smoke 
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plumes’ path, solar radiation is significantly attenuated because their AOD is large (often >1), which can 

directly impact the solar resource and thus solar production during many days (Casagrande et al. 2021; 

Herman-Czezuch et al. 2022; Isaza et al. 2023; Liu et al. 2014; Nobre et al. 2016; Perry and Troccoli 

2015; Rosário et al. 2013), in addition to their detrimental effect on air quality. During the past decades, 

various studies have identified trends in wildfires, but they do not always agree on the trend sign (either 

positive or negative), depending on region and objective quantity being analyzed (e.g., number of fires, 

particle emissions, or burned areas); see, for example, (Andela et al. 2017; Dennison et al. 2014; Doerr 

and Santín 2016; Fan et al. 2023). It is thus difficult to have a clear picture at continental or global scale. 

6.2.4.4 Impacts of Dust Aerosols 

Similar to the impacts of wildfires, dust storms frequently occur over many deserts or arid areas and 

emit considerable quantities of dust aerosols. Just like smoke clouds, dust clouds can reach altitudes of 

a few kilometers above the ground and can be transported over long distances (Aldhaif et al. 2020; 

Husar et al. 2001), adding dust AODs that are frequently more than 1.0—and can even exceed 5.0 in 

the source regions—along the way (Bencherif et al. 2022; Gkikas et al. 2019; Gueymard et al. 2017; 

Logothetis et al. 2021; Xia et al. 2021). For instance, Europe and the Mediterranean basin are often 

impacted by severe dust intrusions from the Sahara (Cuevas-Agulló et al. 2024). Additionally, once 

deposited at ground level, this dust becomes a major source of soiling for all types of solar collectors 

(Fountoukis et al. 2018; Javed et al. 2021); see also Chapter 5. The impacts of dust clouds on the 

temporary depletion of the incident irradiance and the resulting decrease in solar production are well 

documented (Al-Rasheedi et al. 2020; Cañadillas-Ramallo et al. 2022; Dabou et al. 2016; Rieger et al. 

2017). Estimates of the historical trends in dust storm frequency and strength depend on many factors 

and do vary depending on region and method of analysis (Alizadeh-Choobari et al. 2016; An et al. 2018; 

Guo et al. 2018; Logothetis et al. 2021; Ravi Kumar et al. 2019; Shaheen et al. 2023; Shi et al. 2020; 

Sun et al. 2020; Wang et al. 2017; Xi 2021).  

Considering the direct impacts of dust clouds on the immediate loss of production by solar collectors 

and their substantial soiling, which might require a rapid cleaning to avoid further losses, an interesting 

resource is the ensemble forecast of dust AOD and dust surface concentrations available from the Sand 

and Dust Storm Warning Advisory and Assessment System (SDS-WAS) of the World Meteorological 

Organization (WMO). This system relies on a few regional centers to prepare publicly accessible 

forecasts of dust AOD: the Northern Africa-Middle East-Europe (NA-ME-E) Regional Center,38 the Asia 

Regional Center,39 and the Pan-American Regional Center.40 An example of visualization offered by the 

NA-ME-E Regional Center is shown in Figure 6-6 for both dust AOD and dust surface concentration, 

obtained from an ensemble currently counting nine different models. For each quantity and forecast 

issued every 6 hours with a forecast horizon of 72 hours, four maps provide the median, mean, standard 

deviation, and range at 0.5 by 0.5° resolution. For conciseness, only the mean of each quantity obtained 

by a single ensemble forecast is shown in Figure 6-6. 

 

 

38 See https://sds-was.aemet.es/forecast-products/dust-forecasts/ensemble-forecast.  

39 See http://www.asdf-bj.net/.  

40 See http://sds-was.cimh.edu.bb/.  

https://sds-was.aemet.es/forecast-products/dust-forecasts/ensemble-forecast
http://www.asdf-bj.net/
http://sds-was.cimh.edu.bb/
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Figure 6-6. Forecasts of mean dust AOD and mean dust surface concentration issued on Feb. 12, 
2022  

Image by SDS-WAS NA-ME-E Regional Center 

6.2.4.5 Impacts of Pollution Aerosols 

Pollution aerosols are typically concentrated over large urban and industrial areas, but they can be 

transported far away, just like other types of aerosols (Chin et al. 2007). Highly polluted areas, such as 

megacities, are characterized by AODs typically above 0.5, and even above 1.0 in the worst cases (Guo 

et al. 2021; Li 2020; Papachristopoulou et al. 2022). The effects of pollution aerosols on the solar 

resource have been studied for various conditions and radiation components, including spectral 

irradiance (Ye et al. 2021). In turn, a lower incident irradiance results in significant production losses for 

solar systems located in urban areas (Li et al. 2017; Zhou et al. 2021; Zhang et al. 2020). Conversely, 

some studies have attempted to quantify the technical and societal benefits that hypothetical clean-air 

policy measures could have on solar energy production (Ghosh et al. 2022; Zhang et al. 2023). 

Interestingly, the positive impacts of China’s clean-air action plan (implemented in 2013) on lowering 

AOD and improving PV production have been documented (Shi et al. 2021; Zhang et al. 2023). More 

generally, country-wide air quality measures have been found to improve the trend in surface irradiance, 

referred to as brightening, as discussed further in Section 6.2.5.2. 

6.2.5 Multidecadal Timescale and Long-Term Trends 

Multidecadal trends must be considered to properly carry out the solar resource assessment of large 

solar projects, which must be viable many years into the future. An accurate solar resource assessment 

with the lowest possible bias and uncertainty is critical because this ultimately conditions design, 

financing, and long-term viability. The next subsections provide background information about the link 

between the long-term irradiance variability at a specific site and the evaluation of its solar resource. 

6.2.5.1 Drivers of the Future Solar Resource 

Solar power plants are expected to last many decades. At the financing stage, costs and revenue 

projections must be as accurate as possible over a period of typically 15–20 years. Over such a period, 

climatic trends can affect the solar resource. Thus, research abounds on the topic of evaluating trends 

in the radiative climate of past decades (Dutton et al. 2006; Sanchez-Lorenzo et al. 2015; Wang et al. 

2020; Jiang et al. 2023; Müller et al. 2014; Stamatis et al. 2023) and predicting its future (Gil et al. 2019; 

Ruosteenoja et al. 2019; Soares et al. 2019), either globally or over various regions. In particular, the 

impacts on the future climate of various particle emission scenarios and radiative forcing assumptions 
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are typically studied by running various climate models, including those from the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) or Phase 6 (CMIP6). Because wildly different scenarios 

regarding the main drivers—most particularly aerosol and gaseous emissions—are still considered 

possible, these impacts also vary largely, and the future radiative climate is still uncertain. Among the 

numerous variables these models attempt to predict, the incident irradiance, cloud fraction, and 

temperature are key elements for evaluating the solar resource of the future and its impact on solar 

systems (Gaetani et al. 2014; Gutiérrez et al. 2020; He et al. 2023; Kozarcanin et al. 2019; Wild et al. 

2015; Zhao et al. 2020; Zou et al. 2019). Moreover, indirect effects of the generally rising temperatures 

can be expected to result in an increase in wildfires, at least over those regions that become drier 

(Sarangi et al. 2023; Turco et al. 2018; Wang et al. 2023). In turn, those fires create extended smoke 

plumes that decrease the solar resource, as discussed in Section 6.2.4.3.  

A similar situation can be expected for plumes caused by dust storms, albeit with opposite trends 

depending on region: potentially more emissions from North Africa or the Middle East vs. less emissions 

from Asia (Zhao et al. 2023). In parallel, long-term trends in pollutant emissions are one major cause for 

the so-called dimming and brightening phenomena (i.e., decreasing or increasing trend in irradiation, 

respectively), which are strongly dependent on the evolution of air quality measures at country or 

continental level (Antuña-Marrero et al. 2019; Cusworth et al. 2017; Hatzianastassiou et al. 2020; 

Manara et al. 2016; Tanaka et al. 2016; Wild et al. 2021; Yang et al. 2019). These phenomena are 

further discussed in Section 6.2.5.2. Aerosols also cause indirect effects because they create the 

necessary conditions for clouds to develop. At present, the effects of sulfate aerosols (mostly caused 

by pollution) on cloud cover, cloud lifetime, and cloud transmittance are believed to dominate these 

indirect phenomena (IPCC 2023). The net effect is that more sulfate pollution causes less solar 

irradiance, and vice versa, reduced sulfate pollution causes more solar irradiance.  

Interestingly, the future climate might have differing impacts on the short-term irradiance variability, 

depending on climatic region. In the case of Australia, for example, the use of regional climate model 

projections under a high-emissions scenario resulted in a slight increase in the solar resource with more 

frequent clear periods, and thus a decrease in short-term variability (Poddar et al. 2023). More 

investigations of this kind would be needed to obtain a complete picture at global scale. 

Finally, the incident irradiance is also affected by stratospheric aerosols. These are normally in too low 

concentrations to affect the resource, but volcanic activity can change this situation in a dramatic and 

unpredictable way, as discussed further in Section 6.2.4.2. A related source of concern comes from the 

experiments in geoengineering that have started to be undertaken, whereby various kinds of particles 

are injected into the stratosphere. These intend to purposefully decrease the solar flux to mitigate the 

impacts of climate change (Climate Intervention 2015; Kravitz et al. 2015; Richter et al. 2022; 

Weisenstein et al. 2015). It is currently not clear whether or when these experiments will increase in 

scope. If they are generalized, they could seriously impact the global solar energy production. This 

appears paradoxical, as the latter is viewed as a way to combat climate change by displacing carbon-

emitting power plants. 

6.2.5.2 Dimming and Brightening 

The dimming and brightening phenomena are highly relevant to the solar community because of their 

direct impact on many calculations in the practice of solar resource assessments (Müller et al. 2014; 

Wild et al. 2015). In general, the solar resource is primarily (but far from completely) characterized by a 

single number, which is the average irradiation (GHI, GTI, or DNI, depending on the type of solar system) 

over a long-term period. The discussion that follows underlines two issues that many solar analysts face 

in their daily work.  

The first practical issue is selecting the most-appropriate duration for the reference long-term period. To 

that effect, it is useful to analyze some long-term records of measured GHI that originate from many 
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stations in the world. Such records (at monthly and annual temporal resolution) can be obtained from 

the Global Energy Balance Archive (GEBA) database41 (Wild et al. 2017). The annual GHI anomaly (i.e., 

the percentage of difference between the mean GHI of any year and the site’s long-term mean) for the 

two stations having the longest GEBA records appears in Figure 6-7. Over their respective measurement 

periods, the interannual variability appears significant. Moreover, the linear trends are slightly positive, 

thus indicating a barely perceptible brightening effect. The upward trend is, however, much steeper 

since the mid-1980s at those two sites. Shorter records appear in Figure 6-8 for six other stations of 

interest because of their differing overall trends, from negative to neutral to positive.  

 

 
 

 

Figure 6-7. Mean annual anomaly (relative to the long-term mean) and linear trend of GHI measured 
at Stockholm, Sweden, and Locarno-Monti, Switzerland  

Image by C. Gueymard, based on data from GEBA 

 

The comparison of these different types of trends during the last decades, and even during the last few 

years, clearly indicates that the strength and sign of GHI trends vary significantly over time and space 

(This is also more the case for GTI, and even a lot more the case for DNI because the latter and, to a 

lesser extent, GTI, are much more sensitive than GHI to the effects of cloudiness and aerosols.). Thus, 

this first issue cannot be addressed easily. Depending on region, it might be better to use the last 10, 

 

 

41 See http://www.geba.ethz.ch.  

http://www.geba.ethz.ch/
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15, or 20 years to obtain a meaningful solar resource. It could even be tempting to use only the last 5 

years, but then some critical information about the interannual variability would be lost. This first issue 

is particularly important over areas where strong trends have occurred during the last 10–20 years, like 

brightening over parts of Europe, as thoroughly discussed with regard to the yield of monitored PV 

installations in Germany and Spain (Müller et al. 2015).  

The second practical issue is properly extrapolating the satellite-derived data already off-hand into the 

future, assuming the current solar resource is accurately determined from an appropriate time series of 

that data source and that it is of high quality. No extrapolation is obviously necessary if there is no reason 

to suspect that a positive or negative trend will occur during the next one or two decades. The information 

in Sections 6.2.4 and 6.2.5.1, however, suggests that, depending on region, some past trends are likely 

to continue or, conversely, to be reversed in the near future. These two practical issues cannot be 

resolved satisfactorily with current knowledge and thus must be treated as additional sources of 

uncertainty regarding the actual solar resource during the solar project’s lifetime, as discussed in 

Chapter 10. 

6.2.5.3 Reliability of Historical Measurements 

Some of the interannual fluctuations shown in Figure 6-7 and Figure 6-8 appear unrealistically large, 

which suggests that the time series might not be homogenous. For instance, many changes of 

instrument type or make and model must have taken place because the first “modern” pyranometers 

started to be deployed at meteorological stations in the early 1960s. Moreover, the methods of 

calibration, maintenance, cleaning, recording, data processing, and data-gap filling have changed over 

time, sometimes drastically (e.g., moving from voltmeters to strip-chart recorders to mechanical 

integrators to digital dataloggers). When considering only the type and specification of modern 

instruments, various collocated thermopile pyranometers might generate mean annual GHI results with 

sizeable differences, even if all instruments are calibrated and maintained the same way (Gueymard 

and Myers 2009).  

Considering the limited availability of long-term time series of GHI and DNI data based on consistent, 

decades-long, high-quality measurements, it is tempting to use the modeled data provided by one of 

two prominent reanalyses, namely the ECMWF ReAnalysis v5 (ERA5) from ECMWF and MERRA-2 

from NASA. Their features are further discussed in Chapter 7. ERA5 evaluates the hourly global 

horizontal and direct horizontal irradiations since 1940 for both clear-sky and all-sky conditions. One 

important caveat in the present context, however, is that the underlying calculations are based on an 

aerosol climatology (i.e., long-term monthly averages). Hence, the calculated irradiations cannot 

properly detect any dimming or brightening trend that would be caused directly by aerosols. It can thus 

be anticipated that any apparent GHI trend in the ERA5 predictions is caused solely by changes in cloud 

regime and is only partially representative of the actual trend that would be detected when using high-

quality measurement time series. In contrast, MERRA-2’s hourly predictions of the clear-sky and all-sky 

GHI are based on coincident aerosol predictions since 1980—so, to the extent that these aerosol 

predictions are unbiased, it can be anticipated that the aerosol-induced trends are better reproduced by 

MERRA-2 than by ERA5. MERRA-2’s caveat, however, is that its GHI modeling suffers from systematic 

errors caused by its usage of an incorrect sun position algorithm that ignores the equation of time, as 

mentioned in (Gueymard 2022; Salazar et al. 2020). This induces an often-substantial daily variable 

error in GHI, depending on month and location. For these reasons, any trend possibly detected in ERA5 

or MERRA-2 GHI datasets might not be realistic. 
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Figure 6-8. Mean annual anomaly (relative to the long-term mean) and linear trend of GHI measured 
at six stations  

Image by C. Gueymard, based on data from GEBA 
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6.3 Spatial Variability 

At any given instant, the solar resource might vary substantially between nearby locations. The main 

underlying reason for this is the ever-changing cloud field. At daily or monthly time frames, however, 

these effects compensate each other, so that other causes of spatial inhomogeneity can be detected. 

At those timescales, various factors can contribute to create relatively significant changes in incident 

irradiance over short distances. These are typically of an orographic nature, such as elevation, terrain 

complexity, urbanization, or presence of large water bodies. In turn, these factors directly affect the 

aerosol and water vapor columns, and can also modify the cloud regime by inducing, for example, local 

frequent fog. These local or regional effects tend to introduce uncertainty when attempting to extrapolate 

solar resource data, sometimes over short distances. Remarkably, such small-scale variability effects 

have been demonstrated experimentally using dense radiometric networks (Madhavan et al. 2016; 

Perez-Astudillo and Bachour 2015; Sun et al. 2022). 

A study conducted by the Management and Exploitation of Solar Resource Knowledge (MESoR) project 

in Europe (Beyer et al. 2009) provided insights into the spatial distribution of irradiance variability by 

cross-comparing five different data sources. Inherent differences were found between databases based 

on in situ (ground) measurement interpolations and those based on satellite observations as well as in 

the methods used to process such data. The databases relying on the interpolation of ground 

observations were sensitive to the quality and completeness of ground measurements and to the density 

of the measurement network. Terrain effects (e.g., shadowing by surrounding terrain) played a role in 

solar radiation modeling over hilly and mountainous regions. The spatial resolution of the input data and 

the selected digital elevation model were identified as factors with direct impact on the accuracy of the 

estimates. Finally, to compare modeled data properly, particularly under clear-sky conditions, it is 

important to consider how each model deals with cloud identification and AOD characterization (Ruiz-

Arias et al. 2016). This is particularly important for DNI because of its higher sensitivity to AOD than GHI 

(Gueymard 2012; Ruiz-Arias et al. 2019). 

The quality and spatial detail of satellite-derived or numerical databases are determined by the specific 

input data used in the models. As can be expected, the main parameters describe the cloud properties 

and the optical transparency of the atmosphere in relation to aerosols and water vapor (Ruiz-Arias et al. 

2016). Regarding DNI more specifically, AOD is the most important variable under clear-sky conditions 

(Gueymard 2019, 2003) (see also Chapters 3 and 7). (Cebecauer et al. 2011) provide a comprehensive 

and qualitative review of the different factors (including terrain) affecting the accuracy of DNI modeling. 

Overall, the literature on spatial variability is much less complete than that on temporal variability. 

Nevertheless, other aspects of spatial variability are described next, as well as some examples of 

results. 

6.4 Evaluation of the Variability of the Solar Resource 

Variability is a wide-ranging term that can characterize the solar resource in many ways, either from a 

spatial or temporal perspective. In the latter case, all temporal scales can be considered, depending on 

context, from subsecond to multiyear scales. Temporal variability, if well characterized for a climate 

region, can be useful to determining the suitability of a short-term dataset to produce valid long-term 

statistics. For instance, the term can be applied to the interannual variability of the resource. Figure 6-9 

shows the interannual variability in monthly DNI in Daggett, California, in terms of monthly average daily 

total irradiation. 
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As mentioned above, the long-term dispersion of the solar resource is often characterized by COV, 

which is the unitless ratio between the standard deviation and mean (Calif and Soubdhan 2016; 

Gueymard and Wilcox 2011; Habte et al. 2020):  

  𝜎𝑡 =  √[
1

𝑛
∑ (𝑌𝑟𝑖𝑟𝑟𝑛

− 𝑌𝑟𝑖𝑟𝑟
̅̅ ̅̅ ̅̅ )

2𝑖=𝑛
𝑖=1 ] (6-2) 

  COV =
𝜎𝑡

𝑌𝑟𝑖𝑟𝑟̅̅ ̅̅ ̅̅ ̅
 . (6-3) 

where 𝜎𝑡 is the standard deviation, 𝑌𝑟𝑖𝑟𝑟 𝑛
 is the annual irradiance of the individual n years, and 𝑌𝑟𝑖𝑟𝑟

̅̅ ̅̅ ̅̅  is 

the mean of irradiance of all years. 

Long-term oscillations in GHI and DNI are also important because of the succession of periods known 

as “dimming” and “brightening” that affect both climate change and the extrapolation of the historical 

solar resource into the future, as discussed in Section 6.2.5.2. It is important to consider these sources 

of variability in the context of solar performance forecasting.  

 

Figure 6-9. Example of direct-beam monthly average daily total (kWh/m2)  
illustrating interannual and seasonal variability from 1961–2018 in Daggett, California  

Image by NREL 

 

The term variability is also used to describe the spatial variability of the resource in a climatological 

context. Spatial variability can help determine the applicability of a particular dataset for a nearby 

location, possibly saving the need for additional measurements. In this case, variability characterizes 

microclimatic features and regional resource gradients. An example is provided in Figure 6-10, which 

shows the climatological GHI resource distribution over the Island of Oahu, Hawaii. Similarly, Figure 6-
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11 shows the spatial variability of DNI and GTI over 50-by-50-km areas throughout the United States in 

terms of COV (Gueymard and Wilcox 2011).42 

 

Figure 6-10. Example of microclimatic spatial variability for the Island of Oahu  

The 1-km resolution map displays mean hourly GHI in W/m2.  

Image from SolarAnywhere V3.0 (2015) 
 

 

Figure 6-11. Spatial variability in (left) DNI and (right) GTI over the continental United States in 
percentage of COV  

Images from NREL  

 

 

 

42 Such spatial and temporal variability maps are available at https://www.nrel.gov/grid/solar-

resource/variability.html. 

https://www.nrel.gov/grid/solar-resource/variability.html
https://www.nrel.gov/grid/solar-resource/variability.html
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From a resource assessment perspective, the term variability is associated with the time/space impact 

of weather and the cycle of days and seasons on the output of solar systems. This output can vary from 

zero to full power and is outside the control of plant operators. Understanding the solar resource’s 

variability is key to optimally integrating the power output of solar electric systems into electric grids. 

This is discussed further in Section 6.6 and Chapter 11. 

Space/time variability has two causes: one cause is fully predictable and is the result of the apparent 

seasonal and daily motion of the sun in the sky and the Sun-Earth distance; and the other cause results 

from the motion of clouds and, to a lesser extent, of aerosols in relation to weather systems. It is useful 

to first consider the temporal and spatial scales involved and how they impact the available solar 

resource. 

6.4.1 Temporal Scale  

Beginning with an intuitive example (Figure 6-12), a single location on a partly cloudy day will experience 

a high degree of temporal variability because of changes in the sun’s position and the motion of clouds; 

however, the solar energy accumulated during several days at that same location exhibits less 

variability. Variability in GHI becomes small as the temporal integration increases to 1 year and more, 

but that in DNI or even GTI can still be significant (Gueymard and Wilcox 2011). In addition, investigating 

intra-seasonal variability can provide insightful information. In some areas, for example, summers might 

exhibit less variability than winters if there are typically only a few cloudy days in summer and not-too-

dissimilar numbers of cloudy and sunny days in winter. Adding or subtracting a sunny day during the 

summer does not significantly affect the monthly average in this case, contrary to what can happen in 

winter. In many temperate areas, on the other hand, low variability caused by consistently cloudy 

conditions is typical in winter, whereas a succession of clear and cloudy days is typical in summer (high 

variability). 

Figure 6-13 shows a representation of interannual variability over the Americas, demonstrating some 

geographic dependence because of microclimate or long-term climatic fluctuations. Studies of GHI and 

DNI distributions in the United States show that GHI’s interannual variability typically ranges from 2–6% 

in terms of COV, whereas the variability of DNI is between 5% and 15%, about twice as much 

(Gueymard and Wilcox 2011; Habte et al. 2020). A single year can deviate much more from the long-

term average. (Gueymard and Wilcox 2009) analyzed the long-term data from four stations with 

continuous high-quality measurements spanning more than ≈25 years to examine how many individual 

years would be required to converge to the long-term mean and whether the interannual irradiance 

variability changes significantly from one site to another. Sorting the data from the most exceptional 

years (largest anomalies) to the most typical years (smallest anomalies), the results showed that, first, 

there is much lower interannual variability in GHI than in DNI. In the examined stations in the United 

States, GHI is almost always within ±5% of the true long-term mean after only 1 year of measurements 

(Figure 6-13). The situation is quite different for DNI. After only 1 year of measurements, the study 

showed that the estimate of the average DNI is no better than ±10–20% of the true long-term mean. 

Note, however, that the worst years were associated with strong volcanic activity, which significantly 

impacts DNI (see Section 6.2.4.2). 

Another interesting question is whether it is likely that good years with high irradiation occur in groups 

or are independent from the previous year’s irradiation. (Tomson et al. 2008) showed that the mean 

annual GHI in any year is virtually independent from that of the previous year. 

6.4.2 Spatial Scale  

Increasing the solar generation footprint from a single location to a region, and even to a continent, 

considerably reduces intermittency. Increasing this footprint to the entire planet eliminates intermittency 
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almost entirely (Figure 6-14). This spatial integration effect is often referred to as the (geographic) 

“smoothing effect,” which is discussed next. 

 

Figure 6-12. Variability of global irradiance time series at a North American location shown as a 
function of integration time  

The plot includes 1 day of 1-minute data, 4 days of hourly data, 26 weeks of weekly data, and 16 
years of yearly integrated data.  

Image from Perez et al. (2016) 
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Figure 6-13. Interannual variability in (left) GHI and (right) DNI using the 1998‒2017 NSRDB 

data expressed in percentage of COV  

Images from NREL 
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Figure 6-13. Number of years to stabilize DNI and GHI in (clockwise from upper left) Burns, Oregon; 
Eugene, Oregon; Hermiston, Oregon; and Golden, Colorado  

Specific sorting (along the x-axis) from the most exceptional years (largest anomalies) to the most 
typical years (smallest anomalies).  

Images from (Gueymard and Wilcox 2009) 

 

 

Figure 6-14. Variability of daily global irradiance time series over 1 year as a function of the 
considered footprint  

Image from Perez et al. (2016) 
 

6.4.3 Variability Impacts 

Both the temporal variability and the spatial variability are specific to a site (or area) and period. 

Temporal variability could change seasonally, as mentioned. The two types of variability directly affect 

solar resource analyses for various reasons, including: 
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• Measured datasets often contain data gaps due to instrument failure or various problems, such as 

dew or snow on instruments. (A recent Task-16 report was dedicated to this topic: (Blanc and Silva 

2023).) To avoid any discontinuity in the time series, analysts are typically tempted to use some 

form of temporal interpolation to fill the gaps. This is convenient but can significantly increase the 

overall uncertainty. The magnitude of the overall uncertainty depends on the time period, the method 

used to fill the gaps, and the data used for these tasks (Roesch et al. 2011a, 2011b). Moreover, 

replacing extended data breaks with climatological average values tends to underestimate the 

actual temporal variability. When calculating monthly averages in particular, it is possible to avoid 

the gap filling step altogether if an appropriate statistical method is used (Roesch et al. 2011a, 

2011b). The method is intricate but has been successfully demonstrated in the case of 1-minute 

radiation data from a Baseline Surface Radiation Network (BSRN) station, for instance (Salazar et 

al. 2020). 

• If no on-site measurements exist at the project’s site but some exist at one or more nearby sites 

some distance away, analysts are tempted to extrapolate or average the data from those alternate 

sites. Depending on the distance and spatial variability over that region, this might introduce 

significant errors. 

Interannual and long-term variability (decadal oscillations) must be considered to correctly project the 

measurements or modeled data of the past into the future for design and bankability purposes. These 

considerations explain why an evaluation of variability is an important step for accurate solar resource 

assessment at any location of interest. Further, the expected variability in the very near future (minutes 

to days) is also essential information for the correct operation and profitability of existing solar power 

plants. This can be estimated with appropriate solar forecasts (see Chapter 9). 

Various studies have analyzed the spatial or temporal variability of the solar resource at the country or 

continental scale (e.g., (Badosa et al. 2013; Castillejo-Cuberos and Escobar 2020; Davy and Troccoli 

2012; Gueymard and Wilcox 2011; Habte et al. 2020; Lohmann et al. 2006; Perez-Astudillo and Bachour 

2015). A general finding is that the spatiotemporal variability of DNI is larger than that of GHI for any 

given location. Because GTI is normally richer in direct irradiance than GHI, it can also be said that the 

variability in GTI is larger than that in GHI. 

From an application perspective, the solar resource variability translates into power production 

variability, which could impact the stability of electric grids or the economics of the facility. One important 

question that has received specific attention is: How much is the temporal variability at one power plant 

site correlated with that of another site some distance away? This is discussed further in Section 6.6 

and Chapter 11. 

Predicting the behavior of existing or future solar systems assumes that the temporal and spatial 

irradiance variability can be adequately characterized with measurements and/or modeled data. It is 

easy to take care of the deterministic variability caused by location, date, and time of day. What matters 

most is the variability (temporal or spatial) in weather and climate. 

With some knowledge about the interannual irradiance variability at a specific site, users can, in 

principle, select a particular experimental period to adequately characterize the solar resource. Ideally, 

such on-site measurement campaigns should last many years; however, in most cases, practical 

reasons limit them to 1 year or less, which increases the uncertainty in the long-term estimates. 

Likewise, with knowledge of the spatial variability over the area around a measurement station, users 

can evaluate the applicability of those measurements to a location some distance away using the 

appropriate extrapolation or interpolation methods. Knowledge of variability then becomes valuable 

when deciding how long to make measurements at a particular location and whether the characteristics 

of the solar resource at that location can be extrapolated to other nearby locations. 
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With such variability maps or statistics, users can better understand the extent of measurements 

required to best characterize the solar resource for a particular application. In areas with low interannual 

variability, a shorter measurement period could suffice. In areas with low spatial variability, a 

measurement station could represent the solar resource at nearby locations (e.g., within 10–50 km), 

avoiding the need for additional measurements. An analyst can use this information to build better 

confidence in a dataset as being sufficient for an analysis and can use these data to understand the 

consistency of future solar power plant performance and how that relates to the economic viability of a 

particular location. 

One remaining question is whether solar resource data of past decades can represent that of the future. 

To that end, the long-term trends in GHI and DNI must be investigated in relation to dimming and 

brightening climate cycles (Müller et al. 2014; Pfeifroth et al. 2018) because of their impact on the yield 

predictions of solar installations (Müller et al. 2015); see Section 6.2.5.2 for details. 

Some statistics that are commonly used to describe the temporal variability of irradiance components 

assume that their distribution is Gaussian, which is a typical assumption (Cebecauer and Suri 2015). 

(Fernández-Peruchena et al. 2016) tested that assumption in annual GHI and in DNI time series. 

Regarding GHI, results from two normality tests indicated that the Gaussian assumption could not be 

rejected at all 10 tested locations. In the case of DNI, five tests were applied to the annual DNI series 

for evaluating the Weibull goodness of fit at six locations, and the results suggested that such a 

distribution is more appropriate than a Gaussian distribution. Considering these results, the temporal 

variability requires further analysis to clarify whether annual, monthly, or seasonal solar radiation values 

can be properly assumed: (1) as independent; (2) as only random samples of the same population; or, 

conversely, (3) as representative of different probabilistic models having, for example, a stationary 

behavior. 

As mentioned in Chapter 8, typical meteorological years (TMYs) eliminate all interannual variability by 

design. Nevertheless, they can be used, at least on a monthly-mean basis, to investigate the spatial 

variability of the solar resource wherever gridded TMY databases are available (Habte et al. 2014). 

6.5 Temporal Variability and Resolution 

Based on the information presented previously, it is clear that temporal variability is a direct function of 

the temporal resolution of data time series: The higher the resolution, the higher variability can be 

expected. In many cases, it is necessary to simulate the energy flows of a solar system at high resolution 

(e.g., at 1-minute time steps or better) to investigate the effects of short-term variability on the system, 

whereas the available solar radiation dataset is at coarser (e.g., hourly) resolution. Most generally, the 

use of high-resolution solar data is crucial for accurate performance modeling of solar power plants, 

particularly in the case of nonlinear systems. Modeling at hourly resolution can result in unrealistic 

representations of the performance of CSP (Meybodi et al. 2017) or PV (Villoz et al. 2022) systems. For 

instance, (Hirsch et al. 2010) demonstrated that, when simulating the dynamic behavior of oil-based 

parabolic trough plants, the energy produced could be inaccurately estimated when using time steps 

larger than 30 minutes, compared to the reference 1-minute time step. Therefore, it is usually necessary 

to use finer time resolutions, such as subhourly or even minute-level data, to better capture the variability 

and dynamics of solar radiation and its impact on system performance. One approach to resolving this 

kind of temporal mismatch is to use synthetic datasets at high resolution. 

The primary objective behind the development of synthetic datasets is to provide solar irradiance data 

in situations where ground-measured data are unavailable or where the global gridded irradiance data 

have insufficient spatial or temporal resolution (Bright 2021). The choice of the most suitable model for 

synthetic generation depends on the desired time resolution of the dataset. Autoregressive models have 
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been found to be effective for monthly and daily synthetic generation (Boland 2008). This process 

involves adding a seasonal component to a stochastic and autoregressive component. 

For intra-daily synthetic solar data, the process generally involves downscaling, in which the output data 

has a higher resolution than the input data. Downscaling can be achieved using simple (Ngoko et al. 

2014) or multiple (Bright et al. 2015) Markov chains, bootstrapping methods (Grantham et al. 2018; Polo 

et al. 2011), and nondimensional daily profiles (Fernández-Peruchena et al. 2015; Larrañeta et al. 2018). 

Regardless of the approach, all such models aim to replicate the inherent variability of solar radiation 

based on historical data. 

6.6 Variability of Solar Energy Production 

From an application perspective, solar resource variability translates into power production variability, 

which could impact the stability of electric grids or the economics of the facility. In this respect, two key 

questions are: (1) How should the temporal variability in the solar resource at the site of a future project 

be taken into account at the design stage? and (2) How long should the historical time series be when 

used to evaluate the solar resource and its variability at any site?  

The practical importance of correctly dealing with the consequences of the solar resource’s temporal 

variability is particularly evident at the design stage because of the ingrained reliance of designers on 

single-year (e.g., TMY) data files, whereas only multiyear time series can convey the necessary 

information about interannual variability. A quantification of the unwanted consequences on project 

costs and financing for simply using short-term averages of solar resource data and ignoring temporal 

interdependencies at the design stage now exists (Bothwell and Hobbs 2023). The practical aspects of 

this important topic are further elaborated in Chapter 11. 

For more details on the characterization of the effects on PV production of the solar resource’s 

spatiotemporal variability, the reader is referred to a report from PVPS Task 14 (Remund et al. 2015). 
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7 MODELING SOLAR RADIATION: CURRENT PRACTICES 

Manajit Sengupta,1 Yu Xie,1 Christian Gueymard,2 and Hadrien Verbois3 
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3 MINES Paristech, France 

Executive Summary 

Radiative transfer modeling has existed for over a century and has primarily been used in meteorological 

applications. With the advent of solar energy, modeling requirements have changed significantly over 

the years. Satellite-based applications required fast modeling techniques, while direct normal irradiance 

(DNI) and global tilted irradiance (GTI) became important quantities. Satellite-based solar energy 

estimates have been developed over the years and are still being actively improved as next-generation 

meteorological satellites are deployed. Merging satellite estimates and ground observations have 

become important as the solar energy modeling world responds to the need for unbiased estimates of 

higher accuracy. Numerical weather prediction (NWP) models have also evolved over the years to fulfill 

the needs of solar energy forecasting.  

This chapter provides a brief overview of solar radiation modeling methods, specifically emphasizing 

satellite-based models. Since the 1980s, the technology of operational meteorological satellites and 

models to estimate surface radiation from these satellites have improved in their resolution and 

accuracy. With the launch of the Geostationary Operational Environmental Satellite (GOES)-R series, 

Meteosat Third Generation (MTG_I1), the FengYun (FY)4 series, Himawari-9, and GEO-KOMPSAT-2A 

(GK-2A) geostationary satellites, the world is now covered at temporal resolutions of 15 minutes or 

better and spatial resolutions of ≈1 km, except at high latitudes. Improvements in computational 

capabilities have also contributed to improving the scientific community’s ability to use increasingly 

sophisticated models capable of handling large volumes of satellite and ancillary datasets and that 

ultimately deliver products of increasing resolution and accuracy. Additional discussions include more 

recent efforts to use machine learning (ML)-based methods to estimate solar radiation. 

Site-adaptation models have been used to improve local assessments of solar radiation. These models 

generally use short-term ground-based solar measurements to adjust long-term satellite-based solar 

radiation datasets. This chapter contains a summary of site-adaptation practices. 

This chapter also contains a short introduction to NWP modeling because improvements in that area 

can contribute to better irradiance estimates around the globe.  

7.1 Introduction 

High-quality solar resource assessment accelerates the deployment of solar technologies by making a 

positive impact on decision-making and minimizing uncertainty in investment choices. Global horizontal 

irradiance (GHI), GTI, and/or DNI are quantities of interest for solar resource assessment and 

characterization at a particular location. Surface-based measurements of DNI and GHI can be made 

only on a relatively sparse network, given the high operational and maintenance costs. GTI 

measurements are even less common in radiometric networks. Nevertheless, observations from ground 

networks have been used in conjunction with models to generate surface solar radiation maps (Qin et 

al. 2020). An alternative approach involves leveraging information from geostationary satellites to 
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estimate GHI and DNI at the Earth’s surface (Beyer et al. 1996; Cano et al. 1986; Cebecauer and Suri 

2010; Diabaté et al. 1987; Perez et al. 2002; Pinker and Laszlo 1992; Qu et al. 2017; Rigollier et al. 

2004). Because different geostationary satellites cover distinct longitudes worldwide, solar radiation data 

can be obtained for the entire globe (at least between latitudes from approximately -60° to +60°) at 

temporal and spatial resolutions representative of a particular satellite. A compilation of satellite-derived 

data based on observations from polar orbiters offers good spatial coverage for regions located at higher 

northern or southern latitudes, but typically at a lower spatiotemporal resolution (Karlsson et al. 2017a; 

2017b; Kato et al. 2018). 

Solar radiation models relying solely on ground-measured input parameters were used in the past when 

satellite or weather-model-derived databases were not available. Examples of such models are briefly 

mentioned in this chapter for historic reasons. One notable model type is based on data from the 

Campbell-Stokes sunshine duration recorder. This model derives the monthly-mean GHI by fitting a 

regression equation to the number of sunshine hours measured by the sunshine recorder’s burn marks 

when direct solar irradiance exceeds an assumed threshold value of 120 W/m2. The regression 

coefficients are calculated using existing GHI measurements at specific locations. The exact method to 

calculate GHI using sunshine recorder information is empirical and therefore specific to each geographic 

area. Moreover, the meteorological services of some countries, such as the United States or Canada, 

have discontinued the measurement of sunshine duration due to its limited quality, lack of 

standardization, and variation among countries.  

In the absence of surface radiation measurements, estimates of surface radiation can be made using 

routine meteorological ground measurements and human observations of cloud cover in a radiative 

transfer model (Marion and Wilcox 1994). For instance, the METeorological-STATistical (METSTAT) 

model (Maxwell 1998) used information about cloud cover, water vapor, ozone, and aerosol optical 

depth (AOD) to develop empirical correlations to compute atmospheric transmittance extinction during 

both clear- and cloudy-sky conditions. That model was used to create earlier versions of the U.S. 

National Solar Radiation Database (NSRDB) (1991–2005) (e.g., [George et al. 2008]). Similar 

developments have been carried out in Europe with successive versions of the European Solar 

Radiation Atlas (Page et al. 2001). 

Long-term GHI data can also be obtained from various NWP models, either through operational weather 

forecasts or their derived reanalysis mode for historical time series. Examples of reanalysis data include 

the European Center for Medium-Range Weather Forecasting (ECMWF) Reanalysis version 5 (ERA5) 

(Hersbach et al. 2020; Trolliet et al. 2018) and the Modern Era Retrospective analysis for Research and 

Applications, Version 2 (MERRA-2) from the National Aeronautics and Space Administration (NASA) 

(Collow et al. 2023; Trolliet et al. 2018). Weather forecasts such as those from the ECMWF’s Integrated 

Forecasting System (IFS) and the National Oceanic and Atmospheric Administration’s (NOAA’s) Global 

Forecast System (GFS) can also provide estimates of GHI. Such estimates, however, are typically not 

as accurate as those derived from satellite-based models, and thus often require careful bias corrections 

(Boilley and Wald 2015; Urraca et al. 2018).  

This chapter contains an introduction to satellite-based models, information about currently operational 

models that provide surface radiation data for current or recent periods, and a summary of radiative 

transfer models used in the operational models. A short discussion on NWP-based solar radiation data 

is also included. The uncertainty in modeled irradiance predictions and solar-based resource 

assessments is further elaborated upon in Chapter 10. 

7.2 Radiative Transfer Models 

To evaluate the solar irradiance incident at the planetary surface, various types of calculation methods 

have been proposed. As a general rule, simple empirical models should be avoided because of their 
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limited spatial representativeness. Nevertheless, such models are still necessary to separate GHI into 

its direct and diffuse components (Section 7.3.1) and to estimate GTI (Section 7.3.2). In general, though, 

the surface predictions of GHI (at least) based on satellite imagery or made by NWP models are based 

on one or more radiative transfer models. The all-sky calculations are typically made in two steps: a 

clear-sky model is used first to evaluate the ideal clear-sky irradiance components, and then a cloud 

model is activated (if necessary) to alter those ideal results and reflect realistic conditions. Radiative 

transfer models are normally of a spectral nature for physical reasons, but broadband or multiband 

simplifications also exist, which are used more widely in solar applications because they are faster. 

Sections 7.2.1 and 7.2.2 provide details on clear-sky models and cloudy-sky models, respectively. 

7.2.1 Clear-Sky Radiative Transfer Models 

The Bird clear-sky model (Bird and Hulstrom 1981) is a broadband algorithm that produces estimates 

of clear-sky direct beam, hemispherical diffuse, and total hemispherical solar radiation on a horizontal 

surface. It uses a parameterization based on radiative transfer computations and that comprises simple 

algebraic expressions. The model results are expected to exhibit agreement within ±10% when 

compared to detailed high-resolution spectral or broadband physics-based radiative transfer models. 

The Bird clear-sky model can be used at resolutions of 1 minute or better and can duly accept inputs at 

that frequency, if available. In the absence of high-temporal-resolution input parameters, however, 

climatological or annual average values can be used as suitable alternatives. The Bird clear-sky model 

also forms the foundation for the clear-sky component of METSTAT, albeit with minor modifications 

(Maxwell 1998). The performance of both models has been assessed rigorously and compared to other 

algorithms (Badescu et al. 2012; Gueymard 2012a; 2004a; 2004b; 2003a; 2003b; Gueymard and Myers 

2008; Gueymard and Ruiz-Arias 2015). 

The European Solar Radiation Atlas (ESRA) model is another example of a clear-sky model (Rigollier 

et al. 2000). Used in the Heliosat-2 model that estimates GHI from satellites, this model computes DNI, 

GHI, and DHI using Rayleigh optical depth, elevation, and the Linke turbidity factor as its inputs. The 

performance of the model has been evaluated at various locations (Badescu et al. 2012; Gueymard 

2012a; Gueymard and Myers 2008; Gueymard and Ruiz-Arias 2015). 
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The Solar Irradiance Scheme (SOLIS) model (Mueller et al. 2004) is a relatively simple clear-sky model 

that can calculate DNI, GHI, and DHI over the relatively narrow spectral bandwidth of various 

spaceborne radiometer channels, based on an approximation to the Lambert-Beer relation for 

computing DNI: 

 I = I0 e(-M*τ)  (7-1) 

where: 

• τ is the atmospheric optical depth at a specific wavelength.  

• M is the optical air mass. 

• I0 is the top-of-atmosphere (TOA) spectral direct irradiance. 

• I is the spectral DNI at the surface. 

This equation is modified to account for slant paths and adapted for global and diffuse radiation. The 

modified Lambert-Beer relation (Mueller et al. 2004) is: 

 I(SZA) = I0 ∙exp(-τc / cos c(SZA)) (7-2) 

where: 

• I(SZA) is one of the irradiance components GHI, DNI, or DHI. 

• c is an empirical exponent that depends on the radiation component DNI, DHI, or GHI. 

• τc is the vertical broadband optical depth of the atmosphere for the radiation component of interest. 

• SZA is the solar zenith angle. 

The Beer-Lambert equation is a simple relationship to evaluate DNI based only on the impact of 

atmospheric attenuation. On the other hand, DHI and GHI contain energy that is scattered by the 

atmosphere. The empirical exponent c is thus used as an adjustment to compute either GHI or DHI 

using the modified Beer-Lambert approach represented by Eq. 7-2. Ineichen (2008) further developed 

the “simplified SOLIS” (broadband) version of that clear-sky model by obtaining parameterizations (for 

a limited range of atmospheric conditions) to replace radiative transfer model runs, thereby increasing 

the speed of the model and its functionality in most solar applications. 

The McClear model is a clear-sky broadband model that implements a fully physical approach, replacing 

the empirical relations or simpler models used before, such as ESRA. It exploits the recent results on 

aerosol properties and total column content in water vapor and ozone produced by the European 

Copernicus Atmosphere Monitoring Service (CAMS) project. It is based on lookup tables precomputed 

with the radiative transfer model libRadtran (Gschwind et al. 2019). The model is not operable by 

individuals, but its outputs are offered as a free web-based service to registered users.43 McClear 

irradiance predictions were compared to 1-minute measurements conducted under clear-sky conditions 

at several Baseline Surface Radiation Network (BSRN) stations representative of various climates 

(Lefèvre et al. 2013). The correlation coefficients range from 0.95–0.99 and from 0.86–0.99 for GHI and 

DNI, respectively. The bias ranges from 14–25 W/m² and 49–33 W/m², respectively. The root mean-

square errors range from 20 W/m² (3% of the mean observed irradiance) to 36 W/m² (5%) and from 33 

W/m² (5%) to 64 W/m² (10%), respectively. 

 

 

43 See https://www.soda-pro.com/web-services/radiation/cams-mcclear.  

https://www.soda-pro.com/web-services/radiation/cams-mcclear
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Reference Evaluation of Solar Transmittance v2 (REST2) is a high-performance model that utilizes 

transmittance parameterizations across two distinct spectral bands separated at 0.7 µm. The model’s 

development and its benchmarking are described by Gueymard (2008b). REST2 has been thoroughly 

validated and compared to other irradiance models under varied atmospheric conditions, including 

scenarios with extremely high aerosol loads (Antonanzas-Torres et al. 2016; Engerer and Mills 2015; 

Gueymard 2014; 2012a; Gueymard and Ruiz-Arias 2015; Sengupta and Gotseff 2013; Zhong and 

Kleissl 2015). The model is used in solar-related applications, including the benchmarking of the 

radiative output of the Weather Research and Forecasting (WRF) model (Ruiz-Arias et al., 2012), the 

operational derivation of surface irradiance components using Moderate Resolution Imaging 

Spectroradiometer (MODIS) satellite observations (Chen et al. 2014), the improvement in GHI to DNI 

separation modeling (Vindel et al. 2013), and the development of future climate scenarios (Fatichi et al. 

2011). REST2 is integrated into the algorithms used by some commercial providers to derive satellite-

based irradiance data. Similarly, it is also integrated into the Fast All-sky Radiation Model for Solar 

applications (FARMS) suite of algorithms (Xie et al. 2016) that produces the current version of the 

National Renewable Energy Laboratory’s (NREL’s) NSRDB (1998–2022, with annual updates), as 

discussed further in the following subsections.  

7.2.2 Cloudy-Sky Radiative Transfer Models 

Radiative transfer models can simulate atmospheric radiation under all-sky conditions and have been 

used in a broad range of applications, such as satellite remote sensing and climate studies. Compared 

to other applications, solar energy has unique requirements from radiative transfer models and thus has 

prerequisites in the model design. For instance, the study of solar energy demands more-efficient 

simulations of solar irradiance than the conventional models used in weather or climate studies, such 

as the Rapid Radiation Transfer Model (RRTM) or its simplified two-stream version specially tailored for 

general circulation models (RRTMG). To provide a new option for efficiently computing solar radiation, 

NREL developed FARMS (Xie et al. 2016) using cloud transmittances and reflectances for direct and 

diffuse radiation computed by RRTM with the 16-stream discrete-ordinates radiative transfer method. 

To reduce the computing burden, the cloud transmittances and reflectances are parameterized as 

functions of SZA, cloud thermodynamic phase, optical thickness, and particle size. The all-sky GHI, DHI, 

and DNI are ultimately computed by coupling the cloud transmittances and reflectances with surface 

albedo and a fast clear-sky radiation model (REST2, discussed above) to account for atmospheric 

absorption and scattering.  

To evaluate the accuracy and efficiency of FARMS, GHI was simulated using the cloud microphysical 

and optical properties retrieved from GOES data during 2009–2012 with both FARMS and RRTMG and 

compared to measurements taken at the Southern Great Plains site of the U.S. Department of Energy’s 

Atmospheric Radiation Measurement Climate Research Facility. Results indicate that FARMS achieves 

comparable or superior accuracy compared to the two-stream approach; however, FARMS is 

approximately 1000 times more efficient and faster because it does not explicitly solve the radiative 

transfer equation for each individual cloud condition. Note that FARMS, as well as the conventional 

radiative transfer models developed for weather and climate studies, outputs only broadband irradiance 

over horizontal surfaces. Recently, FARMS expanded its capabilities to incorporate tilted surfaces and 

spectral distributions (Xie et al. 2019; Xie and Sengupta 2018). The model’s spectral expansion follows 

the same principle of separation between the clear atmosphere and the cloud layer as in the broadband 

version of FARMS but replaces the REST2 clear-sky predictions with those from the SMARTS spectral 

model, described in Gueymard (2022; 2001). 
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The CAMS radiation service44 uses a physical retrieval of cloud parameters and the fast parameterized 

radiative transfer method called Heliosat-4 (Qu et al. 2017). The new Heliosat‐4 method computes GHI, 

DNI, and DHI under all-sky conditions as a broadband aggregation of spectrally resolved internal 

computations. It is a highly efficient yet accurate physical model that mimics a full radiative transfer 

model, and it is well suited for geostationary satellite retrievals. The foundation of Heliosat-4 is based 

on the work conducted by Oumbe et al. (2014), which proved that the surface solar irradiance can be 

approximated by the product of the irradiance under cloudless conditions and a modification index 

depending solely on cloud properties and ground albedo. This is why Heliosat-4 contains two 

precomputed lookup-table-based models: the McClear model (Gschwind et al. 2019; Lefèvre et al. 2013) 

for clear-sky conditions, discussed above, and the McCloud model for cloudy conditions. Like with 

McClear, the McCloud database was developed using the libRadtran radiative transfer model (Mayer 

and Kylling 2005). The main input to the McCloud part of Heliosat-4 is the cloud optical depth (COD). 

With Meteosat Second Generation (MSG) satellite observations, cloud properties are derived at a 15-

minute temporal resolution using an adapted Advanced Very High Resolution Radiometer (AVHRR) 

Processing scheme Over cLouds, Land, and Ocean (APOLLO) retrieval scheme. Schroedter-

Homscheidt et al. (2021) have written a concise summary of this topic.  

7.3 Other Irradiance Models for Solar Energy Applications 

7.3.1 Estimating the Direct and Diffuse Components From Global  
Horizontal Irradiance 

During clear and partly cloudy conditions, the diffuse irradiance incident on a horizontal surface, DHI, is 

often a relatively small part (<30%) of GHI. In contrast, during dense overcast conditions, GHI and DHI 

should be identical. In situations in which there are no simultaneous DHI or DNI measurements and 

alternate determinations are unavailable—for example, from physical-based satellite-based models—

DNI and DHI must be estimated from GHI data. Many models based on empirical correlations between 

GHI and either DHI or DNI hourly data have been developed over the years (Erbs et al. 1982; Liu and 

Jordan 1960; Maxwell 1987; Perez et al. 1990). More recently, Engerer (2015), Aler et al. (2017), Yang 

and Gueymard (2020), Starke et al. (2021), Yang et al. (2024), and Ruiz-Arias and Gueymard (2024), 

among others, extended this empirical methodology to obtain DNI and DHI at 1-minute resolution. These 

algorithms use correlations between the global clearness index, Kt = GHI/[ETR cos(SZA)], and the 

diffuse fraction, K = DHI/GHI, the diffuse clearness index (i.e., the diffuse transmittance), Kd = DHI/[ETR 

cos(SZA)], or the direct clearness index (direct transmittance), Kn = DNI/ETR. These separation models 

are derived empirically, using measurements from a variable number of stations. There are reviews of 

the substantial literature on this topic (e.g., Gueymard [2008a], Gueymard and Ruiz-Arias [2016], 

Tapakis et al. [2016], and Tan et al. [2023]). Analysts should note that certain hourly separation models, 

including the most popular ones, might not perform correctly when applied to subhourly data (Gueymard 

and Ruiz-Arias 2016). 

7.3.2 Estimating Irradiance on a Tilted Surface (Transposition Models) 

Solar conversion systems, such as flat-plate collectors or non-concentrating photovoltaics (PV), are 

typically inclined toward the equator to optimize their solar resource. Estimating or modeling the 

irradiance incident upon them is essential to predicting their performance and yield. This irradiance 

incident on the plane of array (POA) is commonly referred to as GTI, or POA irradiance. GTI can be 

 

 

44 See https://www.soda-pro.com/web-services/radiation/cams-radiation-service.  

https://www.soda-pro.com/web-services/radiation/cams-radiation-service
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measured directly by pyranometers that are tilted in the same manner as the collector plane. Modeling 

GTI mainly requires data of the three main components on the horizontal surface (GHI, DNI, and DHI). 

GTI can be estimated as the sum of the incident beam, incident sky diffuse, and incident ground-

reflected irradiances on the tilted surface. The incident beam contribution involves a straightforward 

geometric transformation of DNI, requiring only the angle of incidence of DNI on the tilted plane (see 

Chapter 2). The ground-reflected contribution is generally small for tilts less than 45°, unless the ground 

is covered with snow. A simple estimation is possible but requires several assumptions: the foreground 

is assumed infinite, horizontal, and of isotropic reflectance. In practice, however, the reflected irradiance 

incident on collectors or the front panel of PV modules located behind the front row would be 

overestimated with this approach. In recent years, the rapid uptake of bifacial PV technology has brought 

the calculation of reflected irradiance to the forefront because it is the main resource for the backside of 

PV modules. That calculation is complex because of the number of variables involved, including the 

directional and spectral properties of the reflectance for each type of surface and the shading caused 

by the supporting structure. No simple model is currently available to provide accurate results in all 

possible cases and geometries. 

In general, the main difficulty is the computation of the sky diffuse irradiance, which has been studied 

by many authors with different approaches, ranging from the simplest isotropic model to more elaborate 

and complex formulations (Gueymard 1987; 2008a; Kambezidis et al. 1994; Khalil and Shaffie 2013; 

Liu and Jordan 1960; Loutzenhiser et al. 2007; Muneer and Saluja 1985; Olmo et al. 1999; Padovan 

and Del Col 2010; Wattan and Janjai 2016; Xie and Sengupta 2016). See also the review of these 

models in Yang (2016). Among the various models available, the Perez model (Perez et al. 1990; 1988; 

1987) has gained widespread usage and has been validated at a variety of stations. It is the result of a 

thorough analysis of the isotropic diffuse, circumsolar, and horizon brightening irradiances computed by 

using empirically derived parameters. The Perez model works well with hourly data, but it might generate 

erroneous values with subhourly data under extreme conditions when Kt >1 (i.e., cloud-enhancement 

events) (Gueymard 2017). A modified version of the Perez model has been proposed recently (Driesse 

et al. 2024) to remove any temporal discontinuity in its predictions. 

7.4 Introduction to Satellite-Based Models 

The goal of satellite-based irradiance models is to use observed information on TOA upwelling 

radiances, atmospheric properties, and surface albedos to derive GHI and DNI at the surface of the 

Earth. During the last decades, satellite-based retrievals of GHI have been used, for example, for climate 

studies (Justus et al. 1986). Renné et al. (1999) provide a comprehensive overview of these methods, 

which were originally classified into subjective, empirical/statistical, empirical/physical, and physical 

methods (Myers 2013; Pinker et al. 1995; Schmetz 1989). The empirical/statistical methods are based 

on developing relationships between satellite- and ground-based observations; the empirical/physical 

and theoretical methods estimate surface radiation directly from satellite information using retrieval 

schemes to determine the atmospheric properties important to radiative transfer. Most 

empirical/statistical and empirical/physical models are now considered semiempirical because they 

involve the development of intermediate relationships either to relate satellite observations with surface 

radiation measurements or to convert satellite observations directly to solar radiation estimates. A 

schematic flowchart is shown in Figure 7-1. Empirical and semiempirical methods generally produce 

only GHI and require additional models (see Section 7.3.1) to estimate DNI from GHI. Physical models, 

on the other hand, generally follow a two-step process that derives cloud optical properties using the 

satellite radiances in the first step and computes both GHI and DNI using these cloud properties in a 

radiative transfer model in the second step, as described in Figure 7-2. 
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Figure 7-1. Schematic flowchart describing the different modeling parts of semiempirical satellite 
models (SZA: Solar zenith angle; TOA: Top of atmosphere) 

Image by C. Gueymard 
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Figure 7-2. Schematic flowchart describing the different modeling parts of physical satellite models 
(SZA: Solar zenith angle; TOA: Top of atmosphere) 

Image by C. Gueymard 

7.4.1 Geostationary Meteorological Satellites 

Geostationary satellites positioned above the equator and synchronized with the Earth’s rotation provide 

continuous coverage within their field of view. Observations are usable up to latitudes 60°N and 60°S 

only because of the Earth’s curvature, as shown in Figure 7.3. A number of satellites are required for 

global coverage, as depicted in that figure. Below, the various satellites that are currently operational 

around the world are introduced. These satellites have been deployed by various countries or groups of 

countries.  

GOES is designed to cover North and South America. Two satellites of the most recent GOES-R series 

(GOES-East/GOES-16 and GOES-West/GOES-17) operate concurrently and provide full-disk coverage 

of North and South America every 10–15 minutes and of the Northern Hemisphere part of that domain 

every 5 minutes. The Advanced Baseline Imager (ABI) sensor on the current GOES satellites makes 

radiance observations in 16 wavelength bands, or spectral regions (Table 7-1) (Schmit et al. 2018; 

2005). GOES-16 and -17 became operational in 2018 and 2019, respectively. The wavelengths in  

 

Table 7-1 are representative of the latest generation of GOES satellites. The previous version of the 

GOES-East and GOES-West series provided data for only five channels (one visible, four infrared) every 

30 minutes for the Northern Hemisphere and every 3 hours at full disk.  
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Table 7-1. GOES-16 and GOES-17 ABI Bands 

ABI  
Band 

Central  

Wavelength (m) 
Type 

Spatial  
Resolution at Nadir 
(km) 

1 0.47 Visible 1 

2 0.64 Visible 0.5 

3 0.86 Near-infrared 1 

4 1.37 Near-infrared 2 

5 1.6 Infrared 1 

6 2.2 Infrared 2 

7 3.9 Infrared 2 

8 6.2 Infrared 2 

9 6.9 Infrared 2 

10 7.3 Infrared 2 

11 8.4 Infrared 2 

12 9.6 Infrared 2 

13 10.3 Infrared 2 

14 11.2 Infrared 2 

15 12.3 Infrared 2 

16 13.3 Infrared 2 

 
The Meteosat series of satellites, owned by the European Organisation for the Exploitation of 

Meteorological Satellites (EUMETSAT), offer coverage over Europe, Africa, Middle East, the Indian 

Ocean, and western Asia. The visible and infrared imager on the Meteosat First Generation (MFG) 

satellites (up to Meteosat-7) had three visible channels, water vapor (6.2 µm), and infrared. The visible 

and infrared channels both produced imagery at 5-km nadir resolution. Moreover, there were two 

channels with 2.5-km resolution, presented in an interleaved format. Imagery had a repetition frequency 

of 30 minutes. The Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on the MSG satellites 

(Meteosat-8 onward) provides satellite imagery every 15 minutes at a nominal 3-km resolution for 11 

channels (Schmetz et al. 2002). The twelfth channel, a high-resolution visible channel, has a nadir 

resolution of 1 km. EUMETSAT operates two satellites simultaneously to cover Europe and Africa. 

These coverages are generally referred to as “prime coverage” and Indian Ocean Data Coverage 

(IODC). EUMETSAT recently launched a Meteosat Third Generation (MTG) satellite, MTG-I1. The 

Flexible Combined Imager (FCI) onboard MTG replaces the SEVIRI instrument and contains 16 

channels covering the visible, near-infrared, and infrared parts of the spectrum. Meteosat-9 (IODC), 

Meteosat-10, and Meteosat-11 remain the operational satellites for EUMETSAT, while MTG-I1 still 

undergoes various tests.  

The Himawari series of satellites are third-generation satellites comparable to GOES-16 and MTG. The 

Himawari series provides coverage over East Asia and the Western Pacific region. Himawari-8 was 

launched in October 2014 and harbors the Advanced Himawari Imager (AHI), which has characteristics 

similar to the ABI (Bessho et al. 2016). Of the 16 bands, the visible and near-infrared bands sense at 

0.5-km or 1-km resolution, whereas the infrared bands sense at 2-km resolution. A full-disk image is 

produced every 10 minutes, and the sectors are generated every 2.5 minutes. Himawari-8 replaced the 

Multifunctional Transport Satellite series of satellites, which had been in operation since 2005. Himawari-

9 was launched in 2017 and was transitioned to full operation in December 2022, at which point 

Himawari-8 was placed on standby. 
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The FengYun (FY-4) is the second-generation of meteorological weather satellites first launched by the 

Chinese Meteorological Administration (CMA) in 2016. The 14-channel Advanced Geostationary 

Radiation Imager (AGRI) provides high-resolution images in the visible and infrared. The FY-4A and 

FY-4B are the currently operational satellites, providing data every 15 minutes at a 4-km resolution 

covering China, Southeast Asia, and Australia. Using FY-4A imagery, a combination of the Heliosat-2 

semiempirical method and regional adaptation has been used to derive GHI at subkilometer resolution 

over China (Huang et al. 2023). 

The Korean Meteorological Administration launched the GEO-KOMPSAT-2A (GK-2A) in 2018, which 

became operational in 2019. The Advanced Meteorological Imager (AMI) onboard GK-2A has 16 

channels comparable to ABI and AHI. This satellite is located at 128.2oE and covers India, Southeast 

Asia, Korea, China, and Australia. Data is collected every 10 minutes for the full disk. The spatial 

resolution is 1 km for the visible and 2 km for the infrared channels. 

The Indian National Satellite-3DR (INSAT-3DR) is the latest in the INSAT series and has been in service 

since 2016. INSAT-3DR is located at 74oE and collects data from the Imager instrument in 6 channels 

covering the visible and infrared regions. Data is available every half-hour at a spatial resolution of 1–4 

km and covers India and Southeast Asia.  

 

 

Figure 7-3. Location of the current geostationary satellites providing coverage around the globe  

Image by Billy Roberts, NREL 

7.4.2 Polar-Orbiting Satellites 

Polar-orbiting satellites are used to continuously sense the Earth and retrieve cloud properties and solar 

radiation at the surface, among many other features. One widely used instrument for this purpose is the 

AVHRR, which is mounted on the NOAA series of polar-orbiting platforms. Other examples are MODIS, 

the Multi-angle Imaging SpectroRadiometer (MISR), and the Clouds and the Earth's Radiant Energy 
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System (CERES) instruments on NASA’s Aqua and Terra satellites. Aqua and Terra (launched in 2002 

and 1999, respectively) have already far exceeded their design life. Terra began drifting in early 2020 

and was repositioned to a lower orbit a few months later. The end of their lives is fast approaching, but 

there are currently no specific plans to replace them.  

The Joint Polar Satellite System (JPSS) series of satellites is expected to replace the legacy NOAA 

polar satellites. The first satellite in the JPSS series was launched in 2011 and is called the Suomi 

National Polar-Orbiting Partnership. The second satellite, NOAA-20, was launched in 2017, and the 

third satellite, NOAA-21, became operational in November 2023. This next-generation series of satellites 

features a suite of instruments, including the Visible Infrared Imaging Radiometer Suite, Cross-track 

Infrared Sounder, Advance Technology Microwave Sounder, Ozone Mapping and Profiler Suite, and 

CERES.  

Although polar orbiters provide global coverage, their temporal coverage is limited due to their orbital 

characteristics, resulting in one single coverage instant per specific location and per day at lower 

latitudes. At higher latitudes, a combination of many polar-orbiting satellite-based products is 

recommended to achieve a sufficient temporal resolution while also benefiting from better spatial 

resolution. 

7.4.3 Deep Space Satellite 

The Deep Space Climate Observatory (DSCOVR) spacecraft was launched in 2015 and is located at 

the Lagrange L1 point ≈1.5 million km from Earth, which gives DSCOVR a unique vantage point to 

monitor the Earth atmosphere—and even, occasionally, the far side of the Moon (Figure 7-4). The Earth 

Polychromatic Imaging Camera (EPIC) instrument onboard DSCOVR takes full Earth pictures (including 

polar regions) at ≈10-km resolution every 2 hours, which makes its refresh rate intermediate between 

that of geosynchronous satellites and polar orbiters. Information on ozone, aerosols, clouds, and various 

other atmospheric constituents is retrieved operationally from the EPIC imagery. NOAA has not 

developed an operational EPIC-derived irradiance product, unfortunately, except for the 

photosynthetically active radiation (PAR) component, which is limited to the 400–700-nm waveband. 

Nevertheless, an empirical model has been developed to derive GHI and its direct and diffuse 

components on an hourly basis (Hao et al. 2020). A recent validation, however, showed various issues 

with this methodology and that its GHI results were not up to par with reanalysis products (Yang et al. 

2022). 
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Figure 7-4. View of Earth and far side of the Moon from the EPIC instrument onboard DSCOVR at 
Lagrange Point L1 on July 16, 2015  

Image from NASA/NOAA 

7.4.4 Satellite-Based Empirical and Semiempirical Methods 

Satellite-based semiempirical methods consider a pseudo-linear correlation between the atmospheric 

transmittance and the radiance sensed by the satellite. These models belong to the semiempirical 

category due to their hybrid approach to retrieving surface radiation from satellite observations, in which 

the normalized satellite-observed reflectance is related to GHI at the surface. Cloud-cover indices that 

use visible satellite imagery are first created with budget equations between TOA and surface radiation. 

Those indices are then used to modify the clear-sky GHI and estimate GHI at the ground consistent with 

the cloud scene. DNI can then be derived from GHI and the clear-sky DNI using one of the empirical 

methods discussed in Section 7.3.1.  

The semiempirical approach was originally designed to create regression relationships between what is 

simultaneously observed by a satellite and ground-based instruments (Cano et al. 1986; Hay 1978; 

Justus et al. 1986; Tarpley 1979). The Heliosat method, which was initially developed by Cano et al. 

(1986), has been regularly updated and modified. A more recent implementation relies on the 

atmospheric transmittance properties of water vapor and aerosols to provide solar radiation estimates 

under clear-sky conditions rather than through direct empirical relationships with ground data. In what 

follows, the focus is on satellite-based methods in the public domain, but other models are proprietary 

and used by commercial data providers (see Chapter 8). Evaluating the comparative performance of 

these models under realistic situations requires elaborate studies. This has been addressed in a 

separate report from Photovoltaic Power Systems (PVPS) Task 16.45 

The original Heliosat method evaluates the clearness index, Kt, or the ratio of the radiative flux at the 

Earth’s surface and the radiative flux at the TOA (which is known), using the relationship:  

 

 

45 See https://iea-pvps.org/key-topics/worldwide-benchmark-of-modelled-solar-irradiance-data/. 

https://iea-pvps.org/key-topics/worldwide-benchmark-of-modelled-solar-irradiance-data/
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 Kt = a n + b (7-3) 

where a and b are the slope and intercept of the assumed linear relation, and n is the so-called cloud 

index defined as: 

 n = [ – g] / [cloud – g]  (7-4) 

where , cloud, and g are the satellite-based reflectance observations of the current scene, of the 

brightest clouds, and of the ground, respectively. The cloud index is close to 0 when the observed 

reflectance is close to the ground reflectance (i.e., when the sky is clear). It can be negative if the sky 

is very clear, in which case  is smaller than g. The cloud index increases as clouds appear and can 

be greater than 1 for clouds that are optically very thick. 

The parameters a and b in Eq. 7-3 can be derived empirically by comparison with coincident ground 

measurements, or they can rather be determined from the physical principles of atmospheric 

transmittance, which include not only the cloud index but also the influence of aerosols, water vapor, 

and trace gases. Diabaté et al. (1987) observed that three sets of such quantities for the morning, noon, 

and afternoon were needed for Europe. The Heliosat method (just like all cloud-index-based methods) 

requires the determination of cloud-free and extremely high cloud reflectivity instances to establish 

bounds to Eq. 7-3. Espinar et al. (2009) and Lefèvre et al. (2007) found that a relative error in the ground 

albedo caused by errors in reflectivity of cloud-free pixels leads to a relative error of the same magnitude 

in GHI under clear‐sky conditions. This corresponds to an error of ≈10% in GHI under clear skies. Under 

cloudy conditions, the GHI bias, which is caused by an uncertainty in the limit for the albedo of the 

brightest clouds, increases as COD increases, and can reach ≈60% (Espinar et al. 2009; Lefèvre et al. 

2007). 

Beyer et al. (1996) developed an enhanced version of the original Heliosat method called Heliosat‐1. 

One major enhancement was the adoption of the clear‐sky index, Kc (the ratio of the actual GHI to the 

GHI under ideal clear conditions), instead of the clearness index, Kt. This resulted in the relationship Kc 

= 1 – n, which simplified the method. Additional work was done to remove the dependence of the 

satellite-measured radiance in the visible channel based on the sun-to-satellite geometry, thereby 

leading to a more spatially homogeneous cloud index. In addition, the determination of ground albedo 

and cloud albedo was improved by Beyer et al. (1996). Rigollier et al. (2004) developed Heliosat-2, 

which further enhanced Heliosat-1 by removing parameters that needed to be tuned and replacing them 

with either constants or values that can be computed automatically during the process. The HelioClim-

3 and Solar Energy Mining (SOLEMI) databases, produced by MINES ParisTech and Deutsches 

Zentrum für Luft- und Raumfahrt (DLR), respectively, use Heliosat-2. The Heliosat-3 version was 

designed collaboratively by the University of Oldenburg, MINES ParisTech, and DLR, among others, 

and it uses the SOLIS clear-sky model, which approximates radiative transfer equations for fast 

implementation (Mueller et al. 2004), as described in Section 7.2.1. Centro de Investigaciones 

Energéticas, Medioambientales y Tecnológicas (CIEMAT) and its spin-off, IrSoLaV, performed 

remarkable modifications on the Heliosat-3 scheme. This resulted in a different model, which includes 

a clear-sky detection algorithm, different possible clear-sky models with atmospheric component 

datasets as input, and a dynamic model for estimating the ground albedo as a function of the scattering 

angle (Polo et al. 2013; 2012). 

Hay (1978) developed a regression model that relates the atmospheric transmittance to the ratio of 

incoming to outgoing radiation at the TOA. By utilizing this relationship, the model enables the estimation 

of GHI. In this method, the coefficients of the regression model change significantly based on location, 

and they need to be trained with surface observations (Nunez 1990) to produce accurate results. The 

Tarpley (1979) method also used the well-known relation between surface radiation, TOA radiation (both 

upwelling and downwelling) and atmospheric transmittance to create three separate regression 
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equations. The regression equations were classified based on sky conditions labeled as clear, partly 

cloudy, and cloudy, and they were used accordingly. 

Models such as those developed by Perez et al. (2002), Rigollier et al. (2004), and Cebecauer and Suri 

(2010) evolved from Cano et al. (1986) and included refinements to address albedo issues (particularly 

when the surface is covered by snow) and the effects of sun-satellite geometry. Some of these models 

have since been modified to include the simplified SOLIS model (Ineichen 2008), and are used to 

estimate GHI first and then DNI after component separation (Section 7.3.1).  

7.4.5 Satellite-Based Physical Models 

Physical models generally use radiative transfer theory to directly estimate surface radiation based on 

first principles using cloud properties, water vapor, AOD, ozone, and surface albedo as inputs. The 

radiative transfer models can be classified as either broadband or spectral, depending on whether the 

radiative transfer calculations involve a single broadband calculation or multiple calculations in different 

wavelength bands. 

The broadband method proposed by Gautier et al. (1980) used thresholds depending on multiple days 

of satellite pixel measurements to determine clear and cloudy skies. Separate clear-sky and cloudy-sky 

models were then used to evaluate the surface DNI and GHI. The clear-sky model initially included 

water vapor and Rayleigh scattering but progressively added ozone (Diak and Gautier 1983) and 

aerosols (Gautier and Frouin 1984). Assuming that attenuation caused by the atmosphere does not vary 

from clear to cloudy conditions, Dedieu et al. (1987) created a method that combines the impacts of 

clouds and the atmosphere. This method uses a time series of images to determine clear-sky periods 

for computing surface albedo. Darnell et al. (1988) created a parameterized model to calculate surface 

radiation using a product of the TOA irradiance, atmospheric transmittance, and cloud transmittance. 

Developed with data from polar-orbiting satellites, this model used collocated surface and satellite 

measurements to create relationships between cloud transmittance and planetary albedo. 

Möser and Raschke (1983) created a model based on the premise that GHI is related to fractional cloud 

cover. This model, applied to Meteosat data, enabled the estimation of solar radiation over Europe 

(Möser and Raschke 1984). The fractional sky cover was determined to be a function of satellite 

measurements in the visible channel. Radiative transfer modeling (Kerschgens et al. 1978) was 

employed to determine the clear- and overcast-sky boundaries. Stuhlmann et al. (1990) have since 

enhanced the model to include elevation dependence and additional constituents as well as multiple 

reflections in the all-sky model. 

An important spectral model developed by Pinker and Ewing (1985) divided the solar spectrum into 12 

intervals and applied the Delta-Eddington approximation for radiative transfer (Joseph et al. 1976) to a 

three-layer atmosphere. The primary input to the model is the COD, which can be provided from various 

sources. This model was enhanced by Pinker and Laszlo (1992) and used in conjunction with cloud 

information from the International Satellite Cloud Climatology Project (ISCCP) (Schiffer and Rossow 

1983). Another physical method involves the use of satellite information from multiple channels to derive 

cloud properties (Stowe et al. 1999) and then evaluate DNI and GHI using the cloud properties in a 

radiative transfer model. This method was originally developed using the polar satellite data from the 

AVHRR instrument onboard NOAA satellites, and the processing system was called Clouds from 

AVHRR Extended System (CLAVR-x) (Heidinger 2003; Pavolonis et al. 2005). The method was later 

modified and enhanced to use cloud properties from the GOES satellites. In 2013, CLAVR-x was 

updated again to support the generation of higher spatial resolution output for the NOAA National 

Centers for Environmental Prediction weather forecast models and incorporated many algorithm 

improvements from the GOES-R Algorithm Working Group effort. The cloud information produced from 

the CLAVR-x type of algorithms can be input to a radiative transfer model, such as FARMS (Xie et al. 
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2016), to calculate GHI and DNI, as has been done for the development of the most recent versions of 

NREL’s gridded NSRDB (1998–2022).  

The Cloud Physical Properties (CPP) retrieval algorithms were developed at EUMETSAT’s Satellite 

Application Facility on Climate Monitoring (CMSAF)46 as well as other European or national (The 

Netherlands) projects (Benas et al. 2017; Karlsson et al. 2017a; 2017b; Roebeling et al. 2006; Stengel 

et al. 2014). The retrieved basic variables are cloud mask, cloud-top height, cloud thermodynamic 

phase, COD, particle effective radius, and water path. GHI, DNI, and DHI are then derived, as well as 

precipitation. The CPP algorithm first identifies cloudy and cloud-contaminated pixels using a series of 

thresholds and spatial coherence tests imposed on the measured visible and infrared radiances 

(Roebeling et al. 2006). Depending on the results of these tests, the sky can be classified as clear, partly 

cloudy, or overcast. Subsequently, cloud optical properties (COD and effective radius) are retrieved by 

matching the observed reflectances at visible (0.6 μm) and near-infrared (1.6 μm) wavelengths to the 

simulated reflectances of homogeneous clouds comprising either liquid or ice particles. The 

thermodynamic phase (liquid or ice) is determined as part of this procedure using a cloud-top 

temperature estimate as additional input. Building on the retrieval of cloud physical properties, the 

Surface Insolation under Clear and Cloudy Skies (SICCS) algorithm was developed to model GHI, DNI, 

and DHI using broadband radiative transfer simulations (Deneke et al. 2008; Greuell et al. 2013). The 

cloud properties are the main input for cloudy and partly cloudy pixels. Information about atmospheric 

aerosols from the Monitoring Atmospheric Composition and Climate (MACC) is used for cloud-free 

scenes. Other inputs for the CPP and SICCS algorithms include surface elevation from the 2-minute 

gridded global relief Earth TOPOgraphy (ETOPO2v2-2006)47 database, monthly varying integrated 

atmospheric water vapor from the ECMWF ERA5 reanalysis, and 8-day varying surface albedo derived 

from MODIS data. 

Another cloud retrieval scheme, called APOLLO, was developed by Kriebel et al. (2003; 1989) for the 

AVHRR instrument. APOLLO has been adapted for use with data obtained from the SEVIRI instrument 

on the MSG satellite. APOLLO-derived cloud products, including COD and cloud type, can be used in a 

radiative transfer model such as Heliosat-4 (Oumbe 2009; Qu et al. 2017), made operational by the 

Copernicus service.48 

The ISCCP (Schiffer and Rossow 1983) was established in 1982 as part of the World Climate Research 

Programme. The ISCCP cloud products include COD, cloud-top temperature, cloud particle size, and 

other cloud properties that could be used to derive surface radiation. 

Physical models are computationally more intensive than empirical and semiempirical models. 

Nevertheless, they offer distinct advantages by: (a) providing the capability to compute GHI, DNI, and 

DHI without using empirical decomposition models; and (b) leveraging additional channels from new 

satellites like MTG or GOES-16 to improve cloud property retrieval.  

7.4.6 Machine Learning-Based Models 

Several studies have explored the possibility of bypassing physical or empirical satellite retrieval 

methods altogether and directly inferring a statistical relationship between the satellite images and the 

 

 

46 See http://www.soda-

pro.com/documents/10157/326332/CAMS72_2015SC3_D72.1.3.1_2018_UserGuide_v1_201812.pdf.  

47 See https://www.ncei.noaa.gov/products/etopo-global-relief-model. 

48 See http://www.copernicus-atmosphere.eu.  

http://www.soda-pro.com/documents/10157/326332/CAMS72_2015SC3_D72.1.3.1_2018_UserGuide_v1_201812.pdf
http://www.soda-pro.com/documents/10157/326332/CAMS72_2015SC3_D72.1.3.1_2018_UserGuide_v1_201812.pdf
https://www.ncei.noaa.gov/products/etopo-global-relief-model
http://www.copernicus-atmosphere.eu/
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ground irradiance. (Jiang et al. 2019) implemented a convolutional neural network to process images of 

the Multi-functional Transport Satellite (MTSAT) and produce a map of solar surface irradiance over 

China. Hao et al. (2019) applied a Random Forest to the EPIC images to estimate solar surface 

irradiance globally. The ability of these methods to generalize in space has, nonetheless, been 

challenged by Yang et al. (2022), who were not able to reproduce some of the published conclusions 

(see Section 7.4.3.). Verbois et al. (2023) proposed an explanation for these seemingly conflicting 

results. They showed that the performance of ML-based satellite retrieval models is strongly dependent 

on the choice of the training set and that it can be challenging to ensure that an ML model will generalize 

to any unseen location. 

More sensible uses of ML are also being envisaged in the form of hybrid or physically informed models. 

Buster et al. (2022; 2021) developed a physically aware architecture, dubbed Physics Guided Neural 

Network (PHYGNN), to estimate cloud properties from GOES images based on a mixed loss function. 

It significantly outperforms the Physical Solar Model (PSM) (the underlying model used to develop the 

NSRDB -see Sec 7.3.5) with 2.16 and 3.95 overall percentage point improvement for GHI and DNI, 

respectively. Li et al. (2022) took a different approach and used transfer learning to incorporate physical 

information into a neural network. They first trained their network with simulated radiative transfer data 

and then fine-tuned its weight on real-world observations. 

7.5 Numerical Weather Prediction-Based Solar Radiation Estimates 

NWP models, run in either reanalysis mode or when providing weather forecasts, can provide GHI 

estimates for long periods of time. The accuracy of such estimates is known to be less than those 

provided by satellite-based models. Significant improvements, however, can be obtained by improving 

both the model physics and the assimilation of various observations. Some commonly available models 

and datasets are described in the following sections. Note that this is not a complete and comprehensive 

list. The goal is only to provide the user with initial information related to this potential source of data. 

7.5.1 Reanalysis Models 

ERA5 is a global atmospheric reanalysis that provides data starting in 1940. This dataset is produced 

from the ECMWF’s data assimilation system used in their forecast model, IFS. This system uses four-

dimensional variational analysis and provides analysis data with TOA and both GHI and beam horizontal 

irradiance (BHI) (all-sky and clear-sky) at hourly time resolution on an approximate 0.25° by 0.25° grid. 

More information can be found on the Copernicus ERA5 website.49 In parallel, ERA5-Land provides 

hourly irradiance data on a ≈9-km grid since 1950, but only for the all-sky GHI over land areas. 

NASA’s MERRA-2 is another global atmospheric reanalysis dataset that provides data starting in 1980 

and comprises TOA and GHI (all-sky and clear-sky). It includes additional datasets from those 

assimilated into the original MERRA dataset. The spatial resolution is 0.5° by 0.625°, and the temporal 

resolution is hourly.50 

Finally, the Climate Forecast System Reanalysis from NOAA provides reanalysis data from 1979. The 

all-sky GHI data are available hourly at a 0.5° resolution.51 

 

 

49 See https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview/.  

50 See https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/.  

51 See https://www.ncei.noaa.gov/products/weather-climate-models.  

https://www.ecmwf.int/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://www.ncei.noaa.gov/products/weather-climate-models
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7.5.2 Forecast Models 

Various national meteorological agencies run operational weather forecasts both regionally and globally. 

Some data from these operational models might be available from archives. Some of the most popular 

examples of global datasets are from the ECMWF’s IFS runs and from NOAA’s GFS runs. There are 

various regional model runs by national meteorological agencies that produce forecasts for individual 

countries and regions. Because many datasets now exist, this type of data is mentioned without pointing 

to specific sources. See Chapter 9, Section 9.4.2 for additional information and some examples of such 

datasets. 

Solar forecasting requires improved forecasting of clouds, which is generally a weakness in many NWP 

models, so there have been significant recent efforts to improve cloud and radiation modeling, especially 

within the WRF mesoscale model. This led to the development of the WRF-Solar model (Jimenez et al. 

2016), which includes significant improvements in cloud modeling as well as the capability to compute 

surface radiation using FARMS. 

7.6 Site Adaptation: Merging Measured and Modeled Data 

A major goal of solar resource assessments is to provide high-quality data for evaluating the financial 

viability of solar power plant projects (Moser et al. 2020). This essentially implies that accurate data over 

long time periods are available for conducting these studies. Normally, satellite-derived data time series 

fulfill the requirement for long-term data; however, they could be hampered by inherent biases and 

uncertainties stemming from the following factors: 

• The information content, quality, and spatial and temporal resolution of the raw satellite data 

• The approximations made by the models converting satellite observations into surface solar 

radiation estimates 

• The uncertainty in ancillary information needed by these models 

• The uncertainty added by the empirical methods used to separate the direct and diffuse components 

• The uncertainty added by the empirical methods used to transpose components onto tilted surfaces. 

In some cases, such as at high latitudes, modeled irradiance estimates cannot be derived from 

geostationary satellite sensors data, so that estimates from either polar orbiters or reanalysis data must 

be used, which are of comparatively lower accuracy.  

As part of a resource assessment study for a new large solar power plant (e.g., >10 MW), ground-based 

solar measurements are conducted for a short period of time (nominally approximately 1 year) and used 

to validate the values estimated from satellite-based measurement. The main goal is to mitigate 

uncertainties and biases present in the modeled datasets. This process has been given various names, 

including “site adaptation,” which is used here for simplification. A review paper by Polo et al. (2016) 

provides a summary of the methods that were current at that time. Some methods in the public domain 

have been benchmarked (Polo et al. 2020) within the International Energy Agency’s Photovoltaic Power 

Systems Program Task 16. Since then, more methods have been introduced; see, for example, Han 

and Vohnicky (2022); Narvaez et al. (2021); Pereira et al. (2022); Tahir et al. (2021); Yang and 

Gueymard (2021); Kazantzidis et al. (2020); Fernández-Peruchena et al. (2020); Yang (2020); Muñoz-

Salcedo et al. (2022); and Dhata et al. (2022). 

Note, however, that the ground-based irradiance data must be high quality to ensure the effectiveness 

of the adjustment methods and identify any degradation of the modeled time series. High-quality ground 

measurements can be achieved only by using well-calibrated, high-quality instruments that have been 
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deployed at well-chosen locations using optimal installation methods and regular maintenance, per the 

best practices described in other sections (Chapter 3, in particular). 

Site-adaptation methods can be classified into two broad categories. The first consists of physical 

methods that attempt to reduce the uncertainty and bias in the data by improving the clear-sky model 

inputs, such as AOD. The second approach develops statistical correction schemes directly comparing 

the satellite-based irradiance estimates with “unbiased” ground observations and uses those functions 

to correct the satellite-based radiation estimates. 

7.6.1 Physical Methods 

Because the highest uncertainty in satellite models is in DNI, the primary goal is to reduce errors in DNI 

by improving the quantification of AOD. Methods such as those proposed by Gueymard (2012a; 2012b) 

demonstrate how accurate AOD data obtained from ground sunphotometric measurements can improve 

DNI. Nevertheless, the scarcity of such high-quality AOD observations implies that other sources should 

be considered. Possible sources of AOD with global coverage include retrievals from the MODIS and 

MISR satellites and data assimilation output from ECMWF’s CAMS or NASA’s MERRA-2 data 

(Gueymard and Yang 2020). CAMS and MERRA-2 are the preferred sources to obtain gridded 

irradiance predictions on a global scale because they have no data gaps, contrary to satellite 

observations. Their spatial resolution is limited, however, 0.5° by 0.625° for MERRA-2, for example, 

which typically induces difficulties over complex mountainous terrain in particular. For that reason, 

specific methods have been developed by Gueymard and Thevenard (2009) and Ruiz-Arias et al. 

(2013); Ruiz-Arias et al. (2013) to correct biases and uncertainties in the satellite- or model-based AOD 

data using ground observations. These adjusted AOD datasets have been shown to improve the 

satellite-based solar radiation estimates at various locations. 

7.6.2 Statistical Methods 

Various statistical methods have been developed to identify and remove biases in long-term satellite-

based datasets using short-term ground irradiance measurements. The techniques used depend on the 

data available and, largely, on the context in which they are employed. These bias correction methods 

range from linear methods (Cebecauer and Suri 2010; Harmsen et al. 2014; Polo et al. 2015; Vindel et 

al. 2013) to various nonlinear methods, including feature transformation (Schumann et al. 2011), 

polynomial-based corrections (Mieslinger et al. 2014), model output statistics corrections (Bender et al. 

2011; Gueymard et al. 2012), measure-correlate-predict corrections (Thuman et al. 2012), probabilistic 

postprocessing (Yang and Gueymard 2021), Gaussian process (Cornejo-Bueno et al. 2019), and 

Fourier-decomposition-based corrections (Vernay et al. 2013). Other statistical methods include 

regional fusion methods of ground observations with satellite-based data and improvements to the 

irradiance cumulative distribution function (Blanc et al. 2012; Cebecauer and Suri 2012).  

For a-posteriori corrections, that is, when the corrections are done on past data, quantile mapping is a 

popular approach. It adjusts the distribution of the satellite-derived estimations so that all its quantiles 

are identical to those of the ground measurements. Quantile mapping thereby corrects the bias of the 

satellite-derived estimations as well as higher-order moments. It can be further improved using kernel 

density estimate (Yezeguelian et al. 2021).  

In the case such corrections need to be done in real time, they are usually required to be unbiased but 

also temporally accurate. Quantile mapping is then not appropriate, and models akin to Model Output 

Statistics (MOS) are necessary. MOS models were primarily introduced for NWP postprocessing (Glahn 

and Lowry 1972); these models aim to establish a statistical relationship between a set of outputs of a 

model (the predictors) and a target. In the case of site adaptation, the target is the surface solar 

irradiance or a normalized variable, such as the clear-sky index or the clearness index. The choice of 

predictors varies among the methods. Simpler models use a single predictor, usually with a relatively 
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simple regression model: Aguiar et al. (2019) combined a linear regression with k-mean clustering, and 

Vernay et al. (2013) used a simple linear correction in the Fourier domain. 

Larger predictor sets can be used to allow a condition-dependent correction, typically, multiple 

components of GHI, solar geometry information, basic weather data, and spatiotemporal context. The 

relationships between these predictors and the target (the measured GHI) are complex, and nonlinear 

algorithms are preferred: neural networks (Şahin et al. 2014) and support vector machines (Tiba et al. 

2019) have already been successfully implemented. For applications at high latitudes, a comparison of 

seven ML methods has been carried out to obtain site adaptations of the Swedish Meteorological and 

Hydrological Institute’s (SMHI) STRÅNG mesoscale solar radiation model52 (Zainali et al. 2023). 

Although all methods were able to significantly improve the modeled GHI, no universal ML method could 

be identified because of the spatiotemporal heterogeneity in model performance over Sweden. 

In recent years, more advanced regression models have been utilized to produce long-term satellite-

based datasets on a regional scale—sometimes called global or regional adaptation techniques (Polo 

et al. 2015). Unlike the conventional site adaptation technique, which focuses on a single location, 

regional adaptation aims to improve satellite-derived irradiance estimations over large areas. The 

statistical models used must therefore generalize the correction learned for specific training 

measurement stations to new locations. (Ruiz-Arias et al. 2015) used an optimal interpolation technique 

applied to NWP-derived gridded estimates of GHI and DNI at 10-km resolution over Spain. Davy et al. 

(2016) proposed to combine generalized additive models and distance-weighted interpolation to correct 

and merge satellite data with a numerical weather model and produce high-quality solar surface 

irradiance estimations over Australia. Babar et al. (2020) proposed to use a random forest for the same 

purpose in Scandinavia; the interpolation was not done explicitly but delegated to the random forest, 

which takes the latitude and longitude as additional predictors. Similarly, Verbois et al. (2023) developed 

a regional postprocessing model based solely on gradient boosting, which leveraged a dense network 

of measurement stations to improve the Helioclim-3 database over France, without the need for an 

explicit interpolation. 

7.7 Conclusions 

Whereas ground-based solar measurements are deemed the most accurate source of data and will 

always form the basis of ground truth, the sparse nature of their availability is not expected to change in 

the foreseeable future. Therefore, modeled solar radiation forms an important part of solar resource 

assessment and forecasting, as it provides the capability to generate time series of GHI, DNI, and DHI 

for long periods of time at high spatial and temporal resolution with global coverage. Additionally, models 

will always be used to transform solar radiation information to meet specific needs of solar generation 

projects. There have been explosive recent advancements in weather satellite technologies, and solar 

resource accuracy and resolution have significantly improved in the last few years. Additional 

advancements are still expected in both satellite technologies as the need to cater to solar generation 

in newer environments (e.g., bifacial PV, agrivoltaics, and floating PV) will require additional modeling 

advances. Future editions of the handbook and specifically this chapter are expected to cover those 

advances. 

  

 

 

52 See https://strang.smhi.se/.  

https://strang.smhi.se/
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Executive Summary 

This chapter summarizes commonly used models and data sources. The goal is to describe all the 

sources of information that can be expected to be available at any one location. Nevertheless, the lists 

of models and data should not be treated as exhaustive because new databases regularly appear. In 

parallel, existing databases are typically regularly updated, so their details might change. Additionally, 

users should use their judgement to decide on the most appropriate models and data for their purpose. 

Table 8-2 provides information about various all-sky and clear-sky broadband models, spectral models, 

decomposition models, and transposition models. The data sources presented in this chapter are from 

ground-based measurements, satellite-based calculations, and numerical weather predictions.  

8.1 Introduction 

Understanding the long-term spatial and temporal variability of the available solar resources is 

fundamental to any assessment of solar energy potential. Information derived from historical solar 

resource data can be used to make energy policy decisions, to select optimum energy conversion 

technologies, to design systems for specific locations, and to operate and maintain installed solar energy 

conversion systems. Historical solar resource data can be the result of in situ measurement programs, 

satellite remote-sensing methods, or meteorological model outputs. As described in the previous 

chapters, each type of data has different information content and applicability. 

This chapter summarizes the voluminous information available about the many solar models that are 

publicly available as well as historical solar resource data available around the world. Additional details 

about the solar models include their inputs and outputs. Similarly, the inventory of representative 

sources of solar radiation data includes the main characteristics associated with each of them (e.g., 

period of record, temporal and spatial resolutions, available data elements, and estimated uncertainties). 

Some datasets discussed in this chapter are commercial and might not be freely available. Additionally, 

some historical datasets that were listed in previous editions are not retained in this version because 

direct links to download them are no longer available. Please refer to previous versions of this handbook 

for references to historical archives with no known direct source of download. 

The authors and other participants in the International Energy Agency’s (IEA’s) Photovoltaic Power 

Systems Programme (PVPS) Task 16 have made every effort to include and describe models and data 

products that are as useful, robust, and representative as possible; however, the responsibility for 

correctly applying these models and data resides with the user. A thorough understanding of the models 

and data sources, how they are created, and their limitations remains vital to the proper application of 

the models and resource data to analyses and subsequent decision making. This chapter presents 

discussions and examples of the use of several of these datasets for solar energy applications. Users 

are encouraged to read the pertinent sections of this chapter before applying solar resource and 

meteorological data. 
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Measured solar irradiance data can provide detailed temporal information for a specific site. Because 

solar radiation measurement stations are challenging to operate and because the collected data are not 

used for routine weather forecasts, their density is low, and they typically have limited data collection 

records. Some examples of relatively long records of solar radiation data in the United States are the 

National Oceanic and Atmospheric Administration’s (NOAA’s) Surface Radiation Budget Network 

(SURFRAD) and SOLRAD networks, the University of Oregon network, stations from the U.S. 

Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) program, and the National 

Renewable Energy Laboratory (NREL). There are now more than 3,000 ground stations measuring solar 

irradiance in some form and with a wide range of data quality in the United States alone. These stations 

are operated by several interests producing data for varied applications (including agriculture). Links to 

most of these stations are not presented here because there is limited confidence in the data quality. 

For other parts of the world, users are encouraged to refer to the Baseline Surface Radiation Network 

(BSRN) network53 for high-quality data (Driemel et al. 2018). Table 8-1 provides more details on the 

sources of the measured or partly measured databases. (The meteorological services of various 

countries might operate many radiometric stations, so Table 8-1 should not be considered exhaustive. 

Also, some national services do not release their data in the public domain.) An increasing number of 

photovoltaic (PV) and concentrating solar power installations now collect high-quality solar radiation 

data, but those datasets are usually not publicly available, so they are not listed in this chapter.  

Satellite-based observations and mesoscale meteorological models address the needs for 

understanding the spatial variability of solar radiation resources throughout a range of distances. 

Present state-of-the-art models provide estimates for global horizontal irradiance (GHI) and direct 

normal irradiance (DNI) at spatial resolutions of 10 km or less for the United States and other parts of 

the world—e.g., see the European Organisation for the Exploitation of Meteorological Satellites 

(EUMETSTAT) Satellite Application Facility on Climate Monitoring (CM SAF), the National Solar 

Radiation Database (NSRDB), Meteonorm, the Photovoltaic Geographical Information System (PVGIS), 

SolarAnywhere, Solcast, and Solargis in Table 8-1). Numerical weather prediction models can be used 

to produce long-term meteorological information when they are used in reanalysis mode. The reanalysis 

models described in Chapter 7 have spatially coarser resolutions and have higher uncertainty in 

estimating solar radiation than satellite models or ground measurements. Nevertheless, reanalysis 

datasets such as ERA5, which is the fifth-generation atmospheric reanalysis of the global climate from 

the European Center for Medium-Range Weather Forecasts (ECMWF),54 or the National Aeronautics 

and Space Administration’s (NASA’s) Modern-Era Retrospective analysis for Research and 

Applications, Version 2 (MERRA-2)55 are useful sources of data because they are available globally and 

for periods longer than 30 years. The rapidly growing needs for more accurate solar resource information 

at shorter temporal and smaller spatial scales require the user to fully appreciate the characteristics of 

all available data, especially those from historical sources. 

8.2 Solar Resource Data Characteristics 

Characterizing the available solar resources for solar energy applications is important for all aspects of 

realizing the full potential of this utility-scale energy source. Energy policy decisions, engineering 

designs, and system deployment considerations require an accurate understanding of the relevant 

 

 

53 See https://bsrn.awi.de.  

54 See http://climate.copernicus.eu/products/climate-reanalysis.  

55 See https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/.  

https://bsrn.awi.de/
http://climate.copernicus.eu/products/climate-reanalysis
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
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historical solar resource data, the ability to assess the accuracy of current solar measurement and 

modeling techniques, and forecasts of the levels of solar irradiance for various temporal and spatial 

scales. 

Measured solar irradiance data can provide information about the temporal variability at a specific site. 

Today, 1-minute (or shorter) digital recordings are available from fast-response silicon photodiodes and 

improved thermopile-type pyranometers and pyrheliometers that are deployed in regional measurement 

networks to provide solar energy resource data for a variety of applications. 

Modeled solar resource data derived from available surface meteorological observations and satellite 

measurements provide estimates of solar resource potential for locations lacking actual measurements. 

These modeling methods address the needs for improved spatial resolutions of the resource data. In 

the United States, the first national effort to model solar resources in the 1970s advanced the 

understanding of solar radiation distributions based on the then-available historical measurements at 26 

locations to an additional 222 meteorological observing stations with detailed records of hourly cloud 

amounts and other relevant data (SOLMET/ERSATZ56). Today, satellite-based observations of clouds 

are used to model subhourly surface solar fluxes with a 2-km spatial resolution over North America and 

part of South America (Sengupta et al. 2018). Similar efforts are conducted over other parts of the world. 

8.3 Solar Resource Data Long-Term and Typical  
Meteorological Datasets 

Understanding the time frame, or period of record, associated with solar resource data and related 

meteorological information is important for conducting useful analyses. These weather-driven variables 

have fluctuations that can range from seconds to years and longer. Long-term data can be 

representative of the climate if the period of record is at least 30 years. By convention, according to the 

1933 International Meteorological Conference in Warsaw, the meteorological community has deemed 

that a 30-year interval is sufficient to reflect longer-term climatic trends and filter the short-term 

interannual fluctuations and anomalies. Climate “normals” are recomputed each decade to address 

temperature, pressure, precipitation, and other surface meteorological variables. Note that the term 

normal is not equivalent to “average” and has a specific meaning in the meteorological and climatological 

community—namely, normal refers to the 30-year average of an observed parameter that is updated 

every 10 years (Arguez and Vose 2011); thus, the averaging period shifts every 10 years. 

Often, solar power plant project developers require “typical” meteorological information related to a 

potential plant site for prefeasibility studies. The most common type of typical meteorological year (TMY) 

dataset provides designers and other users with a small-size annual dataset that holds 8,760 hourly 

meteorological values that typify conditions at a specific location throughout a longer period, such as 

the 30-year climatic normal. Different types of TMYs exist, including TMYs at subhourly temporal 

resolution. Twelve typical meteorological months (TMMs) selected based on their similarity of individual 

cumulative frequency distributions for selected data elements comprise the TMY dataset. The longer-

term distributions are determined for that month using data from the full period of record. The TMMs are 

then concatenated, essentially without modification, to form a single year with a serially complete data 

record. The resulting TMY dataset contains measured and/or modeled time series of solar radiation and 

surface meteorological data, though some hourly records might contain filled or interpolated data for 

periods when original observations are missing from the data archive. Further, many methods are used 

to develop TMMs, as reviewed in Nielsen et al. (2017) and García, de Blas, and Torres (2020). In 

 

 

56 See https://nsrdb.nrel.gov/data-sets/archives.  

https://nsrdb.nrel.gov/data-sets/archives
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particular, new developments include a climate-based ensemble empirical mode decomposition (Fan 

2022), the generation of TMYs at high temporal resolution (Ernst and Gooday 2019), the preparation of 

TMYs specifically tailored for PV applications focusing on either broadband irradiance (Sengupta and 

Habte 2019) or spectral irradiance (Polo et al. 2020), and even customized TMYs (Sengupta, Habte, 

and Freeman 2019).  

Note that TMY datasets were primarily developed for use in building design and were later adopted by 

solar designers and others for modeling renewable energy conversion systems. Therefore, by their 

nature of construction, TMY datasets provide only an artificial year brought about by the concatenation 

of “median” months. TMY data are not designed to provide meteorological extremes, although they 

contain natural diurnal and seasonal variations. A TMY dataset should not be used to predict weather 

or solar resources for a particular period of time, nor is it an appropriate basis for evaluating real-time 

energy production, detailed power plant design, or the probability of energy yield exceedances. Also, 

TMY data are not suited for designing systems and their components to meet the worst-case weather 

conditions.  

8.4 Solar Resource Data Key Considerations 

Applying solar and meteorological data from different sources requires attention to these key 

considerations: 

• Period of record. Influenced by many factors, solar resource data vary yearly, seasonally, monthly, 

weekly, daily, and on timescales down to 1 second (see Chapter 6). In contrast, the 30-year 

averaging period involved in the production of climate normals (introduced in Section 8.3) is updated 

(shifted) every 10 years. For instance, the current climate normals span the period from 1991–2020, 

but eventually the 2001–2030 normals will become available from meteorological services around 

the world. The normal for one period will not likely be the same as a normal for previous or 

successive periods. Another popular approach is to determine a TMY dataset from a statistical 

analysis of multiyear data and eventually derive a single year of data that is deemed representative 

of a longer-term record. Comparative analyses must account for any natural differences that result 

from the periods when the data were acquired. 

• Temporal resolution. Solar resource data can range from annually averaged daily irradiation, 

typically used for mapping resource distributions, to 1-second samples of irradiance for operational 

time-series analyses. Other considerations depend on the data type.  

• Units. The unit of irradiance is W m-2. The most common unit of irradiation, or integrated power, is 

kWh m-2. The actual Système International unit for irradiation, J m-2, is rarely used anymore. The 

conversion is 1 kWh m-2 = 3.6 MJ m-2. Note that daily average irradiation data produced by or for 

climatologists are most often incorrectly reported with a unit of W m-2. Here, a daily irradiation of 1 

W m-2 means an average irradiance of 1 W m-2 over 24 hours, or 24 Wh m-2. Unfortunately, this can 

create confusion. A daily irradiation should be expressed in kWh m-2, not kWh m-2 day-1, even though 

this is a frequent mistake. 

• Spatial coverage. The area represented by the data can range from a single station, to a sample 

geographic region, to a global (world) perspective. 

• Spatial resolution. Ground-based measurements are site specific. Current satellite remote-sensing 

estimates are representative of areas typically spanning 3 km by 3 km to 10 km by 10 km. The 

“pixel” size of reanalysis data is significantly larger, at least 30 km by 30 km with current products. 

• Data elements and sources of the data. The usefulness of solar resource data might depend on 

the available data elements (e.g., DNI or GHI) and whether the data were measured, modeled, or 

produced from a combination of measurements and models. 
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• Time stamp. There are three possible time references: Local Apparent Time (LAT, also known as 

Apparent Solar Time or True Solar Time), Local Standard Time (LST), and Universal Time (UT). 

The former is rarely used anymore. Global databases tend to use UT, but there is no general rule. 

Moreover, for comparative purposes, it is also important to consider what each time stamp 

specifically refers to. Depending on the database, it can be the start, the midpoint, or the end of the 

time period (for subdaily data). In climatology, the latter is standard. For more details, see Polo et 

al. (2019). 

• Availability. Data are distributed in the public domain, for purchase, or by license. 

8.5 Solar Resource Data Resolution 

Spatial resolution and temporal resolution are two key characteristics of any solar irradiance dataset. 

These characteristics depend on the source of data under scrutiny, and thus they need to be qualified 

in an appropriate context, as discussed in the following: 

• Ground-based irradiance measurements have the finest spatial resolution (point source) and a 

temporal resolution that can be high (1 min or better) if used directly without modification, or coarser 

if aggregated into hourly, daily, monthly, or annual averages. Contrary to all the other sources of 

data mentioned here, ground-based measurements represent an average between two consecutive 

time stamps. 

• Predictions from clear-sky radiation models normally have a point-source spatial resolution and the 

same temporal resolution as their time interval. This is the case only if their key atmospheric input 

data (aerosols and water vapor) are derived “instantaneously” from a collocated instrument (in 

practice, a sunphotometer). In the more frequent case that such inputs are obtained from gridded 

data generated by, e.g., a reanalysis model, the actual spatiotemporal resolution of the predictions 

reflects theirs, even if interpolation is used to refine the inputs. This case is exemplified by the 

Copernicus Atmosphere Monitoring Service (CAMS) McClear Service (see Table 8-2). 

• For numerical weather prediction models, the spatial resolution is that of their grid at the surface, 

and the temporal resolution is determined by the frequency of their output (e.g., hourly). 

• With satellite-derived irradiance data, the situation is more complex. Under cloudless or quasi-

cloudless conditions, the spatiotemporal resolution is determined by the clear-sky model, per the 

discussion here. For instance, this can be 0.5° by 0.625° hourly in the case of MERRA-2 inputs or 

0.75° by 0.75° 3-hourly with CAMS inputs. Spatiotemporal interpolation is normally used to refine 

the inputs to match the desired irradiance grid size, but this does not fundamentally improve the 

actual resolution. Under cloudy conditions, the temporal resolution is typically determined by that of 

the imagery snapshots, and the spatial resolution is also that of the satellite sensor (or a multiple of 

it). Caution is necessary, however, because the spatial resolution is always indicated by a nominal 

value, which refers to the sensor’s nadir view. For example, many irradiance products that are 

derived from Meteosat’s Second Generation satellite have a quoted spatial resolution of 3 km. 

Depending on the site under scrutiny, the resolution varies between 3 and approximately 12 km 

(Figure 8-1). 
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Figure 8-1. Actual spatial resolution of the imagery from the primary Meteosat Second  
Generation satellite  

Image from MINES ParisTech 
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Table 8-1. Selected Solar Radiation Models 

Model Description Inputs Outputs Source/Website 

All-Sky Models 

Fast All-sky 
Radiation Model 
for Solar 
applications 

(FARMS) 

Prediction of solar 
irradiance 

Cloud type (ice or 
water), COD, cloud 
effective radius, 
surface pressure, 
PWV, AOD, 
surface albedo 

GHI, DNI, and DHI https://github.com/NREL/far
ms 

 

https://doi.org/10.1016/j.sole
ner.2016.06.003  

libRadtran Calculation of 
solar and thermal 
radiation in the 
atmosphere 

Various relevant 
atmospheric data 

Spectral radiance, 
broadband 
irradiance (GHI, 
DNI, DHI) 

http://libradtran.org 

Clear-Sky Models 

Bird Simple 
Spectral Model 
(SPECTRL2) 

Estimation of 
terrestrial spectra 
of irradiance 

Zenith angle, 
albedo, air mass, 
PWV, ozone, etc. 

Spectral irradiance 
for wavelengths 
from 300 nm–4,000 

nm 

https://pvlib-
python.readthedocs.io/en/st
able/reference/generated/pv

lib.spectrum.spectrl2.html 

Bird Clear Sky 
Solar Model 

Estimation of 
clear-sky 
irradiance 

Zenith angle, air 
mass, AOD (380 
nm and 500 nm), 
PWV, ozone, 

albedo 

Clear-sky GHI, 
DNI, and DHI 

https://pvlib-
python.readthedocs.io/en/st
able/reference/generated/pv
lib.clearsky.bird.html 

REST2 Prediction of 
clear-sky 
irradiance, 
illuminance, and 
PAR 

Various 
atmospheric data 

Clear-sky GHI, 
DNI, and DHI, as 
well as illuminance 
and PAR 
components 

https://solarconsultingservic
es.com/rest2.php  

Simple Model of 
the Atmospheric 
Radiative Transfer 
of Sunshine 
(SMARTS) 

Estimation of 
clear-sky spectral 
irradiances 

Various 
atmospheric data 

Clear-sky spectral 
and broadband 
irradiances for 
various collector 
geometries 

https://nrel.gov/grid/solar-
resource/smarts.html 

 

https://solarconsultingservic
es.com/smarts.php 

McClear 
(web service) 

Estimation of 
clear-sky 
broadband 
irradiances 

Location and 
period 

(See Table 8-2.) 

Clear-sky GHI, 
DNI, and DHI 

https://www.soda-
pro.com/web-
services/radiation/cams-
mcclear 

Ineichen and 
Perez clear-sky 
model 

Estimation of 
clear-sky 
broadband 
irradiances 

Zenith angle, air 
mass, Linke 
turbidity 

Clear-sky GHI, 
DNI, and DHI 

Ineichen and Perez (2002) 

Simplified Solis Estimation of 
clear-sky 
broadband 
irradiances 

Zenith angle, AOD 
(700 nm), PWV 

Clear-sky GHI, 
DNI, and DHI 

https://pvlib-
python.readthedocs.io/en/st
able/reference/generated/pv
lib.clearsky.simplified_solis.
html  

European Solar 
Radiation Atlas 
(ESRA) clear-sky 
model 

Estimation of 
clear-sky 
broadband 
irradiances 

Solar constant, 
Zenith angle, 
location’s altitude, 
Linke turbidity at air 
mass = 2 

Clear-sky GHI, 
DNI, and DHI 

https://www.oie.minesparis.
psl.eu/Valorisation/Outils/Cl

ear-Sky-Library/  

https://github.com/NREL/farms
https://github.com/NREL/farms
https://doi.org/10.1016/j.solener.2016.06.003
https://doi.org/10.1016/j.solener.2016.06.003
http://libradtran.org/
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.spectrum.spectrl2.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.spectrum.spectrl2.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.spectrum.spectrl2.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.spectrum.spectrl2.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.clearsky.bird.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.clearsky.bird.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.clearsky.bird.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.clearsky.bird.html
https://solarconsultingservices.com/rest2.php
https://solarconsultingservices.com/rest2.php
https://nrel.gov/grid/solar-resource/smarts.html
https://nrel.gov/grid/solar-resource/smarts.html
https://solarconsultingservices.com/smarts.php
https://solarconsultingservices.com/smarts.php
https://www.soda-pro.com/web-services/radiation/cams-mcclear
https://www.soda-pro.com/web-services/radiation/cams-mcclear
https://www.soda-pro.com/web-services/radiation/cams-mcclear
https://www.soda-pro.com/web-services/radiation/cams-mcclear
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.clearsky.simplified_solis.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.clearsky.simplified_solis.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.clearsky.simplified_solis.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.clearsky.simplified_solis.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.clearsky.simplified_solis.html
https://www.oie.minesparis.psl.eu/Valorisation/Outils/Clear-Sky-Library/
https://www.oie.minesparis.psl.eu/Valorisation/Outils/Clear-Sky-Library/
https://www.oie.minesparis.psl.eu/Valorisation/Outils/Clear-Sky-Library/
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Model Description Inputs Outputs Source/Website 

Haurwitz  Estimation of 
clear-sky global 
irradiance 

Zenith angle Clear-sky GHI https://pvlib-
python.readthedocs.io/en/st
able/reference/generated/pv
lib.clearsky.haurwitz.html   

Reno and Hansen 
clear-sky 
detection model 

Detection of  
clear-sky periods 
from GHI 
measurements 

Measured and 
clear-sky GHI 

Boolean array of 
whether or not the 
given time is clear 

https://pvlib-
python.readthedocs.io/en/st
able/reference/generated/pv
lib.clearsky.detect_clearsky.
html    

Decomposition Models 

DISC Estimates DNI 
from GHI 

GHI, zenith angle DNI https://pvlib-
python.readthedocs.io/en/st
able/reference/generated/pv
lib.irradiance.disc.html  

DIRINT Estimates DNI 
from GHI 
(modification of 
DISC model) 

GHI, zenith angle DNI https://pvlib-
python.readthedocs.io/en/st
able/reference/generated/pv
lib.irradiance.dirint.html   

DIRINDEX Estimates DNI 
from GHI 
(modification of 
DIRINT model) 

GHI, clear-sky GHI 
and DNI, zenith 

angle 

DNI https://pvlib-
python.readthedocs.io/en/st
able/reference/generated/pv
lib.irradiance.dirindex.html    

Erbs  Estimates DHI 
from GHI 

GHI, zenith angle DHI https://pvlib-
python.readthedocs.io/en/st
able/reference/generated/pv

lib.irradiance.erbs.html    

GISPLIT Estimates DNI 
and DHI from GHI 

GHI, clear-sky GHI 
and DNI, zenith 
angle 

DNI, DHI https://github.com/jararias/gi
split 

Boland Estimates DHI 
from GHI 

GHI, zenith angle DHI https://pvlib-
python.readthedocs.io/en/st
able/reference/generated/pv
lib.irradiance.boland.html    

GTI DIRINT Estimates GHI 
from GTI (reverse 

transposition) 

Measured GTI, 
solar position, 

surface orientation 

GHI, DNI, DHI https://pvlib-
python.readthedocs.io/en/st
able/reference/generated/pv
lib.irradiance.gti_dirint.html     

Transposition Models 

Perez 
transposition 

model 

Estimates in-plane 
sky diffuse 

irradiance 

Surface orientation, 
solar position, DNI, 

DHI 

GTI https://pvlib-
python.readthedocs.io/en/st
able/reference/generated/pv
lib.irradiance.perez.html    

Hay-Davies 
transposition 
model 

Estimates in-plane 
sky diffuse 
irradiance 

Surface orientation, 
solar position, DNI, 
DHI 

GTI https://pvlib-
python.readthedocs.io/en/st
able/reference/generated/pv

lib.irradiance.haydavies.html   

  

https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.clearsky.haurwitz.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.clearsky.haurwitz.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.clearsky.haurwitz.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.clearsky.haurwitz.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.clearsky.detect_clearsky.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.clearsky.detect_clearsky.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.clearsky.detect_clearsky.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.clearsky.detect_clearsky.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.clearsky.detect_clearsky.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.disc.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.disc.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.disc.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.disc.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.dirint.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.dirint.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.dirint.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.dirint.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.dirindex.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.dirindex.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.dirindex.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.dirindex.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.erbs.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.erbs.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.erbs.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.erbs.html
https://github.com/jararias/gisplit
https://github.com/jararias/gisplit
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.boland.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.boland.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.boland.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.boland.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.gti_dirint.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.gti_dirint.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.gti_dirint.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.gti_dirint.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.perez.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.perez.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.perez.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.perez.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.haydavies.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.haydavies.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.haydavies.html
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.haydavies.html


Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

8-9 

Table 8-2. Inventory of Solar Resource Data Sources  

Presented in Alphabetical Order 

Database 
Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources 

Availability 

U.S. 
Department 
of Energy 
(DOE) 
Atmospheric 
Radiation 
Measuremen
t (ARM) 
Program  

1997–
present 

20-second 
instantaneou
s samples 
and  
1-minute 
averages of  
2-second 
scans 

Southern 
Great Plains, 
North Slope 
of Alaska, 
and tropical 
western 

Pacific 

32 (active and 
inactive) 

GHI, DNI, DHI, 
downwelling 
longwave 
irradiance, 
upwelling 
longwave 
irradiance, and 
upwelling 
(reflected) 
shortwave 
irradiance. 
Measurements 
from the Eppley 
Model PSP (GHI, 
DHI, and 
upwelling 
shortwave 
irradiance), 
Model 8-48 (DHI 
after 2000), 
Model NIP (DNI), 
and Model PIR 
(upwelling and 
downwelling 
infrared) 
radiometers 

DOE, ARM 
Climate 
Research 
Facility: 
http://www.arm.g
ov.  

 

Datasets are 
labeled SIRS, 
SKYRAD, and 
GNDRAD. SIRS 
data form the 
Billings and E13 
locations are 
also submitted to 
the World 
Radiation 
Monitoring 
Center (WRMC)-
Baseline Surface 
Radiation 
Network (BSRN) 
archives: 
http://www.bsrn.

awi.de/. 

Baseline 
Surface 
Radiation 
Network 
(BSRN) 

1992–
present 

1 minute  
(3 minutes 
for 
SURFRAD 
stations 
before 2009) 

Global 76 radiometric 
stations (51 
active, 9 
declared 
inactive, 16 
closed, as of 
December 
2023) 

The number and 
type of 
measurements 
vary by station. 
Basic radiation 
measurements 
include GHI, DNI, 
DHI, downwelling 
infrared 
irradiance, 
upwelling 
infrared 
irradiance, and 
upwelling 
(reflected) 
shortwave 
irradiance. 
Measurements 
are from 
radiometers of 
various 
manufacturers. 
Synoptic 
meteorological 
observations, 
upper air 
measurements, 
and numerous 
expanded and 

The World 
Radiation 
Monitoring 
Center (WRMC) 
provides web-
based and File 
Transfer 
Protocol data 
access: 
https://bsrn.awi.

de/en/  

http://www.arm.gov/
http://www.arm.gov/
http://www.bsrn.awi.de/
http://www.bsrn.awi.de/
https://bsrn.awi.de/en/
https://bsrn.awi.de/en/
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Database 
Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources 

Availability 

supporting 
measurements 
are available. 

Australian 
Bureau of 
Meteorology 
(BOM) 
1-Minute 
Solar Data 

Varies 1 minute Australia 21 radiometric 
stations 

GHI, DNI, DHI, 
DIR, longwave, 

and sunshine 

http://www.bom
.gov.au/climate/
data/oneminsol
ar/stations.shtm
l  

Copernicus 
Atmospheric 
Monitoring 
Service 
(CAMS) 
McClear 
Service  

2004–
present 

1 minute,  
15 minutes,  
1 hour,  
1 day,  
1 month 

Global Various input 
data sources 
with different 
spatial 
resolutions 
are 
interpolated to 
the location of 
interest. 

Clear-sky global, 
direct, direct 
normal, and 
diffuse 
irradiances; 
inputs describe 
atmospheric 
conditions 
(aerosols, water 
vapor, trace 
gases, surface 
reflectivity 
parameters). 

http://www.soda
-pro.com/web-
services/radiati
on/cams-
mcclear 

CAMS 
Radiation 
Service 

2004–
present 

1 minute,  
15 minutes,  
1 hour,  
1 day,  
1 month 

Europe, 
Africa, 
Middle East, 
Atlantic 
Ocean, and 
eastern part 
of South 
America (-
66° to 66° in 
both 
latitudes and 
longitudes)  

Various input 
data sources 
with different 
spatial 
resolutions 
are 
interpolated to 
the location of 
interest. 

All-sky GHI, DNI, 
DIR, DHI, and 
corresponding 
clear-sky 
irradiances; 
inputs describe 
atmospheric 
conditions 
(aerosols, 
clouds, water 
vapor, trace 
gases, surface 
reflectivity 

parameters). 

http://www.soda
-pro.com/web-
services/radiati
on/cams-
radiation-

service 

Clean Power 
Research—
SolarAnywhe
re 

1998–
present 

1 hour,  
30 minutes,  
15 minutes, 
options for 
high-
resolution 
data 

Continental 
United 
States, 

Hawaii, 
Canada up 
to 60° N, 

South 
America 

India, parts 
of the Middle 
East, and 
parts of 

Europe 

1 km 

 

 

2.5 km,  

3 km 

 

2.5 km,  
1 km 

GHI, DNI, wind 
speed, and 
ambient air 
temperature 

https://www.sol
aranywhere.co
m/solutions/sol
aranywhere-

data/ 

 

Clouds and 
the Earth’s 
Radiant 
Energy 
System 

2000–2019 1 hour, 3 
hours 

Global 1° x 1° GHI, DHI, and 
DIR based on 
physical 
modeling and 
satellite-based 

https://ceres.lar
c.nasa.gov/data
/ 

 

http://www.bom.gov.au/climate/data/oneminsolar/stations.shtml
http://www.bom.gov.au/climate/data/oneminsolar/stations.shtml
http://www.bom.gov.au/climate/data/oneminsolar/stations.shtml
http://www.bom.gov.au/climate/data/oneminsolar/stations.shtml
http://www.bom.gov.au/climate/data/oneminsolar/stations.shtml
http://www.soda-pro.com/web-services/radiation/cams-mcclear
http://www.soda-pro.com/web-services/radiation/cams-mcclear
http://www.soda-pro.com/web-services/radiation/cams-mcclear
http://www.soda-pro.com/web-services/radiation/cams-mcclear
http://www.soda-pro.com/web-services/radiation/cams-mcclear
http://www.soda-pro.com/web-services/radiation/cams-radiation-service
http://www.soda-pro.com/web-services/radiation/cams-radiation-service
http://www.soda-pro.com/web-services/radiation/cams-radiation-service
http://www.soda-pro.com/web-services/radiation/cams-radiation-service
http://www.soda-pro.com/web-services/radiation/cams-radiation-service
http://www.soda-pro.com/web-services/radiation/cams-radiation-service
https://www.solaranywhere.com/solutions/solaranywhere-data/
https://www.solaranywhere.com/solutions/solaranywhere-data/
https://www.solaranywhere.com/solutions/solaranywhere-data/
https://www.solaranywhere.com/solutions/solaranywhere-data/
https://www.solaranywhere.com/solutions/solaranywhere-data/
https://ceres.larc.nasa.gov/data/
https://ceres.larc.nasa.gov/data/
https://ceres.larc.nasa.gov/data/
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Database 
Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources 

Availability 

(CERES) 
SYN1deg 

cloud 
observations 

EUMETSTA
T’s Satellite 
Application 
Facility on 
Climate 
Monitoring 
(CM SAF) 
Cloud, 
Albedo, and 
Surface 
Radiation 
Data Set 
From 
Advanced 
Very-High-
Resolution 
Radiometer 
(AVHRR) 
Data, Edition 
2 and 3 
(CLARA-A2 
and CLARA-
A3) 

2019–2023 
(CLARA-A 
2) 

2023–2023 
(CLARA_A 

3) 

Daily, 
monthly 
averages 

Global 0.25° x 0.25° Cloud properties, 
surface albedo, 
and surface 
radiation 
parameters 
derived from the 
AVHRR sensor 
onboard polar-
orbiting NOAA 
and MetOp 
satellites 
 
GHI 

https://wui.cms
af.eu/  

CM SAF 
Surface 
Solar 
Radiation 
Data Set – 
Heliosat 
(SARAH), 
Edition 3, 
Climate Data 
Record 
(CDR) and 
Interim 
Climate Data 
Record 
(ICDR) 

1983–2020 
(CDR) 

2021–
present 

(ICDR) 

30 minutes, 
daily, 
monthly 

Europe, 
Africa, and 
parts of 
South 
America 

0.05° Based on 
MVIRI/SEVIRI 
instruments 
onboard the 
Meteosat 
satellites; 
GHI, DNI,  
and DIR 

https://wui.cms
af.eu/  

CM SAF 
Surface 
Solar 
Radiation 
Data Set -  
Heliosat – 
East 
(SARAH-E),  
Edition 1.1 

1999–2016 1 hour, daily, 
monthly 

Most parts of 
Asia, Africa; 
western part 

of Australia 

0.05° Based on MVIRI 
instruments 
onboard the 
Meteosat Indian 
Ocean Data 
Coverage (IODC) 
satellites 

 

GHI, DNI, and 

DIR 

https://wui.cms
af.eu/  

Daymet 1980–2019 Daily Continental 
United 
States 

1 km GHI, air 
temperature 
(minimum and 
maximum), vapor 
pressure, and 

https://daymet.or
nl.gov 

https://wui.cmsaf.eu/
https://wui.cmsaf.eu/
https://wui.cmsaf.eu/
https://wui.cmsaf.eu/
https://wui.cmsaf.eu/
https://wui.cmsaf.eu/
https://daymet.ornl.gov/
https://daymet.ornl.gov/
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Database 
Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources 

Availability 

snow water 
equivalent  

Deutsches 
Zentrum für 
Luft- und 
Raumfahrt 
(DLR; 
(German 
Aerospace 
Center) 
Integrated 
Surface 
Irradiance 

Study (ISIS) 

July 1983–
December 
2004 

3 hours Global 280 km by  
280 km 

DNI and GHI 
from a radiative 
transfer model 
using cloud and 
aerosol inputs 

http://www.pa.op
.dlr.de/ISIS/ 

European 
Center for 
Medium-
Range 
Weather 
Forecasts 
(ECMWF) 
ERA5 

Reanalysis 

1979–
present 

1 hour Global 31 km Clear-sky and all-
sky GHI and DIR, 
UV irradiance, 
longwave 
irradiance, and 
surface albedo 

https://cds.clim
ate.copernicus.
eu/cdsapp#!/dat
aset/reanalysis-
era5-
complete?tab=f
orm  

European 
Center for 
Medium-
Range 
Weather 
Forecasts 
(ECMWF) 
ERA5-Land 

Reanalysis 

1950–
present 

1 hour Global 
(land only) 

9 km All-sky GHI, 
longwave 
irradiance, and 
surface albedo 

https://cds.clim
ate.copernicus.
eu/cdsapp#!/dat
aset/reanalysis-
era5-
land?tab=form 

European 
Solar 
Radiation 
Atlas (ESRA) 

1981–1990 Monthly and 
annual 
average daily 
totals 

(kWh/m2) 

Europe 10 km GHI, DNI, and 
DHI, sunshine 
duration, air 
temperature, 
precipitation, 
water vapor 
pressure, and air 
pressure at 

several stations 

Les Presses 
MINES 
ParisTech: 
http://www.mine
s-
paristech.fr/Eco
le/Culture-
scientifique/Pre
sses-des-
mines/#54. See 
also 
http://www.soda

-pro.com/home. 

Global Atlas 
(IRENA) 

 Monthly and 
annual 
average daily 
totals 

(kWh/m2) 

  GHI, DNI, DHI, 
and many other 
variables 

https://globalatl
as.irena.org/wo
rkspace 

http://www.pa.op.dlr.de/ISIS/
http://www.pa.op.dlr.de/ISIS/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-complete?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-complete?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-complete?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-complete?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-complete?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-complete?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-complete?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
http://www.mines-paristech.fr/Ecole/Culture-scientifique/Presses-des-mines/#54
http://www.mines-paristech.fr/Ecole/Culture-scientifique/Presses-des-mines/#54
http://www.mines-paristech.fr/Ecole/Culture-scientifique/Presses-des-mines/#54
http://www.mines-paristech.fr/Ecole/Culture-scientifique/Presses-des-mines/#54
http://www.mines-paristech.fr/Ecole/Culture-scientifique/Presses-des-mines/#54
http://www.mines-paristech.fr/Ecole/Culture-scientifique/Presses-des-mines/#54
http://www.mines-paristech.fr/Ecole/Culture-scientifique/Presses-des-mines/#54
http://www.soda-pro.com/home
http://www.soda-pro.com/home
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Database 
Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources 

Availability 

Global Solar 
Atlas 
(ESMAP) 

Variable 
start (1994–
2018) 
depending 
on region, 
up to 2023 

Annual 
average 

Land areas, 
65°N to 45°S 

≈250 m GHI, DNI, DHI, 
temperature, 
optimum tilt 

https://globalsol
aratlas.info/map 

Green Power 
Labs: 

SolarSatData 

1995–
present 
(Americas) 

 

2000–
present 
(Europe) 

 

2005–
present 
(Asia, 
Australia) 

30 minutes Americas, 
Asia, 
Australia, 
and Europe 

1–4 km GHI, DNI, DHI, 
GTI, 
temperature, 
pressure, wind 
speed, ozone, 
water vapor, and 
total cloud 
fraction 

 

Irradiance time 
series for P10, 
P50, P90, and 
P95 exceedance 
probabilities 

https://greenpo
werlabs.com/ 

HelioClim 
V2–V5 

2004–
present 

15 minutes Europe and 
Africa 

5 km Hourly and daily 
GHI from satellite 
remote-sensing 
mode 

MINES 
ParisTech 
Armines Center 
for Energy and 
Processes: 
http://www.soda

-pro.com/home 

Historically 
Black 
Colleges and 
Universities 
Solar 
Measuremen
t Network 

1985–1996 5 minutes Southeastern 
United States: 
Daytona 
Beach, Florida; 
Savannah, 
Georgia; Itta 
Bena, 
Mississippi; 
Elizabeth City, 
North Carolina; 
Orangeburg, 
South 
Carolina; and 
Bluefield, West 
Virginia 

Six 
radiometric 
stations 

GHI, DNI (at 
three stations), 
DHI 
(shadowband) 
from 
measurements 
by Eppley Model 
PSP 
pyranometers 
and Model NIP 
pyrheliometers 
mounted in 
automatic solar 
trackers  
(LI-COR Model 
2020) 

NREL: 
https://www.nrel
.gov/grid/solar-
resource/hbcu.
html (includes 
quality-
assessed 
monthly data 
files, monthly 
summary 
reports, and 
monthly 

irradiance plots) 

International 
Energy 
Agency (IEA) 
Photovoltaic 
Power 
Systems 
Programme 
(PVPS) 
Task-16 
Reference 
Solar 

2015–2020 1 minute Global Quality-
controlled 
data from 
115 world 
radiometric 

stations 

GHI, DNI, and 
DHI 

http://geocatalog.
webservice-
energy.org/geon
etwork/srv/eng/c
atalog.search#/m
etadata/3491b1a
6-e32d-4b34-
9dbb-
ee0affe49e36 

https://greenpowerlabs.com/
https://greenpowerlabs.com/
http://www.soda-pro.com/home
http://www.soda-pro.com/home
https://www.nrel.gov/grid/solar-resource/hbcu.html
https://www.nrel.gov/grid/solar-resource/hbcu.html
https://www.nrel.gov/grid/solar-resource/hbcu.html
https://www.nrel.gov/grid/solar-resource/hbcu.html
http://geocatalog.webservice-energy.org/geonetwork/srv/eng/catalog.search#/metadata/3491b1a6-e32d-4b34-9dbb-ee0affe49e36
http://geocatalog.webservice-energy.org/geonetwork/srv/eng/catalog.search#/metadata/3491b1a6-e32d-4b34-9dbb-ee0affe49e36
http://geocatalog.webservice-energy.org/geonetwork/srv/eng/catalog.search#/metadata/3491b1a6-e32d-4b34-9dbb-ee0affe49e36
http://geocatalog.webservice-energy.org/geonetwork/srv/eng/catalog.search#/metadata/3491b1a6-e32d-4b34-9dbb-ee0affe49e36
http://geocatalog.webservice-energy.org/geonetwork/srv/eng/catalog.search#/metadata/3491b1a6-e32d-4b34-9dbb-ee0affe49e36
http://geocatalog.webservice-energy.org/geonetwork/srv/eng/catalog.search#/metadata/3491b1a6-e32d-4b34-9dbb-ee0affe49e36
http://geocatalog.webservice-energy.org/geonetwork/srv/eng/catalog.search#/metadata/3491b1a6-e32d-4b34-9dbb-ee0affe49e36
http://geocatalog.webservice-energy.org/geonetwork/srv/eng/catalog.search#/metadata/3491b1a6-e32d-4b34-9dbb-ee0affe49e36
http://geocatalog.webservice-energy.org/geonetwork/srv/eng/catalog.search#/metadata/3491b1a6-e32d-4b34-9dbb-ee0affe49e36
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Database 
Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources 

Availability 

Measuremen
ts 

Land Surface 
Analysis 
(LSA) 
Satellite 
Application 
Facility (SAF) 

2004–
present 

15 minutes Europe, Africa, 
and parts of 
Asia and South 

America 

(no geographic 
subsetting 
offered) 

0.05° x 0.05° GHI, diffuse 
fraction, albedo, 
snow cover, and 

vegetation cover 

https://landsaf.ip
ma.pt/en/data/ca
talogue/  

Meteonorm 2001–2020/ 
2005–
present 

1-minute and  
1-hour 
modeled 

data 

 

Global Data from 
8,350 
meteorologic
al stations 
are 
interpolated 
using 
satellite data 
to establish 
weather data 
at any 
specified 
point. 
Ultimate 
resolution: 
0.0625° x 

0.0625° 

Measured: 
monthly means 
of GHI, 
temperature, 
humidity, 
precipitation, 
wind speed and 
direction, and 
bright sunshine 
duration. 
Modeled typical 
years: 1-minute 
and hourly typical 
year radiation 
parameters (GHI, 
DNI, DHI, GTI, 
downwelling 
infrared, 
luminance, and 
UVA and UVB), 
precipitation, and 
humidity 
parameters (dew 
point, relative 
humidity, mixing 
ratio, and 
psychrometric 
temperature). 
Radiation data 
from ground 
measurements 
blended with 
satellite-based 
long-term 
averages. 
Time series 
based on satellite 
data only. 

Meteotest: 

https://meteonor

m.com/ 

Meteonorm 

time series 

2010 
(depending 
on region)–

present 

1-hour 
measured 
data 

Global (62°S 
to 62°N) 

0.0625° x 
0.0625° 

Measured time 
series: 
GHI from 
satellite, 
temperature, 
wind speed, 
humidity, 
precipitation, and 
wind speed from 

Meteotest: 

https://meteonor

m.com/ 

https://landsaf.ipma.pt/en/data/catalogue/
https://landsaf.ipma.pt/en/data/catalogue/
https://landsaf.ipma.pt/en/data/catalogue/
https://meteonorm.com/
https://meteonorm.com/
https://meteonorm.com/
https://meteonorm.com/


Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

8-15 

Database 
Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources 

Availability 

ERA5T and 
Swissmetnet 

National 
Aeronautics 
and Space 
Administratio
n’s (NASA’s)  
GeoNEX 

2018–2021 1 hour Americas 
(Geostationa
ry 
Operational 
Environment
al Satellite 
[GOES-16]) 

0.01 x 0.01° All-sky GHI and 
PAR 

https://data.nas.
nasa.gov/geone
x/geonexdata/G
OES16/GEONE
X-L2/DSR-
PAR/ 

National 
Aeronautics 
and Space 
Administratio
n’s (NASA’s)  

GeoNEX 

2015–2021 1 hour Asia, 
Australia, 
and the 
Pacific 
(Himawari-8) 

0.01 x 0.01° All-sky GHI and 
PAR 

https://data.nas.
nasa.gov/geone
x/geonexdata/H
IMAWARI8/GE
ONEX-L2/DSR-

PAR/ 

National 
Aeronautics 
and Space 
Administratio
n’s (NASA’s) 
Modern-Era 
Retrospectiv
e Analysis 
for Research 
and 
Applications, 
Version 2 

(MERRA-2) 

1980–
present 

1 hour Global 0.5° x 0.625° Clear-sky and all-
sky GHI, 

detailed 
information on 
clouds, 
atmospheric 
constituents 
(aerosols, water 
vapor, etc.), 
weather 
variables 
(temperature, 
wind, etc., and 
surface albedo 

https://gmao.gsf
c.nasa.gov/rean
alysis/MERRA-

2/data_access/ 

National 
Aeronautics 
and Space 
Administratio
n’s (NASA’s) 
Prediction of 
Worldwide 
Energy 
Resources 

(POWER) 

July 1983–
present 

Monthly and 
annual 
average daily 
totals and 
hourly 

(kWh/m2) 

Global 0.5° x 0.5° GHI, DNI, and 
DHI from a 
satellite remote-
sensing model. 
Also available: 
estimates of 
clear-sky GHI, 
DNI, and DHI 
and tilted surface 
irradiance, 
temperature, 
pressure, 
humidity, 
precipitation, and 
wind speed 

https://power.larc
.nasa.gov/ 

https://data.nas.nasa.gov/geonex/geonexdata/GOES16/GEONEX-L2/DSR-PAR/
https://data.nas.nasa.gov/geonex/geonexdata/GOES16/GEONEX-L2/DSR-PAR/
https://data.nas.nasa.gov/geonex/geonexdata/GOES16/GEONEX-L2/DSR-PAR/
https://data.nas.nasa.gov/geonex/geonexdata/GOES16/GEONEX-L2/DSR-PAR/
https://data.nas.nasa.gov/geonex/geonexdata/GOES16/GEONEX-L2/DSR-PAR/
https://data.nas.nasa.gov/geonex/geonexdata/GOES16/GEONEX-L2/DSR-PAR/
https://data.nas.nasa.gov/geonex/geonexdata/HIMAWARI8/GEONEX-L2/DSR-PAR/
https://data.nas.nasa.gov/geonex/geonexdata/HIMAWARI8/GEONEX-L2/DSR-PAR/
https://data.nas.nasa.gov/geonex/geonexdata/HIMAWARI8/GEONEX-L2/DSR-PAR/
https://data.nas.nasa.gov/geonex/geonexdata/HIMAWARI8/GEONEX-L2/DSR-PAR/
https://data.nas.nasa.gov/geonex/geonexdata/HIMAWARI8/GEONEX-L2/DSR-PAR/
https://data.nas.nasa.gov/geonex/geonexdata/HIMAWARI8/GEONEX-L2/DSR-PAR/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
https://power.larc.nasa.gov/
https://power.larc.nasa.gov/
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Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources 

Availability 

National 
Center for 
Environment
al Protection 
(NCEP)/ 
National 
Center for 
Atmospheric 
Research 
Global 
Reanalysis 

Products  

1948–
present 

6 hours (W 
m-2) 

Global 2.5° 
(nominal) 

GHI and more 
than 80 
variables, 
including 
geopotential 
height, 
temperature, 
relative humidity, 
and U and V 
wind 
components, in 
several 
coordinate 
systems, such as 
a 17-pressure-
level stack on 
2.5° x 2.5° grids, 
28 sigma-level 
stacks on 192 x 
94  Gaussian 
grids, and 11 
isentropic-level 
stacks on a 2.5° 

x 2.5° grid 

University 
Center for 
Atmospheric 
Research, 
Computational 
and Information 
Systems 
Laboratory 
Research Data 
Archive: 
http://rda.ucar.e
du/datasets/ds0
90.0/. 

National 
Oceanic and 
Atmospheric 
Administratio
n’s (NOAA’s) 
Global 
Monitoring 
Laboratory 
(GML)/Earth 
System 
Research 
Laboratory 
(ESRL) 
Baseline 

Network 

Varies 1 minute Global Five stations: 

Hawaii, 
Alaska, 
California, 
Greenland, 
American 
Samoa 

GHI, DNI, DHI, 
downwelling 
infrared 
irradiance, 
upwelling 
infrared 
irradiance, and 
upwelling 
(reflected) 
shortwave 
irradiance. 
Photosyntheticall
y active radiation, 
solar net 
radiation, infrared 
net radiation, 
global UVB, air 
temperature, 
relative humidity, 
and wind speed 
and direction (10-
m AGL) 

https://esrl.noaa
.gov/gmd/dv/sit
e/index.php?pr
ogram=grad  

National 
Oceanic and 
Atmospheric 
Administratio
n’s (NOAA’s) 
SOLRAD 
Network 

1995–
present 

1 minute  
(15 minutes 
before 2001) 

Continental 
United 
States 

Nine stations: 
New Mexico, 
North Dakota, 
California, 
Wisconsin, 
Tennessee, 
Washington, 
Utah, Virginia, 
and Florida 

GHI, DNI, DHI, 
downwelling 
infrared 
irradiance, 
upwelling 
infrared 
irradiance, and 
upwelling 
(reflected) 
shortwave 
irradiance. 

NOAA, Earth 
Systems 
Research 
Laboratory, 
Global 
Monitoring 
Division, 
Boulder, 
Colorado: 

http://rda.ucar.edu/datasets/ds090.0/
http://rda.ucar.edu/datasets/ds090.0/
http://rda.ucar.edu/datasets/ds090.0/
https://esrl.noaa.gov/gmd/dv/site/index.php?program=grad
https://esrl.noaa.gov/gmd/dv/site/index.php?program=grad
https://esrl.noaa.gov/gmd/dv/site/index.php?program=grad
https://esrl.noaa.gov/gmd/dv/site/index.php?program=grad
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Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources 

Availability 

Photosyntheticall
y active radiation, 
solar net 
radiation, infrared 
net radiation, 
global UVB, air 
temperature, 
relative humidity, 
and wind speed 
and direction (10-
m AGL) 

https://gml.noaa
.gov/grad/solra
d/index.html.  

Data available 
from: 

ftp://aftp.cmdl.n
oaa.gov/data/ra
diation/solrad. 

National 
Oceanic and 
Atmospheric 
Administratio
n’s (NOAA’s) 
Surface 
Radiation 
Budget 
Network 
(SURFRAD) 

1993–
present 

Data are 
reported as  
3-minute 
averages of  
1-second 
samples 
before Jan. 
1, 2009,  
and 1-minute 
averages on 
and after 
Jan. 1, 2009. 

Continental 
United 

States 

Seven 
permanent 
stations: 
Montana, 
Colorado, 
Illinois, 
Mississippi, 
Pennsylvani
a, Nevada, 
and South 

Dakota 

 

Four 
temporary 
stations: 
Arizona, 
Colorado, 
Oregon, and 
Vermont 

GHI, DNI, DHI, 
downwelling 
infrared 
irradiance, 
upwelling 
infrared 
irradiance, and 
upwelling 
(reflected) 
shortwave 
irradiance. 
Photosyntheticall
y active radiation, 
solar net 
radiation, infrared 
net radiation, 
global UVB, air 
temperature, 
relative humidity, 
wind speed and 
direction (10-m 
AGL), and all-sky 

images 

NOAA, Earth 
Systems 
Research 
Laboratory, 
Global Monitoring 
Division, in 
Boulder, 
Colorado: 
https://gml.noaa.
gov/grad/surfrad/

sitepage.html. 

 

Data available 
from: 

ftp://aftp.cmdl.no
aa.gov/data/radia
tion/surfrad/. 

 

SURFRAD data 
from permanent 
stations are also 
submitted to the 
BSRN archives: 
www.bsrn.awi.de/

. 

National 
Renewable 
Energy 
Laboratory 
(NREL) Solar 
Radiation 
Research 
Laboratory 
(SRRL) 
Measuremen
t and 
Instrumentati
on Data 
Center 
(MIDC) 

1981–
present 

5 minutes 
(beginning 
July 15, 
1981),  
1 minute 
(beginning  
Jan. 13, 
1999) 

Golden, 
Colorado 

One 
radiometric 
station 

GHI, DNI, DHI 
(from 
shadowband and 
tracking disk), 
global on tilted 
surfaces, 
reflected solar 
irradiance, UV, 
infrared 
(upwelling and 
downwelling), 
photometric and 
spectral 
radiometers, sky 
imagery, and 
surface 
meteorological 
conditions 
(temperature, 
relative humidity, 

http://www.nrel.
gov/midc/srrl_b
ms/. 

https://gml.noaa.gov/grad/solrad/index.html
https://gml.noaa.gov/grad/solrad/index.html
https://gml.noaa.gov/grad/solrad/index.html
ftp://aftp.cmdl.noaa.gov/data/radiation/solrad
ftp://aftp.cmdl.noaa.gov/data/radiation/solrad
ftp://aftp.cmdl.noaa.gov/data/radiation/solrad
https://gml.noaa.gov/grad/surfrad/sitepage.html
https://gml.noaa.gov/grad/surfrad/sitepage.html
https://gml.noaa.gov/grad/surfrad/sitepage.html
ftp://aftp.cmdl.noaa.gov/data/radiation/surfrad/
ftp://aftp.cmdl.noaa.gov/data/radiation/surfrad/
ftp://aftp.cmdl.noaa.gov/data/radiation/surfrad/
http://www.bsrn.awi.de/
http://www.bsrn.awi.de/
http://www.nrel.gov/midc/srrl_bms/
http://www.nrel.gov/midc/srrl_bms/
http://www.nrel.gov/midc/srrl_bms/
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Data Elements  
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Availability 

barometric 
pressure, 
precipitation, 
snow cover, and 
wind speed and 
direction at 
multiple levels) 

National 
Solar 
Radiation 
Database 
(NSRDB) 
1961–1990 

1961–1990 1 hour United 
States and 

territories 

239 stations 
(56 stations 
have some 
radiation 
measureme
nts) 

Hourly GHI, DNI, 
DHI, ETR, direct 
normal ETR, total 
sky cover, 
opaque sky 
cover, ceiling 
height, dry-bulb 
temperature, dew 
point, relative 
humidity, 
atmospheric 
pressure, 
horizontal 
visibility, wind 
speed, wind 
direction, present 
weather, AOD, 
total precipitable 
water, snow 
depth, and 
number of days 
since last 

snowfall 

NREL: 
https://nsrdb.nr
el.gov/data-
sets/archives. 

National 
Solar 
Radiation 
Database 
(NSRDB) 
1991–2005 

1991–2005 1 hour United 
States 

10-km by 
10-km grid 
(1998–2005) 

Computed or 
modeled data: 
ETR on surfaces 
horizontal and 
normal to the 
sun, GHI, DNI, 
and DHI. 
Measured or 
observed data: 
total sky cover, 
opaque sky 
cover, dry-bulb 
temperature, dew 
point, relative 
humidity, station 
pressure, wind 
speed and 
direction, 
horizontal 
visibility, ceiling 
height, 
precipitable 
water, AOD, 
surface albedo, 
and precipitation 

NSRDB:   

Data available 
from: 

https://www.nce
i.noaa.gov/data/
nsrdb-solar/  

https://nsrdb.nr
el.gov/data-

sets/archives. 

https://www.ncei.noaa.gov/data/nsrdb-solar/
https://www.ncei.noaa.gov/data/nsrdb-solar/
https://www.ncei.noaa.gov/data/nsrdb-solar/
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Database 
Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources 

Availability 

National 
Solar 
Radiation 
Database 
(NSRDB) 
1991–2010 

1991–2010 1 hour United 
States 

1,454 
locations 
and 10-km 
by  
10-km grid 
(1998–2009) 

Computed or 
modeled data: 
ETR on surfaces 
horizontal and 
normal to the 
sun, GHI, DNI, 
and DHI. 
Measured or 
observed data: 
total sky cover, 
opaque sky 
cover, dry-bulb 
temperature, dew 
point, relative 
humidity, station 
pressure, wind 
speed and 
direction, 
horizontal 
visibility, ceiling 
height, 
precipitable 
water, AOD, 
surface albedo, 
and precipitation 

NSRDB User’s 
Manual: 
http://www.nrel.
gov/docs/fy12o
sti/54824.pdf. 

 

Data available 
upon request 

from NREL. 

National 
Solar 
Radiation 
Database 
(NSRDB) 

1998–2022 
(updated 
annually) 

5 minutes 
from 2018 

 

Half-hourly 

until 2017 

Southern 
Canada, 
United States, 
and parts of 
South 
America 
(longitude:  
-25° E to -
175° W, 
latitude:  
-21° S to 60° 

N). 

India 2000–
2014 

4 km;  
2 km from 
2018 

GHI, DNI, DHI, 
clear-sky DHI, 
clear-sky DNI, 
clear-sky GHI, 
cloud type, dew 
point, surface air 
temperature, 
surface pressure, 
surface relative 
humidity, solar 
zenith angle, 
total precipitable 
water, wind 
direction, wind 
speed, and 

surface albedo 

https://nsrdb.nr
el.gov. 

European 
Organisation 
for the 
Exploitation of 
Meteorologica
l Satellites 
(EUMETSAT) 
Ocean and 
Sea Ice 
Satellite 
Application 
Facility (OSI-

SAF) 

2011–
present 

1 hour Africa, 
Americas, 
Europe, 
western 
Asia, and 
Atlantic high-
latitude 

0.05° x 0.05° GHI and 
longwave 
infrared 
irradiance 

https://osi-
saf.eumetsat.int
/products/radiati
ve-fluxes-

products 

http://www.nrel.gov/docs/fy12osti/54824.pdf
http://www.nrel.gov/docs/fy12osti/54824.pdf
http://www.nrel.gov/docs/fy12osti/54824.pdf
https://nsrdb.nrel.gov/
https://nsrdb.nrel.gov/
https://osi-saf.eumetsat.int/products/radiative-fluxes-products
https://osi-saf.eumetsat.int/products/radiative-fluxes-products
https://osi-saf.eumetsat.int/products/radiative-fluxes-products
https://osi-saf.eumetsat.int/products/radiative-fluxes-products
https://osi-saf.eumetsat.int/products/radiative-fluxes-products
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Database 
Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources 

Availability 

Pacific 
Northwest 
Solar 
Radiation 
Data 
Network 

1975–
present 

1 minute to  
1 hour,  
depending 
on station 
and date 

Oregon, 
Idaho, 
Washington, 
Utah, 
Wyoming, 
and 
Montana 

39 stations Varies by site 
and date—GHI, 
DNI, DHI, GTI, 
spectral 
irradiance, 
surface 
meteorological 
data 
(temperature, 
relative humidity 
barometric 
pressure, 
precipitation, 
precipitable 
water vapor), and 

PV output 

http://solardata.
uoregon.edu 

Photovoltaic 
Geographical 
Information 
System 

(PVGIS) 

2005–2020 1 hour Europe, 
Africa, and 
most parts of 
Asia and 

America 

1-km 
aggregated 
to 3 arc-
minutes  

(~5 km) 

 

GHI, DNI, DHI, 
and GTI, based 
on the CM SAF, 
NREL, and 
ECMWF 
databases, 
optional terrain 
shadowing. Also 

TMY datasets 

European 
Commission 
Joint Research 
Centre, 
Directorate for 
Energy, 
Transport and 
Climate; Energy 
Efficiency and 
Renewables 
Unit: 

https://ec.europ
a.eu/jrc/en/pvgi
s 

Reuniwatt—
SunSat 

2004 
(depending 
on region)–
present 

10/15 
minutes,  
1 hour 

Worldwide 
between 
latitudes 60° 
N and 60° S 

500 m–3 km, 
depending 
on location 

GHI, DNI, DHI, 
BHI, GTI, and 
corresponding 
clear-sky 
irradiance, cloud 
index, 
meteorological 
conditions 
(temperature, 
relative humidity, 
wind speed, 
pressure, aerosol 
optical depth, 
precipitable 
water, total 
column water 
vapor, etc.) 

https://reuniwatt
.com 

Southern 
African 
Universities 
Radiometric 
Network 
(SAURAN) 

Varies 1 minute Botswana, 
Namibia, 
and South 
Africa 

23 
radiometric 

stations 

GHI, DNI, and 
DHI; 
meteorological 
data 

https://sauran.a
c.za/  

http://solardata.uoregon.edu/
http://solardata.uoregon.edu/
https://ec.europa.eu/jrc/en/pvgis
https://ec.europa.eu/jrc/en/pvgis
https://ec.europa.eu/jrc/en/pvgis
https://reuniwatt.com/
https://reuniwatt.com/
https://sauran.ac.za/
https://sauran.ac.za/
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Database 
Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources 

Availability 

Solar Energy 
and 
Meteorologic
al Research 
Training 
Sites 

1979–1983 1 minute Fairbanks, 
Alaska; 
Atlanta, 
Georgia; 
Albany, New 
York; and 
San Antonio, 

Texas 

Four 
radiometric 
stations 

GHI, DNI, and DHI; 
GTI on various 
surfaces, infrared 
irradiances, UV 
and other spectral 
irradiance (varies), 
and surface 
meteorological 
conditions 
(temperature, 
relative humidity, 
pressure, visibility, 
wind speed, and 
direction at 10 m, 
precipitation, etc.) 

NREL: 
https ://www.nr
el.gov/grid/solar
-
resource/semrt
s.html 

Solcast 2007–
present 

1, 5, 10, 15, 
or 30 
minutes, and  
1 hour 

 

Global, 
except polar 
areas 

1–2 km 
cloud index, 
scaled to 
150 m using 
a digital 
elevation 
model 

GHI, DNI, EBH, 
DIF/DHI, GTI, 
cloud opacity, 
solar zenith 
angle, solar 
azimuth angle, 
temperature, 
wind speed, wind 
direction, relative 
humidity, surface 
pressure, 
precipitable 
water, snow 
depth, dew point, 
albedo. 
Data available as 
time series, 
typical year with 
P50, P75, P90, 
P95, or Pxx 
exceedance 
probabilities, and 
monthly and 
annual averages 

https://solcast.c
om/ 

Solargis 1994, 1999, 
2007–
present 
(depending 
on region) 

15 and 30 
minutes 

Land area, 
worldwide, 
between 
latitudes 60° 
N and 50° S 

~3 km (at 
the equator) 
downscaled 
to ~80 m 
using 
SRTM-3 a 
digital 
elevation 
model 

DNI, GHI, DHI, 
GTI, and air 
temperature (2-m 
AGL) and others 

http://solargis.in
fo 

Solar Energy 
Mining 

(SOLEMI) 

1991–
present 

30 minutes Europe, 
Africa, South 
America, 
Western 
Asia, and 
Western 

Australia 

2.5 km GHI, DNI DLR:  

 

Data available 

upon request. 

https://www.nrel.gov/grid/solar-resource/semrts.html
https://www.nrel.gov/grid/solar-resource/semrts.html
https://www.nrel.gov/grid/solar-resource/semrts.html
https://www.nrel.gov/grid/solar-resource/semrts.html
https://www.nrel.gov/grid/solar-resource/semrts.html
https://solcast.com/
https://solcast.com/
http://solargis.info/
http://solargis.info/
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Database 
Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources 

Availability 

State Key 
Laboratory of 
Remote 
Sensing 
Science, 
Aerospace 
Information 
Research 
Institute, 
Chinese 
Academy of 
Sciences 
CARE 

2016–2020 10 minutes Asia-Pacific 0.05° x 0.05° GHI, DIR 

PAR (global and 
direct 
components) 

UV-A (global and 
direct 
components) 

UV-B (global and 
direct 
components) 

http://www.slrss
.cn/care/sp/pc/ 

Typical 
Meteorologic
al Year 

(TMY) 98–19 

1998–2019 1 hour Southern 
Canada, 
United States, 
and parts of 
South America 
(longitude:  
-25° E to -175° 
W, latitude: -
20° S to 60° N) 

4 km GHI, DNI, DHI, 
cloud type, dew 
point, surface air 
temperature, 
surface pressure, 
wind direction, 
wind speed 

https://nsrdb.nr
el.gov 

TMY2 One year 
representati
ve of the 
1961–1990 
NSRDB 
data period 

1 hour United 
States and 
territories 

239 stations 
representing 
the 1961–

1990 NSRDB 

Same as NSRDB 
1961–1990 

NREL: 
https://nsrdb.nr
el.gov/data-

sets/archives  

TMY3 1991–2005 1 hour United 
States and 
territories 

1,020 
locations 

Computed or 
modeled data: ETR 
on surfaces 
horizontal and 
normal to the sun, 
GHI and 
illuminance, DNI 
and illuminance, 
DHI and 
illuminance, zenith 
luminance. 
Measured or 
observed data: total 
sky cover, opaque 
sky cover, dry-bulb 
temperature, dew 
point, relative 
humidity, station 
pressure, wind 
speed and 
direction, horizontal 
visibility, ceiling 
height, precipitable 
water, AOD, 
surface albedo, and 
precipitation 

NREL: 
https://nsrdb.nr
el.gov/data-
sets/archives 

http://www.slrss.cn/care/sp/pc/
http://www.slrss.cn/care/sp/pc/
https://nsrdb.nrel.gov/
https://nsrdb.nrel.gov/
https://nsrdb.nrel.gov/data-sets/archives
https://nsrdb.nrel.gov/data-sets/archives
https://nsrdb.nrel.gov/data-sets/archives
https://nsrdb.nrel.gov/data-sets/archives
https://nsrdb.nrel.gov/data-sets/archives
https://nsrdb.nrel.gov/data-sets/archives
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Database 
Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources 

Availability 

Vaisala 
(formerly 
3Tier)  

Solar Time 
Series 

January 
1997–
present 

Approx.  
30-minute 
instantaneou
s and  
1-hour 
averages 

Global 2 arc-
minutes  
(~3 km) 

GHI, DNI, and 
DHI from model 
estimates based 
on satellite 
remote-sensing 
input data 

https://www.vai
sala.com/en/dig
ital-and-data-
services/renew
able-energy  

Western 
Energy 
Supply and 
Transmission 
(WEST) 
Associates 
Solar 
Monitoring 
Network 

1976–1980 15 minutes Arizona, 
California, 
Colorado, 
Nevada, 
New Mexico, 
and 
Wyoming 

52 
radiometric 
stations 

GHI, DNI, and 
dry-bulb 
temperature 
measured with 
pyranometers 
(Eppley Black 
and White, 
Eppley Model 
PSP, and the 
Spectrolab 
Spectrosun 
SR75) and 
pyrheliometers 
(Eppley NIP) in 
automatic solar 
trackers 

NREL: 
https://www.nrel
.gov/grid/solar-
resource/west-
manual.html 

World 
Meteorologic
al 
Organization 
(WMO) 
World 
Radiation 
Data Center 
(WRDC) 

1964–
present 

Daily totals 
with some  
1-hour 
measuremen
ts at a few 
sites 

Global More than 
1,000 
radiometric 

stations 

Primarily daily 
total GHI, 
radiation 
balance, and 
sunshine 
duration, but 
some DHI and 
DNI. Some 
hourly 
measurements 
are available 

from a few sites. 

http://wrdc.mgo.
rssi.ru 

 

  

https://www.vaisala.com/en/digital-and-data-services/renewable-energy
https://www.vaisala.com/en/digital-and-data-services/renewable-energy
https://www.vaisala.com/en/digital-and-data-services/renewable-energy
https://www.vaisala.com/en/digital-and-data-services/renewable-energy
https://www.vaisala.com/en/digital-and-data-services/renewable-energy
https://www.nrel.gov/grid/solar-resource/west-manual.html
https://www.nrel.gov/grid/solar-resource/west-manual.html
https://www.nrel.gov/grid/solar-resource/west-manual.html
https://www.nrel.gov/grid/solar-resource/west-manual.html
http://wrdc.mgo.rssi.ru/
http://wrdc.mgo.rssi.ru/
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Executive Summary 

Solar power forecasting is essential for the reliable and cost-effective system integration of solar energy. 

It is necessary for a variety of applications that have specific requirements with respect to forecast 

horizon and spatiotemporal resolution, including the management of electric grids and energy 

management systems as well as the marketing of solar power. 

Different input data and models are suitable for different forecast horizons, generally with a 

decreasing spatiotemporal resolution with increasing forecast horizon (see Fig. 9-1):  

• Short-term irradiance forecasts up to 10–20 minutes ahead resolving irradiance ramps with a 

temporal resolution of minutes or even less are derived from all-sky imagers (ASIs). 

• Irradiance forecasts up to several hours ahead with typical resolutions of 10–15 minutes are derived 

from satellite images covering large areas. 

• Irradiance forecasts from several hours to days ahead essentially rely on numerical weather 

prediction (NWP) models, which have the capability to describe complex atmospheric dynamics, 

including advection as well as the formation and dissipation of clouds. 

Complementing empirical and physical models, statistical and machine learning (ML) methods 

are widely used in solar irradiance and power forecasting. To train time-series models, the availability 
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of irradiance and/or photovoltaic (PV) power measurements is crucial, as is proper quality control of the 

data. Assuming good data quality, these methods can be effectively applied to: 

• Improve forecasts with empirical or physical models (postprocessing). 

• Combine different input data and forecasts (model blending); here, very short-term forecasting, up 

to approximately 1 hour ahead, greatly benefits from the use of local online irradiance or PV power 

measurements as input. 

• Derive PV power forecasts from meteorological forecasts. 

Besides time-series forecasting, ML algorithms are increasingly used for image prediction using ASI or 

satellite data, e.g., to compute the optical flow in cloud motion approaches. 

State-of-the-art PV power forecasting services do not rely on a single forecasting model but 

integrate different inputs and models. Prominent examples are intraday forecasting systems up to 

several hours ahead integrating online measurements, satellite-based forecasts, and NWP model 

forecasts or day-ahead forecasting systems combining different NWP models, both using statistical 

and/or ML algorithms for forecast optimization. 

Besides forecasting for single PV power plants and portfolios of PV plants, the estimation and 

forecasting of regionally aggregated PV power is important for grid operators for marketing of PV 

power and grid management. Here, an additional challenge is that PV power is not measured at a 

sufficient resolution for most plants in many countries, and information on PV systems is incomplete. 

Still, because of spatial smoothing effects, forecast errors of regionally aggregated PV power as well as 

virtual power plants (VPPs) (normalized to their installed power) are much smaller than for single PV 

plants, depending on the size of the region and the set of PV plants contributing. 

Forecast evaluations provide users with necessary information on forecast accuracy, assisting 

them in choosing between different forecasting services or assessing the risk when a forecast is used 

as a basis for decisions. Beyond general information on the overall accuracy of deterministic forecasts, 

probabilistic forecasts provide specific uncertainty information for each forecast value, depending on the 

weather conditions, and they allow for better risk management. 
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Figure 9-1. Different forecasting methods suitable for various spatial and temporal scales 

Empirical and/or physical models are combined with statistical and/or ML models for forecast 
optimization. The spatial scales of the forecasting methods are defined by spatial resolution and 
spatial coverage. The temporal scales are defined by temporal resolution, update frequency, and 
forecast horizon.  

Image by Fraunhofer ISE 

9.1 Introduction 

The variability of solar power generation poses a challenge for electric power systems to balance both 

generation and demand and to ensure the resilient operation of electric grids. 

Besides the deterministic apparent course of the sun, this variability is largely determined by the inherent 

uncertainty of weather conditions. Therefore, forecasting plays a crucial role for power system operators 

in managing the electric grid, avoiding congestion, and following protocols (Bessa et al. 2014), and it is 

also essential for aggregators and energy traders (Pierro et al. 2017). It is one of the most cost-effective 

solutions to integrate variable renewable energy sources (Notton et al. 2018; Tuohy et al. 2015). 

Solar forecasts are used in myriad contexts, with a variety of spatiotemporal scales, and their accuracy 

can have a great impact on power system performance. Various specific use cases and benefits of solar 

forecasting have been detailed in the literature, as described in this nonexhaustive list: 

• Marketing of solar power by grid operators, plant operators, or direct marketers, reducing the need 

for balancing power or penalties, depending on national regulations. This is, e.g. described in 

Antonanzas et al. (2017) for day-ahead markets and in Kaur et al. (2016) for intraday markets. The 

impact of the update rate of solar forecasts (Cros, Sylvain et al. 2015) and of the presence of storage 

(David et al. 2021) have also been discussed. Moreover, concentrating solar power (CSP) plants 

making use on direct normal irradiance (DNI) forecasts can benefit from bidding in the day-ahead 

(Kraas et al. 2013) and intraday (Law, Kay, and Taylor 2016) markets, potentially including the 

scheduling of coupled thermal storage. 
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• Scheduling storage systems to attenuate power fluctuations in large PV power plants (Marcos et al. 

2013), particularly relevant in the presence of ramp-rate restrictions. Cirés et al. (2019) discuss how 

accurate forecasts reduce storage needs for this effect. 

• Supporting generator scheduling of power systems, reducing the need for fossil fuels and costly 

fast-ramping generators (Brancucci Martinez-Anido et al. 2016), and mitigating operational 

imbalances (Pierro et al. 2020c). Some studies address the specificities of microgrids as well as 

insular and hybrid off-grid systems, e.g., (Ramahatana et al. 2022; Simoglou et al. 2014; Jamal et 

al. 2019). 

• For CSP plants, Nouri et al. (2020) show how sky imager forecasts can increase plant efficiency 

and lifetime. 

Solar power forecasting, including both PV and CSP, essentially relies on irradiance forecasting as a 

first step. Depending on the specific application and requirements regarding forecast horizon and 

spatiotemporal resolution, different input data and forecasting methods are customarily used. From short 

to long forecasting horizons (see Figure 9-1), the most important input data and solar forecasting 

methods are: 

• Time-series models based on local measurements: They require on-site observations of 

irradiance and/or PV power, and possibly further meteorological variables that are processed using 

either statistical methods or artificial intelligence (AI) and ML algorithms, such as neural networks. 

They might provide meaningful forecasts even up to a few hours ahead under relatively stable sky 

conditions; however, these methods rarely perform well under variable-sky conditions, given the 

chaotic behavior of the cloud system and the limited information contained in point-wise 

observations.  

• Forecasts based on ASIs: Using information on the local distribution of clouds, collected by one 

or more ground-based ASIs, the forecast skill can be enhanced relative to time-series models based 

on local measurements only. This information is key to the generation of solar irradiance forecasts 

with a temporal resolution on the order of seconds to minutes and a spatial resolution from 10–100 

m covering a few square kilometers around the ASIs. The typical forecast horizon of these systems 

is 10–20 minutes, depending on cloud height and speed.  

• Forecasts based on data from geostationary satellites: Forecasts up to several hours ahead 

benefit from wide-area observations of cloud fields. Because of their broad coverage, data from 

geostationary satellites are an appropriate source for these horizons. Satellite-based forecasts 

frequently use cloud motion vector (CMV) techniques to extrapolate cloud locations into the future. 

The typical spatial resolution is from 1–5 km2 for the current generation of geostationary satellites, 

with forecast updates every 10–30 minutes, and the typical forecast horizon is 4–6 hours. 

• NWP: NWP models constitute the main approach for forecast horizons more than several hours and 

up to several days or weeks ahead. These models predict the evolution of the atmospheric system, 

including the formation, advection, diffusion, and dissipation of clouds. They are based on a physical 

description of the dynamic processes occurring in the atmosphere by solving and parameterizing 

the governing system of equations, and they depend on an observed set of initial conditions. Current 

global NWP models cover the Earth with a spatial resolution from approximately 0.1°–0.5° and a 

temporal resolution from 1–3 hours. Regional models, which are also referred to as limited area 

models or mesoscale models, typically have an hourly temporal resolution and a spatial resolution 

of a few kilometers in the covered area. 

• Postprocessing and model blending with statistical and ML models: When historical or near-

real-time on-site solar irradiance or PV yield observations are available, these described methods 

can be further improved by combining them with ML, resulting in hybrid methods. For NWP 
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forecasts, model output statistic (MOS) techniques are often applied. Here too, satellite-derived 

irradiance might be used as a reference for model training. Further, state-of-the-art solar irradiance 

or PV power forecasting services do not rely on a single forecasting model but integrate different 

input and tools with statistical or ML algorithms, which is referred to as model blending.  

Solar power forecasts can be derived based on irradiance forecasts using these different models. 

Converting irradiance to PV power forecasts requires PV system modeling using parametric PV 

simulation models and plant data, e.g., nominal power and orientation, and/or ML approaches, learning 

from PV power measurements.  

Generally, solar irradiance and PV power forecasting approaches can be categorized into either physical 

and empirical models or statistical and ML approaches. Physical models (e.g., radiative transfer models, 

NWP models, PV module or inverter models) are based on solving basic physical equations. Empirical 

models are also based on physical considerations, but they do not describe all atmospheric processes 

in detail. Typical examples are cloud index models, parametric clear-sky models, and cloud motion 

approaches based on ASI or satellite data. 

Statistical and ML algorithms establish the dependence of forecast values (predictands) on input 

variables (predictors) in a training phase by learning from historical data. Here, it is assumed that 

patterns in the historical datasets are repeated in the future and thus might be exploited for forecasting. 

These approaches include classical regression methods, such as autoregressive and autoregressive-

integrated moving-average models as well as ML or AI techniques, such as artificial neural networks 

(ANNs), k-nearest neighbors, or support vector regression. They are widely applied for different 

purposes in irradiance and PV power forecasting. Coimbra and Pedro (2013) and Diagne et al. (2013) 

provided an overview of different statistical approaches used for solar irradiance forecasting. Voyant et 

al. (2017) and Sobri, Koohi-Kamali, and Rahim et al. (2018) reviewed the topic with a focus on the use 

of ML methods for solar radiation or power forecasting as well as for postprocessing.  

For many years, statistical and ML methods were mostly used in time-series forecasting. This includes 

their application in pure time-series approaches aimed at forecasting solar irradiance or solar power, 

based solely on local measurements (i.e., time-series approaches with no exogenous input) for forecast 

horizons from several minutes to several hours ahead. They also play an important role in enhancing 

the output of physical and empirical forecast models, namely, NWP and CMV forecasts. The community 

of statistical modeling and AI refers to these models as statistical models with exogenous input. In 

contrast, meteorologists commonly use the terms statistical postprocessing or, more specifically, MOS 

in the context of NWP, which is the terminology adopted here.  

The availability of ground truth is essential in training ML models. In irradiance and PV power 

forecasting, mostly irradiance and PV power measurements are used as ground truth data because they 

are expected to have a relatively small uncertainty compared to other options (see Chapter 10). Still, 

this uncertainty should not be neglected. The use of satellite-derived irradiance data is also an option, 

mostly used in postprocessing NWP forecasts.  

With the rapid progress of research in AI (e.g., deep learning (DL) and computer vision) during the last 

few years, the potential offered by these methods in the field of irradiance and PV power forecasting is 

also growing. ML and AI algorithms are also increasingly used for image-based predictions using ASI 

or satellite data, e.g., to compute the optical flow for cloud motion approaches but also to directly predict 

future cloud conditions or irradiance from raw image data.  

Besides categorizing solar forecasts by the different forecasting approaches, from a user’s point of view, 

the following general use cases can be distinguished: 

• Forecasts for individual solar systems are necessary for owners and operators of PV and CSP 

plants. In particular, day-ahead forecasts of the solar power generated by large PV plants are now 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

9-6 

mandatory in many countries (Italy, Germany, Spain, Romania, United States, Japan, China, etc.). 

Further, they can contribute to improved performance supervision and fault detection and to 

predictive maintenance and operations and maintenance planning as well as the reduction of power 

ramps. They are also needed by owners, operators, and providers of PV battery systems and energy 

management systems as an essential input for the predictive scheduling of storage and energy 

management. 

• Portfolio forecasts, consisting of an ensemble of PV systems—and potentially also other 

generators—are frequently used in direct marketing because of their smaller relative forecast errors 

compared to single-site forecasts, which is due to spatial smoothing. Such portfolios are also 

referred to as VPPs. It is expected that they will become increasingly important also for the energy 

management of multilocation companies aiming toward 100% renewable energy supply or for the 

management of quarters and districts with a high share of solar power. 

• Forecasts of aggregated regional PV power are needed by grid operators for the grid 

management and marketing of PV power, depending on national regulations and feed-in tariffs. This 

comes with the additional challenge that PV power is not measured at a sufficient resolution for most 

plants in many countries, and information on PV systems is incomplete. Still, as for portfolios, 

relative forecast errors of regionally aggregated PV power are much smaller than for single PV 

plants, depending on the size of the region and the set of PV plants contributing.  

This chapter provides an overview of the basic concepts of solar irradiance and PV power forecasting 

by referring to examples and operational models. More complete reviews of the state of the art can be 

found elsewhere, including in Kleissl (2013), Yang et al. (2018), Visser et al. (2022), and, for PV 

applications, Antonanzas et al. (2016). The examples presented here have been investigated in the 

context of the International Energy Agency (IEA) Solar Heating and Cooling Programme (SHC) Task 36 

and Task 46 and the Photovoltaic Power Systems Programme (PVPS) Task 16.We illustrate the forecast 

performance of the different models described in this chapter by showing basic forecasts scores (e.g., 

root mean square error (RMSE)). A more detailed discussion on forecast evaluation and uncertainty 

assessment is given in Chapter 10 (Section 10.2.3). Evaluation results depend on multiple factors, 

including the climatological and meteorological conditions at the evaluation site and period (season and 

year), the forecast horizon, the temporal and spatial resolutions of the forecasts, and the forecasting 

model used. Therefore, both the forecast scores and the differences between the forecasting models 

might considerably differ depending on these factors. Here, we provide evaluation results for several 

examples and model benchmarks to illustrate some general findings.  

The model descriptions and evaluations of the different irradiance forecasting approaches given here 

focus on global horizontal irradiance (GHI) and PV applications. Nevertheless, the forecasting methods 

also apply to DNI to a large extent. A focus on DNI forecasting can be found in Law et al. (2014) and 

Schroedter-Homscheidt and Wilbert (2017). Other environmental factors—including ambient 

temperature, air humidity, wind speed, and wind direction—have a nonnegligible impact on the final 

power yield of solar plants; however, this handbook focuses on the solar resource aspect, and thus the 

forecasting of these ancillary variables is not discussed further. 

Beyond the description of different forecasting models and their performances for different 

spatiotemporal scales in this chapter, the “IEA Wind Recommended Practices for the Implementation of 

Renewable Energy Forecasting Solutions” (Möhrlen et al. 2023) focuses on decision support tools for 

the energy industry. These tools aim to maximize the benefit of renewable energy forecasts, including 

PV, in operational decision-making. Therefore, detailed guidelines and recommended practices in 

selecting and evaluating an appropriate forecasting solution for a given application are given.  

The following sections first describe the different approaches for irradiance forecasting: time-series 

forecasting based on local measurements (Section 9.2), irradiance forecasting based on cloud images 
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(ASI or satellites, Section 9.3), NWP (Section 9.4), and postprocessing and model blending with 

statistical and ML methods (Section 9.5). Then, Section 9.6 addresses PV power prediction for single 

sites, portfolios, and regionally aggregated power. Next, Section 9.7 introduces probabilistic forecasting. 

Finally, Section 9.8 provides a summary and recommendations for irradiance forecasting. 

9.2 Time-Series Forecasting Based on Measurements 

The goal of pure time-series approaches is to derive solar irradiance or power forecasts based solely 

on local measurements, i.e., without involving any physical modeling. They require real-time access to 

measurements and are suitable for forecast horizons from several minutes to several hours ahead. 

Section 9.2.1 introduces persistence as a baseline approach, which constitutes the simplest possible 

model, using only local irradiance or PV power measurements. Section 9.2.2 provides a short 

introduction to selected ML models, which are frequently used for applications in time-series forecasting 

of solar irradiance. Finally, Section 9.2.3 addresses forecasting methods based on pure time-series 

models and includes a discussion of their advantages and limitations.  

9.2.1 Persistence 

Persistence is a trivial model that simply assumes that the current situation does not change during a 

forecast run. Typically, persistence is based on recent on-site measurements. In solar radiation 

forecasting, persistence is the simplest and most widely used reference model. It is commonly used to 

evaluate forecast skill (see Chapter 10, Section 10.5.1.2). It is also used in operational forecasting, e.g., 

as an input to hybrid forecasting approaches, requiring online measurements as a basis. Alternatively, 

satellite- or ASI-derived irradiance values can be used as a starting point for persistence, although in 

that case the forecast uncertainty for very short-term forecast horizons is higher than that for 

measurement-based persistence. 

Several definitions of the persistence of solar irradiance exist, including simple persistence; scaled 

persistence, which accounts for solar geometry changes; and more advanced concepts, such as smart 

persistence. The most widely used definitions are presented next. 

For day-ahead forecasting, the simplest approach is to assume that irradiance, I (GHI or DNI), persists 

during a period of 24 hours: 

 𝐼per,24h(𝑡) = 𝐼meas(𝑡 − 24h). (9-1) 

A more elaborate option for GHI is to separate the clear-sky and cloudy contributions to solar radiation 

and to assume that only the cloud conditions persist during a forecast run; this defines the scaled 

persistence. Clear-sky irradiance is strongly influenced by the deterministic solar geometry and can be 

described with reasonable accuracy using a clear-sky radiation model (see Chapter 7, Section 7.2.1). 

In such a modeling approach, the persisting magnitude is the clear-sky index, Kc, calculated as the ratio 

between the measured GHI and a clear-sky GHI estimate, GHIclear. For forecast horizons of several 

hours (Δt) ahead, the scaled persistence, GHIper, Kc, for time t is then defined as: 

 GHIper Kc,∆t(𝑡) = GHIclear(𝑡) 𝐾𝑐(𝑡 − ∆𝑡). (9-2) 

For DNI, a similar approach can be used, now based on the beam clear-sky index or the Linke turbidity 

factor (Kuhn et al. 2017). 

To make the most of persistence in a solar context, the so-called “smart persistence,” GHIper smart, was 

proposed in the context of the IEA SHC Task 46. It consists of increasing the integration time that defines 

the current conditions commensurately to the forecast time horizon. ∆t: 
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         𝐺𝐻𝐼𝑝𝑒𝑟 𝑠𝑚𝑎𝑟𝑡,∆𝑡(t) =  𝐺𝐻𝐼𝑐𝑙𝑒𝑎𝑟(t)
1

∆𝑡
∫ 𝐾𝑐(𝑡′)𝑑𝑡′𝑡−∆𝑡

𝑡−2∗∆𝑡
  (9-3) 

Or, for measurements available in a discrete time interval, ∆𝑡𝑚𝑒𝑎𝑠  : 

        𝐺𝐻𝐼𝑝𝑒𝑟 𝑠𝑚𝑎𝑟𝑡,∆𝑡(t) =  𝐺𝐻𝐼𝑐𝑙𝑒𝑎𝑟(t)
1

𝑁
∑ 𝐾𝑐(𝑡 − ∆𝑡 (1 +

𝑖

𝑁
)),𝑁

𝑖=1   (9-4) 

with 𝑁 =  
∆𝑡

∆𝑡𝑚𝑒𝑎𝑠
. 

Alternatively, if long-term irradiance measurements are available, combinations of climatology and 

persistence can be used, as recommended by Yang et al. (2020), as an advanced reference model for 

forecast evaluation. 

Despite its simplicity, persistence can outperform forecasts based on empirical and physical model 

forecasts for very short-term forecast horizons (see Section 9.3.1.3, Section 9.3.2.2, and Section 9.5.4). 

A further improvement for these forecast horizons can be achieved by applying statistical and ML models 

using online measurements as input, as described in the following sections. 

9.2.2 Examples of Machine Learning Models Applied for Solar Forecasting 

The use of state-of-the-art ML models is popular in both irradiance and PV power forecasting. This 

section describes several ML approaches that are used frequently, as discussed by Winter et al. (2019), 

including ANNs, extreme learning machines, gradient-boosted regression trees, and random forests. 

Further, auto-machine learning (AutoML) has become a hot topic in this field because of its high 

accuracy, deployment simplicity, and time efficiency. The ML approaches introduced here are used not 

only for pure time-series forecasting but also for postprocessing and model blending (Section 9.5) and 

partly also in image prediction (Section 9.3). 

9.2.2.1 Artificial Neural Networks 

ANNs constitute one of the most versatile ML methods and are known for their use in complex tasks, 

such as image or speech recognition (LeCun et al. 1989; Sak, Senior, and Beaufays 2014).  

As described in Bishop (1995), an ANN consists of a fixed number of nodes, called units, that can take 

on numerical values and are arranged in several layers. The input layer contains one unit for each 

feature of the dataset, whereas the output layer, in the case of a single regression problem, is only one 

unit. The layers between the input and output layers are referred to as hidden layers. The key task is to 

establish a connection between the nodes by assigning to each unit in one layer the weighted sum of 

the previous layer’s units, and to then apply a nonlinear activation function. In the case of a regression 

problem, a linear activation function is applied to the weighted sum of the output unit. 

By training an ANN on a given set of input and output data, all its weights are adjusted to minimize an 

error function, typically the mean square error (MSE). This is usually done by back-propagation—an 

iterative process for calculating the gradient of the error function with respect to each weight (Rumelhart 

and McClelland 1986). At each step, the weights get updated by using a gradient descent optimization 

algorithm. An alternative option is the method of adaptive moment estimation, or “Adam,” as described 

by Kingma and Ba (2014). Instead of calculating the gradient of the error function with respect to the full 

dataset, the weights can be updated at each step only with respect to a subset of the dataset (see Bottou 

(1998) and Ruder (2017)). The weights can be initialized using a common heuristic, as described by 

Glorot and Bengio (2010). 

To make an ANN able to learn nonlinear relationships between input and output, a nonlinear activation 

function must be chosen. For example, the leaky rectified linear unit activation function can be used 

(Maas 2013). 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

9-9 

9.2.2.2 Extreme Learning Machines 

An extreme learning machine, as proposed by Huang, Zhu, and Siew (2006), is an ANN with a single 

hidden layer between the input and output layers. Its learning method does not rely on gradient descent. 

Instead, the weights between the input and hidden layers are chosen randomly. In this way, only the 

weights between the hidden and output layers need to be determined. Because this is only a linear 

regression problem, an analytic solution exists, which can be calculated directly without an iterative 

optimization algorithm. Hence, training the model is considerably faster while maintaining its good 

performance. 

9.2.2.3 Gradient-Boosted Regression Trees 

Gradient-boosted regression trees are an ensemble technique using multiple classification and 

regression trees (CART), as introduced by Breiman et al. (2017). The CART algorithm creates binary 

decision trees, which means that at each new node, the data are split into two parts according to a 

threshold value. Starting with a root node, which, in general, contains all training data, the tree grows 

until some stop condition is reached. The last nodes form the tree’s leaves. Each splitting leads to either 

another node or a leaf. The leaf contains the class to be predicted. In the case of regression, a leaf 

returns the mean value of the training samples it contains. 

The principle of boosting is described by Friedman (2001). Starting with a single CART tree that is fit to 

minimize the MSE on the training data, the following trees are trained consecutively so that each new 

tree predicts the residual error. This residual error is proportional to the gradient of the MSE. By scaling 

the new tree’s prediction with a step size between 0 and 1 and by adding it to the current ensemble, 

every new tree aims to further reduce the MSE of the ensemble’s prediction. 

9.2.2.4 Random Forest 

A random forest is another technique based on ensembles of CARTs, as presented by Breiman (2001). 

The ensemble’s prediction is the average over all single-tree predictions. Each tree is trained on a 

bootstrap dataset generated by randomly drawn samples with replacement from the original dataset 

(Efron 1979). Further, for each node split, only a random subset of features is considered. By randomly 

omitting data, the resulting trees become less correlated. This reduced correlation of single trees has 

been observed to reduce the model error. 

9.2.2.5 Auto-Machine Learning 

AutoML techniques have achieved considerable success in solving and improving any kind of problems 

in an ever-increasing number of disciplines, further reducing the manual workload. They are based on 

sequential stages of data processing, from preprocessing the data to hyperparameter tuning and model 

ensembles, where the use of several base ML models (ANN, random forest, or gradient boosting 

machines, among others) provide ensemble predictions. A successful ensemble has proven to be the 

multilayer stack, where the first layer has multiple base models, and whose outputs are concatenated 

and then fed into the next layer, which itself consists of multiple stacker models. These stackers then 

act as base models to an additional layer. Note that to take advantage of all available data and also to 

mitigate overfitting, k-fold ensemble bagging of all models at all layers of the stack is typically used. 

9.2.3 Time-Series Forecasting With Statistical and Machine Learning 
Approaches 

Intrahour or hours-ahead solar irradiance and PV power forecasting with pure time-series models use 

recent measurements of irradiance or PV power as a basic input, possibly complemented by 

measurements of other variables. Examples are the application of a coupled autoregressive and 

dynamic system model for forecasting solar radiation on an hourly timescale, as described by Huang et 
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al. (2013), the comparison of ANN and classical time-series models by Reikard (2009), and the short-

term PV power prediction approach of Bacher, Madsen, and Nielsen (2009). Through their review of ML 

methods, Voyant et al. (2017) concluded that although ANN and autoregression-style methods still 

dominate statistical forecasting, other methods (e.g., support vector regression, regression tree, random 

forest, or gradient boosting) are increasingly being used. Although the ranking of such methods is 

complicated by many factors, it generally holds that a multi-model approach results in an improvement 

in forecasting performance (Zemouri, Bouzgou, and Gueymard 2019). 

For any statistical or ML model, the selection and availability of appropriate input variables, as well as 

the optimized preprocessing of the data, are of critical importance for good forecast performance. 

Additionally, the choice of the model and of its configuration (e.g., the ANN architecture or the selection 

of hyperparameters in ML models) is essential. Finally, the setup of the training sample (e.g., the number 

of days and sites used for the training) has a noteworthy influence on forecast accuracy. In recent years, 

automated AutoML tools have been increasingly used for that (see Section 9.2.2.5). They are applied 

to optimize the ML pipeline, including the identification of the most suitable model and hyperparameters, 

which can be done using genetic programming. 

The advantages and limits of purely statistical approaches are discussed next. High-quality 

measurements of the actual surface solar irradiance or PV power constitute the best possible starting 

point for any forecast. In comparison, the assessment of the initial irradiance conditions (i.e., the 

irradiance analysis) with an empirical or physical forecasting model shows considerably higher 

uncertainties. Any physics-based forecasting model has an inherent uncertainty, regardless of the 

forecast horizon, that is caused by limits in the spatial and temporal resolutions, uncertainty in input 

parameters, and simplifying assumptions within the model. Time-series models exploit the 

autocorrelation in the time series of solar irradiance, cloud cover and, possibly, other explanatory 

variables. For very short-term forecast horizons, forecasts based on accurate on-site measurements 

and statistical methods are affected by forecast errors that are typically smaller than the errors from 

either NWP analysis or irradiance forecasts derived from satellite or ASI images that correspond to the 

starting points of the respective forecast runs. 

Given the inherent chaotic nature of weather phenomena, any existing autocorrelation decreases as the 

time lag between time-series instances increases. Hence, the performance of these models is (1) 

strongly determined by the underlying autocorrelation of each particular weather condition and (2) 

decreases as the forecast lead time increases. For longer forecast horizons, wide-area observations of 

clouds or irradiance (e.g., those from satellites images) or NWP model forecasts are necessary to meet 

forecast skill requirements.  

Therefore, pure time-series approaches are typically applied to forecast horizons ranging from several 

minutes to a few hours ahead. Evidently, their performance compared to other methods strongly 

depends on the prevailing climate and weather conditions (e.g., the stability of the sky situation), the 

spatiotemporal resolution of the forecasts, and the models to which they are compared. 

Finally, the uncertainty of the irradiance measurements used for both input and as ground truth for model 

training has a strong impact on the performance of time-series models. This uncertainty strongly 

depends on the instrument class as well as maintenance of the stations (see Chapter 3, Chapter 4, and 

Chapter 10). Any statistical or ML forecasting model will adapt to the irradiance—or PV power—

measurements it is trained to. This includes any possible systematic deviations in the measurements, 

e.g., calibration errors or soiling in case the station under scrutiny is not properly maintained. Therefore, 

high-quality measurements are crucial for statistical and ML models.  
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9.2.4 Forecasting With Machine Learning Methods and Data From  
Sensor Networks 

As discussed, irradiance or PV power measurements from a single site can be used as the basis for 

time-series forecasts, but there are also forecasting methods that seek to explore spatiotemporal 

correlations from in situ solar measurements distributed in space. A review of such methods appears in 

Benavides Cesar et al. (2022). Bosch and Kleissl (2013) first showed that a pyranometer network was 

effective in detecting cloud advection. In a follow-up study, Lonij et al. (2013) did one of the earliest 

forecasting demonstrations, using a network of 80 distributed PV systems (considered as sensors) over 

an area of 2,500 km2.Other studies sought to understand some of the nuances involved. In particular, 

Amaro e Silva and Brito (2017) showed that such an approach surpasses smart persistence from the 

seconds- to days-ahead timescale as long as the increase in forecasting horizon is met by a larger 

spatial coverage of the data and a coarser time resolution. Later, Amaro E Silva and Brito (2019) also 

found that the tilt and orientation of the sensor ensemble impact the added value of such an approach.  

The main advantage of this kind of approach is its flexibility regarding the time and spatial scales. Two 

other benefits are also worth mentioning: The need for imagery and image processing (from satellite or 

ASI) is eliminated, and useful new data can be generated for use in regional studies regarding variability 

and upscaling approaches. Conversely, a disadvantage of this approach in solar resource applications 

is its dependence on potentially expensive and maintenance-intensive sensors. There are also 

approaches that explore PV generation data from a fleet of PV systems, but the challenge here is that 

such data sources mostly belong to private companies and are thus not publicly available.  

9.3 Irradiance Forecasting Based on Cloud Images  

Forecasting the evolution of clouds is essential in irradiance forecasting. Therefore, cloud images 

providing spatially extended information on clouds are suitable sources to extend forecast horizons 

compared to pure time-series models based on local measurements only. Two types of cloud images 

are used in irradiance forecasting: (1) cloud information for small areas with very high spatiotemporal 

resolution, obtained from ground-based ASIs, and used for very short-term forecast horizons of typically 

10–20 minutes ahead; and (2) cloud information derived from geostationary satellite data, covering large 

areas at high temporal resolution, and suitable to forecast clouds and solar irradiance up to several 

hours ahead. Though covering different forecast horizons and areas, the basic steps in irradiance 

forecasting based on ASI and satellite imagery are similar. 

At timescales from a few minutes to a few hours, horizontal advection has a strong impact on the 

temporal evolution of cloud patterns, with the shape of clouds often remaining quite stable. Here, the 

spatial scale is also extremely important because small-scale cloud structures change faster than larger 

structures. In these situations, techniques for detecting clouds and their motion trajectories, referred to 

as CMV techniques, are used to provide valuable information for irradiance forecasting. Obviously, the 

performance of these forecasting methods degrades as the importance of local processes of cloud 

formation and dissipation, such as strong thermally driven convection, increases. 

CMV-based techniques consist of the following basic steps: 

• Images with cloud information are derived from ASI or satellite data. 

• Assuming stable cloud structures and optical properties, the CMVs are determined by identifying 

matching cloud structures in consecutive cloud images.  

• To predict future cloud conditions, the CMVs are applied to the latest available cloud image 

assuming cloud speed persistence. 

• Solar irradiance forecasts are calculated from the predicted cloud structures. 
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For these steps, physical, empirical, or ML models can be employed, as described in more detail next, 

for irradiance forecasting based on either ASI (Section 9.3.1) or satellite imagery (Section 9.3.2). In 

addition to the CMV-based techniques, approaches to directly predict irradiance from cloud images with 

ML models have been developed during the last few years.  

9.3.1 Forecasting Using Ground-Based All-Sky Imagers 

Solar irradiance forecasts at subhourly scales with high spatiotemporal resolution can be derived from 

ground-based ASIs. Such imagers are installed horizontally and sense the whole sky above them 

(Figure 9-4, upper row). These highly resolved sky images contain information on the cloud cover that 

can be exploited for forecasting. At times, ASIs are also called whole-sky imagers, sky imagers, or sky 

cameras. (Note that a sky imager is not strictly identical to a sky camera; in all publications from IEA 

PVPS Task 16 participants and within this handbook, the term ASI is normally used.) 

ASIs can capture sudden changes in irradiance, which are often referred to as ramps, at temporal scales 

from seconds to minutes (Figure 9-2). Cloud fields sensed from ASIs, or from an assembly of several 

ASIs, can be resolved with high detail, allowing the partial cloud cover over large PV installations to be 

modeled and forecasted. The maximum predictable horizon strongly depends on cloud conditions, and 

it is constrained by the cloud speed and the field of view of the ASIs. This forecast horizon typically 

ranges from 10–20 minutes, but it can reach more than 30 minutes in favorable cases. Considering the 

high resolution combined with a very fast update rate, ASI forecasts can play a valuable role in the 

economic operation of PV plants. Another advantage is that they can significantly reduce the overall 

societal costs caused by active intermittence mitigation (Wan et al. 2015).  

 

Figure 9-2. Example of minute-resolution GHI forecasts using an ASI  

The forecasts with lead times up to 5 minutes ahead are updated every 5 minutes. May 9, 2021. 
Location: Freiburg in Germany.  

Image by Fraunhofer ISE  

9.3.1.1 All-Sky Imager Hardware 

Currently, there is no defined standard for sky imaging hardware, camera calibration, or image 

processing techniques. Systems in use include commercially available, low-cost webcams or 
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surveillance cameras, and systems developed specifically for sky imaging ,e.g., (Urquhart et al. 2015). 

Most systems use digital red-green-blue (RGB) cameras with fish-eye lenses and therefore sense visible 

radiation only, although some systems work with infrared cameras, which are more expensive. In 

particular, older RGB systems and some infrared cameras use a downward-looking camera that takes 

photos of an image of the sky that appears on a roughly spherical upward-looking mirror. This is where 

the term imager comes from. This concept—unlike the smaller lens or dome of fish-eye cameras—has 

the disadvantage that the whole mirror must be cleaned. Moreover, some older systems use sun-tracked 

“shadowbands” to prevent direct sunlight from reaching the camera. This can reduce lens flare-induced 

saturated areas in the photos, but the shadowband also covers a noticeable part of the image. Because 

the required tracking of the shadowband entails higher costs and can lead to system failures, shaded 

devices have become uncommon in recent years. In addition to the sky imager(s), an ASI forecasting 

system typically includes a radiometer at the sky imager location. The irradiance measurements are 

used as additional input to infer irradiance from ASI images and/or as ground truth for model training. 

9.3.1.2 All-Sky Imager-Based Forecasting 

The classical operation of ASI-based forecasts typically involves a physics-oriented chain of processing 

steps, e.g., (Marquez and Coimbra 2013). These physics-based or empirical solar forecasting 

approaches are also referred to as indirect forecasting (Lin, Zhang, and Wang 2023). Nevertheless, 

because of the great success of ML in computer vision, recent developments show a clear trend to so-

called direct forecasting approaches (Lin, Zhang, and Wang 2023). These direct approaches use trained 

models that derive the forecasts directly from the sky images , e.g.,(Chu et al. 2015). The advantages 

of ML in computer vision have also led to the application of ML methods as a way to improve the 

individual processing steps of indirect methods (e.g., cloud detection (Hasenbalg et al. 2020)). Figure 

9-3 illustrates the general scheme of ASI-based forecast methods. The corresponding processing steps, 

along with some relevant image preprocessing procedures, are outlined in the following.  

 

Figure 9-3. General scheme of ASI-based forecasting methods  
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Image by DLR Institute of Solar Research  

 

Image preprocessing: Both direct and indirect approaches may apply different image preprocessing 

steps. Following are some frequently used preprocessing steps:  

• Fish-eye distortion: Using fish-eye lenses leads to strong radial distortion effects that increase with 

greater distance from the zenith. Different processing steps might require/benefit from orthogonal 

projections (e.g., cloud motion detection (Marquez and Coimbra 2013) or cloud height detection 

(Nouri et al. 2019)). A commonly used approach for fish-eye distortion correction is described in 

Scaramuzza, Martinelli, and Siegwart (2006). 

• Partial masking: Masking disturbing objects like shadowbands (Chow et al. 2011) 

• Cropping and downscaling: An ML model’s performance might increase if the training datasets are 

based on higher-resolution imagery; however, this also comes with increased computational costs 

(Sun, Szűcs, and Brandt 2018). Cropping and downscaling sky images is therefore common 

practice.  

• High-dynamic-range techniques: The illumination range of sky images can be very large because 

of the scattering effects of solar radiation (especially under complex cloudiness patterns or in the 

circumsolar region. High-dynamic-range techniques tackle this challenge by combining multiple 

images with different exposure times into a single image with dynamic illumination range (Chauvin 

et al. 2017).  

Indirect (empirical) approaches are typically divided into the following main processing steps: (1) cloud 

detection, (2) cloud motion detection, (3) analysis of the radiative effect, (4) cloud height detection, and 

(5) cloud shadow mapping. For point forecasts at the sky imager location, information about cloud height 

is not required because the cloud movement can be parameterized in terms of “pixels per second”; they 

can be derived using steps (1), (2), and (3) only. The additional processing steps (4) and (5) are required 

when spatial forecasts are desired (Urquhart et al. 2012).  

Cloud detection/segmentation: Three main cloud segmentation techniques are described in the 

literature and are summarized as follows:  

• Thresholding-based approaches exploit the different spectrally resolved scattering properties of 

clouds and cloudless sky by analyzing the red-to-blue ratio. Long et al. (2006) proposed a simple 

empirically defined fixed red-to-blue threshold. A more sophisticated adaptive thresholding, based 

on a database of image properties during clear-sky conditions (referred to as a “clear-sky library”), 

was introduced by Chow et al. (2011). An automated way to construct such a database was devised 

by Shaffery et al. (2020). 

• Superpixel cloud segmentation approaches evaluate multiple pixel features (brightness, color, and 

texture) and then group pixels into coarse regions (Shi et al. 2017). These compact and perceptually 

coherent regions are commonly referred to as superpixels. 

• Various ML approaches can be applied to the cloud segmentation tasks. Lately, DL-based 
approaches using convolutional neural networks (CNNs) have seemed to prevail (Xie et al. 2020). 
Various benchmarks have shown a clear advantage of DL approaches compared to classical 
thresholding-based approaches, e.g., ( (Hasenbalg et al. 2020; Xie et al. 2020). Some samples of 
such a comparison are illustrated in Figure 9-4. Critiques mention the requirement of large 
manually segmented ground truth databases for supervised learning (Lin, Zhang, and Wang 
2023); however, this demand can be significantly reduced through the use of transfer learning and 
pretrained weights for initialization (Fabel et al. 2022). That process involves initially employing a 
self-supervised approach to establish weights using an extensive unlabeled dataset, followed by a 
subsequent supervised approach that relies on a small labeled dataset. Ye et al. (2019) combined 
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superpixels with a DL approach (support vector machines) for a semantic segmentation based on 
nine distinct cloud categories. 
 

 

Figure 9-4. Examples of four segmentation results (columns a to d)  

Clouds, sky, and the sun are colored white, blue, and black, respectively. The second row illustrates 
results from a CNN model, and the third row depicts results based on a red-to-blue ratio threshold.  

Image by Xie et al. (2020)  

 

Cloud motion detection: Global or multiple CMVs, up to a dense vector field having a single CMV for 

each pixel, can be derived from sky images. Generally, this is done via similarity maximization, optical 

flow, or feature tracking. similarity maximization often involves block-matching approaches (see Figure 

9-5). Different subparts of consecutive image series are compared for their similarity via cross-

correlation (Chauvin et al. 2016). The optical flow approaches assume that cloud motion only leads to a 

pixel shift at constant pixel brightness (Paragios, Chen, and Faugeras 2006), providing a way to derive 

dense vector fields. Overall, optical flow typically outperforms similarity maximization approaches; 

however, this advantage comes at the expense of increased computational costs (Peng et al. 2016). 

Finally, feature tracking approaches try to find and track unique feature points, such as cloud edges or 

corners. This method offers notable computational efficiency by prioritizing a few prominent features but 

is limited by the granularity of the CMVs (Su et al. 2015). 

Cloud height detection: Stereoscopic cloud height measurement approaches based on multiple ASIs 

are described in, e.g., Nguyen and Kleissl (2014). Some of these methods are effective at deriving 

different cloud heights for the individual clouds seen in the sky image (Peng et al. 2015). That process 

is exemplified in Figure 9-5. Alternative approaches include the integration of supplementary 

instruments. In particular, the most accurate determination of the cloud-base height directly above the 

ASI instrument is currently obtained with ceilometers (Arbizu‐Barrena et al. 2015); however, ceilometers 

are costly and limited to cloud measurements directly above the sensor, and therefore they are not 

ideally suited for multilayer cloud conditions. Combinations of ASIs with radiometers have also been 

described, but these approaches do not achieve the performance of a stereoscopic assembly with 

multiple ASIs (Kuhn et al. 2018). 
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Figure 9-5. Matching cloud blocks for cloud motion and height detection from three consecutive 
images and three distinct ASIs  

In the ASI1, ASI2, and ASI3 images, the cloud block of interest is denoted by the yellow, red, and 
green boxes, respectively. The detected movement of the cloud block between two consecutive 
frames is visually represented by a dotted arrow labeled “v.” Additionally, the displacement vector 
between a pair of ASIs captured at the same time stamp is indicated by a solid arrow and labeled 
“d.”  

Image by Peng et al. (2015) 

 

Cloud shadow mapping and irradiance forecasting: Cloud shadow maps at the surface are produced 

by projecting the forecasted cloud scenes with their assigned height using information about the position 

of the sun and a digital elevation model. Local irradiance or PV power measurements can be used to 

estimate the cloud effects on irradiance or PV power for either point or spatial forecasts. Urquhart et al. 

(2013) analyzed the frequency distributions of PV power normalized to clear-sky conditions to determine 

a clear and a cloudy mode and to assign them to shaded and unshaded cells, respectively. Schmidt et 

al. (2016) and Dittmann, Holland, and Lorenz (2021) used the clear-sky index derived from recent 

pyranometer measurements to determine the forecasted all-sky GHI. Similarly, for DNI forecasting, 

Blanc et al. (2017) used the beam clear-sky index determined from the last 30 minutes of pyrheliometer 

measurements to derive the cloud transmittance. Ghonima et al. (2012) proposed a method to 

differentiate thin and thick clouds for various atmospheric conditions using a clear-sky library.  

Using multiple ASIs to create networks of ASIs is useful to increase the spatial coverage, the forecast 

horizon, and the accuracy of observations by providing a more accurate 3D reconstruction of the cloud 

field (Mejia et al. 2018). Moreover, the combination of several ASI-derived intermediate results (e.g., 
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segmentation and cloud height) can be used to improve the nowcasts (Blum et al. 2022). Exemplary 

results of such a network are presented in Figure 9-6. 

 

Figure 9-6. Exemplary results obtained by an ASI network  

(Left) Stitched raw, undistorted, and georeferenced ASI images and (right) the GHI map derived by 
the ASI network.  

Image by Blum et al. (2022)  

 

Direct approaches use a supervised ML framework, which facilitates the creation of a mapping function 

that directly associates sky images with their corresponding solar irradiance values. The majority of 

approaches described in the literature rely on CNNs (Lin et al. 2023). The CNNs automatize the 

extraction of essential features from the input data. Once the features are extracted, they are flattened 

to a 1D vector and forwarded to an additional neural network, which proceeds with the regression 

procedure using solar irradiance as ground truth (Sun, Roth, and Black 2018). Sequential data are a 

valuable source of information regarding cloud motion, but its processing using traditional 2D CNN 

kernels is not direct. To overcome this challenge, specialized 3D CNN methods have been developed 

that are specifically designed to extract cloud features from a sequence of consecutive stacked sky 

images (Zhao et al. 2019). Another effective strategy involves the fusion of CNNs with recurrent neural 

networks (RNNs), known for their aptitude in handling subsequent data. Features extracted from the 

convolutional blocks are flattened and seamlessly passed to the RNN, employing a long short-term 

memory (LSTM) block for improved memory retention and sequential processing (Zhang et al. 2018). 

More recently, a variant was introduced called convolutional LSTM (convLSTM) , which directly accepts 

a sequence of sky images as input, removing the need for intermediate flattening and streamlining the 

processing of sequential data (Kong et al. 2020). Incorporating auxiliary data, such as solar irradiance 

time series, into a direct approach can enhance its predictive capabilities. One potential method involves 

the training of two parallel neural networks, one dedicated to processing images and the other designed 

for handling time-series data (see Figure 9-7). The extracted features from both networks can then be 

concatenated and fed into a final neural network, which performs the solar irradiance prediction (Paletta, 

Arbod, and Lasenby 2021). Recently, attention-based transformer architectures have been employed 

based on this strategy, and they appear to outperform CNNs and RNNs (Fabel et al. 2023). 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

9-18 

 

Figure 9-7. Potential general architecture of a multimodal model incorporating ASI sequences and 
auxiliary data  

Image by DLR Institute of Solar Research  

 

There is a noticeable trend toward adopting direct approaches in solar forecasting (Lin et al. 2023). 

These direct approaches consistently demonstrate impressive performance when assessed using well-

established metrics such as RMSE or forecast skill; however, note that these direct approaches often 

exhibit characteristics similar to a “very smart persistence model,” which mitigates the overall deviations. 

Although this characteristic often leads to lower average errors, it can potentially compromise the ability 

to accurately represent current conditions or accurately capture ramps (Paletta, Arbod, and Lasenby 

2021). As a result, recent approaches have embraced the integration of preliminary results derived from 

indirect methods, such as CMVs, within the framework of direct approaches (Kamadinata, Ken, and 

Suwa 2019). 

Regardless of direct or indirect methods, almost all ASI-based nowcasting systems provide deterministic 

forecasts. Recently some new approaches have been designed to provide probabilistic forecasts as well 

(Nouri et al. 2023; Paletta, Arbod, and Lasenby 2023).  

In addition to irradiance nowcasting, ASIs have many other applications that are relevant to meteorology 

and solar energy. Deriving GHI and/or DNI from sky images is discussed by Dev et al. (2019), Sánchez-

Segura et al. (2021), Schmidt et al. (2016), Chauvin et al. (2018), Kurtz and Kleissl (2017), and Gauchet 

et al. (2012). It is also possible to estimate the sky radiance distribution (Chauvin et al. 2015) and the 

aerosol optical depth (AOD) (Olmo et al. 2008; Kazantzidis et al. 2017). 

9.3.1.3 Performance of All-Sky Imager Irradiance Forecasting: Results of a  
Benchmarking Exercise 

To illustrate the performance of ASI-based forecasts, examples of results from the benchmarking 

exercise performed within the IEA PVPS Task 16 framework (Logothetis et al. 2022) are presented next. 

That exercise aimed at nowcasting GHI with five ASI systems located at the Plataforma Solar de Almeria 

in southern Spain (Almeria). The experiment lasted 28 days during September–November 2019 and 

encompassed a large variety of cloud conditions. Six different cloudiness classes, including clear sky, 
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were identified manually from the images. Various forecast lead times, ranging from 1–20 min, were 

considered. For each cloudiness class, the variation of the RMSE (defined in Chapter 10, Equation 10-

4) over increasing forecast lead times (Figure 9-8) indicates that: 

• Forecast and persistence errors, as well as differences between forecasts models, strongly depend 

on the cloud conditions and are smallest for cloud-free conditions.  

• Forecast and persistence errors mostly increase with forecast lead time. 

• ASI forecasts can outperform persistence in terms of RMSE for all cloud conditions and all lead 

times (ASI1 and ASI2). All investigated ASI-based models outperform persistence from several 

minutes onward for most cloud classes.  

• Under clear-sky conditions, ASI forecasts show a similar RMSE as persistence, which is expected. 

These findings agree with those from the other studies mentioned in Section 9.3.2.1. A comparison of 

ASI-based methods to satellite-based forecasting is discussed in Section 9.5.3. 

In summary, ASI-based forecasting systems have gained popularity in the energy meteorology 

community because of their exceptional ability to provide very high-resolution intrahour forecasts. In 

recent years, ML-based direct approaches have gained ground; however, pure ML approaches have 

been found to have certain weaknesses (e.g., strong smoothing of predictions to minimize deviations). 

As a result, some of the most recent works advocate for integrating indirect physics-based approaches 

with direct data-driven approaches. 

 

Figure 9-8. RMSE of five different ASI forecasting approaches (model, solid lines) compared to 
scaled persistence (PERS, dashed lines) over forecast lead times up to 20 minutes ahead for six 
different cloud classes as presented by Logothetis et al. (2022)  

Dataset: Minute values: 28 days from September–November 2019 in southern Spain (Almeria). Cloud 
classes: 1: cloud-free (or almost cloud-free); 2L: scattered low clouds; 2 M: scattered multiple 
clouds; 2H scattered high/middle clouds; 3H: scattered high/middle clouds during half the day, 
cloud-free during the other half; 4A: overcast cloud conditions during half the day, scattered clouds 
during the other half.  

Image by DLR with data from University of Patras and DLR  
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9.3.2 Satellite-Based Forecasts 

Geostationary meteorological satellites have been operational since the late 1970s. The different 

geostationary meteorological satellites are now able to observe the complete Earth every 15 or 10 

minutes with a spatial resolution of 1–3 km (see Chapter 7, Section 7.4.1). Each satellite observes the 

Earth from a different location—see Figure 9-9 for the 0º degree service (main mission) of Meteosat 

Second Generation (MSG) satellites. Each satellite has an onboard multichannel sensor to observe the 

radiance reflected by the atmosphere and clouds in an appropriate spectral range. This information can 

be used to assess the attenuating effects of clouds and ultimately estimate the incident radiation 

reaching a solar panel at any location, applying the models discussed in Chapter 7. In solar forecasting, 

this information is used to obtain forecasts of solar irradiance up to a few hours ahead and over large 

areas with a high-revisit frequency without requiring any specialized hardware and thus at low cost.  

 

Figure 9-9. Image of the full Earth disc by MSG satellite located at 0º latitude and longitude 

Image by EUMETSAT, contains EUMETSAT Meteosat data, 2023 

9.3.2.1 Satellite-Based Forecasting Approaches 

Satellite-based forecasting approaches include cloud motion analysis and direct ML methods, such as 

those employed in ASI forecasting, as discussed. 

9.3.2.1.1 Satellite-Based Forecasts Using Cloud Motion Analysis 

Since the late 1970s, when the first geostationary meteorological satellites became operational, cloud 

motion analysis has become a prominent technique to retrieve large-scale wind information for weather 

forecast models. Originally, this analysis was made by an operator who observed similar cloud patterns 

between consecutive images and manually drew the most plausible wind vectors between these 

patterns (Wolfgang Benesch 2007). This rather time-consuming and error-prone approach was later 

automated by detecting the minimal error between blocks of subsequent images and is still called “block-

matching.” Its first well-known application for solar energy forecasts was set by Lorenz, Hammer, and 

Heinemann (2004). The block-matching approach produces a CMV field that is applied on a current 

image to extrapolate it and to infer the future spatial distribution of clouds (see Figure 9-10). 
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Figure 9-10. Generic process of a satellite-based forecast using CMV analysis  

Image by Cros et al. (2020) 

 

In recent decades, several methods have been designed based on these general principles; however, 

their differences can be established according to the method selected to resolve each main step, 

namely: 

• The CMV field computation  

• The extrapolation technique 

• The satellite-derived variable to extrapolate, including the method to derive it.  

These steps are further detailed in the following. 

The block-matching technique has been widely used in cloud motion analysis thanks to its simplicity to 

ease of use (Lorenz, Hammer, and Heinemann 2004; Perez and Hoff 2013, 233–265; Kühnert, Lorenz, 

and Heinemann 2013, 267–297; Alonso-Montesinos and Batlles 2015; Cros et al. 2020). Its 

implementation requires tuning several parameters, such as vector grid resolution and sizes of the 

blocks to match.  

9.3.2.1.1.1 Cloud Motion Vector Field Computation 

The development of cloud motion analysis for ASI irradiance forecasting as well as advances in ML-

based modeling have inspired researchers to also consider optical flow analysis techniques. These 

methods have the advantage of producing a dense CMV field (one vector per pixel) and thus propose 

more realistic extrapolated images than those issued from block-matching. Originating from the 

computer vision research area, most methods are conveniently available in precoded and well-

documented libraries (Lucas and Kanade 1981; Farnebäck 2003; (Sun, Roth, and 2010); however, 

Bresky and Daniels (2006) noted that optical flow analysis does not provide a noticeable difference for 

cloud cover forecasts compared to block-matching mainly because the optical flow analysis was 

designed for fluid animated video (e.g., 24 images/s), whereas satellites provide 1 image every 5–10 

minutes in the best case. Nevertheless, the convenient implementation of the optical flow analysis has 

attracted many solar energy forecasters (Cros et al. 2014; Nonnenmacher and Coimbra 2014; Sirch et 

al. 2017; Urbich, Bendix, and Müller 2019, Kallio-Myers et al. 2020; Kosmopoulos et al. 2020; Prasad 

and Kay 2021). A recent comparison of four optical flow methods and block-matching applied for CMV 

forecasting using Geostationary Operational Environmental Satellite (GOES)-East satellite images for 
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six sites in South America (Aicardi, Musé, and Alonso-Suárez 2022) shows better forecasting scores of 

the optical flow methods than the block-matching (see Section 9.3.2.2). 

Another technique inspired from rainfall radar data processing is referred to as cloud-shape matching 

using contour and centroids (Wang et al. 2019). In parallel, sectoral cloud tracking (Schroedter-

Homscheidt and Pulvermüller 2011) divides an image part into several parts around the sun position for 

direct irradiance forecast. Finally, wind vectors derived from NWP models are also used despite the 

associated operational constraints to obtain these additional data. This can explain why the main 

references on this approach in an operational context (Müller and Remund 2014; Miller et al. 2018) 

originate from providers of NWP forecasts.  

9.3.2.1.1.2 The Extrapolation Technique 

The extrapolation techniques applied to infer future images are not clearly documented in most of the 

aforementioned publications. Some details can be found in Cros et al. (2020), Gallucci et al. (2018), and 

Aicardi, Musé, and Alonso-Suárez (2022). The impact of different extrapolation approaches (called 

“push” and “pull,” or their combination) on forecast quality is found to be small. The important aspect is 

to extrapolate each forecasted image in a step-by-step approach, with consideration for the possibly 

curved motions defined by the CMV. As a final step in the prediction of future images, smoothing filters 

are applied to eliminate randomly varying small-scale structures that are hardly predictable; this step 

can considerably reduce the forecast RMSE (Aicardi, Musé, and Alonso-Suárez 2022; Kühnert 2015; 

Lorenz, Hammer, and Heinemann 2004); see Chapter 10, Section 10.6.2.3. 

9.3.2.1.1.3 Variable Used to Describe Cloudiness 

Existing methods are also differentiated by the choice of the variable used to describe cloudiness. Many 

methods use a dimensionless cloud index or cloud albedo derived from the broadband visible channel 

of satellite sensors, e.g., using the semiempirical Heliosat method (Hammer et al. 2003; Rigollier, 

Lefèvre, and Wald 2004; Mueller et al. 2012). Carrière et al. (2021) rather used the clear-sky index, Kc, 

which is fully correlated with the cloud index. The advantage here is that Kc can be also defined as an 

objective physical variable. Kosmopoulos et al. (2020) experimented with the use of cloud optical depth 

because this variable is provided in standard physical satellite-derived products, such as the Nowcasting 

Satellite Application Facility (SAF-NWC)57 or the Advanced Very-High-Resolution Radiometer (AVHRR) 

Processing scheme Over cLouds, Land, and Ocean (APOLLO) (Kriebel et al. 2003). Similarly, Wang et 

al. (2019) used cloud microphysical data from cloud physical property (CPP)-Surface Insolation under 

Clear and Cloudy Skies (SICCS). 

9.3.2.1.2 Bidimensional Machine Learning Approach 

CMV-based methods are proven to provide satisfactory results for nowcasting and have been 

operationally implemented around the world by different service providers using various geostationary 

satellites; however, their performance is known to reach a limit when cloud cover does not follow a net 

advection motion. Cloud appearance or disappearance caused by convective situations, cold or warm 

fronts passing, or coastal effects are not considered  and can induce large forecast errors. To overcome 

this, some researchers  have attempted to compensate for this lack of information by using ML 

approaches. Different types of ML algorithms can be applied following this principle. For instance, 

Licciardi et al. (2015) used neural networks (autoencoder combined with nonlinear principal component 

analysis). Dambreville et al. (2014) proposed an autoregression model using external variables (AR-X), 

 

 

57 See https://www.nwcsaf.org/.  

https://www.nwcsaf.org/


Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

9-23 

where the surrounding GHI is the main input and the statistical CMV field provides external information. 

André et al. (2019) underlined that the autoregressive approach can be penalized by the lack of cloud 

motion information. Cros, Deroubaix, and Schmutz (2015) extended the AR-X approach with a dynamic 

CMV.  

According to the aforementioned authors, such approaches can significantly improve the forecast 

accuracy on very short time horizons (up to approximately 2 hours). For longer time horizons, CMV 

seems more robust. 

9.3.2.1.3 Probabilistic Forecasting 

Information on the uncertainty associated with any kind of forecasting is essential for many applications. 

In particular, probabilistic forecasting (see Section 9.7) constitutes a concrete answer for electricity 

trading or microgrid management. Probabilistic forecasting is a common feature when using NWP 

models because they can be operated to produce ensemble forecasts. The synthesis of several forecast 

members is, by definition, a probabilistic result. Conversely, forecasts based on CMV are, by design, 

deterministic. The associated uncertainty is typically derived from metrics such as RMSE. Carrière et al. 

(2021) proposed adding a Gaussian distribution of the errors in the direction of each CMV to obtain a 

probabilistic speed and direction of cloud motion and then obtain probabilistic forecasts. Figure 9-11 

shows the CMV field (top left), a probabilistic representation of the area where the clouds come from 

(top right), and an example of a probabilistic GHI forecast run (bottom). 

 

Figure 9-11. Snapshot of CMV-based probabilistic forecast  

Example of the CMV-based probabilistic forecast on Carpentras, July 11, 2016, at 12:00 UT, for 1 
hour ahead every 5 minutes. (a) Clear-sky index map at 12:00 UT, along with CMV (small red 
arrows), with a radius of 50 km around the location of interest. (b) Contour map of the clear-sky 
index map with 0.5 as a threshold, along with dots identifying pixels converging to the monitored 
perimeter of interest. The color of the dots represents the estimated time of intersection. (c) The 
gray area represents the reference measured GHI at a 15-minute time step. The blue line represents 
the corresponding estimation from satellites. The black dashed line represents the corresponding 
clear-sky GHI. The probabilistic forecasting issued at 12:00 UT (vertical red dashed line) up to 2 
hours ahead (vertical black dashed line) is represented by the ensemble of potential converging 
clear-sky index, Kc, in black dots. For illustration purposes, the 10th, 50th, and 90th percentiles of this 
ensemble are represented by the red, green, and yellow lines, respectively.  
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Image by Carrière et al. (2021) 

9.3.2.1.4 Satellite Data as Input to Deep Learning Forecast Techniques 

Using satellite data as input to DL approaches is becoming increasingly popular in solar forecasting. 

Using satellite images provides several advantages: 

• Data are regularly spatialized with long homogenous archives. 

• GHI and/or cloud index are bounded values, limiting the risk of divergence in the training process. 

• The available variables are linked by known physical relationships (PV power, GHI, cloud index, …), 

and thus an elaborate indexation process is not required. 

• Small-scale stochastic cloud motion cannot be accurately modeled by thermodynamic equations. 

DL approaches might overcome this limit to some extent.  

Several recent investigations have developed forecast models by applying CNNs on various cloud or 

GHI datasets derived from geostationary satellites. 

Several recent works developed forecast models by applying various CNNs on various cloud or GHI 

dataset derived from geostationary satellite. Berthomier, Pradel, and Perez (2020) used the U-Net model 

to forecast the evolution of SAF-NWC cloud masks over the next 2 hours. Nielsen, Iosifidis, and Karstoft 

(2021) developed a convLSTM architecture applied to the European Organisation for the Exploitation of 

Meteorological Satellites (EUMETSAT) Satellite Application Facility on Climate Monitoring (CM SAF) 

Surface Solar Radiation Data Set - 2 (SARAH-2) satellite-based maps to forecast the surface solar 

irradiance. Gallo et al. (2022) also trained a convLSTM model with ground and MSG data. Kellerhals, 

Leeuw, and Rodriguez Rivero (2022) applied a convGRU model on MSG-CPP data for cloud 

nowcasting. Similar approaches have been applied to the imagery from the Communication Ocean and 

Meteorological Satellite (COMS) (Ahn, Yu, and Yeom 2022) and Himawari-9 (Jiang et al. 2019) 

satellites. 

9.3.2.2 Performance of Satellite-Based Irradiance Forecasting: Example Comparing  
Different Cloud Motion Vector Techniques  

This section illustrates the performance of satellite-based irradiance forecasting using the CMV 

technique in the study by Aicardi, Musé, and Alonso-Suárez (2022) as an example. The study compares 

four optical flow methods and block-matching to obtain hourly GHI forecasts up to 5 hours ahead using 

GOES-East satellite images for six sites in Uruguay. All methods are operated with individual 

optimization of the parameter settings and smoothing. 

For the different approaches, an analysis of the variation of RMSE with forecast lead time is illustrated 

in Figure 9-12 and provides results that agree with many of the other studies discussed in Section 

9.3.2.1: 

• Satellite-based predictions outperform persistence (even in combination with climatology) for 

forecast horizons from 1–5 hours ahead, with a clear advantage beyond 2 hours ahead. 

• The RMSE of GHI forecasts strongly increases with the forecast horizon, as expected. 

Further, the comparison shows that different optical flow forecasting methods perform very similarly and 

can outperform simple block-matching. A comparison of satellite-based methods with both ASI and NWP 

forecasting is given in Section 9.5.4. 
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Figure 9-12. Relative RMSE of five different satellite-based CMV forecasting approaches (solid lines, 
PIV: block-matching; LK-afn: optical flow, Lukas Kanade; FRB: optical flow, Farnebäck; HS: optical 
flow, Horn and Schnuck; TVL1: optical flow with L1 norm; compared to persistence (PERS) and a 
model combining persistence and climatology, CC (dashed lines), over forecast lead times up to 5 
hours. Dataset: Hourly values, years: 2015 and 2016, six sites in Uruguay.  

Image by Aicardi et al. (2022) 

 

In summary, satellite-based forecasting plays an important role in solar irradiance and PV power 

forecasting up to several hours ahead, typically with hourly or 15-minute resolutions, which is particularly 

important for intraday power markets. Thanks to the broad coverage of geostationary satellites, 

forecasts can be provided over large areas with a high-revisit frequency and without any additional 

hardware requirements. Whereas CMV techniques are still very popular in satellite-based irradiance 

forecasting, direct ML-based approaches have been increasingly used during the last few years and 

show promising results, similar to ASI forecasting. 

9.4 Numerical Weather Prediction  

NWP models are routinely operated by weather services to forecast the state of the atmosphere. Starting 

from initial conditions that are derived from routine Earth observations from worldwide networks of 

meteorological sensors, the temporal evolution of the atmosphere is simulated by solving the equations 

that describe the physical processes occurring in the atmosphere (Figure 9-13). Such physical modeling 

is the main forecasting approach for time horizons longer than approximately 5 hours ahead. 

A comprehensive overview of NWP modeling was given by Bauer, Thorpe, and Brunet (2015). 
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Figure 9-13. Illustration of atmospheric processes modeled in NWP 

Image by ECMWF (https://www.ecmwf.int/en/research/modelling-and-prediction/atmospheric-physics), 
accessed on 28.04.2024; Creative Commons Attribution 4.0 International Public License 

9.4.1 Basic Principles of Numerical Weather Prediction Forecasting and 
Challenges in Irradiance Forecasting 

Global NWP models predict the future state of the atmosphere worldwide. To determine the initial state 

from which an NWP model is run, data assimilation techniques are applied to make efficient use of 

worldwide meteorological observations (Jones and Fletcher 2013). These include observations from 

ground-based weather stations, buoys, radiosondes, airplanes, and spaceborne sensors (i.e., 

satellites), see Figure 9-14. 

 

Figure 9-14. Sensors collecting meteorological observations 

 Image by ECMWF (https://www.ecmwf.int/en/research/data-assimilation/observations), accessed on 
28.04.2024; Creative Commons Attribution 4.0 International Public License 

 

NWP models operate by solving conservation equations for the atmosphere and the surface layers 

immediately below using spatial and temporal discretization. The spatiotemporal resolution of this 

discretization determines the computational cost of the simulation. Primarily, the equations of 

https://www.ecmwf.int/en/research/modelling-and-prediction/atmospheric-physics
https://www.ecmwf.int/en/research/data-assimilation/observations
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momentum and energy are solved, but equations for hydrometeors, water vapor, radiative transfer, soil 

moisture, etc., are also needed. 

In addition, many physical processes occur on spatial scales smaller than the grid size, including, most 

importantly, condensation, convection, turbulence, as well as scattering and absorption of shortwave 

and longwave radiation (see Figure 9-13). This depends on the model resolution, though. Models with 

a spatial resolution approaching 1 km can resolve deep convection, whereas models with a finer 

resolution of approximately 100 m can resolve shallow convection as well. The effect of unresolved 

processes on the mean flow at the model’s grid size is evaluated with the so-called parameterizations 

of atmospheric physics. They include interactions of the land and ocean with the atmosphere, vertical 

and temporal development of the planetary boundary layer, cumulus triggering and cloud microphysics, 

as well as shortwave and longwave radiation. These physical parameterizations are key components of 

obtaining accurate predictions with NWP models. They bridge the small-scale and large-scale 

processes, and they prompt the convergence of the numerical routines that solve the physical equations.  

Currently, global NWP models are run by approximately 15 national and international weather services, 

and their spatial resolution ranges from approximately 10 km–50 km. The temporal resolution of the 

global model outputs is typically 1 or 3 hours, their forecasts are normally updated every 6 or 12 hours, 

and they are run 10 days or longer into the future.  

Regional models—also called limited area models or mesoscale models—cover only a limited area of 

the Earth. They take the lateral boundary conditions from a concurrent or previous global NWP model 

run and refine the spatial and temporal grid of the global NWP model. A typical example of successively 

finer grids is shown in Figure 9-15. They use initial conditions from a previous run with the same model 

and need several months to get slowly varying variables, such as soil water or temperatures, correct. 

Weather services typically operate mesoscale models with a spatial resolution ranging from 1–10 km, 

and they provide hourly forecasts, though higher resolutions are feasible. Compared to global models, 

the higher spatial resolution of mesoscale models allows for explicit modeling of small-scale atmospheric 

phenomena. 

 

 

Figure 9-15. Downscaling from global to regional NWP with a higher spatial and temporal resolution  

Image by Deutscher Wetterdienst DWD 
(https://www.dwd.de/EN/research/weatherforecasting/num_modelling/06_nwp_emergency_response_syst
em/num_weather_prediction_emergency_system_node.html) accessed on 28.04.2024 

https://www.dwd.de/EN/research/weatherforecasting/num_modelling/06_nwp_emergency_response_system/num_weather_prediction_emergency_system_node.html
https://www.dwd.de/EN/research/weatherforecasting/num_modelling/06_nwp_emergency_response_system/num_weather_prediction_emergency_system_node.html
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Clouds and their optical properties are of primary importance for irradiance forecasting. They are 

strongly affected by the model’s initial conditions and by several processes in and around the 

atmospheric system. For instance, the deep soil’s water concentration affects the available cloud water 

via evapotranspiration from plants and trees. In parallel, clouds related to weather systems at 

approximately 1,000 km (synoptic) scale are most accurately forecasted. This includes clouds along a 

warm front with consistent rising motion over a large region. 

Thunderstorm clouds (cumulonimbus) appear dark gray and can block most of the solar irradiance. They 

can form in conditionally strongly unstable atmospheric conditions and are the most difficult to predict. 

They can form due to cascading outflows from other cumulonimbus clouds that are in essence of a 

chaotic nature. This process is inherently impossible to accurately predict in day-ahead forecasts. In 

practice, a region with the likely formation of such clouds is forecasted based on an ensemble of NWP 

models (see Section 9.7). Here, the members of the ensemble can have perturbed initial conditions, 

surface conditions, and physics parametrizations. The output from several NWP models can also be 

combined into multi-model ensembles to improve accuracy. 

Fog is also often difficult to forecast. Recent work in several weather centers has focused on better 

representations of aerosols and cloud-aerosol microphysical interactions to improve these forecasts. 

Cloud-aerosol interactions have also been shown to be important for cloud ice nucleation, which can 

create high-level cirrus clouds. These developments are likely to improve the cloud forecasts in the 

coming years. Additionally, explicit aerosol forecasts in regional NWP models will improve the clear-sky 

irradiance forecasts compared to the previous models that mostly use fixed aerosol climatologies based 

on average historical conditions. 

Most current NWP models offer the surface GHI as a normal output. Some models also offer direct 

and/or diffuse irradiance on a horizontal surface as a normal output, or even DNI forecasts. Note that if 

direct horizontal irradiance, noted DIR in Chapter 8, is accumulated over 1 hour by the model, its 

conversion to DNI can only be approximate; thus, whenever possible, it is best to obtain DNI directly. 

Additionally, some models provide clear-sky irradiance, which includes the effect of aerosols and other 

atmospheric constituents. This clear-sky irradiance is necessary to obtain the clear-sky index. Although 

in principle the surface irradiance output can be used directly in solar energy applications, in practice 

additional postprocessing is customarily applied to improve forecast accuracy (see Section 9.5). 

9.4.2 Examples of Operational Numerical Weather Prediction Models 

Some examples of NWP models are given and specific references are provided with respect to the 

application and evaluation of irradiance forecasts in the context of solar energy applications. Note that 

the sample of operational models and applications given here is nonexhaustive; it simply summarizes 

the research experience and lessons learned from research completed within the frameworks of the IEA 

SHC Task 36 and Task 46 (now completed) as well as the current IEA PVPS Task 16. 

9.4.2.1 Global Numerical Weather Prediction Models 

Many of today’s operational global NWP models are listed in Table 9-1, including their current spatial 

resolution. Of these, this section introduces the Integrated Forecasting System (IFS) by the European 

Centre for Medium-Range Weather Forecasts (ECMWF), and the Global Forecast Systems (GFS) by 

the U.S. National Centers for Environmental Prediction (NCEP). 
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Table 9-1. Nonexhaustive List of Global NWP Models and the National Bureaus That Run Them 

Meteorological Bureau Country Model (Resolution)a 

BOM Australia ACCESS-G (12–17 km) 

CMA China GRAPES-GFS (26 km) 

CMC Canada GEM (22 km) 

DWD Germany ICON (13 km) 

JMA Japan GSM (20 km) 

KMA South Korea KIM (12 km) 

ECMWF Europeb IFS (9 km) 

MF France ARPEGE (7.5-37 km) 

NCEP United States GFS (23 km) 

NCMRWF India NEPS-G (12 km) 

RUMS Russia SL-AV (25 km) 

UKMO United Kingdom UM (10 km) 
 

a Some models are run with varying resolutions for different areas. For these, the range of resolutions is given. 

b In addition to European member states and cooperating states, Morocco and Israel are cooperating states. 

 

The ECMWF’s IFS is a global model currently being operated on 137 vertical levels for high-resolution 

deterministic forecasts. Since the Summer of 2023, all 51 ensemble members of the IFS have been run 

with a horizontal grid resolution of approximately 9 km. During each model run, many resources are 

spent on analyzing the initial model state to be as accurate as possible and balanced. If the model state 

is not balanced, the model will quickly go from the analyzed state to one that significantly differs. For 

instance, if more water vapor is present than can be withheld in the atmosphere, this will quickly 

precipitate and be removed. To avoid this, the temperature needs to be adequate to contain the amount 

of water vapor to be assimilated in the initial state. To efficiently ingest observations and initialize each 

model run, the method used in the IFS is called 4-Dimensional Variational (4D-Var) data assimilation 

(Bonavita and Lean 2021). 

IFS irradiance forecasts have been extensively evaluated for PV power forecasting (Lorenz et al. 2009; 

Lorenz et al. 2011). For example, their excellent performance has been shown over the United States, 

Canada, and Europe (Perez and Hoff 2013) and over Europe (Lorenz et al. 2016) in the benchmarking 

studies performed under the auspices of IEA SHC Task 36 and Task 46, respectively; see Section 9.4.3. 

For research purposes, IFS forecasts are available from the archive free of charge in full resolution. 

Additionally, a subset of IFS real-time forecasts is made available to the public free of charge.58 

Similarly, NCEP’s GFS is frequently used in PV power forecasting, in part because its forecasts are 

provided free of charge to any user. It is currently being operated at a spatial resolution of approximately 

13 km over 64 vertical levels; however, the outputs are provided using a regular latitude/longitude grid 

with a relaxed resolution of 0.25º and 46 levels, with an hourly resolution up to 120 hours ahead and a 

3-hour resolution up to 240 hours ahead. The model is cycled every 6 hours. Comparisons of intraday 

 

 

58 See https://www.ecmwf.int/en/forecasts/datasets/open-data. 
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GHI forecasts of the GFS and IFS forecasts are discussed in Mathiesen and Kleissl (2011) and Perez 

et al. (2018); see Figure 9-20. 

9.4.2.2 Regional Numerical Weather Prediction Models 

Meteorological observations are shared internationally among almost 200 member countries and 

territories around the world. Many of these countries also run their own national regional weather 

models, including their own initial state data analysis, which gives an advantage to these models. For 

instance, the U.K. Met Office develops and runs the Unified Model (UM), which is also used in the UM 

core partnering countries: Australia, India, Singapore, New Zealand, and South Korea. The German 

Weather Service (DWD) develops and runs forecasts with the Consortium for Small-scale MOdeling 

(COSMO) model in collaboration with institutes from Greece, Israel, Italy, Poland, Romania, and 

Switzerland. In addition, they develop and run the ICOsahedral Nonhydrostatic (ICON) model in a 

broader consortium including the Max Planck Institute of Meteorology, COSMO, and other computing 

and meteorological institutes in Germany and Switzerland. Météo-France leads ACCORD (A 

Consortium for Convection-scale modeling Research and Development), which includes 26 national 

meteorological services across Europe and the Mediterranean region. 

Beyond the models developed and run by national weather centers and consortia of these, the 

mesoscale (or regional) Weather Research and Forecasting (WRF) model (Skamarock et al. 2005) is 

an open-source NWP model that is widely used in energy meteorology. It was developed in the 

framework of a long-term collaborative effort of several institutes led by the National Center for 

Atmospheric Research (NCAR) in the United States. It is now a “community model,” meaning that it is 

publicly and freely available, and it can receive contributions from all participants. The WRF model is 

nonhydrostatic, has multiple nesting capabilities, and offers several schemes for each different 

parameterization of the atmospheric physical processes. This makes the WRF model adaptable to 

widely different climate conditions and different applications over virtually any region of interest.  

The WRF model has been extensively evaluated in the context of solar energy applications, and it was 

also part of the IEA SHC Task 36 NWP benchmark (Perez et al. 2013). Other studies from the last few 

years have evaluated the model over widely different regions, including Lara-Fanego et al. (2012) in 

Southern Spain; Isvoranu and Badescu (2013) in Romania; Zempila et al. (2016) in Greece;  Aryaputera, 

Yang, and Walsh (2015) in Singapore; He, Yuan, and Yang (2016) in China; Lima et al. (2016) in Brazil; 

Gueymard and Jiménez (2018) in Kuwait; and Sosa-Tinoco et al. (2016) in Mexico. 

An important milestone in the use of the WRF model for solar radiation applications has been the recent 

development of WRF-Solar, a dedicated suite of WRF model parameterizations for solar radiation 

forecasting (Deng et al. 2014; Ruiz-Arias, Dudhia, and Gueymard 2014; Thompson and Eidhammer 

2014) within the U.S. Department of Energy’s Sun4Cast project (Haupt et al. 2016). Some of these 

improvements, and others, have been summarized by Jiménez et al. (2016). Moreover, the Sun4Cast 

project has contributed to the development of the Multisensor Advection Diffusion nowCast (MADCast) 

system (Descombes et al. 2014), which is a particular configuration of the WRF model for the fast 

assimilation of satellite reflectance images. That configuration can be used to obtain a proxy field to 

cloud fraction that can be subsequently advected in WRF and used to compute solar radiation nowcasts. 

Lee et al. (2017) presented a comparative evaluation of WRF-Solar, MADCast, and satellite-based 

forecasts and found that WRF-Solar performed generally well at predicting GHI under challenging 

situations in California. Beyond MADCast, MAD-WRF (Jiménez et al. 2022) blends satellite information 

directly into WRF. 

To extend the WRF-Solar capabilities beyond deterministic forecasts, the WRF-Solar Ensemble 

Prediction System (WRF-Solar EPS) has been developed. WRF-Solar EPS introduces stochastic 

perturbations in the most relevant variables for solar irradiance forecasts that have been identified with 

tangent linear models of selected parameterizations (Yang et al. 2021). The model provides a user-
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friendly configuration to set the characteristics of the perturbations for each variable and to select the 

variables to perturb. A detailed description and evaluation of WRF-Solar EPS for the United States is 

given in Sengupta et al. (2022); see Chapter 10, Section 10.5.2.1. The WRF model is run operationally 

for solar irradiance forecasting at several public and private entities. 

9.4.3 Performance of NWP GHI Forecasts: Results of a  
Benchmarking Exercise 

Results of the IEA SHC Task 36 benchmark of NWP GHI forecasts (Perez et al. 2013) are shown here 

to illustrate the forecast performance of NWP models up to several days ahead. Although the 

performance of NWP irradiance forecasts has been clearly improved since then, the general findings 

outlined here are still valid, as confirmed in many other studies, e.g., those given in Section 9.4.2. A new 

worldwide benchmark of NWP irradiance forecasts is planned for the next phase of the IEA PVPS Task 

16. 

Perez et al. (2013) evaluated different NWP models for a variety of climates in the United States, 

Canada, and Europe. The evaluations are performed for seven sites in the United States from May 

2009–April 2010; three sites in Canada from June 2009–May 2010; and 24 sites in Europe, namely, in 

Germany, Austria, Switzerland, and Spain, from July 2007–June 2008. The evaluated models include 

IFS and different implementations of the WRF model for all sites, mostly with no postprocessing.  

An analysis of the RMSE variation with the forecast lead time, here grouped to entire days up to several 

days ahead (Figure 9-16), indicates the following: 

• NWP models clearly outperform persistence from the first day onward. 

• The RMSE of NWP forecasts slightly increases with increasing lead time. 

• A big difference exists in the RMSE of different NWP models, which can be partly attributed to 

differences in their spatiotemporal resolutions (see Chapter 10, Section 10.3). The IFS forecasts 

show comparatively low RMSE values for all investigated areas.  

• Both the absolute and relative RMSE values strongly depend on climatic conditions. The relative 

RMSE is typically smaller in sunny areas, as shown in the bottom plot of Figure 9-16 for Spain. 

A comparison of the performance of NWP forecasts to satellite-based forecasts and persistence for 

intraday forecasting is given in Section 9.5.3.   
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Figure 9-16. Relative RMSE of GHI forecasts for different NWP models and model combinations over 
forecast horizons up to 3 days  

United States: composite of 7 sites (first row); Canada: composite of 3 sites (second row); Central 
Europe (composite of 21 sites (third row); and Spain: composite of 3 sites (last row).  
Image by Perez et al. (2013) 
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9.5 Postprocessing and Model Blending With Statistical and 
Machine Learning Methods 

Postprocessing empirical or physical model outputs plays an important role in irradiance and PV power 

forecasting.  

Particularly, various postprocessing methods are applied to: 

• Reduce model errors of physical or empirical models by considering unaccounted or partially 

accounted local and regional effects (e.g., topography or aerosols) 

• Combine the outputs of different models (model blending) 

• Derive quantities that are not included in the normal model outputs 

• Calibrate NWP ensemble forecasts  

• Derive probabilistic forecasts from deterministic forecasts. 

Currently, postprocessing is mostly performed by statistical or ML methods. These are referred to as 

“ML models with exogenous input” in the ML community. Nevertheless, empirical and physical models 

are also employed for postprocessing, especially to derive quantities that are not included in the normal 

model outputs. Further, a traditional method to obtain improved local forecasts from NWP model outputs 

is to involve the human knowledge of forecast experts. Especially in difficult forecast situations, such as 

fog, this alternate approach offers potential for improved irradiance forecasts. 

To train ML algorithms, the availability of irradiance and/or PV power measurements is crucial (see 

Section 9.2). These are used as ground truth for model training. Whereas time-series models require 

near-real-time data as inputs, postprocessing algorithms can be trained on historic (or “offline”) data. 

Whenever near-real-time (or “online”) measurements are available, online training (which consists of 

regularly retraining the model with new measurements as they become available) is an option to better 

adapt ML models to current conditions, e.g., seasonal changes. Moreover, satellite-derived irradiance 

data with their high spatial resolution are a suitable reference for postprocessing NWP model forecasts. 

Again, note that uncertainty and especially systematic deviations of ground truth data have a large 

impact on ML model performance (see Section 9.2.3). Therefore, thorough quality control is essential 

before using measurements as ground truth for model training. This is also the case for satellite-based 

irradiance estimates if they are used as ground truth. 

The following sections summarize various postprocessing methods for the deterministic forecasting 

applications enumerated here. The application of statistical and ML models in the context of probabilistic 

forecasting is addressed in Section 9.7. 

9.5.1 Model Output Statistics  

MOS are widely used to refine the output of NWP models, primarily to account for local variations in 

weather and surface conditions. Already more than 50 years ago, Glahn and Lowry (1972) used 

measurements and/or climatology for specific locations as a basis to adapt the forecasts. Overall, MOS 

techniques constitute a powerful tool to adapt the results from NWP or satellite-based models to site-

specific conditions (e.g., (Gueymard et al. 2012). The set of predictors consists of various NWP outputs 

and might be extended by including any relevant information—for example, prior observations or 

climatological values.  

Originally, the term model output statistics was associated with the use of regression equations; 

however, a generalization of this concept now involves other statistical or ML approaches. A bias 

correction of ECMWF irradiance forecasts in dependence of solar elevation and clear-sky index has 

been applied by Lorenz et al. (2009). Kalman filters have been proposed by Pelland, Galanis, and Kallos 
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(2013) to improve the irradiance forecasts of the Canadian Global Environmental Multiscale (GEM) 

model and by Diagne et al. (2014) for WRF solar irradiance forecasts. The application of ANNs to 

predicted variables from a weather forecasting database has been investigated by, e.g., Marquez and 

Coimbra (2011). Gastón et al. (2009) used an ML algorithm to enhance the solar irradiance forecasts of 

the SKIRON model. Pierro et al. (2015) proposed an MOS technique to correct WRF-based GHI 

forecasts by coupling two intermediate MOS corrections, consisting of correlations with relative humidity 

and ANNs, respectively. Other powerful postprocessing approaches have been thoroughly reviewed by 

Yang and Van Der Meer (2021). 

9.5.2 Model Blending  

Combining —or “blending”—the output of different models can considerably increase the forecast 

accuracy. First, simple averaging is beneficial for models with similar accuracy, exploiting the fact that 

forecast errors of different models are usually not perfectly correlated (Lorenz et al. 2016; Perez et al. 

2013). Blending methods using more advanced techniques can also account for strengths and 

weaknesses of the different models for certain situations, for example, by adapting the contribution of 

each model depending on the weather situation.  

A common customer request consists of obtaining short-term forecasts as a single continuous product, 

even if different observation technologies are used as input. Model blending with statistical and ML 

approaches is applied to produce such seamless irradiance forecasts covering horizons from several 

minutes to several days ahead. They integrate different inputs suitable for the different forecast horizons 

with an optimized weighting. These inputs might include measurements, ASI- and satellite-based 

forecasts, as wells as NWP forecasts. 

Various approaches to this aim have been proposed, mostly based on measurements and/or satellite-

based predictions in combination with NWP models. For instance, a weighted average of satellite-based 

and NWP forecasts was investigated in Lorenz and Heinemann (2012), with the weights optimized for 

each forecast horizon using linear regression. Kühnert (2015) additionally integrated PV power 

measurements using the same approach. Bacher, Madsen, and Nielsen (2009) applied an 

autoregressive model for hourly solar power forecasting combining measurements and NWP forecasts. 

Sanfilippo et al. (2016) applied a multi-model approach to solar forecasting using supervised 

classification to select the best predictions from support vector regression and diverse stochastic 

models. Wolff et al. (2016) and Aguiar et al. (2016) combined forecasts based on support vector 

regression and ANNs, respectively. Yang et al. (2017) used a hierarchical scheme and minimization of 

the trace of the forecast error covariance matrix. Within the context of the Sun4Cast project, NCAR’s 

DICast system (Haupt et al. 2018) has been applied to blend multiple solar radiation forecasts. This 

system—which has already been applied in other forecasting areas, such as transportation, agriculture, 

and wind energy—consists of a two-step process: (1) a statistical bias correction process using a 

dynamic MOS and (2) optimization of the model blending weights for each lead time (Haupt et al. 2016).  

Further, the integration of ASI-based forecasting methods to blending models were demonstrated to be 

valuable for short-term high-resolution forecasting. Pedro et al. (2018) and Huang et al. (2019) assessed 

intrahour hybrid forecasting models that combine statistical or ML methods with measurements and 

information extracted from sky imagery and found substantial improvements compared to simple time-

series models. Recently, combinations of measurements with ASI- and satellite-based forecasts have 

also been investigated in López-Cuesta et al. (2023) and Straub et al. (2024, 2023). 

Example evaluations of the performance of blending models are given in Section 9.5.4 and demonstrate 

the benefit of combining different input data over single modes performance. 
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9.5.3  Postprocessing to Derive Additional Quantities 

Not all variables of interest in the context of solar energy forecasting (i.e., global tilted irradiance [GTI], 

DNI, or PV power) are always available as direct NWP outputs or as a result of CMV forecasts. 

Postprocessing can be applied to derive these quantities. To that aim, empirical methods are typically 

employed, but statistical or ML methods as well as physical models are also frequently used to derive 

the desired quantity from the direct output of the forecasting model.  

Although GHI has now become a standard output of NWP models, this was not the case when the field 

of solar forecasting started to emerge. For example, Perez et al. (2007) proposed an empirical solar 

radiation forecast model relating sky-cover predictions from the National Digital Forecast Database to 

the clear-sky index to derive GHI forecasts. 

The irradiance components (diffuse horizontal irradiance [DHI] and DNI) are still not provided as normal 

outputs by all irradiance forecasting systems. To derive them from GHI forecasts, several empirical 

diffuse or direct fraction models can be used, which were originally developed for application to 

measurements and later applied to satellite data (see Chapter 7, Section 7.3.1). These models are also 

being used in DNI forecasting systems that are based on a GHI forecast, as discussed e.g., in 

Schroedter-Homscheidt, Benedetti, and Killius (2017). For DNI forecasts, several physical 

postprocessing approaches have also been proposed, specifically for better consideration of aerosols. 

Breitkreuz et al. (2009) proposed a forecasting approach for direct and diffuse irradiance based on the 

combination of a chemistry transport model and an NWP model in which forecasts of AOD are directly 

collected from the chemistry transport model outputs. Similarly, Gueymard and Jiménez (2018) used 

WRF-Solar with hourly inputs of aerosol forecasts from the National Aeronautics and Space 

Administration’s (NASA’s) Goddard Earth Observing System Model 5 (GEOS-5) atmospheric analysis 

model. Such aerosol forecasts, together with other remote sensing data (ground albedo and ozone) and 

NWP parameters (water vapor and clouds) are used as input to radiation transfer calculations to derive 

the irradiance forecasts. A similar approach was used by Lara-Fanego et al. (2012) to derive DNI from 

WRF output using aerosol observations from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) onboard the Terra satellite. 

In the context of PV applications, forecasting GTI (or plane-of-array [POA] irradiance) or directly PV 

power is also of interest, as discussed in Section 9.6.1. 

9.5.4 Performance of Blending Models: Examples for Intrahour and  
Intraday Forecasting 

The performance of different blending models is illustrated along with a comparison of the different 

single-model irradiance forecasts used as input to them. The examples shown here cover high-

resolution intrahour forecasts that integrate measurements and/or ASI and satellite-based forecasts as 

well as intraday forecasts integrating measurements, satellite-based, and NWP forecasts. 

9.5.4.1 High-Resolution Intrahour Forecasting 

The examples for high-resolution intrahour model blending presented here include: 

• A comparison of minute-resolution ASI forecasts, satellite-based CMV forecasts, and a combination 

of both with lead-time-dependent weights for the DLR-operated Eye2Sky network in Northern 

Germany, which integrates several ASIs and irradiance measurement stations 

• A comparison of ground-based persistence, ASI-based and satellite-based forecasts, as well as a 

combination of them using linear regression, again with lead-time-dependent weights, but for a 

radiometric network of eight stations in Freiburg (Southern Germany) (Straub et al. 2024). 
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For these comparisons, the satellite-based forecasts with their native resolution of 15 minutes are up-

sampled to minute-resolution forecasts. 

Analyses of the RMSE of the different minute-resolution forecast models over lead times of up to 30 

minutes for the two examples (Figure 9-17 and Figure 9-18, respectively) illustrate the following: 

• ASI forecasts outperform ground-based persistence from lead times of about 2 minutes onward 

(Figure 9-18), which agrees with the results in Section 9.3.1.3. 

• Up-sampled satellite-based forecasts outperform scaled persistence from about 5 minutes onward 

(Figure 9-18). 

• ASI forecasts outperform satellite-based forecasts up to lead times ranging from 10–20 minutes 

ahead, depending on whether one is using a network of ASIs or a single ASI, the quality of the 

models applied to derived forecasts from ASI and the satellite images as well as the climatic 

conditions for the evaluation site and period. 

• Blending models clearly outperform single-model forecasts for all lead times.  

 

Figure 9-17. RMSE, MAE, and bias (MBE), as well as weight of the blending model of minute-
resolution GHI forecasts over forecast lead times up to 30 minutes ahead for satellite-based 
persistence (sat_per), satellite-based forecasts (sat), forecasts derived from the Eye2Sky ASI 
network (ASInet), and a combination of the latter two (sat + ASInet)  

Dataset: Two validation sites within the DLR Eye2Sky network, August 2020.  

Image by DLR Institute of Networked Energy Systems 
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Figure 9-18. Relative RMSE of minute-resolution GHI forecasts over lead times up to 15 minutes 
ahead for ground-based persistence (persistence), ASI-based forecasts (ASI), satellite-based CMV 
forecasts (satellite), and a combination of the three (hybrid). 

Dataset: Eight sites in Freiburg, May 2021–April 2022; test data: every fourth day, including only 
complete forecast runs for all models.  

Image by Straub et al. (2024) 

9.5.4.2 Intraday Forecasting 

The examples for intraday forecasting with model blending presented here include: 

• A comparison of smart persistence, satellite-based CMV forecasts, different NWP models, and 

various combination approaches, all at an hourly resolution for intraday and day-ahead forecasting, 

conducted at seven U.S. sites (Perez et al. 2018). 

• A comparison of ground-based scaled persistence, satellite-based CMV forecasts, and IFS 

forecasts, and a combination those three methods using linear regression with lead-time-dependent 

weights for sites in Germany, all at a 15-minute resolution.  

Analyses of the RMSE over forecast lead times for these examples (Figure 9-19, Figure 9-20) illustrate 

the following: 

• Ground-based-scaled or smart persistence performs better than NWP model forecasts in the first 

hour or even up to 3 hours ahead, depending on the NWP model (Figure 9-19). 

• The performance of the satellite-based forecasts is similar to, or slightly better than, persistence in 

the first hour (Figure 9-19). For more than 1 hour ahead, satellite-based forecasts clearly outperform 

persistence. For forecasts at a 15-minute resolution, an advantage of the satellite-based CMV 

forecasts over scaled persistence is found from 30 minutes onward (Figure 9-20). 

• Satellite-based forecasts outperform NWP models up to lead times ranging from 2–5 hours ahead, 

depending on the NWP model and also on the satellite model and evaluation site and period. 

• The RMSE of persistence and satellite-based CMV forecasts increases much faster with the lead 

time than the RMSE of NWP models. 

• The performance of NWP models considerably differs for intraday as well as day-ahead forecasts 

(Figure 9-19; compare also Section 9.4.3). 
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• The blending models clearly outperform single-model forecasts for all lead times. Whereas for 

intraday forecasting, a combination of persistence, satellite-based forecasts, and NWP forecasts is 

beneficial (Figure 9-20), integrating several NWP models considerably reduces the forecast RMSE 

in day-ahead forecasting (Figure 9-19). 

• The performance of blending models differs with training data, e.g., using site-independent or site-

specific ground truth, or using either ground-measured or satellite-derived irradiance values (Figure 

9-19). The evaluations show that satellite-derived irradiance data are a suitable alternative to ground 

measurements for model training if the latter are not available. 

These findings agree with other studies, e.g., those given in Section 9.5.2. 

 

Figure 9-19. Relative RMSE of hourly GHI forecasts up to 48 hours ahead, with different approaches: 
ground-based smart persistence, satellite-based CMV forecasts (CMV), different NWP forecasts: 
NDFD, HRRR, GFD by NCEP, ECMWF IFS, and different blending models: SolarAnywhere (SA) V2.4, 
SA V4, V4 site independent; V4 site specific; and V4 site specific (satellite)  

The RMSE of satellite-derived irradiance data (historical SolarAnywhere) is given for comparison. 
Data: Seven Surface Radiation Budget Network (SURFRAD) sites in the United States from July 
2015–April 2016. 

Image by Perez et al. (2018) 
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Figure 9-20. Relative RMSE (normalized to the average GHI) of 15-minute-resolution GHI forecasts 
over lead times up to 6 hours ahead for ground-based scaled persistence (persistence), satellite-
based CMV forecasts (Sat-CMV), ECMWF IFS irradiance, and a combination of the three (combined)  

Data: Eighteen sites in Germany operated by the German Weather Service during 2018.  

Image by Fraunhofer ISE 

9.6 PV Power Forecasting  

PV power forecasts—pertaining to either a given PV plant, a portfolio of plants, or aggregated regional 

PV power—are important for plant operators, grid operators, and the marketing of the produced energy. 

They are based on irradiance predictions with the different models described in sections 9.2 through 

9.5. To convert irradiance forecasts into PV power forecasts, physics-based or statistical and ML 

methods can be applied (Figure 9-21). Both approaches can also be combined. Complementing 

irradiance forecasts, near-real-time PV power measurements can be included as inputs.  
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Figure 9-21. Overview of basic modeling steps in PV power prediction  

Irradiance prediction: Different forecasting models for different forecast horizons (cloud motion 
from ASI and satellite data, NWP) and combinations with statistical and ML approaches for 
optimized site-specific predictions. PV power prediction: Conversion of irradiance to PV power with 
parametric PV simulation models and/or statistical ML approaches; regional PV power predictions 
require a regional model (e.g., upscaling) as a last step.  

Image reproduced from Lorenz (2018) 

 

Physics-based parametric modeling involves transposing GHI to POA irradiance and then applying a 

PV simulation model. For this, information on the characteristics of the PV system configuration is 

required in addition to the meteorological input data. The most important plant data include information 

on the installed capacity and module tilt and orientation. Further information on the module efficiency 

and inverter performance can also help to model the PV power output as a function of irradiance and 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

9-41 

temperature. For more detailed simulations, additional information can also be used, for example, to 

model the local shading conditions. Alternatively, the relationship between the PV power output and 

irradiance forecasts and other input variables can be reverse-engineered with ML methods based on 

historical datasets containing measured and predicted PV power. In practice, these approaches are 

often combined; for instance, statistical postprocessing using measured PV power data can be applied 

to improve predictions with parametric simulation models.  

PV power forecasting for plant operation, e.g., storage management, and direct marketing requires 

forecasts for single plants (Section 9.6.1). In contrast, PV power prediction for grid operators requires 

forecasts of the aggregated PV power generation for their grid areas or for grid nodes (i.e., regional 

forecasts are needed instead of single-site forecasts). These regional predictions are typically obtained 

by regional models, such as upscaling (Section 9.6.2). Portfolio forecasts are based on the same 

modeling approaches as single PV plants because they are typically generated as the sum of the 

forecast of the plants contributing to the portfolio. With respect to forecast performance, they benefit 

from regional smoothing effects, such as forecasts of regionally aggregated PV. 

9.6.1 PV Power Forecasting for Single Plants 

One way to forecast the production of a PV power plant is to apply a PV power simulation model to the 

forecast of the relevant predicting variables, primarily irradiance and ambient temperature, but possibly 

also other meteorological variables (e.g., (Pelland, Galanis, and Kallos 2013; Kühnert 2015)).  

Here, the transposition of GHI into GTI to obtain the POA irradiance constitutes the first modeling step. 

Unless DNI and DHI are explicitly provided by the forecast model, this requires splitting GHI into its 

direct and diffuse irradiance components. For that purpose, many empirical diffuse or direct fraction 

models are available (see Section 9.5.3 and Chapter 7, Section 7.3.1 for discussion). Next, the direct 

and diffuse components are projected or “transposed” to the POA irradiance. The transposition of the 

direct irradiance is only geometric and thus straightforward. The transposition of the diffuse irradiance 

to POA requires models that ideally also account for the directional distribution of radiance over the sky, 

describing anisotropic effects, such as horizon brightening and circumsolar irradiance. Again, empirical 

models that were developed for the transposition of measured and satellite-derived irradiance data can 

be directly applied here. An overview of such models is given Chapter 7, Section 7.3.1. 

In the next step, the POA irradiance is converted into PV power output. The available PV simulation 

models and tools, such as those described in more details in Chapter 11, Section 11.7, have been 

developed mostly in the context of long-term-yield predictions. They can also be directly applied to PV 

power forecasting. Deeper insight into the modeling of PV power and corresponding variables can be 

achieved with the tools provided by pvlib,59 a software package for modeling PV systems (Andrews et 

al. 2014). Most simple PV simulation models use only the GTI on the POA as input. State-of-the-art PV 

simulation models consider additional influencing factors. The DC module efficiency depends on the 

POA irradiance and decreases with increasing temperature, which is typically considered in PV power 

forecasting systems. Additionally, it is secondarily affected by wind speed and direction, e.g., (Beyer et 

al. 2004). The angular and spectral distributions of irradiance are other influencing factors; however, 

these comparatively small effects are usually not included in detail in current PV power forecasting 

systems. 

The availability of information on PV system parameters can be a problem when using such parametric 

models. A natural approach is to use the metadata available for the PV system—most importantly, peak 

 

 

59 See https://pvlib-python.readthedocs.io/en/stable.  

https://pvlib-python.readthedocs.io/en/stable
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power and orientation; however, this information is frequently missing or erroneous, especially for 

smaller PV systems, which can significantly decrease the PV power forecast quality. Information on the 

module and inverter specifications is less critical, hence standard values are typically used. 

When historical power measurements are available for a PV plant, data-driven models tend to deliver 

the best results (e.g., Inman, Pedro, and Coimbra 2013; Gensler et al. 2016). Such models can reverse-

engineer a lot of effects that depart from the idealized scenario by a physical model or that would require 

too detailed information, such as how different plant materials perform, how soiled the plant usually is, 

how the incident radiation is shaded or reflected by local surroundings, or how the plant has aged. 

Depending on how impactful these factors are at a particular site, generalized physical models might 

perform quite badly. 

However, it is emphasized that measurement issues and plant outages can impact the performance of 

ML models. Failures of technical components are likely to have large impacts, but the same is true with 

curtailment caused by grid operation or electricity market price constraints. Proper quality control of PV 

power measurements and/or adapted training procedures (e.g., Saint-Drenan 2015) are therefore 

essential when applying ML models in PV power forecasting. 

Data-driven models are used in different ways for PV power forecasts. They can be applied for the 

postprocessing of forecasts with PV simulation tools (e.g., Kühnert 2015). They can also be used to 

learn PV system parameters from historical data (e.g., Saint-Drenan 2015), or applied to directly 

transform predicted irradiance and other meteorological parameters into PV power forecasts. 

Note that the ultimate objective of such regression or ML models is to minimize an error metric, typically 

the RMSE between the predictions and ground truth. These methods can only learn from the patterns 

that exist in the training data, which must be representative of the use case. The result tends to be 

smoothed, or they do not properly represent very high or low values to avoid large errors. ML can better 

learn specific factors about a power plant, such as when exactly it starts production at sunrise. But it 

might also focus the model on best predicting afternoons or summers when production values—and 

thus absolute errors—are larger. In any case, ML-generated results should always be visually inspected. 

Nevertheless, ML methods can learn both nonlinear and nonstationary relationships specific to any 

particular plant (Das et al. 2018; Ulbricht et al. 2013) and are prevalent when historical data is available.  

It is not uncommon to train multiple models to the same plant for different weather inputs, time horizons, 

or seasons. Whereas a physical model uses an established relationship to derive power from irradiance, 

an ML method implicitly contains some kind of postprocessing to correct bias and optimize the 

performance between particular input and target data. Hence, different models might be trained to 

calculate power from measurements, satellite-derived irradiance data, and intraday or day-ahead 

forecasts to eventually deliver the lowest errors possible in each use case. 

9.6.2 Regional PV Estimation and Forecasting  

Regional PV power estimates or forecasts aim to represent the aggregated PV output that is fed into 

the grid over regions that can range from a few streets feeding into a single, low-voltage substation, to 

a municipality, to a control zone of a distribution system operator or a transmission system operator, or 

even an entire country. A region could be geometrically defined, for which the allocation of which plants 

are in which region is clear, or it could be defined by a shared grid node, in which case detailed grid 

data might be needed or the selection of plants in the region might be uncertain or dynamic. A regional 

forecast represents an ensemble of contiguous plants in an area of interest, either geographically or 

within a branch of the electric grid. Thus, it tends to differ from a portfolio forecast that is used (e.g., in 

direct marketing). 

Different approaches can estimate and forecast regional power, depending on what kind of data are 

available. Reference plant power measurements can be useful to estimate PV power output or to train 
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forecasts. Weather-based models can use satellite-derived irradiance for real-time power estimation or 

NWP forecasts to predict future power generation. If metadata on the individual plants is available, the 

variation of the solar resource and plant characteristics within the region can be considered.  

Data availability, however, poses a major challenge. Ideally, detailed registries of all installed plants 

would exist, and measurements would be available for all of them. Yet, in many countries, many solar 

plants (especially small ones) have been installed without any record. Existing data often belong to 

private companies (particularly measurements) or government institutions and often cannot be shared 

because of legal or privacy restrictions. Some private companies sell commercial datasets, but they are 

not necessarily representative, and sometimes they are aggregated to anonymize private data. Even 

among distribution system operators and transmission system operators, data quality and sharing can 

be a challenge.  

Some national and international efforts are underway to create better and even public databases. At the 

very least, it is necessary to know how much PV capacity is installed in a region up to a given date. 

Organizations like the European Network of Transmission System Operators for Electricity (ENTSO-E) 

or the International Renewable Energy Agency (IRENA) aim to provide annual estimates of national PV 

generation and installed capacity. Detailed registries of data on individual plants are still needed, 

however. National efforts here include SOWISP in Spain (Jiménez-Garrote et al. 2023) and the market 

master data register (MaStR) in Germany. Methods for the automated recognition of plants based on 

satellite or aerial imagery are also improving, aiming to find missing installations and/or to validate 

information on their characteristics, e.g. (Kleebauer, Horst, and Reudenbach 2021). Nevertheless, this 

approach is still mostly experimental, so obtaining complete and accurate registries is still difficult in 

most countries. 

Despite these challenges, an important aspect of regional forecasts is that the larger the region and the 

number of PV plants, the less the uncertainty because positive errors partly balance negative errors. 

Moreover, including more plants in the mix improves balancing the uncertainty of their characteristics, 

just as a larger region improves balancing the meteorological uncertainty of the solar resource. 

9.6.2.1 Regional PV Power Without Plant Data and Measurements 

In some countries, access to PV plant data and measurements is very restricted. When a provider of 

regional PV estimates and forecasts has no access to plant data or measurements in a region, some 

general approaches are still possible to evaluate the regional PV production directly from openly 

available meteorological information, such as satellite-derived irradiance data or NWP analyses or 

forecasts. If historical power estimates are available from a third party having access to more detailed 

data (such as from a grid operator), the strictly weather-based model can be optimized to best match 

the estimates with a method such as upscaling while avoiding the intermediate step of obtaining the 

details of the installed plants. 

Perhaps the simplest and most economic approach is to treat the entire region as a VPP, whereby the 

solar resource in the region is averaged to a single value and the power is calculated as if originating 

from a single plant whose characteristics are somewhat representative of the aggregate. This method 

is known as model inputs average, and the power conversion can be made using the same methods as 

described in Section 9.6.1 for single PV plants (da Silva Fonseca Junior et al. 2014; Zamo et al. 2014; 

Pierro et al. 2020a). It is also possible to use multiple VPPs for different subregions or characteristics 

and to combine these into a single model (Pierro et al. 2017). It is not possible, however, to optimize a 

model for all the existing individual plants because there are too many degrees of freedom to train into 

a single regional target. 

New areas of research include larger-scale ML methods, such as random forest or CNNs, as well as 

DL. These can be trained to a target estimate using the raw input of gridded weather data, attempting 
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to learn the intraregional dependencies of the regional PV fleet; however, such approaches are not yet 

as widely researched as single-plant models. They run the risk of overtraining and are computationally 

expensive for large areas. 

9.6.2.2 PV Plant Data 

PV plant data for the power plants contributing to regional PV power feed-in is valuable information for 

regional estimates and forecasting. In its most basic form, plant data include the size, location, and 

installation date of the plants. This is used by more advanced regional methods that attempt to account 

for the regional variations of the installed plants as well as for the spatial variability of clouds. Plant 

location data normally consist of exact coordinates, but sometimes only a city or postal code is available. 

Depending on the spatial resolution of the reference plants or weather data, the latter might also suffice. 

Additional installation information that is necessary or useful to calculate PV production but that is not 

always available includes, in roughly descending order of importance: the azimuthal direction and tilt of 

the arrays, the size of the inverter, whether the operator consumes any fraction of the power before 

feeding it in (with an estimate of how much they do consume on average), and whether there is storage 

or feed-in limits. The usefulness of some of this information depends on whether the value of interest is 

the overall production, the actual power feed-in, or the load to the grid. 

Plant data can be collected from different sources, such as national registries, commercial datasets, and 

grid operators. It is more common to find data about large solar plants than small, household solar 

plants. For some regional PV estimation and forecasting approaches, statistical modeling is used to 

account for missing or underrepresented data by using the available data from PV plants to extrapolate 

how common such plants are overall. Typical PV system characteristics, e.g., tilt and azimuth for 

different PV system sizes, were investigated in various studies, e.g., (Killinger et al. 2018). For example, 

the typical orientation of PV plants correlates with their size and the kind of surface on which they are 

installed, e.g., ground-mounted or rooftop systems. And whether a plant has storage or is designed for 

self-consumption can depend on its size and age, whether it is part of a household, the kind of incentives 

that were available at the time of installation, etc. 

For regional forecasting, the differences between thousands of plants can quickly even out, although 

statistical differences might exist when comparing e.g., urban and rural areas. Figure 9-22 shows the 

distribution of array orientations in the German MaStR registry as a function of the number of plants as 

well as their capacity; the difference demonstrates how larger solar plans tend to be optimized, with a 

larger share of the systems oriented toward the equator with close to optimum tilt, whereas a larger 

variation in tilt as well as azimuth angles is found with smaller plants.  
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Figure 9-22. Fraction (on a log scale) of the number of plants (left) and overall capacity (right) 
installed for different plant geometries in Germany according to the MaStR registry as of June 2023  

The angles are discretized in eight azimuth and five tilt categories. A linear scale would show 
essentially all plants to be somewhat southward facing, whereas the log scale better illustrates the 
frequency of all orientations.  

Image by Fraunhofer IEE 

9.6.2.3 Regional PV Power Upscaling 

If the measurements of all PV power plants in a region are available, the regional production or feed-in 

would simply be their sum. Measurement availability, however, remains the exception. A region can 

contain millions of plants with only tens or at most thousands of them (typically large solar plants rather 

than household rooftop installations) being monitored at high temporal resolutions; however, it is 

possible to upscale the available power measurements to obtain a value for the entire region without 

any additional inputs, such as meteorological data, or physical modeling. 

Note that there might be two different upscaled values: (1) a real-time estimate for markets and grid 

operation that is based on the available live measurements and (2) a more accurate estimate that can 

be calculated days or even weeks later, when all possible data have been gathered. The quality of the 

upscaling depends on the number and representativeness of the measurements. 

The current popularity of the upscaling method stems, at least to some extent, from its large adoption in 

wind energy, where it is more suitable. Relatively many turbines are monitored, and they behave much 

more similarly to one another than do PV plants with diverse orientations. As PV installations increase, 

however, so should the popularity of more complex upscaling methods that account for different PV 

characteristics (Killinger et al. 2016). 

If the reference plants in a region are both well distributed and representative, the first upscaling option 

is to simply scale the sum of their power measurements to the installed capacity of the entire region 

according to the plant data. Operationally, such an approach can also first be performed on smaller 

subregions or plant categories and then aggregated to different regions of interest, which considerably 

improves accuracy (Kühnert 2015; Lorenz et al. 2011; Saint-Drenan et al. 2016). 

Another approach that uses data on PV system location relies on the spatial interpolation or 

extrapolation of the measurements to derive power values for the plants that are located between them 

(or simply to points on an installed capacity grid), as illustrated in Figure 9-23. There are many ways of 

doing this; see Li and Heap (2014) for a review. Inverse distance weighting is simple and robust and 

thus most common (Bright et al. 2018; Saint-Drenan et al. 2011), though kriging is also popular with 

irradiation data (Jamaly and Kleissl 2017; Yang et al. 2013). 
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Figure 9-23. Illustration of the upscaling method based on two monitored PV plants (yellow) to also 
consider nonmonitored plants (black and white)  

The weights for each reference plant decrease with distance.  

Image by Fraunhofer IEE 

 

The upscaling approach used with reference measurements for regional power estimation is also 

popular for regional power forecasting, whereby the problem of regional forecasting is transformed into 

forecasting the production from every reference plant. As the reference plants have historical 

measurements to train on, this facilitates a data-driven approach of using, e.g., ML methods to forecast 

plant power from weather prediction data. 

9.6.2.4 Physical Modeling of All PV Plants  

Finally, all PV plants in a region can be simulated without any power measurements from meteorological 

data in combination with generalized physical models. Physical models can describe all known 

characteristics of each plant in a region and simulate their power output from appropriate local 

meteorological data, usually at higher spatiotemporal resolution than offered by reference plants. For 

computational efficiency, nearby plants with the same primary characteristics can also be grouped 

together. 

A generalized physical model is fairly accurate and has the advantage of being able to provide results 

anywhere, even if a plant is not monitored. Note, however, that for any given plant, a generalized model 

cannot be as accurate as a model trained to actual measurements. Registry data do not include the 

efficiency curve of a particular inverter, how the plant might be shaded over different angles, or any 

other small details that a trained model might consider. In regional forecasting, it is generally sufficient 

to assume typical values for most plant characteristics and to statistically model or optimize the most 

important ones. 

If the plant geometries are not known, a single POA can be used, or a distribution of tilts and orientations 

can be simulated at all locations and statistically weighted, e.g., (Saint-Drenan, Good, and Braun 2017). 
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Similar statistical modeling is used by the Copernicus Climate Change Service to generate regional PV 

power for each region in Europe, with values for each country updated monthly and made available 

through the Copernicus Data Store.60 If no local statistics on plant geometry are available, it is possible 

to modify the known geometry distributions from other countries according to the locally optimized tilt 

angle (Saint-Drenan et al. 2018). An alternative is to optimize the distribution of geometries to a power 

estimate. The relationship between plant tilt angles and latitude also somewhat depends on local 

architectural constraints. For instance, the geometry of installations made on flat roofs, which are typical 

in some arid climates, might be latitude-optimized as freestanding modules, whereas plants on tilted 

roofs are typically adapted to the roof orientation and therefore show a larger variation of geometries. In 

the future, moreover, diverse orientations might also be purposefully selected to better distribute the PV 

production throughout the day, even in the case of large installations. 

Figure 9-24 shows a snapshot of a spatially resolved forecast from such a physical model based on a 

German plant registry using statistical modeling of the plants’ orientations. The power production and 

feed-in are calculated everywhere according to the local cloud features and can be aggregated 

according to the local installed capacity. Although the figure’s normalized values highlight the solar 

resource rather than the installed PV capacity, the self-consumption values demonstrate how the plants 

can have different characteristics in populated areas. 

 

Figure 9-24. Snapshot of estimated local German PV values, normalized by installed capacity, 
according to real-time satellite data and a physical power model with probabilistic plant information 
from Fraunhofer IEE  

“Feed-in limit” indicates power lost due to plants whose feed-in power is capped at, e.g., 70% of 
capacity.  

Image by Fraunhofer IEE 

 

 

60 See https://cds.climate.copernicus.eu.  

https://cds.climate.copernicus.eu/
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9.6.2.5 PV Self-Consumption and Regional Power Feed-In 

All of the energy produced by a solar power plant is not necessarily fed into the grid, which complicates 

the estimation and forecasting of PV power feed-in that are needed for smooth grid operation. Many 

small- or medium-size plants are installed on residences or commercial buildings, and such plants are 

now increasingly designed to allow behind-the-meter usage (i.e., self-consumption by the user), which 

was not necessarily the case in the past. 

At any given moment, a user typically first self-consumes as much produced energy as possible, stores 

another fraction if battery storage exists, and feeds in the rest. The self-consumption and feed-in power 

might also be limited by the inverter size and any feed-in capping by the grid. The energy, S, that can 

be directly self-consumed at time t is: 

𝑆(𝑡) = 𝑚𝑖𝑛 (𝑃𝐴𝐶(𝑡), 𝐿(𝑡)),          (9-5) 

where PAC is the current PV power generation, and L is the current system load. If the nominal power of 

a PV plant is small compared to typical loads, it will generally never feed in. If it is very large, then the 

load becomes less important; however, the load uncertainty of a particular household is typically much 

greater than that of the solar resource, making it very difficult to accurately forecast the feed-in power 

of any given plant with self-consumption. Loads are unique to every building and user because they 

depend on human behavior, have weekly and seasonal cycles, and exhibit spikes when, e.g., 

compressors for refrigeration turn on or off. This is an interesting challenge to data-driven and upscaling 

forecasting strategies because most measurements are made only at the meter, making the 

measurements nontransferable, even between plants with otherwise identical characteristics. An 

advantage of physical models is that they do simulate PV generation and thus can be used to distinguish 

between power generation and feed-in. 

If available, registry data on plant self-consumption tend to be either Boolean, i.e., whether or not a plant 

self-consumes at all, or (more rarely) a scalar value of how much of the production is consumed on 

average. The time dependency of the load or self-consumption is typically not recorded. Simple 

strategies to account for the general self-consumption on a plant-by-plant basis do exist in the form of 

either multiplication by a constant factor or subtraction of a constant load (“band method”). Standard 

load profiles can be used to introduce a time dependency, although these can greatly differ from any 

given real load because profiles are generally smooth and designed to represent an average of many 

users for grid resource planning. The aggregated demand over large regions is much more predictable 

and should make self-consumption easier to model regionally. Though this is technically a plant-by-plant 

problem, as self-consumption is determined by local load and generation (Eq. 9-5) and additionally local 

feed-in limits, battery size or maximum loading speed might also come into play. On a single-plant level, 

stochastic bottom-up models can be used for local consumption and PV generation, as proposed by 

Karalus et al. (2023). 

The share of self-consumption depends on national regulations and strongly varies between countries 

and even between regions within a country. For areas with a low self-consumption rate, simple 

approaches can also be expected to yield reasonable results, on average. Figure 9-25 shows a week 

of satellite-based estimates of self-consumption compared to production and feed-in power in a control 

area in Germany Annually, this statistical model estimates that self-consumption currently amounts to 

approximately 3% of total production in the control zone, which is similar to the value obtained by 

aggregating the self-consumption averages in the plant metadata. The same model estimates that feed-

in limits were rarely active and only reduced the feed-in power by approximately 0.3% annually.  
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Figure 9-25. One-week time series obtained with the same physical power model and probabilistic 
plant information from Fraunhofer IEE shown in Figure 9-24 but now aggregated to a control zone  

Image by Fraunhofer IEE 

 

The seasonal dependence of PV self-consumption is illustrated in Figure 9-26 for another control area 

in Germany with an average self-consumption share of 9.5% in 2018 (Karalus et al. 2023). During 

summer with higher PV generation, self-consumption rates are smaller than during winter with low PV 

generation. The figure also shows different shares of self-consumption for different portfolios of PV-load 

systems, depending on PV system size and residential or commercial loads, among other factors.  
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Figure 9-26. Monthly self-consumption derived with a stochastic bottom-up model for a German 
control area (TransnetBW) during 2018  

Top: Monthly average of daily specific PV generation (normalized to the installed PV power) split 
into feed-in power (dark colors) and self-consumption (light colors) for a portfolio of PV systems 
with feed-in monitoring (SOL, green) and for all PV systems in the control area (All, orange). Bottom: 
Corresponding self-consumption rates per month.  

Image by Karalus et al. (2023) 

 

It must be emphasized that the share of PV self-consumption is quickly growing in many countries. In 

Germany, for example, the majority of new PV installations are designed for self-consumption. At the 

current rate of PV growth, self-consumption will soon have a first-order effect on regional PV power 

feed-in. It is difficult to find measurements of both production and feed-in power for plants throughout a 

region to validate self-consumption models because usually only feed-in power is measured, the 

measurements are not communicated, or the data are protected by privacy laws. In the future, behind-

the-meter forecasting will play a crucial role (Erdener et al. 2022). 

9.6.2.6 Regional PV Best Practices 

Estimates and forecasts of regional PV production and feed-in can be made by the different methods 

described here, depending on which plant data, reference measurements, and/or regional estimates are 

available. Complementary to these basic approaches, preprocessing techniques such as calibrating and 

blending weather predictions to measurements are common, as are postprocessing techniques such as 

model output statistics or multi-models trained to good estimates. Figure 9-27 illustrates such a 

forecasting chain. 
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Figure 9-27. Diagram of a hybrid method used to predict regional solar generation  

NNE model denotes Neural Network Ensemble model. Image by Eurac Research 

 

Different approaches can also be combined to form hybrid models: A generalized ML model can replace 

a physical model for a nonmonitored plant or a VPP; physically simulated plants can complement an 

upscaling approach; and statistical modeling can be restricted to represent only nonmonitored plants, 

to be combined with data-driven plant forecasts for dynamic aggregation later. Some examples can be 

found in the literature, e.g., (Gigoni et al. 2018; Pierro et al. 2020a, 2017, 2015), whereas others are 

proprietary techniques used by commercial forecast providers. 

Postprocessing steps are commonly used to improve performance and correct model bias, particularly 

when there is a target estimate. Different products can finally be combined into a model mix using ML, 

as is typically performed by a grid operator when receiving data from several forecast providers. Note 

that such calibrations are not always a better representation of reality because they might only minimize 

the error to a target estimate that can itself be biased. For instance, this occurs because of the upscaling 

of unrepresentative plants or the effects of self-consumption and storage. 

9.6.2.7 Performance of Regional PV Power Forecasting: Example Evaluation for Italy  
and Germany 

Regional forecasts show much lower uncertainties than single-site forecasts. This also holds for portfolio 

forecasts for distributed PV systems. By enlarging the footprint of the forecast region of interest, forecast 

errors are reduced, e.g., (da Silva Fonseca Junior et al. 2014; David et al. 2016a; Hoff and Perez 2012; 

Kühnert 2015; Lorenz et al. 2009, 2011; Pierro et al. 2020a; Saint-Drenan et al. 2016). This 

phenomenon, also called regional averaging or smoothing effect, is related to the correlation between 

the forecast errors at different locations. The larger the region, the less correlated the irradiance 

conditions are between different sites, and thus also solar forecast errors. This subsequently leads to a 

higher accuracy of the regional PV power forecasts.  

An example is shown in Figure 9-28, which depicts the RMSE of hourly day-ahead forecasts in Italy, 

obtained by predicting the PV generation of different control areas using averaged model inputs and 

directly forecasting the power generation at market zone level (Pierro et al. 2020a).  

In addition, a measure of PV power variability is displayed in Figure 9-28. With 𝑃(𝑡) denoting the PV 

power output at time t, the change in PV power for a given time step, ∆𝑡, is defined as: 

                 ∆𝑃∆𝑡 = 𝑃(𝑡) − 𝑃(𝑡 − ∆𝑡).  (9-6) 
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Hourly values and a time step, ∆𝑡, of 24 hours are specifically considered in Figure 9-28.  

The PV power variability in each zone is defined as the standard deviation, 𝜎(∆𝑃∆𝑡), as proposed by 

Perez et al. (2016), which is equivalent to the RMSE of the persistence of PV power: 

               𝑅𝑀𝑆𝐸𝑝𝑒𝑟 =  
1

√𝑁
√∑ (∆𝑃∆𝑡)2𝑁

𝑖=1 =  𝜎(∆𝑃∆𝑡).   (9-7) 

Here, it is commonly assumed that the temporal average of ∆𝑃∆𝑡 should be zero. 

Both the variability and the forecast errors decrease with an increase in the size of the region and the 

number of PV systems considered. These quantities can be well fitted either by a hyperbolic function, 

similar to the one proposed in Perez et al. (2016) or by an exponential function, as proposed by Lorenz 

et al. (2009). As shown in Figure 9-28, by enlarging the footprint of the forecast region from the prediction 

of the PV generation in each market zone in Italy to the prediction of the PV generation over all of Italy, 

the RMSE can decrease from 5.5% (market zones average) to 3.6% (countrywide).  

 

Figure 9-28. Smoothing effect over Italy: Relative RMSE (normalized to the nominal power, Pn) of 
regional forecasts with an analog ensemble (AE, circles) and persistence (triangles) as a function of 
the area size of the market zones in Italy (full circles/triangles) and for areas merging several 
adjacent market zones (empty circles/triangles)  

Dashed lines correspond to a fit using the function proposed by Perez et al. (2016), and solid lines 
correspond to a fit using the function proposed by Lorenz et al. (2009).  

Image by Pierro et al. (2020a) 

 

Another important aspect about regional forecasting is that, depending on forecast horizon, performance 

differences between models and model ranking can change compared to single-site forecasting. An 

example is illustrated here for the German PV power forecasting system described in Kühnert (2015); 

see Figure 9-29. Whereas for single sites NWP-based forecasts outperform PV power measurement-

based persistence within lead times of less than 1 hour ahead, measurement-based persistence shows 

a considerably smaller German-average RMSE than NWP-based forecasts for up to 3 hours ahead. 

Also, the improvement in the first hours of satellite-based forecasts over NWP-based forecasts is found 

to be much larger for regional forecasts than for single-site forecasts.  
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Single PV sites  

  

Regional PV 

Figure 9-29. Relative RMSE (normalized to the installed PV power, Pinst) of 15-minute resolutions 
over PV power forecasts for lead times up to 5 hours ahead. The results are based on the 
persistence of PV power measurements (pers), satellite-based CMV (cmv), NWP (ECMWF IFS and 
DWD COSMO-EU), and a combination of the three (stepwise linear model).  

Left: Average single site RMSEs; right: RMSE of aggregated regional PV power considering all sites. 
Data: 921 PV stations in Germany, May 2013–November 2013, solar zenith angles below 80°.  

Image by Kühnert (2015)  

 

Finally, although regional PV power forecasting benefits from spatial averaging because forecast errors 

decrease especially under variable cloud conditions, challenging weather conditions still remain in 

regional forecasting. For instance, the large-scale formation and dissipation of fog is difficult to predict 

and can lead to large regional forecast errors (Köhler et al. 2017). Similarly, snow adhering to PV 

systems can have a large impact on regional forecast accuracy (Lorenz, Heinemann, and Kurz 2012). 

To summarize, regional PV generation exhibits much lower variability and increased forecast accuracy 

than single PV systems. Exploiting these averaging effects requires a well-developed grid infrastructure 

and a structure of the energy market adapted to decentralized and variable renewable energy systems.  

The accuracy of irradiance forecasts has greatly improved over time, and it has also contributed to 

reduce uncertainties in the mean irradiance conditions relevant to regional PV feed-in power. The 

current quality of regional estimates and forecasts thus greatly depends on the quality of PV modeling 
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and the availability of plant data and/or measurements. The procurement of such data is necessary to 

facilitate a successful energy transition and will require a concerted effort in most countries in the coming 

years. 

9.7 Probabilistic Solar Forecasts 

Any forecast is inherently uncertain, and the proper assessment of its associated uncertainty offers grid 

and plant operators a more informed decision-making framework. For example, a forecast that includes 

prediction intervals is of genuine added value and, if appropriately incorporated into grid operations, 

might increase the value of solar power generation (Morales et al. 2014).  

This section is restricted to the univariate61 context that corresponds to those probabilistic forecasts that 

do not consider the spatiotemporal dependencies generated by stochastic processes such as solar 

power generation. Two types of solar probabilistic forecasts are considered here: quantile forecasts and 

ensemble forecasts (i.e., those using the Ensemble Prediction System (EPS)). Quantile forecasts are 

quite versatile probabilistic models and, as such, might address a wide range of forecasting time 

horizons, whereas NWP-based EPS forecasts generally provide probabilistic forecasts for one or 

several days ahead. Probabilistic forecasting requires a rather complex verification framework, which is 

introduced in Chapter 10, Section 10.5.1.5. The evaluation framework is based on visual diagnostic 

tools and a set of scores that mostly originate from the weather forecast verification community (Wilks 

2019). What follows constitutes an overview of the basic concepts related to solar probabilistic 

forecasting methods. Comprehensive overviews regarding forecasting methods and the verification of 

solar probabilistic forecasts metrics can be found in Antonanzas et al. (2016); Lauret, David, and Pinson 

(2019); and Van Der Meer, Widén, and Munkhammar (2018).  

9.7.1 Nature of Probabilistic Forecasts of Continuous Variables 

In contrast to deterministic forecasts, probabilistic forecasts provide additional information about the 

inherent uncertainty embodied in all forecasting models. The probabilistic forecast of a continuous 

variable, such as solar power generation or solar irradiance, takes the form of either a cumulative 

distribution function (CDF), 𝐹(𝑌), or a probability distribution function (PDF), 𝑓(𝑌), of the random variable 

of interest, 𝑌 (e.g., GHI). In particular, the CDF of a random variable, Y, is given as: 

                         𝐹(𝑦) = 𝑃(𝑌 ≤ 𝑦)   (9-8) 

 
where 𝑃(𝑌 ≤ 𝑦) represents the probability that Y is less or equal to 𝑦. 

The predictive distribution can be summarized by a set of discrete quantiles. The quantile, 𝑞𝜏, at 

probability level 𝜏 ∈  [0,1] is defined as follows: 

          𝑞𝜏 = 𝐹−1(𝜏),  (9-9) 

where 𝐹−1 is the so-called quantile function. A quantile, 𝑞𝜏, corresponds to the threshold value below 

which an event, y, materializes with a probability level, τ. 

Further, prediction intervals (also called interval forecasts) can be inferred from a set of quantiles. 

Prediction intervals define the range of values within which the observation is expected to be with a 

certain probability (i.e., its nominal coverage rate) (Pinson et al. 2007). For example, a central prediction 

 

 

61 Future work will be devoted to multivariate probabilistic models capable of capturing the spatiotemporal 

correlations present in irradiance and PV forecasts.  
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interval with a coverage rate of 95% is estimated by using the quantile 𝑞𝜏=0.025 as the lower bound and 

𝑞𝜏=0.975 as the upper bound. Figure 9-30 shows an example of probabilistic forecasts of solar irradiance 

where prediction intervals have been computed for nominal coverage rates ranging from 20%–80%.  

 

Figure 9-30. Example of probabilistic solar irradiance forecasts: 2 days of measured GHI at Le 
Tampon, France, and associated 1-hour-ahead forecasts with prediction intervals (yellow) generated 
with the quantile regression forest model  

Image by PIMENT, University of La Reunion 

9.7.2 Quantile Forecasts 

Two approaches are commonly used in the community to generate quantile forecasts (see Figure 9-31) 

for different forecast horizons. As input, they use either online ground observations and satellite images 

for intraday forecasting or NWP deterministic forecasts, which are more effective for day-ahead 

forecasting. The former approach (e.g., Bacher, Madsen, and Nielsen 2009; Pedro et al. 2018) consists 

of directly generating the quantiles of the predictive distribution of the variable of interest (e.g., GHI, DNI, 

or PV power). The latter approach (e.g., David et al. 2016; Grantham, Gel, and Boland 2016; Lorenz et 

al. 2009; Pierro et al. 2020b) seeks to produce the interval forecasts from the combination of a 

deterministic (point) forecast and quantiles of the prediction error. In both approaches, the quantiles can 

be estimated either by assuming a parametric law for the predictive distribution or by nonparametric 

methods, which make no assumptions about the shape of the predictive distribution.  
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Figure 9-31. Two typical workflows used to generate quantile forecasts from recent past 
observations and/or deterministic NWP forecasts 

Image by PIMENT, University of La Reunion 

 

9.7.2.1 Parametric Methods 

Parametric models assume that the variable of interest or the prediction error follows a known law of 

distribution (e.g., a doubly truncated Gaussian for GHI or a Gaussian for the error distribution). Only a 

few quantities (e.g., mean and variance) are needed to fully characterize the predictive distribution. 

Consequently, this approach is particularly interesting in an operational context because it requires low 

computational effort.  

 

Figure 9-32. PDF of the normalized error (zero mean and unit variance) of the hourly profile of day-
ahead forecasts of the clear-sky index provided by ECMWF for three different sky conditions and for 
the site of Saint-Pierre (21.34°S, 55.49°E), Reunion, France, in 2012  

The red dashed line represents the fitted standard normal PDF.  

Image from David and Lauret (2018)  
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In the solar forecasting community, it is very common to fit a Gaussian distribution to the errors even 

though errors derived from deterministic forecasts of solar irradiance or of the clear-sky index do not 

usually follow a Gaussian distribution (see Figure 9-32). For instance, Lorenz et al. (2009) developed a 

probabilistic irradiance forecasting model by assuming a Gaussian distribution of the error of the 

deterministic GHI forecasts generated by the IFS. More precisely, the predictive CDF was a Gaussian 

distribution with a mean corresponding to the point forecast and a standard deviation derived from a 

fourth-degree polynomial function for different classes of cloud index and solar elevation. For intrahour 

and intraday solar irradiance probabilistic forecasts, David et al. (2016) assumed a Gaussian error 

distribution of the deterministic forecast to generate a predictive CDF with a Generalized 

AutoRegressive Conditional Heteroskedasticity (GARCH) model. Instead of fitting a parametric PDF to 

the error distribution, Fatemi, Kuh, and Fripp (2018) proposed a framework for parametric probabilistic 

forecasts of solar irradiance using the beta distribution and standard two-sided power distribution. 

9.7.2.2 Nonparametric Methods 

To circumvent the necessity of making assumptions about the shape of the predictive distribution, 

numerous nonparametric methods have been proposed in the literature, e.g., Van Der Meer, Widén, 

and Munkhammar 2018. Examples of techniques include bootstrapping (Efron 1979; Grantham, Gel, 

and Boland 2016), kernel density estimation (Parzen 1962), and k-nearest neighbors (Pedro et al. 2018). 

Here, two prominent and simple nonparametric methods are briefly discussed: the quantile regression 

and the analog ensemble (AnEn) technique.  

Quantile regression models relate quantiles of the variable of interest (predictand) to a set of explanatory 

variables (predictors). Statistical or ML techniques—such as linear quantile regression, quantile 

regression forest, or gradient boosting (David and Lauret 2018; Van Der Meer, Widén, and 

Munkhammar 2018)—are commonly used to produce the set of discrete quantiles with probability levels 

spanning the unit interval (see Figure 9-33). 

  

Figure 9-33. Illustration of a set of four discrete quantiles with probabilities ranging from 0.2–0.8  

Image by PIMENT, University of La Reunion 

 

The following summarizes the linear quantile regression method first proposed by Koenker and Bassett 

(1978); see David, Luis, and Lauret (2018) for details about the implementation of other regression 

methods, including other variants of the linear quantile regression, quantile regression forest, quantile 

regression neural network, and boosting.  
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The linear quantile regression technique estimates a set of quantiles of the CDF, 𝐹, of some response 

variable, 𝑌 (the predictand), by assuming a linear relationship between the quantiles of 𝑌 (𝑞𝜏) and a set 

of explanatory variables, 𝑋 (the predictors): 

𝑞𝜏 = 𝛽𝜏𝑋 + 𝜖, (9-10) 

where 𝛽𝜏 is a vector of the parameters to be optimized at each probability level, 𝜏, and 𝜖 represents a 

random error term (Koenker and Bassett 1978).  

Numerous implementations of the linear quantile regression technique (and of its related variants) have 

been proposed in the literature to generate quantile forecasts for different forecast horizons and using 

different types of predictors, 𝑋; see, e.g., Bacher, Madsen, and Nielsen (2009), Bakker et al. (2019), 

and Zamo et al. (2014) for NWP-based forecasts; Lauret, David, and Pedro (2017) for time-series 

forecasting; Nouri et al. (2023) for ASI forecasting; and Van Der Meer, Widén, and Munkhammar (2018) 

for a wider review. 

The AnEn method (Delle Monache et al. 2013) is a simple nonparametric technique used to build the 

predictive distributions. The aim is to search for similar forecasted conditions in the historical data and 

to create a probability distribution with the corresponding observations. Alessandrini et al. (2015) applied 

an AnEn approach to a set of predicted meteorological variables (e.g., GHI, cloud cover, and air 

temperature) generated by the Regional Atmospheric Modeling System (RAMS). Note that the AnEn 

technique is mostly employed for day-ahead forecasting and generates the predictive distribution using 

NWP deterministic forecasts. 

9.7.3 Ensemble Prediction System 

9.7.3.1 Definition  

The EPS corresponds to a perturbed set of forecasts generated by slightly changing the initial conditions 

of the control run and of the modeling of unresolved phenomena (Leutbecher and Palmer 2008). Figure 

9-34 shows a schematic representation of an ensemble forecast generated by an NWP model. The 

trajectories of the perturbed forecasts (blue lines) can strongly differ from the control run (red line). The 

spread of the resulting members (blue-shaded area) represents the forecast uncertainty. For example, 

the ECMWF provides an ensemble forecast from the IFS model. It consists of 1 control run and 50 

“perturbed” members. 

Though members of the ensemble are not directly linked to the notion of quantiles, they can be seen as 

discrete estimates of a CDF when they are sorted in ascending order. Lauret, David, and Pinson (2019) 

proposed different ways to associate these sorted members to a CDF. 
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Figure 9-34. A schematic illustration of an ensemble forecast generated with an NWP model 

Image from Met Office, © British Crown copyright (2021)  

9.7.4 Postprocessing of the Ensemble Prediction System 

Global and regional NWPs are designed to forecast a large variety of meteorological variables 

(precipitation and temperature being of utmost importance for society) and have not previously focused 

on the accurate generation of the different components of solar radiation. Consequently, raw ensembles 

provided by meteorological centers suffer from a lack of accuracy, a lack of calibration, or both 

(Leutbecher and Palmer 2008). See, e.g., Yang (2020) for definitions and discussions about the specific 

meaning of accuracy, calibration, and other specialized terms in the field of forecasting, some of which 

are further discussed in Chapter 10, Section 10.5.1.5. Overall, raw ensemble forecasts are 

systematically refined by postprocessing techniques (also called calibration techniques) to further 

improve their quality.  

The aim of postprocessing is to apply a statistical calibration to the PDF drawn by the raw initial 

ensemble forecasts to optimize a specific metric used to assess the quality of probabilistic forecasts 

(e.g., the continuous ranked probability score [CRPS] described in Chapter 10, Section 10.5.1.5) In 

addition to having a coarse spatial resolution, the ensemble forecasts from NWPs are known to be 

underdispersive. i.e., they exhibit a lack of spread (Leutbecher and Palmer 2008). To address this, 

Sperati, Alessandrini, and Delle Monache (2016) proposed two different correction methods already 

used in the realm of wind forecasting: the variance deficit method, designed by Buizza, Richardson, and 

Palmer (2003) and the ensemble MOS method proposed by Gneiting et al. (2005). Even if these 

methods cannot be considered parametric, they are based on the characteristics of a normal distribution. 

Indeed, such a distribution is appealing because it can be assessed with only two parameters: the mean 

and the standard deviation, which are related to the average bias and the spread of the ensemble, 

respectively. 

Another method of calibration is based on the rank histogram (see Chapter 10, Section 10.6.3.2), which 

was initially proposed by Hamill and Colucci (1997) for precipitation forecasts. Zamo et al. (2014) applied 

this method to the Météo-France EPS, called PEARP, to generate probabilistic solar forecasts. The aim 

of this method is to build a calibrated CDF from the rank histogram derived from past forecasts and 

observations. Other techniques of EPS calibration exist in meteorology. For example, Pinson (2012) 
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and Pinson and Madsen (2009) suggested a framework for the calibration of wind ensemble forecasts. 

Junk, Delle Monache, and Alessandrini (2015) proposed an original calibration model, based on the 

combination of nonhomogeneous Gaussian regression and AnEn models, for wind speed forecasting 

applied to ECMWF-EPS predictions. Likewise, Hamill and Whitaker (2006) suggested an adaptation of 

the AnEn technique for the calibration of ensemble precipitation forecasts using the statistical moments 

of the distribution, such as the mean and spread of the members as predictors. See Wilks (2019) for a 

thorough review of univariate ensemble postprocessing methods. 

9.7.5 Benchmark Probabilistic Models 

This section describes benchmark or baseline probabilistic models used to gauge the performance of 

new proposed probabilistic methods using skill scores, such as the continuous rank probability skill 

score. By analogy with the deterministic approach, persistence ensemble (PeEn) models based on GHI 

(Alessandrini et al. 2015) and on the clear-sky index (David et al. 2016) have been proposed. The 

empirical CDF of a PeEn forecast is simply built with the most recent 𝑘 past measurements of solar 

irradiance. Considering an infinite number of past measurements, the PeEn simply becomes the 

climatology. In numerous other fields of meteorology, climatology is often considered to be a reference 

that can be used to test the performance of probabilistic models (Wilks 2019). That is because the 

climatology is perfectly reliable; however, it has no resolution.  

Climatological reference models for probabilistic solar irradiance forecasting should account for the 

deterministic course of solar irradiance. The complete-history persistence ensemble proposed by Yang 

(2019) corresponds to a conditional climatology where the time of day is used as a predictor. The so-

called clear-sky-dependent climatology (CSD-Clim) (Le Gal La Salle, David, and Lauret 2021)) is based 

on a similar approach but using the clear-sky irradiance as predictor instead of the time of day. Another 

simple approach consists of deriving the distribution of the clear-sky index from a long-term dataset and 

deriving the irradiance distribution by multiplication with clear-sky irradiances (Nouri et al. 2023). A 

comparison of these baseline models based on clear-sky index distributions derived from a long-term 

dataset of GHI and DNI in Almeria (Spain) by Nouri et al. (2023) shows only minor differences between 

the different approaches with a slight advantage for CSD-Clim. Because all three benchmark models 

consider the current conditions of the sun’s position and atmospheric turbidity, the influence of further 

discretization over the time of day or clear-sky irradiance is small. Finally, for ensemble forecasts, the 

CRPS of the raw ensemble can serve as a benchmark. 

9.8 Summary and Recommendations for Irradiance Forecasting 

Solar power forecasting is essential for the reliable and cost-effective system integration of solar energy. 

It is used for a variety of applications with specific requirements with respect to forecast horizon and 

spatiotemporal resolution. To meet these needs, different solar irradiance and power forecasting 

methods have been developed, including physical and empirical models, as well as statistical and ML 

approaches. Based on these developments, forecasting services of good quality are now available for 

users.  

An overview of the basic characteristics of different forecasting approaches is given in Table 9-2: (1) 

time-series models based on local measurements, (2) ASI and satellite-based forecasting, and (3) 

regional and global NWP models. These characteristics include forecast horizon, update frequency, 

temporal resolution, spatial resolution, and coverage, complemented with some practical information. 

Beyond using one of these forecasting models, blending of different forecasts using statistical and ML 

models (Section 9.5) is frequently applied to enhance forecast accuracy. 
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The different forecasting approaches with their corresponding input data and their applicability for 

different requirements are summarized in the following, with the spatiotemporal resolution of irradiance 

forecasts generally decreasing with increasing forecast horizon: 

• Short-term forecasting up to approximately 1 hour ahead greatly benefit from the use of local online 

irradiance or PV power measurements as input; however, pure time-series approaches, based on 

local measurements only, are outperformed by approaches integrating empirical and/or physical 

model forecasts from a few minutes to hours onward, depending on the spatiotemporal scale of the 

forecasts and the climatic conditions of the forecast location. 

• Short-term irradiance forecasts up to 20 minutes ahead that resolve irradiance ramps with a 

temporal resolution of minutes or even less can be derived from ASIs using cloud motion and/or 

ML-based methodologies. Using information on the local cloudiness around the site under scrutiny, 

state-of-the-art ASI models outperform persistence based on single-site measurements for high-

resolution intrahour forecasting. Local hardware typically consists of a radiometric station, one ASI 

for point forecasting, and at least two ASIs for spatially resolved irradiance fields.  

• Irradiance forecasts up to several hours ahead with typical resolutions from 10–15 minutes are 

derived from geostationary satellite data covering large areas without requiring local hardware. 

Satellite-based forecasting models are typically based on cloud motion approaches and increasingly 

also involve ML techniques. State-of-the-art satellite-based forecasts outperform persistence from 

approximately 30 minutes onward, and NWP forecasts up to several hours ahead. 

• Irradiance forecasts from several hours to days ahead essentially rely on NWP models, with their 

capability to describe complex atmospheric dynamics, including advection as well as the formation 

and dissipation of clouds. Typically, NWP forecasts are provided with hourly resolution in the first 

days; such forecasts cover countries or continents with regional models and the entire Earth with 

global models. 
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Table 9-2. Basic Characteristics of Different Forecasting Approaches 

 
Time-Series 
Using Local 
Measurements 

All-Sky 
Imager 
Based 

Satellite Based 
 NWP 
 Global 

 NWP 
 Regional 

Forecast 
horizon 

Intrahour and 
intraday:  
15 minutes– 
2 hours 

Intrahour: 
10–20 
minutes 

intraday:  
4–8 hours 

Days ahead: 
10–15 days 

Days ahead: 
2–3 days  

Update 
frequency  

1 second to  
1 hour 

~10 seconds 
to 
1 minute 

10–15 minutes 6–24 hours 3–6 hours 

Temporal 
resolution 

1 second to 
1 hour 

~10 seconds 
to  
1 minute 

10–15 minutes 1–12 hours 1 hour  

Spatial 
resolution 

Point 10–100 m  0.5–3 km at 
subsatellite 
point 

9–20 km 1–10 km  

Coverage  Point Point to 12 km Satellite field of 
view (full Earth 
disc, 
continents) 

Global Countries, 
continents 

Local 
hardware 

Radiometric 
station or meters 
for PV power 
measurements 

ASI(s) and 
radiometric 
station 

None None  None 

Forecast 
providers 

Private 
companies 

Private 
companies 

Private 
companies, 
some national 
weather 
services 

National and 
international 
weather 
services  

National and 
private weather 
services 

Comments Forecast horizon 
is linked to 
temporal 
resolution 

Spatially 
extended 
forecasts 
require cloud 
height 
measure-
ments or 
multiple ASIs; 
coverage and 
forecast 
horizon 
depend on 
cloud 
conditions 

Spatial/ 
temporal 
resolutions 
depend on 
satellite/ 
spectral 
channels; 
spatial 
resolution 
decreases with 
distance from 
subsatellite 
point 

Update 
frequency and 
temporal 
resolution 
might decrease 
with increasing 
forecast 
horizon 

  

 
  



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

9-63 

NWP model forecasts are typically provided by international and national weather services, with a list of 

global NWP models and their providers given in Table 9-1. Regional NWP model forecasts are provided 

by numerous national and private weather services. In addition, Table 9-3 gives information on some 

companies providing ASI-based and/or satellite-based forecasts. It is emphasized that this list is based 

on the experience of the IEA PVPS Task 16 participants and does not pretend to be exhaustive. 

Table 9-3. Examples of Companies Providing Irradiance Forecasts based on ASI or satellite data  

Company Website ASI Satellite 

CSPServices https://www.cspservices.de/meteorological-services/ x   

Flucrum3D https://www.fulcrum3d.com/cloudcam/ x   

meteo for energy https://www.meteoforenergy.com/en/  x x 

Meteotest https://solarwebservices.ch/   x 

Reuniwatt https://reuniwatt.com/en/247-all-sky-observation-sky-insight/ x x 

SoDa  https://www.soda-pro.com/   x 

SolarAnywhere https://www.solaranywhere.com/products/solaranywhere-forecast/   x 

Solargis https://solargis.com/products/solar-power-forecast/overview    x 

Solcast https://solcast.com/forecast-accuracy   x 

Steadysun https://www.steady-sun.com/solar-energy-forecasting/  x x 

 

As a complement to empirical and physical models, statistical and ML methods are widely used in solar 

irradiance and power forecasting. They also exploit the rapid development in AI techniques along with 

ever-increasing computational resources: 

• Statistical and ML approaches are effectively applied to improve forecasts obtained with empirical 

or physical models (postprocessing). Through training against high-quality irradiance 

measurements (ground truth), they can reduce systematic meteorological forecast errors.  

• Training of statistical and ML approaches to PV power measurements additionally provides a way 

to derive plant-specific models that account for the characteristics of a given PV plant or even to 

replace PV simulation models.  

• With the fast advances in computer vision, ML techniques are now successfully applied to the 

prediction of cloud images (from ASIs or satellites), including algorithms to compute the optical flow 

in cloud motion approaches. From the predicted cloud image irradiance, forecasts can be derived 

in a subsequent step. 

• Direct ML forecasting approaches can combine all kinds of possible observations (e.g., images from 

different sources or meteorological measurements of sensor networks) to predict solar irradiance or 

PV power. 

For the training of time-series models, the availability of irradiance and/or PV power measurements is 

crucial. Great care is essential in the selection and quality control of this ground truth data, depending 

on the intended model usage. ML models adapt to ground truth as is, including, e.g., potential 

measurement faults, degradation, and soiling. Depending on the application, this might constitute either 

a problem (e.g., the irradiance forecasts might be biased if the ground truth originates from soiled 

sensors) or an advantage (e.g., when predicting the current status of a PV plant for marketing the 

https://www.cspservices.de/meteorological-services/
https://www.fulcrum3d.com/cloudcam/
https://www.meteoforenergy.com/en/
https://solarwebservices.ch/
https://reuniwatt.com/en/247-all-sky-observation-sky-insight/
https://www.soda-pro.com/
https://www.solaranywhere.com/products/solaranywhere-forecast/
https://solargis.com/products/solar-power-forecast/overview
https://solcast.com/forecast-accuracy
https://www.steady-sun.com/solar-energy-forecasting/
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produced power, in the presence of soiling and/or degradation). Concerning the postprocessing of NWP 

model forecasts, satellite-derived data also provide a suitable reference for training.  

Overall, the best possible accuracy of irradiance or PV power forecasts can be achieved by integrating 

different input data and methodologies. Prominent examples include: 

• High-resolution intrahour forecasting systems combine local measurements and ASI data with 

empirical and ML approaches, and possibly also integrate satellite-based forecasts. 

• Forecasting systems for the intraday energy market up to several hours ahead integrate online 

measurements and/or satellite-based forecasts as well as NWP -based forecasts with statistical 

and/or ML approaches. 

• Forecasting systems from several hours to several days ahead use different NWP models as input 

in combination with statistical and/or ML approaches. 

The performance of the different forecast models depends on multiple factors that have different impacts 

depending on forecast horizon and meteorological conditions: 

• The capability of the models to predict changes in clouds and irradiance—for instance, persistence 

cannot predict approaching clouds. 

• The performance of the models for irradiance retrieval/analysis for a forecast lead time of zero—

persistence is then error-less, and the satellite-derived irradiance has a lower uncertainty than NWP 

analysis. 

• The model’s input data and parameters as well as the area covered by the input data—for instance, 

the larger the monitored cloud scene, the larger the forecast horizon can be. 

• The computer time to execute a model run—the faster a model run, the less time that has passed 

since the observations fed into the model have been taken at the time of forecast delivery.   

• The spatiotemporal resolution of the forecasts 

• The capability of the model to correctly predict the AOD, especially for DNI forecasting in arid 

regions. 

Besides forecasting for single PV power plants, the estimation and forecasting of regionally aggregated 

PV power is important for grid operators. Here, an additional challenge is that the information on all the 

PV power plants contributing to the overall regional feed-in power is often incomplete. Moreover, for 

most plants in many countries, the PV power is not monitored at a sufficient temporal resolution. 

Therefore, regional models, such as upscaling, have been developed and are effectively applied to 

derive and forecast regionally aggregated PV power. Because of spatial smoothing effects, the forecast 

errors of regionally aggregated PV power (normalized to the installed power) are much smaller than for 

single PV plants, depending on the size of the region and the set of contributing PV plants. 

Forecast evaluations provide users with the necessary information on forecast accuracy and assist them 

in selecting between different forecasting services or assessing the risk when a forecast is used as a 

basis for decisions. In this chapter, different forecasts are compared using RMSE values as a basic 

score. A more detailed discussion and recommendations for the evaluation and uncertainty assessment 

of irradiance forecasting are given in Chapter 10.  

Compared to deterministic forecasts, probabilistic forecasts have the great advantage to also add 

specific uncertainty information for each forecast value, depending on weather conditions. Probabilistic 

forecasts take the form of CDFs or PDFs. They are summarized by quantiles from which prediction 

intervals can be inferred. Quantiles can be estimated using either a parametric or a nonparametric 

approach. In the latter case, statistical or ML techniques can be used to estimate the quantiles. Although 
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NWP ensemble members are not directly linked to the notion of quantiles, different propositions exist to 

infer a CDF from an ensemble.  

Finally, forecasting solar power should be evaluated in the context of the system integration of solar 

power, where elaborate strategies are needed to provide the necessary power to meet the demand at 

any instant. These strategies include spatial smoothing for grid-integrated PV complemented by wind 

power and increasingly also the use of storage (batteries), curtailment, and shifting of loads to times 

with abundant PV generation. Applying these strategies reduces the variability of solar power as well as 

forecast errors.  
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 Executive Summary 

The rising investment in solar energy projects has necessitated the development of improved methods 

to quantify and assess the uncertainty of solar resource data. The practical challenges in this area stem 

from the instrument used to monitor the measurand, the model and input data used to predict and 

forecast the measurand, and their interactions. By maintaining the proper traceability, these sources of 

uncertainty amplify or compensate each other as they propagate from the reference data to prediction 

and forecast, for example. This propagation of uncertainty has significant impacts on the prediction and 

forecast data, which subsequently affects the project’s financing, as well as the levelized cost of energy 

(LCOE) and decision making at various steps.  

This chapter discusses the uncertainties associated with various forms of solar resource data and how 

these data impact the predictions of physical or empirical models that use such data. For the purposes 

of this chapter, solar resource data can be classified into three different categories: experimental data, 

as those measured at ground stations; modeled data, estimated for past periods using physical, 

semiempirical, or other radiative models; and forecast data, which use current experimental data and 

models to estimate the future irradiance for a particular area, season, and time. The latter can be 

distinguished between short-term forecasting (intrahour, intraday, and days-ahead) and long-term 

predictions for the next decades. 

Accurate measurement, prediction, or forecasting of the solar resource is complicated by the rapidity 

with which the solar irradiance can change, both in magnitude and spectral distribution, and the varied 

environmental conditions experienced during measurements. 

In the case of predicted and forecasted datasets, it is essential to understand the factors that impact 

their accuracy relative to ground measurements because of, for example, error propagation. In parallel, 
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the quality of these measured data is key for confidence in the determination of uncertainty in predicted 

and forecasted datasets. Additional factors can be considered, such as the interannual variability if using 

only a short dataset of, for example, 12 months or less. Thus, the overall uncertainty of a modeled 

dataset should include an estimate of the uncertainty of the modeled solar resource, of the ground 

measurements, and that resulting from the probable interannual variability. As a general rule, even with 

improved instrumentation and radiation models, both the measurement and modeling of the incident 

irradiance can have uncertainties, depending on various factors that cannot be neglected and should 

be properly taken into consideration.  

Sections 10.1 and 10.2 summarize the basic concepts and methods of uncertainty in datasets. Section 

10.3 discusses the measurement uncertainty, mainly using the Guide to the Expression of Uncertainty 

in Measurements (GUM) methodology for quantifying the uncertainty for measured irradiance. 

Afterward, the uncertainty of modeled and forecasted data is discussed in Sections 10.4 to 10.6. Section 

10.7 illustrates some available diagnostic algorithms and tools. Section 10.3 on measurements comes 

first, because the uncertainty in the modeled data is typically obtained by comparison with reference 

measurements.  

 

Figure ES 10-1. Traceability and uncertainty propagation for various sources of solar resource data  

Image by NREL 

10.1 Introductory Outline 

Solar irradiance can be measured, modeled, or forecasted with various methods, as described in other 

chapters. These solar irradiance data are imperfect and thus uncertain.  

The actual uncertainty of a dataset strongly depends on the measurement and/or modeling approach, 

as well as on the considered spatial and temporal scales. Measurements normally serve as a reference 

baseline for validating modeled data because the latter are expected to have a relatively larger 

uncertainty. In what follows, the main types of models under scrutiny are those that provide either 

satellite-derived irradiance estimates or forecasts using numerical weather prediction (NWP). 

The following list summarizes a number of common notions and perceptions that are encountered in the 

solar industry’s current practice and provides some initial recommendations based on experience. 

• Measurements: 

o Measurements are the data source many users consider “ground truth”; however, measurement 

uncertainty is frequently not, or not sufficiently, taken into account. 
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o Measurement uncertainty strongly depends on instrument specification (e.g., Instrument Class, 

according to ISO 9060:2018 (ISO 9060 2018)) and quality control (QC); it is essential to evaluate 

and further consider this uncertainty whenever using measured data. 

o Measurements obtained with Class-A instruments and subject to thorough maintenance program 

and QC procedures have the lowest possible uncertainty for the site and period under scrutiny. 

Therefore, they are a suitable reference among other tasks, such as evaluating modeled or 

forecasted data. 

o Because high-quality irradiance measurements can be sparse, especially for long-term periods, 

modeled data (of greater uncertainty) are needed in most cases.  

• Modeled predictions (satellite- or NWP-based): 

o Definition: Irradiance values for past periods that are inferred using various inputs related to the 

same site and time through a radiative transfer model or a suite of functions, such as GHI(t)= 

f(M1(t), M2(t)), where the inputs are retrieved from satellite imagery or meteorological 

measurements. 

o Uncertainty strongly depends on the time scale of evaluation and decreases with increasing time 

scales (e.g., hourly values have a higher uncertainty than monthly values or, even more so, long-

term mean annual values). 

o The actual uncertainty of predictions strongly depends on the performance of the model itself (or 

type of model) and time scale; generally, satellite-based modeled data have lower uncertainty 

than NWP-based irradiance data. 

o The most common way to evaluate the quality of modeled datasets is to compare them to high-

quality irradiance measurements for the same location and period; the differences are 

summarized by some usual statistical indicators of deviation, such as root mean square deviation 

(RMSD), mean bias deviation (MBD), or mean absolute deviation (MAD) (see Section 10.2.3). 

The final letter D stands here for “deviation” or “difference” and is used in lieu of “error” to reflect 

that both datasets have uncertainty, which might be of similar magnitude. 

o The uncertainty of modeled data can be estimated based on statistical metric evaluations. Here, 

measurement uncertainty is often not properly taken into account because the differences 

depicted by the metrics between the modeled and measured datasets could move up and down 

depending on the uncertainty of the measured dataset, and may or may not be significant within 

these uncertainty intervals; this critical aspect is discussed further below. Note that, in the case 

of modeled data, accuracy and uncertainty are first a consequence of the quality of the 

experimental data used for validation and the amount of data available. 

o High-quality satellite-based irradiance predictions are generally considered the next best thing 

whenever high-quality measurements are not available for a given location and period. In such 

cases, they might constitute a suitable reference for the evaluation of other modeled or forecasted 

data, at least for global horizontal irradiance (GHI). 

• Short-term forecasts (intrahour, intraday, and days-ahead): 

o Definition: Future irradiance values that are inferred using present or past inputs: GHI(t+∆t) = 

f(M1(t), M2(t), N1(t-∆t), N2(t-∆t)) Here, short-term forecasting refers to forecasting up to days 

ahead, in contrast to long term-predictions, as described below. 

o The forecast uncertainty increases with increasing forecast horizon, and also strongly depends 

on the spatial and temporal scale of evaluation. It decreases with increasing time scales (e.g., 

minute values have a higher uncertainty than hourly or daily values). It also decreases with 
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increasing spatial resolution (e.g., site-specific or local forecasts have higher uncertainty than 

regionally averaged or aggregated forecasts). 

o Forecast uncertainty is typically greater than the uncertainty of high-quality measurements or 

modeled data (suitable for the given spatial and temporal scale).  

o The most common way to evaluate the quality of forecast datasets is by assessing their similarity 

to high-quality irradiance measurements (or, if not available, high-quality modeled data) and by 

calculating the usual statistical indicators, such as root mean square error (RMSE), mean bias 

error (MBE), or mean absolute error (MAE) (see Section 10.2.3), with E denoting “error,” which 

is common practice in meteorological forecasting because the reference measurements are 

assumed to be of negligible uncertainty compared to that of forecasts.  

o Forecast uncertainty is described by probabilistic forecasts consisting of probability distributions 

or scenarios of possible future values, depending on the current meteorological situation. As 

before, the reliability and resolution of these probabilistic forecasts is evaluated against high-

quality irradiance measurements (or high-quality modeled data).  

• Long-term predictions:  

o Long-term predictions aim to describe irradiance conditions for the next decades, typically 20–30 

years for yield assessments, that is, the expected conditions in 2030, 2040, or 2050 toward the 

preparation of future energy scenarios. 

o Currently, long-term predictions are based on long-term historical measured or modeled data 

time series, a combination of both, or alternatively on typical meteorological year (TMY) datasets. 

o The accuracy of these long-term predictions is typically estimated from a statistical evaluation of 

modeled and/or measured data for a specific period in the past. Sometimes, interannual variability 

and irradiance trends are also taken into account. There is currently no consensus methodology 

to characterize estimates of the future resource with a precise uncertainty value and a specific 

confidence interval, contrary to the situation for measurements (see Chapter 6). 

o Long-term trends caused by climate change or regional air-quality measures should additionally 

be accounted for to estimate the uncertainty of long-term irradiance predictions. This is a very 

complex task that requires more research to adequately address (see Chapter 6). 

10.2  Basic Uncertainty Concepts  

A clear statement of uncertainty should accompany any comprehensive solar radiation dataset to 

provide the necessary context for understanding the reliability of the data for various solar energy 

applications. For example, estimation of uncertainty provides a basis to assess confidence in the 

predicted output of a planned solar conversion system and is thus a key factor when determining the 

bankability of the project. Uncertainty is a way to specify confidence in the data.  

In this preliminary approach, it is worth mentioning two important concepts associated with uncertainty 

that are sometimes misunderstood or mixed up. The first one is the accuracy of an experimental sensor 

or of a mathematical model. The accuracy is related to the ability of the sensor/model to determine the 

correct value of a magnitude, its true value, and how much the readings or estimations are deviated or 

separated from that value. The uncertainty gives an idea of how much the values of the magnitude 

provided by the sensor/model can be spread or dispersed around its readings/estimations in repeated 

measurements or calculations. The second important concept is the calibration (for an experimental 

sensor) or the evaluation (for an algorithm), which is the procedure or the means by which these 

deviations are determined and stated. In this step, it is necessary to rely on a reference value given by 

a standard instrument (for a sensing device) or provided by a set of real data or a function (for a model). 
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A contribution for the overall uncertainty of the value of the magnitude given by the sensor or model is 

generated during this calibration or evaluation step. 

It is important to determine the uncertainty using a standard methodology to provide authoritative results 

that can be relied on for analysis and comparisons. The GUM (ISO/IEC 2008) is an example of how to 

determine the uncertainty in measurements. GUM has been formalized by several organizations, 

including the International Bureau of Weights and Measures (French acronym: BIPM) and published by 

the International Standards Organization (ISO). 

In the case of experimental data, the GUM terminology refers to a quantity (i.e., the value of a physical 

magnitude) as the measurand. To characterize this measurand, it is necessary to provide a measure of 

the measurand and its unit. Still, this characterization of the measurand is incomplete without supplying 

the associated uncertainty. This uncertainty provides an estimate of how well the value of the measurand 

is known and provides a range of values that would result from equivalent measurements taken under 

similar circumstances with similar instruments. In general, the measurand has four general sources of 

uncertainty: the act of measurement, the instrument doing the measurement, the device recording the 

measurement, and the environment in which the measurements take place. These factors follow a basic 

metrology’s principle, in which the accuracy of the measurement is ensured with some confidence by 

using common standards.  

Therefore, any measurement only approximates the quantity being measured, and it is incomplete 

without a quantitative statement of uncertainty. Each element of a measurement system contributes to 

the final uncertainty of the data. For example, the accuracy of solar radiation measurements made at 

ground stations depends on the radiometer specifications, proper installation and maintenance, data 

acquisition and accuracy, calibration method and frequency, location and environmental conditions, and 

possible real-time or a-posteriori adjustment to the data. A large portion of this overview of uncertainty 

in measurements of solar radiation made at ground stations is based on Gueymard and Myers (2008); 

Habte et al. (2014); Habte et al. (2016); Myers et al. (2002); Reda (2011); Stoffel et al. (2000); and 

Wilcox and Myers (2008). 

Similarly, it is desirable that predicted and forecasted datasets be qualified with a specific uncertainty, 

just like measurements. In this case, the different sources of error/deviation can be classified into six 

categories: (i) the “imperfections” of the model itself in its mathematical description of the actual physical 

processes; (ii) the uncertainty in its input data; (iii) the magnitude of the error propagation from input to 

output, depending on the specific model, location, and period; (iv) the uncertainty in the ground-truth 

measurements used to validate the modeled predictions; (v) the interannual variability of the predicted 

dataset, if the model is validated over only a short historical period; and (vi) the possible long-term trends 

that will affect the predictions in the future, with the latter being most important for long-term predictions. 

At this point, no general procedure provides a precise quantification of each of these sources of error, 

let alone a reproducible determination of overall uncertainty, as discussed further in Sections 10.4–10.6. 

One important reason for this situation is that the first three causes of error are typically site-dependent, 

which considerably complicates the issue. 

10.2.1 Traceability 

As with any other quantity or measurand, solar irradiance requires a standard reference value and 

physical units, which all the measuring instruments can be compared and referred to. In the International 

System of Units (SI) the units of solar irradiance are those of the radiant power (in W) received by the 

surface of a device within a given area (in m2). Although the modern philosophy of SI is to materialize 

fundamental physical units by means of universal constants, there are still many derived magnitudes 

based on prototypes or artifacts (a given reference instrument or a given sample of reference material), 

which realize and implement in practice the real values of these units. This is particularly the case of 

solar irradiance, which is currently referred by international consensus to a set of reference instruments 
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of high accuracy realizing the unit of W m-2, namely, the World Radiometric Reference (WRR). (As 

discussed in Section 3.2.3, there is progress toward using the SI-based electric W in radiometry, which 

will eventually make WRR obsolete.) 

According to the World Meteorological Organization (WMO) guide, solar resource measurements are 

traceable to WRR, which is maintained by the World Radiation Center (WRC) in Davos, Switzerland 

(see Chapter 3). The International Pyrheliometer Comparison (IPC), which is carried out there every 5 

years, is used to maintain the WRR by intercomparing the World Standard Group (WSG) radiometers 

and evaluating their long-term stability. The WSG is now equipped with a few absolute cavity 

radiometers, which constitute the group of standard instruments realizing the reference unit of solar 

irradiance. Their average WRR reduction factor is used to transfer the scale to other participating 

radiometers. Moreover, during the intervening 5 years, other agencies, such as the National Renewable 

Energy Laboratory (NREL), organize annual regional intercomparisons to verify and maintain the WRR 

factor transferred through the IPC. The transfer of calibrations from the WRR to national standards 

results in an expanded uncertainty for these measurement standards of ±0.45% (Reda et al. 2013). 

Various methods and standards are used to transfer the WRR values to field pyrheliometers and 

pyranometers. The calibration and assessment of calibration and field uncertainties for pyrheliometers 

and pyranometers are described in detail in national and international standards, including ASTM E824 

(2018); ASTM G167 (2023); ASTM G213 (2017); ISO 9059 (1990); ISO 9060 (2018); ISO 9846 (1993); 

ISO 9847 (2023); and ISO/TR 9901 (2021). Figure 10-1 illustrates the process of calibration transfer 

from WRR to any field radiometer, along with the uncertainty added at each step.  
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Figure 10-1. Measurement traceability and accumulation of measurement uncertainty for 
pyrheliometers and pyranometers (coverage factor k = 2)  

Note: SZA stands for solar zenith angle.  

Image by NREL 

 

Similarly, spectral irradiance measurements are traceable to a national metrological laboratory (e.g., 

National Institute of Standards and Technology [NIST]) that has participated in intercomparisons of 

standards of spectral irradiance. The traceability chain and associated methods and uncertainties are 

exemplified in Figure 10-2. This chapter does not cover the uncertainty of spectral data, but this topic 

may be included in future editions of the handbook. 

 

Figure 10-2. Measurement traceability for spectral irradiance  

Note: UV stands for ultraviolet. 

Image by NREL 

 

Compared to the situation with irradiance measurements just described, the traceability of modeled 

datasets is not as straightforward. Traceability is either derived from remote-sensing (e.g., satellite or 

sunphotometer) information, NWP calculations, and/or statistical means. Overall, traceability is 

maintained through evaluation with ground measurement, as well as ongoing evaluation of uncertainty 

analysis and error propagation analysis. As noted above, this process is neither rigorous nor 

standardized yet. 
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10.2.2  Uncertainty vs. Error/Deviation 

The difference between error and uncertainty is well documented. According to GUM (ISO/IEC 2008), 

the concept of uncertainty analysis supersedes the notion of error analysis. The term uncertainty 

describes the degree of not knowing the “true value”; it is defined as “a parameter, associated with the 

result of a measurement, that characterizes the dispersion of the values that could reasonably be 

attributed to the measurand.” This concept can also be applied to predicted and forecast data as well 

as long-term predictions. 

Conversely, error is a signed difference that is the degree of deviation of a measurement from the true 

value. For example, in GUM (ISO/IEC 2008), the term “error” is described as imperfections in the data 

that can be reduced. Error can also be explained by random and systematic errors. Random sources 

are related to the standard deviation or variance of measured datasets. Biases are estimates of 

deviations from a “true value,” primarily based on engineering judgments of the measurement system 

performance.  

The terms “error” and “deviation” in the context of evaluating any kind of modeled data (including 

forecasts) typically denote deviation from “reference values” (with uncertainty as low as possible) rather 

than deviation from the true value. Deviations from the true value can only be approximated by this. 

Most often, irradiance measurements are used as reference data because they are expected to have 

lower uncertainty than other data. Despite this uncertainty (see Section 10.3), these data are often 

referred to as “ground-truth data” if their quality has been confirmed after assessment and possible 

improvement through appropriate QC processes (see Chapter 4). Alternatively, satellite-retrieved 

irradiance values, especially in the context of forecasting, or the output of a detailed physical model, 

might serve as a reference. Depending on the context, either “error” or “deviation” is used in the literature 

to characterize the difference between the modeled value and the reference value. In this chapter, the 

term “deviation” is used in the context of modeled historical data. It is used to emphasize the uncertainty 

in the reference values, for example, ground measurements.  

When comparing modeled data to ground measurements, the difference can be considered statistically 

significant if it is greater than the uncertainty of the latter. In many cases, the uncertainty in ground 

measurements is not known precisely. That is why reporting the statistical metrics in terms of difference 

or deviation rather than error is preferred in this context. 

To evaluate forecasts, on the other hand, it is preferred to report errors instead of deviations because 

this is the terminology generally applied in meteorological forecasting. Extrapolating in time to forecast 

future values adds another source of uncertainty, which leads to deviations from the true value or 

reference value that increase with longer forecast horizons, making the term “error” a suitable choice in 

this context. 

10.2.3 Statistical Terms and Metrics Used to Define Accuracy 

This handbook covers multiple statistical metrics used to define any deviation from the true or reference 

values. Here, we present the most-used error and deviation measures based on first-order statistics. A 

more general review is provided by Gueymard (2014) for modeled solar radiation data. A similar 

overview, but for forecast evaluations, is given in Jolliffe and Stephenson (2011). 

10.2.3.1 Deviation of Measurements from True Value 

The expected deviation of a measurement from the true value can be estimated by taking a sufficiently 

large number of measurements. For example, bias provides a measure of the mean overall deviation 

from the true value. This can be described by the MBE: 

 MBE =
1

𝑁
∑ (𝑋𝑖 − 𝑋 )𝑁

𝑁=1  (10-1) 
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where N is the number of measurements, Xj is the measured value, and 𝑋  is the average of the 

measured values. Bias can be the result of a systematic error (roughly constant over time) or of different 

errors that change over time but do not completely compensate for each other in the long term. Similar 

to bias, the standard deviation provides a measure of the mean individual deviation from the true value.  

 

10.2.3.2 Deviation of Modeled Historical or Forecasted Data From Reference Values  

A time series of N solar radiation values Xi (measured, modeled, or forecasted) at instant i can be 

characterized by its average: 

𝑋 =
1

𝑁
∑ 𝑋𝑖  

𝑁

𝑖=1

 

and by its standard deviation, which provides a measure of the mean individual deviation from its 

average:  

𝜎(𝑋) = √ ∑ (𝑋𝑖 − 𝑋 𝑁
𝑖=1 )2

𝑁 − 1
 

For the comparison of modeled historical or forecasted solar radiation values Xi (e.g., GHI or direct 

normal irradiance [DNI]) to reference values 𝑋𝑖
𝑟𝑒𝑓

 (e.g., measured GHI or DNI), the following metrics are 

applied. Here the metrics are introduced using deviation, which is recommended for the evaluation of 

modeled historical data, as noted above. The corresponding notation using error for forecast data is 

given between brackets. 

The deviation (error) 𝛿𝑖 between a single modeled (forecasted) value and the corresponding reference 

value (e.g., measurement) is simply:  

 𝛿𝑖 = 𝑋𝑖 − 𝑋𝑖
𝑟𝑒𝑓

   

To evaluate the agreement between modeled (forecasted) data and a reference value, the RMSD 

(RMSE) is commonly used:  

 RMSD =
1

√𝑁
√∑ 𝛿𝑖

2𝑁
𝑖=1   (10-5) 

MSD = RMSD2 (MSE = RMSE2), is also commonly used to characterize modeled data (forecasts).  

Typically, only daytime values are considered for evaluations. Relative errors for modeled historical or 

forecast irradiance are generally derived by normalization with respect to the mean measured irradiance 

over a given time interval. In contrast, relative errors of photovoltaic (PV) power forecasts for utility 

applications are often normalized to the installed power rather than the mean measured value, for 

example, in Lorenz et al. (2011). 

The RMSD (RMSE) metric can be split into two components: (1) systematic, related to the MBD (MBE); 

and (2) stochastic, related to the standard deviation of the deviations (errors) of single values. The MBD 

(MBE) is the difference between the mean of the modeled (forecasted) data and the mean of the 

reference values (systematic error): 

 MBD =  𝑋𝑖̅ − 𝑋𝑖
𝑟𝑒𝑓̅̅ ̅̅ ̅̅

=  𝛿̄ =
1

𝑁
∑ 𝛿𝑖

𝑁
𝑖=1   (10-6) 

(10-2) 

(10-3) 

(10-4) 
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A positive MBD (MBE) means the modeled (forecasted) values exceed the reference values on average 

(overestimation), while a negative MBD (MBE) corresponds to an average underestimation by the 

modeled (forecasted) data. 

The standard deviation of the deviations (errors), SD (SE), is defined as: 

 SD = 𝜎(𝛿) =
1

√𝑁
√∑ (𝛿𝑖 − 𝛿̄)2𝑁

𝑖=1   (10-7) 

The SD (SE) metric provides information on the spread of the deviations (errors) around their mean 

value. 

Ultimately, the decomposition of RMSD (RMSE) yields: 

RMSD2 = MBD2 + SD2   (10-8) 

For more detailed analyses, the SD (SE) metric might be further decomposed into one part related to 

the difference between the standard deviation of the modeled (forecasted) time series, 𝜎(𝑋), and that of 

the reference time series, 𝜎(𝑋𝑟𝑒𝑓), and another part related to the correlation coefficient, r, of the time 

series, which is defined as: 

𝑟 =
∑ (𝑋𝑖−𝑋̄)( 𝑋𝑖

𝑟𝑒𝑓
−𝑋𝑖

𝑟𝑒𝑓̅̅ ̅̅ ̅̅ ̅
)𝑁

𝑖=1

𝜎(𝑋)𝜎(𝑋𝑟𝑒𝑓)
  (10-9) 

Overall, the complete decomposition of RMSD (RSME) yields: 

RMSD2 = MBD2 + (𝜎(𝑋) − 𝜎(𝑋𝑟𝑒𝑓))2 + 2𝜎(𝑋)𝜎(𝑋𝑟𝑒𝑓)(1 − 𝑟)  (10-10) 

Another common measure to assess the accuracy of modeled (forecasted) data is the mean absolute 

deviation (MAD): 

 MAD =
1

𝑁
∑ |𝛿𝑖

𝑁
𝑖=1 |  (10-11) 

The metrics reviewed above do not have the same importance, depending on application. In solar 

resource assessments, long-term yield predictions, and various other aspects of solar energy utilization, 

bias (MBD) can be considered “enemy number one” because it translates into systematic 

underestimations or overestimations of the solar power plant’s output. In turn, this can have damaging 

consequences on the plant’s financing, profitability, or viability. A bias in the estimated solar resource of 

just a few percentage points can make a big difference at the design and financing stages. To 

characterize random errors, the use of RMSD is more frequent than that of MAD. Because the solar 

resource is characterized over long periods (1 year to a few decades), and because random errors tend 

to decrease rapidly as the time integration increases, RMSD tends to a limit close to |MBD| by virtue of 

Eq. 10-8, which is another reason why its role is secondary.  

The situation is different for the application of short-term forecasting of solar irradiance and power for 

grid management, energy management, or marketing. Here, the errors of every single forecast value 

matter because balance between demand and supply must be maintained at all times. Both negative 

and positive forecast errors have negative consequences, like penalties or need for balancing power 

that do not balance out over time. This makes MAE and RMSE the most crucial metrics for deterministic 

forecasting.  

MAE is recommended by Hoff et al. (2013) as a preferred measure in solar forecasting, in particular for 

reporting relative errors. In contrast, RMSE is recommended by Yang et al. (2020). An in-depth 

discussion on the respective merits of MAE and RMSE is given by Hodson (2022). From a user’s point 
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of view, the choice of the most suitable error measure(s) should be based on the impact of the prediction 

or forecast errors on their application. MAE is appropriate for applications with linear cost functions (i.e., 

when the costs caused by inaccurate results are proportional to the prediction error). RMSE is more 

sensitive to large forecast errors and is therefore suitable when small errors are tolerable and larger 

errors cause disproportionately high costs, which is the case for many applications in the energy market 

and for grid management issues.  

10.2.4 Visual Diagnostics 

In addition to the computation of statistical error measures, creating effective figures that demonstrate 

visual analysis is strongly recommended. These figures are interesting to show a direct comparison 

between measurements and modeled or forecast data, with the aim of developing a better 

understanding of the performance. Many scientific papers such as Badosa et al. (2014); Forstinger et 

al. (2023); Gueymard (2014); Habte et al. (2016); Markovics and Mayer (2022); Sengupta et al. (2018); 

Vuilleumier et al. (2014); Yang (2020); and Yang et al. (2020) demonstrate effective figures to 

communicate the result of solar resource and/or solar energy research. Yang (2020) illustrates violin 

plots that are hybrids of boxplots and kernel density plots and explain summary statistics as well as the 

density of the variables.  

As an example, Figure 10-3 illustrates the combination of a scatterplot with a boxplot. This arrangement 

explains the complex relationship between the measured and modeled data. The boxplot provides 

information about the median, lower and upper quartile, and interquartile ranges. Obviously, the 

scatterplot provides a comprehensive overview of the datasets and illustrates the strength of their 

relationships. In parallel, the time series plot shows a comparison of successive time intervals, 

constituting an excellent way to visualize the possible features of a long-term dataset by providing 

detailed and intuitive information on patterns or relationships caused by, for example, sky conditions, 

seasonality, or outliers. However, such time-series plots illustrating specific patterns show only a small 

part of the data. Moreover, the spatial and temporal visualization of aggregated statistical metrics is 

important to identify any spatial and temporal pattern in relation with geographic or climate signature, 

for example. 

 

 

 

 

a) b) 
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Figure 10-3. Example plots showing various comparisons of National Solar Radiation Database 
(NSRDB) predictions vs. ground irradiance measurements in the United States: (a) scatterplot and 
(b) time series plot for GHI at Desert Rock, Nevada; and plots depicting the temporal and spatial 
distribution of GHI and DNI for seven National Oceanic and Atmospheric Administration (NOAA) 
Surface Radiation Budget (SURFRAD) locations at different time scales, considering both MBE (c) 
and RMSE (d).  

The 2022 NSRDB data based on the Physical Solar Model (PSM) V4 model was used to generate 
all plots.  

Image by NREL 

10.3 Estimating Measurement Uncertainty 

Uncertainty in solar radiance measurement is dependent on the type of radiometer and on the irradiance 

component to be measured, such as DNI, GHI, global titled irradiance (GTI), or diffuse horizontal 

irradiance (DHI). For each component, the measurement equation can be different, and the evaluation 

of the uncertainty can vary, even when following the same derivation principles. In general, the 

uncertainty will be estimated as a function of several contributions: calibration of the sensor, its 

characteristics or specifications, measurement of the output signals, working conditions, etc. Every 

contribution can have a different weight or relevance, so that not all of them are equally important.  

It is important to note here that the uncertainty of the solar irradiance measured by a radiometer is 

always greater than the uncertainty of its calibration. For instance, in the case of well-maintained, high-

quality thermopile radiometers deployed in the field, factors such as accuracy of solar tracking and/or 

leveling, data logger accuracy, cleanliness of the windows, and frequency of recalibration could 

c) 

d) 
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contribute more sources of uncertainty. Detailed uncertainty analyses for high-quality field 

pyrheliometers can be found in ASTM G213 (2017); Balenzategui et al. (2022a; 2022b); Habte et al. 

(2016; 2017); and Michalsky et al. (2011). Similarly, the study by Vuilleumier et al. (2014) includes field 

pyranometers, though the term “field instrument” might be misleading here, because most of these 

studies refer to instruments located at research-class stations and operated under quasi-laboratory 

conditions (i.e., with optimal calibration and maintenance). In the practice of solar resource 

assessments, particularly those involving temporary stations under harsh conditions, instruments are 

typically maintained on a more sporadic schedule, implying that additional uncertainties would apply. In 

any case, the aforementioned studies show that the uncertainty of calibration is one of the most 

important contributions to the overall uncertainty for well-maintained high-quality instruments. 

Calibration of a radiometer usually consists of the determination of its responsivity, R, or the relationship 

between its output signal (current or voltage) and the incident solar irradiance. Calibration methods 

depend on the type of radiometer under test and on the type of radiometer used as reference instrument; 

they are normally specified by international standards (see Chapter 3). 

The calibration stability of the present commercially available pyrheliometers and pyranometers is 

generally satisfactory, as revealed by only a slight change in their R value—typically less than ±0.1% 

and ±0.2% per year, respectively. When finally deployed in the field, factors such as accuracy of solar 

tracking and/or proper leveling and orientation, data logger accuracy, cleanliness of the windows and 

domes, and frequency of recalibration could contribute more sources of uncertainty. Even if these effects 

are kept low by following measurement and maintenance best practices, expanded uncertainties of 

±2.0%–±2.5% in DNI measurements and ±3.0%–±5.0% in GHI measurements have been found from a 

high-quality measurement system (Reda 2011). As mentioned above, field instruments deployed at 

solar resource assessment stations in harsh environments can be expected to have greater 

uncertainties, particularly in the absence of a stringent maintenance program. 

Moreover, the ASTM G213 (2017) standard provides guidance and recommended practices for 

evaluating uncertainties when calibrating and performing irradiance measurements with pyranometers 

and pyrheliometers. The standard follows the GUM method and attempts to quantify the uncertainty in 

measuring irradiance. Further, the standard aims to maintain the measurement traceability through 

WRR with respect to SI, which ensures that the uncertainty quoted for radiometric measurements can 

be intercompared, based on documented methods of derivation. Figure 10-4 shows an example of the 

contribution of uncertainty from each source, expressed either in absolute values or percentages. Some 

sources of uncertainty contribute more than others, but also, the relative importance of the uncertainty 

budget varies during the day, with a total uncertainty that increases significantly with SZA, for reasons 

explained next.   



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

10-14 

 

  

 

Figure 10-4. Example of expanded uncertainty as a function of time and source of uncertainty 
contribution, based on ASTM G213 (2017); left image, expressed in percentages, and right, 
expressed in W m-2 

Image by NREL 

 

In addition to being sensitive to the magnitude of GHI, the responsivity of most pyranometers depends 

on multiple factors such as the angle of incidence of the beam irradiance component. This explains why 

the typical shade/unshade calibration uncertainty (see, e.g., ISO 9846 [1993]; WMO [2018]) of any 

thermopile pyranometer placed in a horizontal position with respect to a WRR reference cavity 

radiometer is ≈0.5% at any very narrow range (±2°–±5°) of SZA (Reda et al. 2008). Typically, during 

calibration, R is selected as an average responsivity for a specified SZA over one or more days. In the 

field, however, the monitored irradiance is sensed over a wide range of SZAs (up to 0–90°), and the 

measurement uncertainty over the whole range is larger. As mentioned in Chapter 3, for some 

pyranometers, R can vary by ±3–±10% or even more over this zenith angle interval. These effects then 

need to be combined with all other potential sources of error in the field (e.g., pyranometer installation, 

data logger accuracy, cleanliness, spectral dependency, or temperature sensitivity). 

If only one R is used for a wide range of solar angles, that value is often derived for relatively low SZAs 

(high solar elevation), thus making the highest irradiance values (on average) associated with the lowest 

possible uncertainty. Another option, which is the standard procedure at NREL, for instance, is to report 

R for a fixed SZA=45° because that geometry is more representative of all daily situations. The variation 

of responsivity with SZA and azimuth angles is typically greater for high SZAs; thus, large uncertainties 

usually occur at high SZAs. These high-SZA-related uncertainties occur throughout parts of the day 

(early morning and late afternoon) when the available solar resource is much smaller than typical midday 

values and/or when SZAs are smaller. Because the minimum SZAs vary significantly throughout the 

year (except close to the equator), the uncertainty in hemispherical radiation data will vary as well. This 

effect is especially important for latitudes beyond ±45°, when SZA is rarely smaller than or equal to the 

SZA at which the responsivity of the pyranometer was determined.  

Even when good measurement conditions exist, such as near midday under clear-sky conditions, the 

uncertainty in hemispherical global or diffuse measurements is typically two to three times that of direct-

beam measurements, or ±3–±5% throughout a year, primarily because of seasonal variations in 

uncertainty. Better instrumentation design and careful applications of correction factors as a function of 

SZA are ways to improve (reduce) the uncertainty in GHI measurements. The alternative is to use high-

quality DNI and DHI measurements using a tracking device (e.g., a disk or a ball) to derive GHI from the 

closure equation (Michalsky et al. 1999). The expanded uncertainty for this calculated GHI then 

approaches that of DNI (±2%) for clear-sky measurements. One limitation of this method, however, is 
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that it assumes “perfect” operating conditions, such as correct tracking for both DNI and DHI. Slight 

misalignments of tracking and complete tracker failures do happen in practice, resulting in large errors 

in all three components, unless the errors are properly and rapidly detected during the QC procedure, 

which is difficult in practice. 

Figure 10-1 describes the calibration traceability for pyrheliometers used to measure DNI and for 

pyranometers used to measure GHI or DHI. The figure indicates how uncertainties accumulate from 

calibration to field deployment. Broad arrow boxes show the accumulated expanded uncertainty at each 

phase of the process. The resulting uncertainty in field deployment for pyrheliometers is ±2.0–±2.5% in 

this example, assuming regular and high-quality maintenance. Measurement uncertainties for 

pyranometers used to measure GHI in the field range from ±3.0–±5% for SZAs between 30° and 60°, 

but are higher for angles greater than 60°, again assuming regular and high-quality maintenance. 

Calibrations of pyranometers can be performed horizontally (for GHI) or at tilt (for GTI). More specifically, 

pyranometers measuring GHI are calibrated horizontally using either GHI or combined DNI and DHI 

measurements as a reference. Calibration for a pyranometer intended to sense GTI is done using a 

reference pyranometer installed on the same exact tilt (ASTM E824 2018). Tilting a pyranometer for GTI 

measurements can slightly alter its responsivity compared to its horizontal position because of, for 

example, changes in convection patterns inside the dome or changes in thermal offset. This typically 

affects the calibration uncertainty of GTI measurements. Some thermopile pyranometers are not 

designed for tilted measurements, and at certain times of the day, direct sunlight can strike their 

unshaded bodies, affecting measurements. Shielding can reduce or eliminate this problem. Calibrating 

a tilted pyranometer with a reference instrument of a different type (or make and model) might also 

introduce additional uncertainty. To help evaluate the uncertainty in GTI data, the metadata of such 

datasets should include shielding information.  

This caveat also holds for the measurement of upwelling irradiance using a down-facing pyranometer. 

(This measurement is necessary to obtain the surface albedo by dividing it by GHI, see Chapter 3.) 

Digital radiometers have been recently introduced on the market and are now deployed in many solar 

energy projects. This also brings new challenges in terms of uncertainty quantification. Some digital 

radiometers, for example, include a built-in temperature compensation feature, among other things. In 

such a case, the uncertainty of the calibrated internal sensitivity with temperature coefficients must be 

applied, and the contribution of the coefficients to the uncertainty should be clearly identified. More 

research is needed to understand the propagation and relationships of various sources of uncertainty 

related to digital radiometers.  

For rotating shadowband irradiometers (RSIs) and photodiode pyranometers, which are typically used 

in Tier-2 stations (see Chapter 3), one of the most crucial impacts on uncertainty is the spectral 

irradiance error. This is because silicon photodiode sensors detect only visible and infrared radiation in 

the range ≈300–1100 nm and have a spectral response that varies strongly within this wavelength 

interval (see Chapter 3). Further, the role of using algorithms to reduce systematic effects and the 

uncertainty introduced by imperfect shading must be considered. A more detailed uncertainty analysis 

for RSIs following GUM can be found in Wilbert et al. (2016). The study defines a method for the 

derivation of the spectral error and spectral uncertainties, and presents quantitative values of the 

spectral and overall uncertainties. The results of this detailed analysis and other studies such as Wilcox 

and Myers (2008) indicate lower overall uncertainties than those presented in  

 

Table 10-2 for silicon photodiode pyranometers because the results in the table assume that no rigorous 

correction is applied. The expanded measurement uncertainty for subhourly DNI measurements is 

approximately ±7% for a photodiode RSI radiometer with state-of-the-art correction functions for 

systematic errors. Similarly, RSI-based GHI measurements are found to be affected by slightly lower 
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uncertainties than DNI (6%, k = 2, after application of advanced adjustment functions; see Chapter 3). 

Moreover, advanced adjustment functions can significantly reduce the uncertainty in both GHI and DNI. 

In parallel, considering the lower incidence of soiling effects on RSIs than on thermopile pyranometers, 

the use of advanced adjustment functions can bring RSI measurements at resource assessment 

stations almost on par with those from reference instruments (Al-Rasheedi et al. 2018). 

The average uncertainty of an irradiance time series is expected to vary from one station to another and 

even from time stamp to time stamp for a specific station. An individual uncertainty analysis per station 

and time interval is complex and also depends on the applied QC. After detailed QC and the rejection 

of suspicious data, a significant part of the variation of the uncertainty with station and time is removed. 

As a simplification, the uncertainty of DNI and GHI at either Tier-1 or Tier-2 stations can be estimated, 

based on the methods described in this section. In problematic cases and for the most relevant zenith 

angles, the QC procedure for stations with an independent measurement of the 3 components (GHI, 

DHI, and DNI) flags data with deviations larger than 8% between calculated (using the closure equation) 

and measured GHI. Assuming good maintenance, the uncertainty of the used data is expected to be 

lower than this QC-based limit and close to the mentioned uncertainties. 

As indicated above, the standard uncertainty for well-maintained Tier-2 stations is estimated as 7% and 

6% for DNI and GHI, respectively. As the three-component test cannot be performed at such stations, 

the upper uncertainty limit that is related to the QC procedure for these stations is higher than in the 

case of the Tier-1 stations with independent measurements of DNI, GHI, and DHI, and can be expected 

to be ≈10%. At Tier-1 stations, the uncertainty is expected to be lower than the QC-related limit and 

close to the estimations for well-maintained stations. 

10.3.1 Method for Quantifying Uncertainty: The GUM Method  

The method for estimating uncertainty has changed significantly over the last few decades. The general 

adaptation to the current methodology takes time, so some outdated terminology and methods still 

appear in the literature and might be in use by the industry. Even though the use of outdated 

methodologies is discouraged, short descriptions are provided to help users understand and correctly 

use uncertainty data based on older methodologies. 

10.3.2  Practical Examples 

GUM is currently the accepted guide for measurement uncertainty (ISO/IEC 2008). The method provides 

the expanded uncertainty for a 95% confidence interval by multiplying the combined uncertainty by the 

coverage factor k (k = 1.96 for a Gaussian distribution for infinite degrees of freedom; it is often 

approximated as 2, which is also alternatively used in this chapter). GUM defines Type-A uncertainty 

contributions as derived from statistical methods and Type-B sources as evaluated by other means, 

such as scientific judgment, experience, specifications, comparisons, and calibration data. GUM defines 

the concept of a standard uncertainty (ustd) for each uncertainty type, which is an estimate of an 

equivalent standard deviation (of a specified distribution) of the source of uncertainty. To appropriately 

combine the various uncertainties, the GUM methodology uses a sensitivity coefficient (c) that is 

calculated from the measurement equation using partial derivatives with respect to each input variable 

in the equation. GUM removes the historical factor of 2 and introduces the coverage factor k (whose 
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value depends on the known or assumed statistical distribution of uncertainties),62 which is applied to 

compute the expanded uncertainty (UE) as:  

UE = k· uc    (10-12)  

where: 

uc is the combined standard uncertainty, per all the steps of the GUM summary below (points 1–6). 

As shown in Figure 10-5, the GUM procedure can be summarized in six steps (Konings and Habte 2016; 

Reda 2011): 

 

1. Define the measurement equation for the calibration and/or measurement system. This 

consists of a mathematical description of the relation between sensor voltage and any other 

independent variables and the desired output (calibration response or engineering units for 

measurements). The example equations used to quantify radiometric measurement are: 

𝐸 =
(𝑉 − 𝑅𝑛𝑒𝑡 • 𝑊𝑛𝑒𝑡)

𝑅
 

(10-13a) 

  

𝐸 = DNI • cos(𝑍) + DHI (10-13b)  

where: 

o E = irradiance, in W m-2 (GHI, GTI, DHI, or DNI); in particular, when E stands for DNI, DHI = 0 in 

Eq. 10-13b and Rnet ≈0, resulting in a simplified version of Eq. 10-13a: E = V / R 

o R = responsivity of the radiometer in μV/ (W m-2)  

o V = sensor output signal (e.g., voltage or current) of the radiometer (e.g., μV, mA) 

o Rnet = net infrared responsivity of the radiometer in μV/(W m−2) 

o Wnet = effective net infrared irradiance measured by a collocated pyrgeometer in W m−2. 

 

In the case of GHI, the closure equation (10-13b) applies, in which: 

o DNI = beam irradiance measured by a primary or standard reference standard pyrheliometer in 

W m−2 

o Z = SZA, in degrees or radians 

o DHI = diffuse horizontal irradiance, measured by a shaded pyranometer (W m-2). 

 

2. Determine the sources of uncertainty. Most sources of uncertainty are obtained from statistical 

calculations, specifications from manufacturers, and previously published reports on radiometric 

data uncertainty or professional experience. Some common sources of uncertainty are associated 

 

 

62 k is 1.96 for a Gaussian distribution for a 95% confidence level. Generally, a 95% confidence level means that 

95% of the values will be within the statistical limits defined by the uncertainty. 
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with the cosine response, spectral response, nonlinearity, temperature response, thermal loss, data 

logger accuracy, soiling, and calibration, including the drift of the calibration constant(s). 

 

Figure 10-5. Measurement uncertainty estimation flowchart  

Image modified from Habte et al. (2016) 
 

 

3. Calculate the standard uncertainty, u. In this step, an individual u for each variable in the 

measurement equation is calculated using either a statistical method (Type-A uncertainty 

component) and/or other methods (Type-B uncertainty component). In the GUM method, the 

standard uncertainties are calculated by dividing the expanded uncertainty of each source by a 

factor corresponding to the specific statistical distribution of the experimental data (ASTM G213 

2017). 

A. Type-A uncertainty: 

 A Type-A standard uncertainty (u) is calculated when taking repeated measurements 

of the input quantity value, from which the sample mean and sample standard 
deviation (SD or σ) can be calculated, resulting in Eq. 10-13: 

𝑢2 =
𝜎2

𝑛
 where: 𝜎2 =

 ∑ (𝑋𝑖 − 𝑋 𝑛
𝑖=1 )2

𝑛 − 1
 (10-14) 

 
B. Type-B uncertainty: 

Type-B uncertainties are often provided (e.g., in calibration certificates) as an 
expanded uncertainty (U). To be consistent with Type-A uncertainties, the standard 

Type-B uncertainties, u, are calculated from the expanded uncertainties, U, using one 

of the three following methods: 
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i. Equation for unknown statistical distribution (common assumption: 

rectangular distribution): u = U/√3, where U is the expanded uncertainty of a 

variable 

ii. Normal distribution: u = U/k, where k is a coverage factor of 2 or, more 

exactly, 1.96 (ISO/IEC 2008) 

iii. For other statistical distributions, the applicable values for k are used. 

 

Compute the sensitivity coefficient, c. To appropriately combine the various uncertainties in the 

next step, the uncertainties must be weighted. According to the GUM method, this is done by 

calculating the sensitivity coefficients (c) of the variables in a measurement equation. These 

coefficients affect the contribution of each input factor to the combined uncertainty of the irradiance 

value. Therefore, the sensitivity coefficient for each input is calculated by partial differentiation with 

respect to each input variable in the measurement equation. Table 10-1 shows those sensitivity 

coefficients applicable to radiation measurements.  

The sensitivity equations given in Table 10-1 are for two distinct situations. The calibration sensitivity 

is for calibrations when the reference GHI is calculated from reference DNI and DHI measurements. 

The second column is for GHI measurements in the field. The calibration sensitivities are related to 

the inverse of the GHI value, whereas the field sensitivities are related to the inverse of the 

responsivity.  

 

Table 10-1. Example of Computing Sensitivity Coefficients for GHI Pyranometer Calibration and 
Measurement Using Partial Derivatives 

Calibration Sensitivity Equations Field Measurement Sensitivity Equations 

𝑐𝑉 =
𝜕𝑅

𝜕𝑉
=

1

DNI cos(𝑍) + DHI
 cR=

∂GHI

∂R
=

–(V–𝑅𝑛𝑒𝑡 𝑊𝑛𝑒𝑡)

R
2

 

 

𝑐𝑅𝑛𝑒𝑡 =
𝜕𝑅

𝜕𝑅𝑛𝑒𝑡

=
−𝑊𝑛𝑒𝑡

DNI cos(𝑍) + DHI
 

c𝑅𝑛𝑒𝑡
=

∂GHI

∂𝑅𝑛𝑒𝑡

=
–𝑊𝑛𝑒𝑡

R
 

𝑐𝑊𝑛𝑒𝑡 =
𝜕𝑅

𝜕𝑊𝑛𝑒𝑡

=
−Rnet

DNI cos(𝑍) + DHI
 c𝑊𝑛𝑒𝑡

=
∂GHI

∂𝑊𝑛𝑒𝑡

=
–𝑅𝑛𝑒𝑡

R
 

  

𝑐𝐷𝑁𝐼 =
𝜕𝑅

𝜕DNI
=

−(𝑉 − 𝑅𝑛𝑒𝑡  𝑊𝑛𝑒𝑡)cos(𝑍)

( DNI cos(𝑍) + DHI)2
 

c𝑉=
∂GHI

∂V
=

1

R
 

𝑐𝑆𝑍𝐴 =
𝜕𝑅

𝜕𝑍
=

DNI sin(𝑍) (𝑉 − 𝑅𝑛𝑒𝑡  𝑊𝑛𝑒𝑡)

( DNI cos(𝑍) + DHI)2
 

 

𝑐𝐷 =
𝜕𝑅

𝜕DHI
=

−(𝑉 − 𝑅𝑛𝑒𝑡  𝑊𝑛𝑒𝑡)

( DNI cos(𝑍) + DHI)2
 

 

 

4. Calculate the combined standard uncertainty, uc. This is the combined standard uncertainty 

using the propagation of errors formula and quadrature (square root sum of squares) method. It is 

applicable to both Type-A and Type-B sources of uncertainty. Standard uncertainties (u) in Step 3 
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multiplied by their sensitivity factors (c) in Step 4 are combined in quadrature to give the combined 

standard uncertainty, uc:  

𝑢𝑐 = √∑ (𝑢𝑗  • 𝑐𝑗)2𝑛
𝑗=0

 

where n is the number of uncertain variables that are used to calculate the combined uncertainty. 

5. Calculate the expanded uncertainty (U95). The expanded uncertainty is calculated by multiplying 

the combined standard uncertainty by the coverage factor, typically by applying the student’s t-

analysis to determine the appropriate value of k (typically 1.96 for 95% and 3 for 98% confidence, 

respectively, for large datasets assuming a Gaussian distribution): 

𝑈95 = 𝑘 • 𝑢𝑐 

 

These six steps, also described in Figure 10-5, demonstrate that the uncertainty quantification is a cycle. 

This means that one can use the expanded uncertainty in Step 6 as an input to a measurement equation. 

This would be the case, for example, in calculations of the performance ratio of solar conversion 

systems: to calculate the ratio of system output/solar input, the expanded uncertainty in Step 6 is used 

as an input to evaluate the denominator (solar input), and the cycle continues to ultimately quantify the 

expanded uncertainty of the performance ratio. 

Further, these steps are applicable to the quantification of the uncertainty in both calibration and field 

measurements. Uncertainty in measurements begins with the uncertainty in calibration references, 

calibration processes, and sensor design characteristics. For example, for thermopile sensors, a 

calibration constant is required to convert the output voltage to the required irradiance, as discussed in 

Chapter 3. The resulting uncertainty in calibration factors must then be combined with the influence of 

additional sources of uncertainty in the field measurement instrumentation, installation methods, data 

acquisition, and operations and maintenance processes (Reda 2011). Overall, estimates of 

uncertainties for the magnitudes of values (e.g., voltage, Rnet) need some (documented) experimental, 

theoretical, or other (specifications) sources. These sources of uncertainty are the magnitudes adjusted 

in these steps—for example, in the sensitivity coefficients calculation. Such example data are presented 

in several references (ASTM G213 2017; Habte et al. 2014; Konings and Habte 2016; Reda 2011).  

Users must pay close attention to the sources of uncertainty. For instance, the SZA uncertainty includes 

sources of error such as accuracy in latitude and longitude, air pressure (for refraction corrections), or 

timekeeping (clock accuracy). The units of these variables must be treated carefully and consistently, 

whether they are percentages (such as of full scale or reading) or absolute units (such as volts, degrees, 

or W m-2). Additionally, it is essential to consider the symmetry of the sources of uncertainty. In this 

section, all sources of uncertainty are considered symmetrical (±); however, some other sources could 

be asymmetrical or one-sided. For example, Konings and Habte (2016) considered non-stability and 

zero offset of Type-A as one-sided sources of uncertainty. 

Applying the GUM procedure to the case of pyrheliometer and pyranometer calibration, Table 10-2 

summarizes the estimated uncertainties that are typically found in practice. In addition, the table 

identifies the typical sources of uncertainty considered for the overall uncertainty analysis of irradiance 

measurements from two types of radiometers: radiometers with thermopile detectors and photodiode 

radiometers with silicon detector (before the application of correction functions for systematic errors). 

Note that the contribution to uncertainty caused by insufficient maintenance (alignment, leveling, 

cleaning, etc.) can be much greater than the combined uncertainties for well-maintained instruments. 

As explained in Chapter 3, instruments with clear optics (such as most thermopile radiometers) are more 

(10-15) 

(10-16) 
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strongly affected by soiling; therefore, the uncertainty related to their operation in the field directly 

depends on the regularity and quality of their maintenance over time. 

 

Table 10-2. Example of Estimated Expanded Uncertainties at 95% confidence interval of 
Responsivities of Field Pyranometers and Pyrheliometers 

Modified from Reda (2011) 
 

Type-B Uncertainty 
Source 

Thermopile 
Pyranometer  
(%) 

Photodiode 
Pyranometer (%) 

Thermopile 
Pyrheliometer (%) 

Photodiode 
Pyrheliometer (%) 

Calibrationa 3 5 2 3 

Zenith Responseb 2 2 0.5 1 

Azimuth Response 1 1 0 0 

Spectral Response 1 5 1.5 8 

Tiltc 0.2 0.2 0 0 

Nonlinearity 0.5 1 0.5 1 

Temperature Response 1 1 1 1 

Aging per Year 0.2 0.5 0.1 0.5 

U95  4.1 8.0 2.7 8.9 
 

a Includes zenith angle responses from 30° to 60°. 

b Includes zenith angle responses from 0° to 30° and from 60° to 90°. 

c This uncertainty is set to zero for untilted radiometers. 

10.4  Estimating the Uncertainty of Modeled/Predicted Datasets 

Solar radiation can be modeled in many ways, depending on the available inputs, origin (ground-based, 

satellite-based, or NWP-based), application requirements (e.g., clear-sky or all-sky conditions), and 

degree of detail (broadband or spectral irradiance). 

Satellite-based models used to estimate solar radiation can use a physics-based approach relying on 

radiative transfer modeling, an empirical or semiempirical approach relating the reflected radiance 

sensed by the satellite sensor directly to surface radiation, or a mix of both (see Chapter 7).  

Models developed using empirical or semiempirical correlations between ground-based irradiance 

measurements and reflected radiance observations from satellite sensors inherently carry the 

uncertainty of these measurements. This uncertainty is embedded in the ultimate model accuracy, along 

with the uncertainties associated with the satellite sensors and the modeling process. Models empirically 

based on ground-based irradiance measurements with 2%, 5%, or 10% uncertainty cannot have a lower 

uncertainty than the data used to derive and/or validate the model. Similarly, models based on first 

principles of physics and radiation transfer cannot be validated or verified to a level of accuracy greater 

than that of the ground-based irradiance measurements. A thoroughly documented uncertainty analysis 

of these measurements (Gueymard and Myers 2008; 2009; Habte et al. 2016; Vuilleumier et al. 2014) 

is necessary to ascertain the validity of model accuracy claims. The effect of biases on ground-based 

irradiance measurements should be part of any model analysis. 
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An understanding of the differences between the perspectives of satellite-derived irradiance estimates 

and ground-based measurements is essential when the latter are used to derive and validate satellite-

derived irradiance values. Observations of a specific pixel (or grid cell) by a spaceborne radiometer 

ultimately provide (after substantial modeling) an estimate of surface radiation based on the estimated 

properties of those clouds and other atmospheric constituents spread throughout that pixel or a larger 

area. In contrast, surface irradiance observations are made by an instrument viewing the sky from a 

specific point. If the satellite pixel size is small enough, parallax errors enter into the comparison. 

Conversely, if it is too large, the radiation field over the pixel might not be homogenous enough for a 

correct comparison. Terrain effects could also influence a comparison in which cloudiness, elevation, 

and/or topographic shading could vary within a short distance. Often the data available for satellite 

modeling lack the exactitude for differentiating fine variations seen by ground-based measurements. 

Another intricate situation results from the fact that the clear-sky part of a satellite-based radiation model 

typically has a much coarser spatial resolution than the cloudy part. Whereas the latter is up to 1 km in 

most modern products, the former is, for example, 0.5 by 0.625° (or ≈65 km) when the atmospheric input 

data for the clear-sky radiation model are extracted from Modern-Era Retrospective analysis for 

Research and Applications, Version 2 (MERRA-2). Thus, the actual resolution of the irradiance product 

ultimately depends on the cloudiness conditions. These issues can be compounded by the fact that 

ground measurements represent an average irradiance value calculated over a fixed time interval (e.g., 

1 minute or 10 minutes), whereas satellite-based model predictions solely rely on instantaneous 

snapshots taken at different intervals (e.g., every 10 minutes). 

10.4.1 Statistical Metrics  

To alleviate the absence of any standardized method for accuracy assessment and uncertainty 

calculation, many possible statistical metrics used in the literature have been reviewed (Gueymard 

2014). Still, most authors report only the RMSD and MBD (or RMSE and MBE), that is, randomness and 

bias (absolute or relative). As an example, the model of Darnell et al. (1988) was used to evaluate 

surface radiation using cloud information from the International Satellite Cloud Climatology Project C1 

cloud database. The results were then compared to surface observations collected by the World 

Radiation Data Center in Darnell et al. (1992). The RMSD from this comparison was ≈16 W m-2, and the 

MBD was ≈4 W m-2. Note that the interpretation of the reported sources of uncertainty depends on the 

spatial and temporal resolution of the data being compared (random errors tend to decrease rapidly with 

increasing averaging period) and that the relative uncertainties in the modeled DNI are always greater 

than in GHI—opposite to what occurs with high-quality measurements. 

According to Perez et al. (1987), satellite-based retrievals of DNI were accurate to 10–12%. Later, 

Renné et al. (1999) and Zelenka et al. (1999) found that the target-specific comparison to ground-based 

observations had a relative RMSD of at least 20%; the time-specific pixel-wide accuracy was 10–12% 

on an hourly basis at the sites under scrutiny. Most accuracy results contain values that are proportional 

to the measured values (percentage), given that the measured values are within a certain range and 

specifications are related to a fixed value in W m-2. The validation of satellite-based irradiance 

predictions is sometimes performed on a daily (instead of hourly or subhourly) timescale. This might not 

always be appropriate, however, particularly in areas where strong morning/afternoon cloudiness 

asymmetries exist (Salazar et al. 2020). 

From an application or use of statistical metrics perspective, using both MAD and RMSD is not 

necessary and can lead to misinterpretations. This stems from considerations of statistical consistency 

that become important when verifying the accuracy of modeled data—most particularly in the case of 

forecasts (Section 10.6). In summary, if a model is optimized by minimizing the squared error, RMSD is 

consistent, but MAD is not (Yang et al. 2024). More in-depth theoretical details are provided by Gneiting 

(2011). 
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From a solar resource standpoint, the most important error measure is MBD by far, because any bias 

in the predicted resource leads to a similar bias in the estimated power production over the long term, 

which can put the whole project at risk, either at the financing stage or later if the actual production does 

not meet expectations. Although random errors in modeled irradiance estimates can be large when 

considering short time intervals (e.g., a few minutes), they decrease rapidly when integrating over time. 

They normally reach a low value when averaging over one or more years, which is the typical time frame 

used for resource assessments.  

Moreover, bias is actually part of RMSD, per Eq. 10-8. It indicates that, even if a long averaging period 

is considered, such as ≈15 years, RMSD can approach the absolute value of MBD, |MBD|, but can never 

be lower. In contrast, good measurements have relatively small random errors, so that their total 

uncertainty does not change much over time. Thus, when comparing modeled irradiance estimates to 

reference ground-truth measurements, the RMSD of the former decreases over the averaging time and 

tends toward a limit that is either the uncertainty of the reference measurements or the |MBD| of the 

modeled results, whichever is greater. This is exemplified in Figure 10-6, using modeled data from the 

NSRDB. 

 

Figure 10-6. Example of decreasing trend of the RMSD of NSRDB-modeled GHI (1998–2018 PSM V3) 
with averaging time at various U.S. stations in comparison with measurement uncertainty. Y-axis 
shows the overall uncertainty with 95% confidence interval.  

Image by NREL 

10.4.2  Practical Examples 

To improve modeled data integrity, a comprehensive representation of the model uncertainty method is 

desirable. As discussed in Section 10.2, no standardized method that would be equivalent to GUM, but 

specifically addressing modeled estimates, exists yet. Ideally, the assessment of modeled data 

uncertainty would attempt to replicate the developments made for measurement uncertainty, as detailed 

in Section 10.1. This means that the individual uncertainty of each of the six sources of error identified 

above would have to be quantified and ultimately combined in quadrature. This process is still in its 

infancy, but some considerations are developed in what follows for each source of error. 
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a) Intrinsic Model’s Uncertainty 

Each radiation model—most notably of an empirical nature—constitutes an approximate (and thus 
imperfect) mathematical representation of complex physical processes that occur throughout the 
atmosphere. To accelerate calculations, most models used in practice rely on several simplifying 
assumptions, parameterizations, look-up tables, interpolation/extrapolation, ad hoc empirical 
results, etc., which decrease performance. Because this might occur under various, typically 
unknown, circumstances, and there is essentially no way to verify the model’s output without 
measurements that carry uncertainty, it is difficult to attribute a specific uncertainty to the model 
itself. The most sophisticated models with a discrete-ordinate solver algorithm (e.g., libRadtran 
[Emde et al. 2016; Mayer and Kylling 2005]), are considered to provide an “exact” solution to the 
equation of radiative transfer, and thus should have no intrinsic uncertainty, although this cannot 
be demonstrated. Moreover, such models cannot normally be used in repetitive calculations 
because of their considerable computing requirements. Even when they are used in research 
projects, their irradiance predictions do not necessarily appear better than those of much simpler 
models, possibly because of the inherent uncertainty in the reference ground truth or error 
propagation from imperfect inputs (Abreu et al. 2023). 

b) Model’s Input Data Uncertainty 

Any radiation model relies on various inputs to provide an irradiance prediction. Some of these 

inputs are either deterministic (e.g., SZA) or can be measured very accurately, and can thus have 

an extremely low uncertainty if properly handled. Many important variables, however, can only be 

retrieved (e.g., through remote sensing) or estimated, in which case their uncertainty can be high 

and dependent on location and time. This is, for example, the case for all aerosol- and cloud-related 

variables. If the radiation processes strongly depend on such uncertain variables, the irradiance 

predictions will be impacted by any error in them. Further, if errors in the atmospheric input data are 

large over a specific area, a paradoxical situation can occur whereby the predictions of a 

sophisticated model that uses such inputs can be worse than those of a simple locally developed 

empirical model that does not depend on them (Sun et al. 2022). 

c) Uncertainty Caused by Error Propagation from Input to Output 

Error propagations depend on the sensitivity of the model to each input, and how these sensitivities 

interact with each other to result in compensation or amplification of errors. Ideally, the specific 

standard deviation, sp, for error propagation affecting a model that predicts the irradiance quantity 

E from n inputs Xi (i = 1, n) would be obtained from: 

  𝜎𝑝
2 = (Δ𝑋1

𝛿𝐸
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2
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 (10-17) 

where the ∆Xi error in input Xi is multiplied by the sensitivity of the modeled output to Xi. This formula, 
however, might be too pessimistic because it does not take any possible systematic compensation 
of errors into account. In any case, there is currently no specific data to determine these sensitivities 
for each model used in practice. Some preliminary studies involving a few clear-sky radiation models 
have been made, however, either for the particular case of the sensitivity of DNI predictions to 
aerosol inputs (Gueymard 2003; 2012a; Gueymard and Ruiz-Arias 2015) or for more inputs but with 
a rigorous radiative transfer model, namely, libRadtran (García et al. 2014). Recently, Wang et al. 
(2024) analyzed the impact of various key atmospheric variables (including cloud optical depth) on 
the estimates of hourly all-sky GHI obtained with hybrid combinations of libRadtran and machine-
learning algorithms. 
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d) Uncertainty in Ground-Truth Measurements 

As mentioned earlier, the validation of any modeled dataset is normally made by comparison with 
high-quality ground-based radiometric measurements. Because there is uncertainty involved in 
those, even a perfect model using perfect inputs would not be attributed an uncertainty lower than 
that of these reference ground-truth measurements. In the field, the uncertainty of irradiance 
measurements can be estimated using ASTM G213 (2017), for instance.  

Note that many publications mention the term “model uncertainty,” but this is a confusing 
misnomer. Based on the above discussion, a more correct terminology is “modeled prediction 
uncertainty” because all four sources of error a), b), c), and d) are then explicitly included. It is also 
important to emphasize that the prediction uncertainty is not necessarily independent from the 
measurement uncertainty, which complicates the picture, as demonstrated by the following 
example. Suppose that the predictions from two models, M1 and M2, are compared against GHI 
measurements obtained with a high-quality pyranometer of assumed 5% uncertainty. 
Unbeknownst to the analyst, however, that specific instrument is incorrectly calibrated, resulting in 
a systematic bias of +3% in the measurements. Unbeknownst to the analyst as well, M1 and M2 
behave the same in terms of introducing randomness in their outputs, but M1 happens to be 
perfectly centered (no bias), whereas M2 is biased +3% for the specific inputs used at that specific 
location. The comparison with ground measurements would lead the analyst to the incorrect 
conclusion that M2 is better than M1 and that the latter’s uncertainty is larger than the former’s. 

e) Uncertainty Caused by the Interannual Variability 

Modeled irradiance predictions are typically validated against ground-based measurements that 
span a period of only a few months or years. To extrapolate those results to a longer period, such 
as the 30-year period of climate normals, additional uncertainty must be added, depending on 
irradiance component and the specific interannual variability conditions of the area (see Chapter 
6). Even though this uncertainty is not negligible in general, most validation results do not take it 
into account and are thus somewhat optimistic, unfortunately. Note, however, that this uncertainty 
obviously does not apply to short-term forecasts.  

f) Uncertainty Caused by Long-Term Trends 

Modeled predictions can only be validated against observational data from the past. Sometimes, 
the reference measurements that are needed for such validation are years or decades old. 
Various regions of the world are affected by long-term trends (e.g., dimming and brightening) that 
typically affect DNI more than GHI. Because what actually matters in solar resource assessments 
is the accuracy of modeled predictions in future decades, the mismatch between the validation 
period in the past and the future period of interest must be attributed an additional uncertainty. 
This specific uncertainty is still not known precisely and has not been considered yet in published 
validation results. As in the case just above, this uncertainty does not apply to short-term 
forecasts. 

g) Uncertainty Caused by the Sun’s Output Variability 

As discussed in Chapter 2, the sun’s output is not constant but has both short-term (daily) 
fluctuations and a long-term (≈11-year) cycle. At any moment, the resulting uncertainty is about 
±0.2%. It affects the uncertainty of all radiometer calibrations made outdoors because, by chance, 
an instrument might be calibrated at a moment when the sun’s output is exceptionally high or low. 
For modeled data, however, this source of uncertainty is relatively small and can be neglected. 

It is essential to use measurements of solar radiation made at ground stations from regions in various 

climates (or even microclimates) with the goal of performing a detailed evaluation of the modeled 

dataset; however, measurements of solar radiation made at ground stations are temporally and spatially 

sparse, and they are expensive to operate and maintain. Further, to perform an accurate evaluation of 
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the model’s predictions, it is critical that these ground-based irradiance measurements be of high quality 

and rely on low-uncertainty radiometers that follow the best practices for collection, operation, 

maintenance, and quality assurance. 

Studies such as those by Cebecauer et al. (2011b); Gueymard (2014); Habte, Sengupta, and Lopez 

(2017); Suri and Cebecauer (2014); Thevenard and Pelland (2013) discussed quantification methods 

aimed at a comprehensive representation of prediction uncertainty. Various error statistics (bias, random 

error metrics) can be used to evaluate the effective uncertainty of modeled data when also considering 

the uncertainty in the ground-based irradiance measurements.  

Following Gueymard and Wilcox (2011); Habte, Sengupta, and Lopez (2017), the interannual variability 

metric can be formalized as follows: 

 SD = √( 
1

𝑛
∑  𝑛

𝑖=1 (𝑎𝑖 − â)2)  

𝑈𝑖𝑛𝑡𝑒𝑟−𝑎𝑛𝑛𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦(%) = COV(%) =  
SD

â
 • 100   

where SD is the standard deviation, and 𝑎𝑖 is the average irradiance of the individual year, i, of the 

considered n years. The mean irradiance during the selected long-term period is represented by â. 

In parallel, the accuracy of satellite-derived modeled data can be determined using various other 

statistical indicators, such as the Kolmogorov-Smirnov test (Massey Jr. 1951). The Kolmogorov-Smirnov 

test is a rigorous nonparametric method that is used for benchmarking satellite-retrieved GHI and DNI 

against ground-based observations (Espinar et al. 2009; Gueymard 2014). Directly derived from it is the 

Kolmogorov-Smirnov test integral, which calculates the area differences between two cumulative 

distribution frequencies to determine the deviation, for example, between satellite-derived data and 

ground measurements (Espinar et al. 2009; Beyer et al. 2009). Another indicator is OVER (estimate of 

the area between the CDFs over a critical value distance), which assimilates the original Kolmogorov-

Smirnov test; it attempts to find values that are above a specific critical value. Unlike MBD or RMSD, 

OVER discriminates between values that are either statistically similar or dissimilar (depending on 

whether they are above a specific critical value). This test has the advantage of being nonparametric 

and is therefore not distribution-dependent. It compares the two distributions of irradiance to evaluate 

their resemblance. In the future, more elaborate methods, such as those used in the meteorological 

community to quantify the performance of weather forecasts (Murphy 1993), can be expected to appear 

and be adopted more often in large-scale solar resource assessment studies.  

10.5  Modeled Data Uncertainty Estimation Challenges 

Satellite-derived irradiance datasets have various embedded sources of uncertainty (Cebecauer et al. 

2011a; 2011b). Most importantly, irradiance values obtained from satellite-based models use 

spaceborne observations of clouds. The satellite pixel represents a certain area, typically 1–100 km2. 

Depending on that size, some subpixel variability and cloud-induced parallax effects could contribute to 

higher random errors in both GHI and DNI, as suggested by Cebecauer et al. (2011a); Habte, Sengupta, 

and Lopez (2017); and Zelenka et al. (1999). In intermittent cloud situations, the resolution of satellite 

images has limited ability to adequately describe properties of small and scattered clouds. This problem 

can be exacerbated when a physical retrieval method is used to first characterize the cloud optical 

properties for a given pixel, which can result in actual partly cloudy periods being classified as cloudless, 

thus yielding significant positive bias in DNI, for instance (Salazar et al. 2020).  

In tropical rainforest climates, it is often challenging to find cloudless situations for characterizing the 

surface albedo, which is often used as a reference based on which of the pixel’s overall cloudiness 

(10-18) 

(10-19) 
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characteristics can be eventually quantified. Conversely, for geostationary satellite observations at high 

latitudes, the low satellite viewing angles introduce errors in the detection of cloud position and 

properties (the satellite sensor most often sees clouds from the side rather than from the top). For 

intermittent cloud situations, a major part of the observed random errors (evaluated by RMSD) is driven 

by inadequacies in the cloud-related portions of the radiative transfer algorithms. 

Adequate specification of aerosols is another area of concern (Cebecauer et al. 2011b). Aerosols tend 

to affect DNI three to four times more than GHI, depending on the relative proportions of absorption and 

scattering for the specific aerosol mixture of the moment and location (Gueymard 2012b). For example, 

mineral dust is mostly scattering, whereas black carbon is partly absorbing. At any instant, the aerosol 

optical depth (AOD) varies spectrally, so the common use of a single broadband AOD could result in 

additional uncertainties (see Chapter 5, Section 5.5 for more information on AOD). When monthly (or 

“climatological”) AOD averages are used, they could introduce significant errors in long-term DNI 

estimates (Ruiz-Arias et al. 2016). This is more likely to happen over areas of biomass burning, severe 

urban air pollution, or dust storms, where an aerosol climatology tends to smooth out episodic high-AOD 

events; therefore, it is advantageous to use AOD data with daily or subdaily resolution in advanced 

modeling approaches (Cebecauer et al. 2011b; Gueymard et al. 2018). 

In regions with variable or complex landscape patterns (e.g., high spatial variability caused by land/water 

mosaics, complex urbanization, or mountains), the surface reflectance properties change rapidly, both 

over the space and time domains and even over distances that are shorter than the satellite’s spatial 

resolution (Gueymard et al. 2021) (see Chapter 5, Section 5.11 for more information on this topic). 

Compared to neighboring rural or natural landscapes, large urban or industrial areas have much higher 

and temporarily changing concentrations of aerosols and water vapor. Over mountains, rapid changes 

in elevation also induce rapid changes in the concentration of key atmospheric constituents and in cloud 

properties. In addition, 3D effects and terrain shading are local complexities that must be considered 

and approximated by solar radiation models. 

Another difficulty inherent to satellite-derived datasets is the poor discrimination between clouds and 

snow-covered surfaces when using only the visible imagery. This is because both situations have a high 

reflectance in the visible spectrum; thus, a clear-sky scene over snowy ground might look like an 

overcast sky, resulting in a strong overestimation or underestimation of both GHI and DNI, depending 

on the situation (Perez et al. 2002; Vignola and Perez 2004). One such adverse situation is known as 

the “Eugene syndrome” (Gueymard and Wilcox 2011). The use of multiple channels in the visible and 

infrared can solve this issue. 

Finally, specular reflections of significant intensity, especially from sandy deserts or snowy/icy surfaces 

during certain times of the day, could result in incorrectly interpreting the satellite image as temporarily 

cloudy and thus in an underestimation of both GHI and DNI. Theoretically, this issue can be resolved by 

estimating the probability of specular reflection for such areas and factoring that into the calculation of 

surface radiation. 

10.5.1 Indicative Uncertainty of Modern Satellite-Based Models 

As an example, experience based on 189 validation sites shows that state-of the-art semiempirical 

satellite models can estimate the annual GHI with bias of about ±4% when normalized to daytime 

irradiation (Suri and Cebecauer 2014). This bias value depends on topography and climate. It can be 

higher (up to at least ±8%) in: (1) complex tropical regions; (2) areas with high atmospheric pollution, 

high latitudes, high mountains, or complex terrain; and (3) regions with low sun angles and occurrences 

of snow. Typical bias for DNI estimates at most sites is approximately twice that of GHI.  

Regarding random errors, the main sources of increased uncertainty are clouds and, to a lesser extent, 

changes in snow cover and increased dynamics of aerosols. Over arid and semiarid areas or during 
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sunny seasons, the RMSD of hourly GHI values normally range from 7–20%. In more cloudy regions 

with more intricate weather patterns, higher dynamics of atmospheric constituents, complex landscapes, 

or middle latitudes, the hourly RMSD increases to 15–30%. Over high mountains, high latitudes, or 

during seasons with low sun angles and frequent occurrences of snow, the relative RMSD for GHI can 

be 25–35% or more. Similar patterns of RMSD exist for the hourly DNI but with approximately twice the 

errors mentioned for GHI. In arid and semiarid zones, which are of the highest interest for concentrating 

solar energy technologies, RMSDs for the hourly DNI ranging from 18–30% are typical. In cloudier 

regions, with significant dynamics exhibited by aerosols, RMSD can reach 25–45%. Finally, at high 

latitudes and over mountains, RMSD could exceed 45%. 

With continuous progress in satellite sensors and radiation models, it can be expected that the accuracy 

in satellite-derived databases will continue to improve, as suggested by recent validation results (Babar 

et al. 2018; 2019; Bright 2019; Kamath and Srinivasan 2020; Shi et al. 2018; Urraca et al. 2018). In 

Urraca et al. (2017), satellite data are even used to test some aspects of ground measurements using 

the positive-quality aspects of satellite-based irradiance data. A general validation of this “reverse QC” 

approach for ground measurements still needs to be undertaken, however. 

10.6  Evaluation and Uncertainty of Irradiance and PV  
    Power Forecasts 

The evaluation of solar irradiance forecasts provides users with the necessary information about 

forecast quality and helps them choose from different forecasting products or assess the risk when using 

a particular forecast as a basis for decisions. This section first addresses the evaluation of deterministic 

irradiance or solar power forecasts that provides an overall indication of the uncertainty of a specific 

forecast model. Probabilistic solar forecasts assigning uncertainty estimates to each individual forecast 

value are described in Chapter 9, Section 9.7. Methods for probabilistic forecast evaluation, including 

the assessment of reliability, resolution, and sharpness are given below in Section 10.6.3. 

As described in Section 10.2, the quality of forecasts, both deterministic and probabilistic, is evaluated 

by assessing their similarity to reference data. Most often, irradiance measurements are used as 

reference data. They are commonly referred to as ground-truth data, though they are also affected by a 

certain degree of uncertainty (see Section 10.3) Alternatively, satellite-retrieved irradiance values or the 

output of a detailed physical model might serve as reference. The uncertainty of the reference data 

should always be kept in mind when interpreting the results of forecast evaluations.  

An extensive overview of forecast-verification methods is given by Jolliffe and Stephenson (2011). The 

choice of appropriate metrics and concepts for the evaluation of solar irradiance and power forecasts is 

the subject of ongoing discussions within the solar forecasting community; see Hoff and Perez (2012); 

Kleissl et al. (2013). Recently, Yang et al. (2020) proposed applying the well-established Murphy-Winkler 

framework for distribution-oriented forecast verification as a standard practice to analyze and compare 

deterministic solar forecasts. In parallel, Lauret et al. (2019) addressed the evaluation of probabilistic 

solar forecasts. 

In this chapter, the most standard evaluation methods for solar forecasting are outlined. These include: 

(1) statistical error metrics (Section 10.2.3); (2) basic visual assessment (Section 10.2.4); (3) comparison 

to reference models using the skill score (Section 10.6.1); (4) analyzing forecasts as a function of 

different influencing parameters (e.g., location, solar elevation, cloud conditions; Section 10.6.2); and 

(5) introduction to probabilistic forecast evaluation (Section 10.6.3). 
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10.6.1 Skill Score 

The skill score (also referred to as forecast skill) is used to quantify the forecast performance relative to 

a reference model. RMSE is normally used for this comparison; other scores, such as MAE or MSE, are 

also often used. The skill score is defined as the difference between the score of the reference model 

and the forecast model divided by the difference between the score of the reference model and a perfect 

model; note that a perfect model yields zero RMSE. For RMSE, the skill score, ssRMSE, is calculated as: 

  ssRMSE =
RMSEref −RMSE

RMSEref
,  (10-20) 

where RMSEref refers to the reference model, and RMSE refers to the investigated forecasting algorithm 

(Coimbra and Pedro 2013). The skill score’s value of 1 then indicates a perfect forecast, and a skill 

score of 0 means that the investigated algorithm has the same RMSE as the reference forecast. A 

negative value indicates performance that is worse than the reference. Skill scores might be applied for 

comparisons to a simple reference model and also for intercomparisons of different forecasting 

approaches (i.e., improvement scores). 

In solar radiation forecasting, persistence is the simplest and most widely used reference model to 

evaluate forecast skill. Several definitions of persistence of solar irradiance are given in Chapter 9, 

Section 9.2.1, including simple persistence, scaled persistence (which accounts for solar geometry 

changes), and more-advanced concepts, such as smart persistence. Simple persistence, which does 

not account for solar geometry, is not recommended as a baseline for forecast lead times other than 24 

hours (or multiples of it). Scaled or smart persistence are a much better choice in general. Alternatively, 

if long-term irradiance measurements are available, combinations of climatology and persistence can 

be used, as recommended by Yang et al. (2020) as an advanced reference model for forecast 

evaluation. 

10.6.2 Analysis of Solar Forecasts Using Statistical Metrics From  
Different Perspectives 

Solar forecasts can be analyzed with statistical metrics calculated over various scales. For example, the 

statistical metrics described in Section 10.2.3 can be calculated over global, temporal, or spatial scales 

to assess the performance of solar forecasts. The global-scale metrics computed with all available 

modeled-observed data across all locations and times are used to evaluate the overall performance of 

solar forecasts.  

It is also useful to group forecast evaluations with respect to forecast lead time (temporal-scale metrics), 

that is, to compute error metrics with all available data at a given lead time to evaluate the error evolution 

as a function of the forecast lead time. Evaluation of forecast performance in dependence of forecast 

lead time is shown for several examples and a variety of different forecasting algorithms in Chapter 9 

(e.g., Figures 9-8, 9-13, 9-19, 9-20). This type of analysis is particularly helpful in identifying the most 

suitable forecast models for different lead times. 

Other important considerations include analyzing forecast quality as a function of space or cloud 

conditions (Section 10.6.2.1), solar position and time of day (Section 10.6.2.2), or cloud variability and 

spatiotemporal averaging (Section 10.6.2.3). 

10.6.2.1 Spatial Evaluation of Forecasts and Taylor Diagrams for Different  
      Cloud Conditions 

For the evaluation of solar forecasts as a function of space, the statistical metrics are calculated with all 

available pairs of predictions and observations at each location. Figure 10-7 shows an example of 2D 
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maps for R2, RMSE, MAE, and MBE for the DNI forecasts simulated by the combination of the Fast All-

sky Radiation Model for Solar applications with DNI (FARMS-DNI) (Xie et al. 2022; Yang et al. 2022) 

and WRF-Solar (Jimenez et al. 2016). The NSRDB (Sengupta et al. 2018) was used to analyze the 

spatial distribution of the statistical metrics. More generally, high-quality satellite-derived solar radiation 

datasets essentially offer the opportunity to conduct in-depth analyses of the accuracy of gridded solar 

forecasts over a wide range of regions. 

 

Figure 10-7. 2D maps for (a) R2, (b) RMSE, (c) MAE, and (d) MBE of DNI forecasts simulated by the 
combination of FARMS-DNI and WRF-Solar  

Statistical metrics of DNI forecasts are calculated against the NSRDB data for each grid point. The 
evaluation is performed using 365 sets of day-ahead forecasts spanning 2018.  

Image by NREL 

 

A statistical summary of model performance for the prediction of solar irradiance can be obtained with 

the Taylor diagram (Taylor 2001). This diagram quantifies the performance of forecasts (or other 

modeled data using three statistical metrics computed from modeled-observed pairs: the Pearson 

correlation coefficient, the standard deviation, and RMSE. Figure 10-8 shows an example of a Taylor 

diagram (using a normalized standard deviation) representing the performance of each member of 

ensemble GHI forecasts composed of 20 members simulated with the WRF-Solar ensemble prediction 

system (EPS). The member obtaining the best performance is the one that lies closest to the reference 

point compared to other models. For example, in Figure 10-8, WRF-Solar accurately represents clear-

sky scenes (red dots), thus the ensemble members lie much closer to the reference point than for cloudy-

sky or all-sky conditions.  
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Figure 10-8. Taylor diagram for 20 ensemble members simulated with WRF-Solar under three  
sky conditions  

Data from WRF-Solar EPS development (Sengupta et al. 2022). 

10.6.2.2 Analysis of Forecast Error with Respect to Solar Elevation 

Solar irradiance has a deterministic component, which results from the daily and seasonal course of the 

sun, and a nondeterministic component because of, for example, clouds. Both the deterministic and 

nondeterministic signals influence the forecast error signal. To investigate the solar irradiance forecast 

errors, valuable additional information is obtained by evaluating not only GHI (or DNI) but also the 

nondeterministic part of solar radiation, which is primarily caused by errors in the representation of 

clouds. To this aim, the analyzed variable is often selected to be the forecast error based on the clear-

sky index rather than based on GHI.  

The forecast performance of the clear-sky index can be illustrated by examples from an observational 

dataset of hourly pyranometer measurements from 18 weather stations of the German Weather Service 

(DWD) from March 2013 to February 2014 (Lorenz et al. 2016) and forecasts from two NWP models: 

• High-resolution deterministic global Integrated Forecasting System (IFS) model, operated at the 

ECMWF with a spatial resolution of 0.125° and 3-hourly outputs; here, forecast horizons up to 24 

hours are used, issued every day at 00:00 UTC.  

• High-resolution Limited Area Model, operated for the area of Scandinavia (HIRLAM-SKA), operated 

at the Danish Meteorological Institute, with a spatial resolution of 3 km, hourly outputs, and forecast 

horizons from 4–9 hours ahead, issued daily at 00:00, 06:00, 12:00, and 18:00 UTC. 

 

Figure 10-9 shows the RMSE and MBE of the clear-sky index, Kc, as a function of the cosine of the solar 

zenith angle (Figure 10-9, left) and the time of day (Figure 10-9, right) for the two different NWP model 

forecasts (IFS and SKA). The two models show similar behavior: RMSE increases with low SZA or, 

equivalently, during morning and evening hours, as is also the case with the magnitude of bias. This 

error pattern is very often caused by deficient modeling of the atmospheric transport of radiation for low 
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solar altitudes. This limitation is a well-known flaw of the two-stream schemes used in most NWP 

models. Other model limitations also exist, such as 3D effects and atmospheric refraction issues whose 

impact is enhanced at low solar altitudes. 

  

Figure 10-9. Clear-sky index (here noted as kt*) forecast error as a function of (left) cosine of SZA 

(noted here z) and (right) hour of the day for the forecasts issued by the IFS and SKA NWP models 
(blue and red lines, respectively)  

Solid lines show RMSE, and dashed lines show MBE (bias). The evaluated period is from March 1, 
2013 to February 28, 2014.  

Image by Elke Lorenz 

10.6.2.3 Analysis of Forecast Error with Respect to Cloud Variability and  
      Spatiotemporal Averaging 

Forecasts generally show good agreement with measurements during clear-sky periods or even 

completely overcast days because both basically have a quasi-constant clear-sky index. In contrast, 

cloud variability strongly impacts solar forecasting accuracy. Thus, considerable deviations from the 

measurements are typically observed during days with variable cloudiness. An evaluation of the SKA 

forecast errors as a function of the measurement-derived Kc variability, here represented by the standard 

deviation of Kc over a 5-hour period, is shown in Figure 10-10. The evaluation also shows this 

dependence for multiple spatial and temporal averaging configurations of the SKA forecasts.  



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

10-33 

 

Figure 10-10. RMSE of various versions of the SKA forecasts as a function of the standard deviation 
of measurement-based clear-sky index, std(kt*)  

Red line: SKA, original output. Dark blue: Nearest grid point, SKA20x20 averaged throughout 20 by 20 
grid points. Light blue: SKAav 5-hour sliding mean of the clear-sky index of the forecasts of the 
average throughout 20 by 20 grid points. Green: SKAav, LR.kt*: linear regression of the clear-sky index 
of the forecasts applied to SKAav. The evaluated period is from April 3, 2013–February 28, 2014. 
Training set: Last 30 days, all 18 DWD sites.  

Image by Elke Lorenz 

 

Overall, Figure 10-10 shows that: 

• The forecast error increases with enhanced cloud variability. 

• Spatial and temporal forecast averages result in reduced RMSE values, going from negligible 

reductions under very stable conditions to large reductions under highly variable conditions. 

Regarding the first point, the solar radiation forecast error shows a clear dependency with respect to 

cloud variability and, more generally, with respect to cloud conditions (Figure 10-8). Combining the error 

trend in the dependence of cloud conditions and the solar elevation has been proposed as an efficient 

method to reduce the systematic error in NWP model forecasts using a postprocessing model output 

statistic (MOS). In particular, Lorenz et al. (2009) used a polynomial function with cos(SZA) and Kc as 

independent variables to parameterize the forecast bias error from historical forecasts relative to 

observations and ultimately to subtract the parameterized error from operational forecasts. This 

approach has also been adapted and evaluated for other NWP models and different climates (Mathiesen 

and Kleissl 2011; Müller and Remund 2010; Pelland et al. 2013). 

Regarding the second point, high-resolution irradiance forecasts frequently show phase shifts when 

compared to measurements, in particular for variable cloud conditions, as described also in Lorenz et 

al. (2016):  

“Phase shifts are caused by displacement errors in cloud prediction. Even small errors in cloud 

position can result in large errors for high-resolution forecasts resolving also small-scale cloud 

features—which is often referred to as ‘double penalty’ effect. Spatial as well as temporal 

averaging reduces large fluctuations and forecast errors in variable situations and consequently 

also the RMSE.”  
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Looking at this from another perspective, spatial and temporal averaging is in effect a way to create a 

new forecast by averaging forecasts of neighboring points in space and time. Under variable cloud 

conditions, the correlations among these forecasts are small, leading to random error cancellations 

during the averaging process. In contrast, under stable conditions, the correlation among neighboring 

pixels is high and the cancellation of random errors is reduced.  

When using averaging for RMSE reduction, the optimal area size and time interval depend on the 

correlation structure among neighboring forecasts, both in time and space. Multiple studies have been 

conducted on this topic. For instance, a detailed evaluation of irradiance forecasts from the Canadian 

GEM model resulted in a reduction of forecast errors in the range from 10% to 15% when the model 

outputs were averaged throughout several hundred kilometers (Pelland et al. 2013). A similar 

improvement was achieved with WRF forecasts provided by Meteotest using averages over an area of 

50 km by 50 km (Müller and Remund 2010). In parallel, Mathiesen and Kleissl (2011) reported an 

averaging area of 100 km by 100 km as suitable for irradiance forecasts using either the GFS or North 

American Mesoscale forecast system models. The benefit of horizon-dependent smoothing filters for 

Cloud Motion Vectors (CMV) forecasts was also shown by Lorenz et al. (2004), Aicardi et al. (2022), 

and Kühnert et al. (2013). 

It is emphasized here that spatial and temporal averaging effects also have a strong impact on RSME 

when comparing solar irradiance forecasts of NWP models with different output resolutions. This should 

be considered in model intercomparisons, where different models can be compared on a similar spatial 

and temporal scale in addition to their original output resolution. 

Temporal and spatial averaging can be also considered for nowcasts based on an all-sky imager (ASI). 

It has been found that in a nowcasting system with four ASIs during days with many transient clouds, 

the DNI RMSE for forecasts that are 10 minutes ahead is reduced in half, from 13.0% to 6.5%, by using 

averages of 4 km2 and 15 minutes with respect to pixel-wise forecasts (Kuhn et al. 2018). 

Despite the positive impact of spatiotemporal averaging on reducing the RMSE of a forecast, there are 

also negative effects. A first negative impact exists on the frequency distribution of forecasted data 

because the averaging process reduces extreme forecasted values and distorts the original frequency 

distribution of the forecast data. A second impact is that the capability to reproduce irradiance variability 

by the forecasts is obviously reduced. These different implications of averaging should be considered 

when evaluating and selecting a forecasting system for a given application. Whereas, for energy trading, 

RMSE or MAE are the most critical error metrics, ramp forecasting requires forecasts reflecting the high-

resolution irradiance variability.  

10.6.3 Verification of Probabilistic Solar Forecasts  

10.6.3.1 Properties Required for a Skillful Probabilistic System 

Several attributes characterize the quality63 of probabilistic forecasts. Here, the focus is on reliability, 

resolution, and sharpness—the main properties used to assess the quality of probabilistic forecasts. 

Reliability or calibration refers to the statistical consistency between forecasts and observations; in other 

words, a forecast system has a high reliability if the forecast probability and observed frequency agree. 

The reliability property is an important prerequisite because nonreliable forecasts would lead to a 

systematic bias in subsequent decision-making processes (Pinson et al. 2007). 

 

 

63 Quality refers to the correspondence between forecasts and observations. 
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Resolution measures the ability of a forecasting model to generate predictive distributions that depend 

on forecast conditions. Put differently, the more distinct the observed frequency distributions for various 

forecast situations are from the full climatological distribution, the more resolution the forecast system 

has. Climatological forecasts are perfectly reliable but have no resolution. Consequently, a skillful 

probabilistic forecasting system should issue reliable forecasts and should exhibit high resolution. 

Sharpness refers to the concentration of predictive distributions and can be measured by the average 

width of the prediction intervals. Unlike reliability or resolution, sharpness is a function of only the 

forecasts and does not depend on the observations. Consequently, a forecasting system can produce 

sharp forecasts yet be useless if the probabilistic forecasts are unreliable.  

10.6.3.2 Probabilistic Verification Tools  

A number of visual diagnostic tools and error metrics are used for verifying probabilistic forecasts.  

Table 10-3 lists the diagnostic tools used to analyze probabilistic forecasts, for which Lauret et al. (2019) 

provided pros and cons, as well as detailed information about their implementation. Note that some tools 

were initially designed for a specific type of forecast (i.e., an ensemble or quantile forecast). 

 

Table 10-3. Visual Diagnostic Tools for Probabilistic Forecasts 

Diagnostic Tool Remarks 

Reliability Diagram Initially designed for the reliability assessment of quantile forecasts. 

Can be used for ensemble forecasts if members are assigned specific probability 
levels; see Lauret et al. (2019). 

Rank Histogram  Initially designed for the reliability assessment of ensemble forecasts. 

Can be extended to quantile forecasts if quantiles are evenly spaced. 

Probability Integral 
Transform Histogram 

Represents a reliability assessment of quantile forecasts  

Sharpness Diagram Plots the average width of the prediction intervals for different nominal coverage 
rates. 

Sharpness can only contribute to a qualitative evaluation of the 
probabilistic forecasts.  

Even if narrow prediction intervals are preferred, sharpness cannot be seen as a 
property for verifying the quality of probabilistic forecasts but is more likely the 
consequence of a high resolution. 

 

Numerical scores provide summary measures for the evaluation of the quality of probabilistic forecasts. 

Table 10-4 enumerates the main scoring rules for evaluating the quality of probabilistic forecasts of a 

continuous variable. All the scores listed in the table are proper scoring rules (Gneiting and Raftery 

2007), ensuring that perfect forecasts are given the best score value. Lauret et al. (2019) gives a detailed 

definition of each score.  
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Table 10-4. Forecast Metrics for Probabilistic Forecasts 

Forecast Metric Remarks  

Continuous Ranked Probability 
Score (CRPS) 

Can be normalized to define a skill score (CRPS skill score). 

Can be further partitioned into the two main attributes: reliability and 
resolution. 

Ignorance Score Local score (i.e., the score depends only on the value of the predictive 
distribution at the observation). 

Cannot be normalized. 

Interval Score  Specifically designed for interval forecasts. 

Quantile Score  Forecast performance of specific quantiles. 

 
Some frequently used diagnostic tools and numerical scores to evaluate probabilistic forecasts are 

detailed next (see Lauret et al. [2019] and Yang et al. [2020] for descriptions of other metrics).  

10.6.3.2.1 Reliability Diagram 

A reliability diagram is a graphical verification display used to assess the reliability attribute of quantile 

forecasts. Quantile forecasts are evaluated one by one, and their observed frequencies are reported 

versus their forecast probabilities (Figure 10-11). Such a representation is appealing because the 

deviations from perfect reliability (the diagonal) can be visually assessed (Pinson et al. 2010); however, 

because of both the finite number of pairs of observation/forecast and also possible serial correlation in 

the sequence of forecast-verification pairs, observed proportions are not expected to lie exactly along 

the diagonal, even if the density forecasts are perfectly reliable. Pinson et al. (2010) proposed a method 

to add consistency bars to the reliability diagram. This addition can help users gain more confidence in 

their (possibly subjective) judgment regarding the reliability of the different models. Figure 10-12 shows 

an example of reliability diagram with consistency bars. In this example, the forecasts cannot be 

considered reliable because the line Figure 10-11 corresponding to the forecasts falls outside the 

consistency bars. More elaborate reliability diagrams are proposed by Yang (2019a; 2019b).  
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Figure 10-11. Example of a reliability diagram  

Consistency bars for a 90% confidence level around the ideal line are individually computed for 
each nominal forecast probability. Image by University of La Réunion Laboratory of Physics and 
Mathematical Engineering for ENERGY, the ENVIRONMENT and BUILDINGS (PIMENT) 

10.6.3.2.2 Rank Histogram 

A rank histogram is a graphical display initially designed for assessing the reliability of ensemble 

forecasts (Wilks 2011). Rank histograms help users to visually assess the statistical consistency of the 

ensemble—that is, if the observation can be seen statistically like another member of the ensemble 

(Wilks 2011). A flat rank histogram is a necessary condition for ensemble consistency and shows an 

appropriate degree of dispersion of the ensemble. Underdispersed or overdispersed ensembles lead to 

U-shaped or hump-shaped rank histograms, respectively (Figure 10-12). 

In addition, some unconditional biases can be revealed by asymmetrical (triangle-shaped) rank 

histograms. It must be stressed that one should be cautious when analyzing rank histograms. As shown 

by Hamill (2001), a perfectly flat rank histogram does not mean that the corresponding forecast is 

reliable. Further, when the number of observations is limited, consistency bars can also be calculated 

with the procedure proposed by Bröcker and Smith (2007). 
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Figure 10-12. Illustrative examples of rank histograms for an ensemble of M = 9 members  

The horizontal solid blue line denotes the statistical consistency of the ensemble. The dashed-
dotted lines represent the consistency bars.  

Figure modified from Wilks (2011) 

 

10.6.3.2.3 Overall Skill Assessment With the Continuous Ranked Probability Score 

The most common skill score for evaluating the quality of predictive densities of continuous variables is 

the CRPS, whose formulation is: 

CRPS =
1

𝑁
∑ ∫  [𝐹̂𝑓𝑐𝑠𝑡

𝑖 (𝑦) − 𝐹𝑦𝑜𝑏𝑠
𝑖 (𝑦)]

2
+∞

−∞

𝑁

𝑖=1

𝑑𝑦, (10-21) 

  

where 𝐹̂𝑓𝑐𝑠𝑡
𝑖 (𝑦)  is the predictive cumulative distribution function (CDF) of the variable of interest, x (e.g., 

GHI), and 𝐹𝑦𝑜𝑏𝑠
𝑖 (𝑦) is a CDF of the observation (i.e., a step function that jumps from 0 to 1 at the point 

where the forecast variable, 𝑦, equals the observation, 𝑦𝑜𝑏𝑠). The squared difference between the two 

CDFs is averaged over the N forecast/observation pairs. Note that CRPS is negatively oriented (smaller 

values are better) and has the same dimension as the forecasted variable.  

Figure 10-13(a) shows three hypothetical predictive probability density functions (PDFs), and Figure 10-

13(b) plots the corresponding predictive CDFs. The black thick line in Figure 10-13(b) represents the 

CDF of the observation, 𝐹𝑦𝑜𝑏𝑠
𝑖 (𝑦). Because CRPS represents the integrated squared difference between 

the two CDFs, the pair of observation/forecasts labeled “1” will be assigned the best score. Conversely, 

forecasts indicated by labels 2 and 3 will lead to a higher CRPS. Indeed, although it has the same 

degree of sharpness as Forecast 1, Forecast 2 is not centered on the observation (i.e., this is a biased 
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forecast). Conversely, Forecast 3 is centered on the observation, but is less sharp than Forecasts 1 or 

2. In summary, CRPS rewards the concentration of probability around the step function located at the 

observed value (Hersbach 2000). 

 

Figure 10-13. Schematic of the CRPS skill score  

Three forecast PDFs are shown in relation to the observed variable in (a). The corresponding CDFs 
are shown in (b), together with the step function CDF of the observation (black heavy line). Forecast 
1’s PDF would produce a small (i.e., good) CRPS. This would not be the case for Forecast 2 or 
Forecast 3.  

Illustration modified from Wilks (2011) 

 

CRPS can be further partitioned into the two main attributes of probabilistic forecasts described above: 

reliability and resolution. The decomposition of the CRPS leads to:  

CRPS = RELIABILITY –  RESOLUTION + UNCERTAINTY.  (10-22) 

The uncertainty term cannot be modified by the forecast system and depends only on the observation’s 

variability (Wilks 2011). Because CRPS is negatively oriented, the goal of a forecast system is to 

minimize the reliability term and maximize the resolution term as much as possible. Hersbach (2000) 

and Lauret et al. (2019) detail the procedures for calculating the different terms (reliability and resolution, 

respectively) for ensemble and quantile forecasts.  

It must be stressed that the decomposition of CRPS provides quantitative overall measures of reliability 

and resolution, providing additional and valuable insight into the performance of a forecasting system.  

Similarly, to obtain skill scores used for evaluating deterministic forecasts (Coimbra and Pedro 2013), a 

CRPS skill score (CRPSS) can be derived to quantify the improvement brought by a new method over 

a reference easy-to-implement model, such as: 

CRPSS = 1 −
CRPS𝑛𝑒𝑤 𝑚𝑒𝑡ℎ𝑜𝑑

CRPS𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
. (10-23) 



Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition 

10-40 

Negative values of CRPSS indicate that the new proposed method fails to outperform the reference 

baseline model, and, conversely, positive values of CRPSS mean that the new method outperforms the 

reference model. Further, the higher the CRPSS, the better the improvement. Note that the uncertainty 

part of the decomposition of CRPS (which corresponds to the score of the climatology) can be used as 

a reference baseline model. CRPSS and mean-normalized CRPS are also discussed by Yang (2020). 

10.6.3.2.4 Interval Score 

The interval score (IS) specifically assesses the quality of interval forecasts. As shown by Eq. 10-24, 

the interval score rewards narrow prediction intervals but penalizes (with a penalty term that increases 

with increasing nominal coverage rate) the forecasts for which the observation, 𝑥𝑜𝑏𝑠 , is outside the 

interval. For a (1 − 𝛼) × 100% nominal coverage rate, the interval score is obtained as: 

  

IS𝛼 =
1

𝑁
∑(𝑈𝑖 − 𝐿𝑖)

𝑁

𝑖=1

+
2

𝛼
(𝐿𝑖 − 𝑥𝑜𝑏𝑠

𝑖 )𝐼
𝑥𝑜𝑏𝑠

𝑖 <𝐿𝑖 +
2

𝛼
(𝑥𝑜𝑏𝑠

𝑖 − 𝑈𝑖)𝐼
𝑥𝑜𝑏𝑠

𝑖 >𝑈𝑖 , (10-24) 

 

 

  

where 𝐼𝑢 is the indicator function (𝐼𝑢 = 1 if U is true and 0 otherwise), and 𝑈𝑖 and 𝐿𝑖  represent the upper 

(𝜏 = 1 −
𝛼

2
) and lower (𝜏 =

𝛼

2
) quantiles, respectively.  

A plot of interval scores for different nominal coverage rates might offer a consistent evaluation of 

the quality of interval forecasts. Consequently, such a plot could advantageously replace the sharpness 

diagram. 

10.7 Available Diagnostic Tools 

To evaluate various datasets, many statistical metrics (e.g., correlation, RMSE, MAE, or MBE) can be 

calculated by common scripts, given their simple formulas. Moreover, some programming languages 

provide various user-friendly library functions to calculate the statistical metrics (Table 10-5).  
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Table 10-5. Functions for Statistical Metrics in R, Python, and MATLAB  

Programming 
Language 

Remarks 

R Name of library function: Metrics 

Documentation: https://cran.r-project.org/web/packages/Metrics/Metrics.pdf 

Documentation for the Taylor diagram: https://search.r-
project.org/CRAN/refmans/plotrix/html/taylor.diagram.html. 

 
Python Name of library functions: NumPy and scikit-learn 

Documentation: 

NumPy: https://numpy.org/doc/stable/ 

scikit-learn: https://scikit-learn.org/0.21/documentation.html 

Documentation for Taylor diagrams: 
https://metplotpy.readthedocs.io/en/develop/Users_Guide/taylor_diagram.html. 

MATLAB Link: 
https://www.mathworks.com/help/matlab/referencelist.html?type=function&category=descripti
ve-statistics&s_tid=CRUX_topnav 

Documentation for the Taylor diagram: 
https://www.mathworks.com/matlabcentral/fileexchange/20559-taylor-diagram. 

 

  

https://cran.r-project.org/web/packages/Metrics/Metrics.pdf
https://search.r-project.org/CRAN/refmans/plotrix/html/taylor.diagram.html
https://search.r-project.org/CRAN/refmans/plotrix/html/taylor.diagram.html
https://numpy.org/doc/stable/
https://scikit-learn.org/0.21/documentation.html
https://metplotpy.readthedocs.io/en/develop/Users_Guide/taylor_diagram.html
https://www.mathworks.com/help/matlab/referencelist.html?type=function&category=descriptive-statistics&s_tid=CRUX_topnav
https://www.mathworks.com/help/matlab/referencelist.html?type=function&category=descriptive-statistics&s_tid=CRUX_topnav
https://www.mathworks.com/matlabcentral/fileexchange/20559-taylor-diagram
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Executive Summary 

Solar resource information is essential for the reliable and cost-effective development of solar energy 

systems. It is used in a variety of applications but most importantly during the initial phases of any solar 

project. This chapter describes the available information and gives guidance on the types of solar 

resource information relevant to various stages of a solar project. It also informs readers about specific 

requirements relative to solar radiation data and how they depend on the type, size, and stage of the 

solar project. 
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Table 11-1 summarizes the solar radiation needs at different steps of a hypothetical project. The 

information provided here is applicable to large solar energy projects, mainly photovoltaics (PV) and 

concentrating solar thermal (CST),64 and to building energy performance evaluations. 

Maps (from, e.g., the Global Solar Atlas65 or the Global Atlas for Renewable Energy66) as well as typical 

meteorological year (TMY) data should be used to make a preliminary assessment of the solar resource, 

depending on system size, cautiously assuming a fairly large potential for error. Geographic information 

service (GIS) tools and resources are commonly used at this step for convenience. Various spatial 

resolutions need to be used when addressing projects at the regional or national scale—compared to 

the neighborhood or city scale. By using these tools, maps of solar radiation, and simple energy 

production models, the potential energy output from different technologies can be evaluated and 

compared. When using GIS tools for potential assessment, terrain slopes and additional land constraints 

can also be considered for large projects.  

During this screening process, the nature of local aerosols and their spatiotemporal variability might 

need to be considered. Because widely different sources of information might be available at this stage, 

it is important to define appropriate parameters that allow for comparisons of the solar resource data 

sources and to clarify the definitions of variability, error, and uncertainty; thus, variability needs to be 

identified, mainly at the interannual level, and distinguished from the uncertainty of the modeled data. 

Ideally, considering the uncertainties from each data source, a common “most probable” range should 

be obtained based on the expected or “true” value. Temporal and spatial variability are addressed 

through the coefficient of variation statistic (as discussed in Chapter 6), which can be determined by 

using long time series of measured or modeled data for the site and its surroundings. 

In the feasibility assessment stage, typical solar irradiation series are needed for plant simulation and 

for economic/profitability analysis. Typical annual time series are provided by a TMY, a typical reference 

year (TRY), and/or a design reference year (DRY). In addition to the review of typical meteorological 

data series generation for solar energy simulation, this chapter reviews the proposed procedures for the 

analysis of the interannual variability and the generation of series of a specific probability of exceedance 

(POE), such as P90; thus, to evaluate the profitability and payback of a project, simulations of its 

behavior during bad years are needed. Chapter 7 specifically deals with the issues of combining 

datasets and reducing their uncertainty through site-adaptation processes. These steps are very 

important for a precise feasibility assessment and to guarantee bankability, particularly for projects with 

large associated investments, such as with CST technologies. 

 

  

 

 

64 In this chapter, the terms concentrating solar thermal (CST) and concentrating solar power (CSP) are both used  

  for concentrating solar thermal electricity generation.  

65 See https://globalsolaratlas.info/map.  

66 See https://www.irena.org/Energy-Transition/Project-Facilitation/Renewable-potential-assessment/Global-Atlas.  

https://globalsolaratlas.info/map
https://www.irena.org/Energy-Transition/Project-Facilitation/Renewable-potential-assessment/Global-Atlas
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Table 11-1. Solar Irradiation Needs for Different Stages of a Hypothetical Project 

 
During and before the plant’s construction phase, solar irradiance data are needed to refine the yield 

estimation and to minimize the expected profitability uncertainties; thus, the value of the energy 

generated by a solar installation depends on the system’s output and on the price offered for that energy 

at the time it is generated. Methods for the yield estimation of non-concentrating PV projects and of CST 

projects are discussed in this chapter. Additional meteorological inputs that are necessary for yield 

estimation, as well as solar radiation characteristics, such as its spectral and angular distribution, are 

also discussed.  

 System Size 

  Small Medium Large 

Phase 

1. Prefeasibility and 
planning 

• Long-term averages 

• Monthly data 

• Solar cadastres/ 
maps 

• Simple shading 
analysis 

• TMY 

• Hourly data 

• Shading analysis 

• Long-term satellite 
data 

• Hourly data 

2. Feasibility   • Satellite data 

• Time series  
(> 10 years) 

• Ground 
measurements  
(>1 year) 

• Shading analysis 

• Further site- and 
technology-specific 
meteorological 
parameters (e.g., 
albedo, soiling) 

3. Due diligence and 
finance 

 • Satellite data 

• Time series (>10 
years) 

• Minutely data 

• Shading analysis 

• Further site- and 
technology-
specific 
meteorological 
parameters (e.g., 
albedo, soiling) 

• Satellite data 

• Time series  
(>10 years) 

• Ground 
measurements  
(> 1 year) 

• Minutely data 

• Shading analysis 

• Further site- and 
technology-specific 
meteorological 
parameters (e.g., 
albedo, soiling) 

4. Operations and 
maintenance 

• Simple (inverter) 
monitoring 

• Local 
measurements 

• Forecasts 

• Local measurements 

• Forecasts 
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For power plant acceptance and operation, the solar resource information must include high-quality, on-

site measurements to qualify the plant’s performance. Accurate irradiance forecasts can contribute to 

optimizing operation and revenue. This chapter’s final section discusses the type of solar irradiation data 

needed for different types of solar projects, such as flat-plate thermal collectors, solar heating and 

cooling in buildings, smart electric grids, solar desalination, and other chemical applications. 

11.1 Introduction and Background 

As discussed in previous chapters, solar resource evaluation covers a wide range of topics and 

applications. Most applications are related to projects involving solar radiation energy conversion. In this 

chapter, these are referred to as “solar energy projects,” and they include electricity production (PV; 

solar thermal electricity [STE], also referred to as CST, CSP), solar heating applications (central solar 

heating for district heating, residential and commercial heating and cooling), high-temperature solar 

process heat, chemistry and solar fuels, water and air applications (disinfection, desalination, 

decontamination), and energy conservation (for building applications). Figure 11-1 schematically 

illustrates the rationale behind this chapter.  

 

 

Figure 11-1. (Left) Different solar radiation products or evaluation methodologies described in 
previous chapters can be applied to (right) various solar energy projects  

Photos by Lourdes Ramirez  

 

This chapter focuses on the different requirements, characteristics, and applications of solar resource 

data in commercial, large-scale solar energy projects. The underlying base case assumption is that of 

a conventional project development, where professional commercial or institutional entities pursue the 

goal of realizing a large-scale solar energy project. Therefore, the typical phases in such a project are 

presented next, and each one is discussed in detail in the following sections. Additionally, there are 

sections specifically devoted to the selection of suitable datasets, yield estimation methodologies, the 

variability of the solar resource and how to assess it in a solar energy project, and the bankability of 

data. There is also a section that specifically addresses the case of electricity generation projects that 

do not use only solar energy. 
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The overall goal in applying solar resource data to solar energy projects is to help the project developer 

or investor to obtain the optimal solar resource and weather information during each project stage. For 

large-scale solar projects that need external financing, the bankability of the solar resource data is also 

crucial. Subsequently, this chapter discusses the currently available information and provides guidance 

on the types and uses of solar resource data relevant at each project stage. In addition, some information 

about how to generate datasets for energy simulations is also provided. Sections 11.2–11.5 discuss an 

idealized project development pathway, corresponding to what is shown in Figure 11-2.  Section 11.6 

summarizes methodologies used to estimate energy yield of solar systems for which solar data is used. 

Section 11.7 discusses aspects of power variability and while section 11.8 describes bankability criteria 

of solar resource datasets. Finally, section 11.9 briefly discusses how solar resource data can be used 

in other solar projects. 

 

Figure 11-2. Solar resource data at typical stages of a solar power project.  

Illustration and photos by Lourdes Ramirez 

 

For any specific project, the precise needs for solar resource data depend on the project’s characteristics 

and how it is financed. In this context, size matters a lot. A small project of a few dozen kilowatts is 

usually designed with only an appropriate TMY file or long-term monthly solar radiation estimates that 

can be obtained freely or commercially. Continuous monitoring of the incident irradiance is rarely 

required during the life of the project. In sharp contrast, a large utility-scale solar power project typically 

requires several years of high-quality modeled data and at least 1 year of on-site measured data or 

satellite-derived data during the final stages of the project execution. The complexity of the situation 

pertaining to large projects is addressed next.  

Figure 11-3 provides a generalized view of solar irradiation data requirements throughout various 

conceptual stages of a project’s life cycle. Stages 2–4, as shown in Figure 11-2, are grouped together 

because they all invariably address the topic of plant output during the project’s life, using different levels 
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of detail and depth. In a solar power project, some questions must be addressed at each stage, as 

presented in the following sections. Sections 11.2.1–11.2.4 provide some specific information that could 

help in the interpretation of Figure 11-3. 

 

 

Figure 11-3. Flowchart of the solar radiation data needs (in green) for a hypothetical (large) solar 
power project  

Illustration by Lourdes Ramírez 

11.2 Prefeasibility Stage 

11.2.1 Prospecting and Site Selection 

In the first stage of project development, a prefeasibility assessment of possible sites is typically 

undertaken. The developer might focus on a specific country or region, but in general is not limited to a 

certain area, although this depends on the international scope of the company and/or various local 

subdivisions of that company. A desired outcome at this stage is the estimated annual energy production 

that could be expected from a solar energy system if installed in various sites. Historical solar resource 
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datasets are generally used at this stage, often in the form of maps (e.g., Global Solar Atlas67) or from 

publicly available or commercial gridded data, such as those discussed in Chapter 5 and Chapter 8. 

These datasets use a fairly consistent methodology to reliably identify the regions of highest solar 

potential. Depending on the type of technology used for the solar installation, this potential can refer to 

global horizontal irradiance (GHI), global tilted irradiance (GTI), or direct normal irradiance (DNI). The 

maps should be used to make a preliminary assessment of the solar resource, realizing that errors are 

inherent in this information. For example, for continental Europe far from mountains, the best satellite-

based datasets can provide irradiance data with errors below 5%. Over mountainous areas, coasts, 

islands, and regions with high aerosol optical depth, larger errors are found, up to approximately 10%–

12% for GHI or GTI and significantly larger for DNI. This depends on the data provider and region (for 

quantitative results from an actual benchmark analysis, see Forstinger et al. 2023); thus, if a desirable 

level of solar resource for a solar power plant project is a daily mean of 7.0 kWh/m2, sites with mapped 

resource values down to approximately 6.0 kWh/m2 should be considered.  

About a decade ago, in some cases, a project developer first attempted to build a plant based on 

concentrating technologies, i.e., CST or concentrating PV (CPV); if the DNI resource turned out to be 

insufficient, a non-concentrating PV project would be considered instead. Today, however, CPV is not 

economically viable compared to non-concentrating PV; hence CPV (and CST) is rarely considered 

anymore. The technical design of the solar energy system at this stage is usually based on a few 

configuration parameters, e.g., capacity, the orientation of collectors/modules, tracking/non-tracking, or 

grid connected/non-grid connected. Many prospecting tools offer an initial output calculation with simple 

parametrizations. 

Aside from determining the solar resource, during this stage, a multitude of other parameters need to 

be considered to exclude nonviable sites. A “first-order” prefeasibility assessment includes the analysis 

of output potential for various technologies. For example, in the past, studies have been conducted for 

the southwestern United States by the National Renewable Energy Laboratory’s (NREL’s) CSP program 

(Mehos and Perez 2005)68 to identify the most optimal sites for CSP installations. Using GIS screening 

techniques, resource maps were developed that highlighted regions potentially suitable for project 

development after considering various land use constraints, such as protected land areas, sloping 

terrain, and distance from transmission lines (Figure 11-4). The results of these studies showed that 

even with these constraints, vast areas in the southwestern United States were potentially suitable for 

CSP development. Maps such as these are valuable to project developers to highlight specific regions 

where various levels of site prospecting and prefeasibility analysis can take place.  

 

 

67 See https://globalsolaratlas.info/map. 

68 See www.nrel.gov/csp/data-tools.html.  

https://globalsolaratlas.info/map
http://www.nrel.gov/csp/data-tools.html
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Figure 11-4. CSP prospects of the southwestern United States using GIS analysis for available site 
selection using the DNI resource, land use, and 3% terrain slope  

Image by NREL Mehos and Perez (2005) 

 

In parallel, Navarro et al. (2016) compared various CSP potential assessment methodologies for use in 

Spain and showed the need for providing intercomparable results while also noting the importance of 

constraints such as terrain slope. A methodology was proposed, denoted as land constraints, radiation, 

and slope (LRS), that harmonizes the treatment of these three main inputs. Figure 11-5 shows how the 

slope consideration (1%, 2%, or 3% of maximum slope) affects the site selection for what became a real 

CSP power plant in Spain. Only after accepting a maximum slope of 3%, the whole power plant was 

developed in a suitable area. 
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Figure 11-5. (Upper left) Area around the Orellana solar thermal energy plant (Spain) and the 
suitable areas by the (upper right) LRS1, (bottom left) LRS2, and (bottom right) LRS3 methodologies 
with maximum slopes of 1%, 2%, and 3%, respectively. Suitable zones are shown in green.  

Images from Navarro et al. (2016) 

 

Other studies are being done by various groups to evaluate the solar potential of PV installations on 

building roofs and façades at the scale of a specific city. Often, these are conducted by administrative 

bodies to foster solar energy development. Such studies result in the production of solar potential maps 

(often called “solar cadastres”) down to individual building resolution, and they are typically presented 

as a publicly  accessible or commercial online tools offering energy yield estimates for specific 

locations, usually at the city scale, as shown in Figure 11-6. Examples include solar cadastres for 

Chrastava, Czech Republic,69 Podgórzyn, Poland,70 Los Angeles County, USA,71 and all cities in 

Luxemburg.72 Many other examples exist, but their webpages usually appear only in the local language. 

For small-scale projects such as residential PV, the information provided by such sources might be 

sufficient to make an investment decision. The development of cadastres requires GIS data at a very 

high resolution (better than approximately 1 m), which are usually provided by lidar techniques combined 

with sophisticated shading analyses (Brito et al. 2012; Huang et al. 2015; Jakubiec and Reinhart 2013; 

 

 

69 See https://oneplace.fbk.eu/3d/CZ_PL_solarcadaster/index_chrastava.html. 

70 See https://oneplace.fbk.eu/3d/CZ_PL_solarcadaster/index.html. 

71 See https://apps.gis.lacounty.gov/solar/m/?viewer=solarmap.  

72 See https://map.geoportail.lu/theme/energie. 

https://oneplace.fbk.eu/3d/CZ_PL_solarcadaster/index_chrastava.html
https://oneplace.fbk.eu/3d/CZ_PL_solarcadaster/index.html
https://apps.gis.lacounty.gov/solar/m/?viewer=solarmap
https://map.geoportail.lu/theme/energie
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Le et al. 2016; Martínez-Rubio et al. 2016; Mohajeri et al. 2016; Pavlovski 2022; Santos et al. 2014; 

Tooke et al. 2012).  

 

 

Figure 11-6. Solar potential of rooftops of the Studley campus, Dalhousie University, Halifax, Nova 
Scotia (red: high potential; yellow/orange: medium potential; blue: low potential)  

Image from Pavlovski (2022). 
 

With the introduction of powerful, easy-to-use software tools and webpages—such as the System 

Advisor Model (SAM),73 Greenius,74 RETScreen,75 Global Atlas for Renewable Energy,76 Photovoltaic 

 

 

73 See https://sam.nrel.gov/. 

74 See http://freegreenius.dlr.de/. 

75 See http://www.nrcan.gc.ca/energy/software-tools/7465. 

76 See https://www.irena.org/Energy-Transition/Project-Facilitation/Renewable-potential-assessment/Global-Atlas  

https://sam.nrel.gov/
http://freegreenius.dlr.de/
http://www.nrcan.gc.ca/energy/software-tools/7465
https://www.irena.org/Energy-Transition/Project-Facilitation/Renewable-potential-assessment/Global-Atlas
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Geographical Information System (PVGIS),77 Google’s Solar API,78 and Google’s Sunroof79—many 

analysts now expect to use maps and time-dependent modeling of the solar systems under study as 

part of their preliminary analysis. Considerable care must be taken to select the correct irradiance 

dataset(s) for input to the prospective model. Experts recommend multiple years of at least hourly input 

data, rather than data from only 1 year or from TMYs, to assess the effects of the interannual variability 

of the solar resource on year-to-year system performance. Each hourly dataset should be evaluated at 

a minimum to determine whether the monthly mean values from the hourly data match the best estimate 

of the monthly mean values at the proposed site (Meyer et al. 2008). In many cases, in particular for 

large utility-scale projects or projects involving tracked collectors and/or bifacial PV, the bankability 

requires on-site measurements during at least 1 year to validate the long-term modeled time series and 

to correct them, if needed, using an appropriate site-adaptation technique (see Chapter 7, Section 7.6). 

More details on bankability can be found in Section 11.8. 

11.2.2 Choosing Modeled Irradiation Resource Data  

During the first stages of a solar project, solar irradiation information might be available from different 

sources. Having many sources of irradiance data is better than having none, but the question of 

selecting the best possible source then arises. This can be done through detailed comparisons between 

them and validations against high-quality ground measurements. Some concepts related to such tasks 

are stated in the following. The proposed definitions of variability and error can aid in better 

understanding the observed differences among databases (see Chapter 6 and Chapter 10, respectively, 

for details), though these definitions are not always agreed upon by all analysts or applicable to all 

possible applications. In addition to these concepts, detailed discussions on uncertainty definition, 

characterization, and calculation are also provided in Chapter 10. 

11.2.3 Variability Impact on Site Selection 

Both the temporal variability and the spatial variability are specific to a site (or area) and period. Chapter 

6 offers a detailed discussion on solar resource variability.  

The spatial variability of the long-term solar resource is a key aspect that needs to be analyzed at this 

stage and that directly affects the choice of the project site. Using solar resource maps or prospecting 

tools that visualize the long-term solar resource immediately allows assessing this variability feature. 

Temporal variability at this project stage is usually analyzed by obtaining long-term monthly mean 

irradiation data, but assessing multiyear datasets is an effort well invested in case of extremely large 

project sizes.  

11.3 Feasibility Study Stage 

In addition to selecting one or more candidate sites for an engineering feasibility assessment, solar 

power plant project developers need to ensure that they have meteorological datasets, including solar 

radiation and other meteorological variables, that can guarantee a reliable estimate of the system 

performance during the project’s life. There are different possible situations depending on the availability 

of measured datasets and/or of other modeled data sources. Because high-quality ground 

 

 

77 See https://joint-research-centre.ec.europa.eu/pvgis-online-tool_en  

78 See https://mapsplatform.google.com/maps-products/solar/  

79 See https://sunroof.withgoogle.com 

https://joint-research-centre.ec.europa.eu/pvgis-online-tool_en
https://mapsplatform.google.com/maps-products/solar/
https://sunroof.withgoogle.com/
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measurements of solar radiation are rarely available for long periods, at least one whole year of local 

ground measurements and more than 10 years of modeled data are required to guarantee the 

bankability of large utility-scale projects, especially if using tracked collectors or bifacial PV modules 

(Leloux et al. 2014).   

Solar system software-based simulations often use an annual meteorological dataset intended to be 

representative of the long-term average meteorological conditions of the project site, usually referred to 

as either TMY or TRY. Such data files are discussed in Section 8.3. Additionally, it is common practice 

to use other meteorological annual series representing adverse conditions (e.g., P90; see Section 

11.3.2) to assess the project’s revenue and financial stress under quasi-worst-case scenario conditions. 

Sections 11.3.1 and 11.3.2 provide a review of the current methodologies and possible improvements 

for the generation of these datasets. Section 11.3.3 discusses the postprocessing and site-adaptation 

methodologies for reducing uncertainty in the solar resource datasets. 

11.3.1 Utilization of Typical Meteorological Data for Solar Energy  
System Simulations 

Typical meteorological datasets are used as the standard input to a wide range of solar energy system 

simulation software to obtain estimates of the average annual solar energy system yield during the 

project’s lifetime. Such datasets consist of annual time series of hourly or subhourly values of solar 

radiation and other meteorological variables specifically constructed to be representative of the long-

term time series (usually 10–30 years) median values. 

TMY datasets are still widely used by building designers and solar energy engineers for basic modeling 

of renewable energy conversion systems and their preliminary design. These data have natural diurnal 

and seasonal variations and represent a year of typical climatic conditions for a location and can be 

useful for such basic tasks. TMYs do not, however, provide all solar resource data needed for solar 

energy system design, as discussed in more detail in Section 8.3. For example, TMYs do not contain 

information on interannual variability or meteorological extremes; therefore, TMYs should not be used 

to predict weather or solar resources for a particular time, for preparing the project’s final design, or for 

evaluating real-time energy production. Because a TMY represents “typical” conditions over a long 

period, such as 30 years, it is not suited to analyze the system’s response to worst-case weather 

conditions that could occur in the future. An earlier study (Kraas et al. 2011) has exemplarily shown that 

for CST plants, the simulated electricity yield of individual years of a 10-year measurement period can 

differ by more than 10% from the simulated yield resulting from a TMY dataset. The magnitude of this 

difference will vary with technology, project location, and the temporal coverage of available datasets, 

and it will usually be larger for concentrating solar technologies (because of higher DNI variability), but 

the spread between individual years might still be significant; hence, a large-scale project should never 

be designed, planned, or financed based on a TMY file alone, without assessing the interannual 

variability. 

Note also that the simulated performance of the solar energy system might depend on the method 

followed to construct the TMY file. There are widely different methods of generating TMY files from long-

term datasets, including how the variable weighting is handled. For instance, tracked systems typically 

go into stow mode under high wind speeds; they might not be realistically depicted if the TMY has been 

created in a manner that correctly represents the long-term solar resource but incorrectly represents the 

occurrence of high wind speeds that lead to tracker safety shutdown. 

11.3.2 Interannual Variability and Probabilities of Exceedance 

In the case of large solar energy projects, bankability requirements are stringent (see Section 11.9 for 

details); hence, reliable profitability and annual payback assessments need to be performed, and thus 

probabilistic information about the energy output is needed. This must be based on probabilistic solar 
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resource time series that correctly account for extreme situations, which obviously require the statistical 

examination of long-term time series. 

A preliminary step is to first determine the minimum duration of the radiation dataset that is needed to 

capture the true long-term mean. The interannual variabilities and trends in the resource must be 

considered (see Chapter 6). A consequence of the high interannual variability of DNI is that CST projects 

necessarily require scrutiny about the risk of bias in the DNI resource, which can be addressed by using 

long-term satellite datasets and appropriate site-adaptation techniques. In general, PV projects are less 

at risk of bias in the GTI resource. Exceptions can occur over regions where the uncertainty in satellite-

derived irradiance data is significant and/or in the case of PV installations using tracking systems, which 

attempt to maximize the DNI fraction of GTI. 

Because long-term on-site measurements are still the exception more than the rule, these results 

underline the importance of relying on an independent long-term dataset, which, in practice, means a 

modeled dataset derived from satellite images or reanalysis of numerical weather prediction (NWP) 

results. This is necessary to reduce the uncertainty in the long-term average DNI estimates for a 

proposed CST site, most particularly, and to provide reasonable due diligence of a plant’s estimated 

performance throughout the life of the project. This and additional concepts related to the development 

of specialized TMYs or annual series for energy simulation are described by Vignola et al. (2012). 

A common way to address the risks associated with the uncertainty of the long-term estimates of the 

mean annual GHI or DNI values is to consider the annual POE. POE, which is also simply denoted by 

“P,” is the complementary value of a percentile value. In the case of P50, its value matches the 50 th 

percentile and is the result of achieving an annual energy production based on the long-term median 

resource value. For this value, the probability of reaching a higher energy value is 50%. For example, 

TMYs are meant to represent the P50 value. In contrast, P90 corresponds to the 10th percentile; hence, 

the risk that an annual energy value is not reached is 10% (or, reciprocally, 90% of all values in a 

distribution exceed the P90 value). Depending on the project’s size and the practices of the financial 

institution involved, the solar resource’s “bad years” can be examined using various Ps—from relatively 

lax (P75), to stringent (P90 or P95), to very stringent (P99).  

Although the irradiance magnitude is the largest source of uncertainty in P estimates, those estimates 

must also include other sources of uncertainty, including modeling uncertainty, uncertainty in the system 

parameters, and reliability uncertainty. High uncertainty is always an issue, even if the P results appear 

favorable. The combination of probabilistic performance modeling and the uncertainty inherent in the 

various components of the system (including the solar resource) requires specialized approaches, such 

as detailed in Ho, Khalsa, and Kolb (2011) and Ho and Kolb (2010). 

Figure 11-7, taken from a study by Moody’s Investors Services (2010) and reproduced in Renné (2016, 

13–41), conceptually demonstrates how improving knowledge of the true long-term solar resource at a 

site serves to reduce financial risks. By assuming that a long-term annual dataset follows a Gaussian or 

normal distribution (which is not necessarily the case), Figure 11-7 shows that the standard deviation of 

the true long-term mean based on only 1 year of data is expected to be much higher than that with 10 

years of data because a 10-year dataset contains much more actual information regarding the 

interannual variability at the site. Assuming that the median value (P50) of the distributions is the same 

for both the 1-year and the 10-year distribution curves, the P90 value increases with the additional 

knowledge (higher confidence) associated with having a 10-year dataset. In turn, that 10-year P90 value 

reduces the financial risk of the project (or, in other words, is more bankable) because the yield estimates 

are higher when more data are available. In addition to the uncertainty due to interannual variability, the 

uncertainty in the irradiance estimates (from modeling or measurement) must also be considered and 

corrected, if necessary, to evaluate the uncertainty in P; for details, see Hirsch et al. (2017).  
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Figure 11-7. The uncertainty of the value of the true long-term mean is much higher with only 1 year 
of data (green curve) than with 10 years of data (blue curve).  

Image from Moody’s Investors Services (2010) as presented in Renné (2016) 

 

The statistical calculations of P values often assume that long-term irradiance data follow a normal (or 

Gaussian) distribution; however, this assumption might not be correct. For example, Dobos, Gilman, 

and Kasberg (2012) considered long-term measured and modeled updated National Solar Radiation 

Database (NSRDB) GHI and DNI data for Phoenix, Arizona (Wilcox 2012), and produced cumulative 

distribution functions (CDFs) based on 30 separate annual datasets to illustrate the concept of P50 and 

P90. Figure 11-8 shows that if the annual Phoenix data were fit to a normal distribution (solid line) at 

CDF = 0.1 (which corresponds to the P90 value), an annual GHI of 1.96 MWh/m2 would be exceeded 

90% of the years (or, conversely, the solar resource would fall below this value 10% of the years). 

Similarly, for DNI, the annual solar resource exceeds 2.2 MWh/m2 for 90% of the years. For Phoenix, 

however, the long-term solar data do not appear to follow a normal distribution, but other types of 

distributions (such as Weibull) have not been assessed for the study. Figure 11-8 shows that the P90 

value is somewhat less in Phoenix when determined from an empirical instead of a normal distribution. 

Further discussion on these points can be found in Renné (2016; 2017). 

  

Figure 11-8. (Left) Annual GHI and (right) DNI data fitted to a normal distribution (solid line) for 
Phoenix, Arizona. Note that each gray circle covers a marker (+).  

Image from Dobos, Gilman, and Kasberg (2012) 
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As discussed by Pavón et al. (2016) and Ramírez et al. (2017), there are several issues related to a P 

estimate. The first is the assumption that, for instance, an irradiance at the P90 level is proportional to 

the P90 of the solar system energy output, or yield, which constitutes only an approximation. Additional 

elements are thus needed (1) to identify the most appropriate P value and (2) to construct a specific 1-

year time series for that P using hourly or subhourly data whose sum is that specified P value. A 

statistically based estimation of the P value depends on the assumed probability distribution. This 

probability distribution can be approximated with the normal distribution in the case of annual GHI. For 

DNI, however, there is no evidence that a normal, a log-normal, or a Weibull distribution would always 

be the best choice. When 10 (or preferably more than 20) whole years of local measurements or 

modeled estimates are available, methodologies based on the CDF should be used, such as those 

proposed by Peruchena et al. (2016). In addition, new techniques are developed to construct 

meteorological years for bankability scenarios that correspond to P90—for example, Dobos, Gilman, 

and Kasberg (2012). 

An additional issue is the resolution of the data time series used for energy simulations. For CST 

projects, for instance, the yield and probabilistic predictions obtained with hourly data could substantially 

differ from those using 1-minute or 5-minute data (Hirsch et al. 2010; Meybodi, Ramírez-Santigosa, and 

Beath 2017). Depending on satellite sensor and period, satellite-derived irradiance time series are not 

available at a temporal resolution better than 5–60 minutes. Some stochastic methods have been 

proposed to derive 1-minute or 5-minute irradiance from data at a coarser resolution (Grantham et al. 

2017; Hofmann et al. 2014), which can be helpful (see Chapter 6 for details). Instead of using a limited 

number of yearly datasets for simulation, Nielsen et al. (2017) proposed using Monte Carlo 

methodologies to generate an unlimited number of yearly series. This methodology allows the solar 

resource assessment—and thus the energy output calculation—to be performed in a way that is similar 

to that currently used for estimating other essential variables in the economic assessment of solar power 

plants. The generation of hundreds of such plausible years has been demonstrated by Larrañeta et al. 

(2019), Fernández-Peruchena et al. (2015), and Meybodi, Ramírez-Santigosa, and Beath (2017). Other 

authors—Ho, Khalsa, and Kolb (2011) and Ho and Kolb (2010)—have found issues with the Monte 

Carlo approach and suggested the Latin hypercube sampling method instead. 

Another alternate approach is to completely avoid the step of generating solar resource time series with 

certain characteristics such as a Pxx value. This approach is based on running the energy yield 

simulation with the complete available multiyear time series and analyzing the output instead of 

manipulating the input data to these simulations. From the output, which corresponds to a simulation of 

operating the planned solar energy system over the available historical period, a variety of information 

can be extracted. This approach has several distinct advantages:  

• It does not require manipulating the available solar resource data to obtain a predefined input 

dataset (other than reformatting the input files to conform to the simulation software’s input data 

format); thus, it avoids the complications of identifying a suitable dataset generation method, 

programming highly advanced computational methods that might not be available in the public 

domain, and other practical complications. 

• It does not depend on the TMY generation method or variable weighting. 

• It preserves the physical/meteorological patterns that have actually occurred as long as they have 

been correctly recorded in the dataset. Any other method that generates artificial datasets is at risk 

of resulting in physically/meteorologically inconsistent datasets. A prominent example is that in a 

monthly based concatenation method, such as the TMY3 method, the last day in a month might be 

followed by the first day of a month that had completely different conditions, e.g., a cyclone pressure 

system immediately followed by an anticyclone. In this alternate method, extreme years are not 

excluded and can be used for financial projections of debt servicing. 
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• It preserves information on many non-solar resource meteorological events, such as wind speeds 

(relevant for module performance and tracking system safety shutdowns), rain events (useful for 

soiling analysis), or temperature (relevant to plant performance). 

• It is a very intuitive method that is easy to explain to any third-party reviewer, shareholder, or 

investor: “If this power plant had been built 20 years ago, it would have performed like this.” 

• It is supported by the wide availability of long-term solar resource datasets covering almost 30 

consecutive years over various regions. 

• The method is compatible with using several input datasets for different time periods and with 

different temporal resolutions. In a simplified approach, each dataset can be used for independent 

yield simulations, and the results can be reconciled by averaging the outputs, weighed with a 

confidence factor for each dataset. 

• Very intuitive results can be extracted, such as average annual yield (P50), P90 yield, worst yield in 

a calendar year, or longest period of electricity generation below a certain threshold. 

A practical obstacle to this method is that most system simulation software in common use do not 

support the modeling of more than one consecutive year at a time; hence, in the worst case, this means 

preparing up to approximately 30 single-year datasets, manually running the simulation, and compiling 

the results. NREL SAM is among the simulation software that offer this multiyear option as an integrated 

feature, in addition to offering a P50/P90 analysis for sites covered by the U.S. NRSDB (Dobos, Gilman, 

and Kasberg 2012). 

Including long-term trends derived from the effect of climate change and other local or regional 

singularities (such as the increase of atmospheric aerosols derived from pollution) on solar radiation 

might improve the value of the solar power plant yield prediction (i.e., during the complete solar facility 

lifetime). For instance, the Meteonorm80 software includes the effect of climate change estimated from 

the Intergovernmental Panel on Climate Change models for three different scenarios. Aerosol pollution 

scenarios are also important for future GHI and DNI resources. For instance, a decrease in the solar 

resource has occurred in many Asian countries during the recent past, and this trend could continue 

into the foreseeable future (see other causes of future changes in Chapter 6). 

11.3.3 Combining Data Sets: Site Adaptation to Improve Data Quality  
and Completeness 

Long-term solar resource datasets always have uncertainty. If the magnitude can be precisely 

evaluated, investors can derive the risk of the project and evaluate whether the performance of the 

system could be lower than desired. Reducing uncertainty in solar resource data is thus a key step 

toward bankable projects. The general process of combining modeled datasets with site observations 

is called postprocessing in various fields (Janotte et al. 2017). In solar applications, this is generally 

referred to as site adaptation, consisting of a wide variety of methodologies that are applied to improve 

direct model or retrieval outputs and reduce uncertainty. A detailed description of these methods is given 

in Chapter 7, Section 7.6. 

 

 

80 See http://www.meteonorm.com/. 

http://www.meteonorm.com/
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11.4 Due Diligence and Acceptance Stage 

When a utility-scale power plant is built, typically there is a period during which the “engineering, 

procurement, and construction” (EPC) contractor operates the power plant. In practice, this period is 

usually 1 or 2 years. During this time, the EPC must prove the warranted power plant performance to 

the owner before the owner (or a third party entitled by the owner) takes charge of the power plant 

operation. 

To correctly establish the true power plant performance, it is necessary to record accurate solar 

irradiance and meteorological readings. Generally, all meteorological and other parameters that 

influence the power plant’s electricity yield must be determined with a high degree of accuracy. This is 

of extreme importance because the acceptance of the plant—including all economic and legal 

consequences, such as warranty claims or liquidated damages—depends on a correct performance 

assessment. Any ambiguity of the reference measurement data, or lack of agreement on the method of 

establishing the reference dataset, can potentially lead to severe disputes and legal confrontations. 

Therefore, in the EPC contract, the following should be exactly determined:  

• The parameters that must be measured 

• The instrumentation that shall be used and the number of measurement locations in the plant 

• The parameters that influence the power plant electricity yield that have been established based on 

models, estimates and assumptions, the method to derive them, the sensitivity of the power plant 

to these parameters, and how to treat changes to these parameters that might be discovered during 

the acceptance stage 

• The required documentation (calibration certificates and history, instruments, installation report, 

etc.) 

• The data format and temporal resolution that shall be used 

• The party responsible of providing, installing, and commissioning the instrumentation 

• The maintenance procedures and the frequency and documentation thereof  

• The data acquisition procedures  

• The data quality control procedures, including data completeness rates and rates of data passing 

all quality control methods 

• The virtual power plant performance model (of the digital twin) that will be used and how the 

measurement data are fed into this model. 

 

Specific care should be taken of parameters that, at the time of the EPC contract signature and 

potentially also afterward, were/are only available as modeled values or assumptions or might undergo 

notable change. Prominent examples for this are ground albedo (relevant for tracked/bifacial PV plants), 

atmospheric attenuation (relevant in CSP central receiver plants), or sunshape (relevant for 

concentrating technologies).  

In tracked PV plants, an independent measurement or model of tracked plane-of-array (POA) irradiance 

might be necessary if the EPC provider or tracker manufacturer claims a specific performance gain over 

astronomical tracking by proprietary tracking algorithms. The same consideration should be made to 

verify claimed bifacial gains in bifacial PV. 
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Additionally, it is important to precisely identify which meteorological datasets were used for the technical 

design (design operating conditions) and the procedure to establish filter criteria by which periods with 

non-design operating conditions shall be removed from the performance assessment. 

For each of these points, some recommendations are included in chapters 3, 4, and 5 as well as in this 

chapter. 

Given the importance of accurate and unbiased measurements during the acceptance stage, and 

considering the inherent conflict of interest (the EPC has control over the power plant and usually the 

measurement equipment, but it has no incentive to obtain accurate data because any lack of data will 

support covering low plant performance), both parties might consider involving an external expert to 

write the specifications in the contract; to conduct the measurements on-site; and/or to perform a third-

party review of instruments, documentation, and measurement data. As practice has shown, if this is 

applied, this should be done early because low-quality measurement data cannot usually be restored to 

a satisfying degree of uncertainty. 

11.5 Operation Stage 

This section discusses a variety of approaches for monitoring the solar resource at an existing solar 

power plant to better understand its performance. The performance of a solar energy system is directly 

linked to the local meteorological conditions. For flat-plate thermal collectors and PV, the production is 

roughly proportional to the incident GTI; for concentrating technologies, the incident DNI is the driving 

input. For bifacial PV, the in-plane rear-side irradiance also needs to be considered. In all cases, 

additional meteorological variables need to be monitored because they play a modulating role. In 

summary, the real-time monitoring of meteorological conditions at the system’s location is important to:  

• Evaluate a performance guarantee (acceptance testing; see also Section 11.4) 

• Assess the power plant’s performance to improve yield predictions and to gain knowledge toward 

improvements in future plants 

• Identify conditions of poor performance, including evidence of soiling, shading, hardware 

malfunction, or degradation, which could lead to warranty replacement, etc. 

 

In nearly all cases, data recorded from on-site measurements of the solar resource are necessary. The 

required and recommended measurands and radiometers are discussed in Section 3.5. For PV 

monitoring with lower accuracy requirements, remote meteorological data or satellite data are also 

acceptable for GHI, ambient temperature, wind speed, and precipitation (IEC 2021).  

11.5.1 Performance Guarantee 

Different methods exist to evaluate a plant’s performance guarantee (Kurtz et al. 2014). In all cases, 

data recorded from on-site measurements of the solar resource are necessary. In the case of 

concentrating technologies, datasets derived from good-quality, on-site DNI measurements are usually 

required as inputs to the models used for performance guarantee. For flat-plate thermal collectors and 

PV, the yield prediction is generally based on GHI (even though the actual resource corresponds to 

GTI); hence, it is also common for a performance guarantee to use GHI as the basis for determining 

whether a plant has performed as promised. Some companies, however, have noted that the 

performance characterization of a PV plant can be accomplished with a lower uncertainty by using GTI 

instead. That is because this approach reduces the uncertainty inherent to the approximate transposition 

procedure that transforms GHI into GTI. Moreover, specific irradiance sensors, such as reference cells 

or reference modules that closely match the PV module response, can be chosen to match the expected 

response of the PV modules, which thus reduces the angle-of-incidence and spectral effects. Specifying 
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GHI remains the best option if, for instance, a PV system comprises sections with different in-plane 

irradiances (POA irradiances) as a result of different tilts or azimuths, which might be the case over 

complex terrain. If the performance guarantee is specified in terms of GTI, the plant efficiency 

characterized during the performance guarantee evaluation could differ from the efficiency estimated in 

an earlier step with a model rather than using historical GHI data. Also, the placement of all sensors 

must (1) be in the correct plane (which is easy to confirm when the sensor is in the horizontal plane but 

not as easy for other orientations) and (2) experience the expected local conditions (ground albedo and 

potential shading of sensors) if the sensor is not in the horizontal plane (Kurtz et al. 2014). 

Additional meteorological variables must be measured for yield predictions, as discussed next. 

Depending on the solar system’s size, more than one measurement point must be considered, as sky 

conditions will continuously vary. Even under clear-sky conditions, but especially under partly cloudy 

conditions, irradiance variations across a solar system will lead to performance variations (Janotte, 

Lüpfert, and Pitz-Paal 2012; Kearney 2009, 2013).  

11.5.2 Power Plant Performance Monitoring and Forecasting 

During power plant operations, knowledge of the current meteorological conditions and real-time status 

of the plant is of high importance. In addition, the future meteorological conditions directly influence the 

power output forecasts, which are important to maximize the plant’s revenue and are also often 

mandated by the grid regulators; therefore, both solar resource measurements and forecasts are 

essential data streams for many large solar systems. Real-time DNI, wind, and temperature data are 

essential for the operation of CST plants, and thus they need to be continuously monitored. Although 

many PV plants can successfully operate with only episodic intervention, measurements and forecasts 

can also be advantageous. For example, controlled cleaning of a PV array as a function of 

meteorological conditions (e.g., frequency of recent precipitation) has benefits. Moreover, equipment 

malfunctions can be detected more quickly if the PV plant output is being continually compared to the 

expected output based on actual meteorological conditions.  

11.5.3 Solar Radiation Forecasting Needs for Solar Power Project Operations 
and Maintenance 

Forecasting the production of a solar power plant can considerably improve its profitability (Ramírez and 

Vindel 2017). Accurate predictions of the plant’s average solar resource are needed for both solar 

thermal and PV power plants. The most important parameter to forecast is GHI in the case of flat or 

tilted PV plants and DNI in the case of concentrating systems. A GTI forecast is highly desirable, but it 

can be derived from a GHI forecast using transposition models. Wind velocity and direction are also 

relevant for the operation of tracking systems and for the temperature of PV modules in the plant. 

Detailed explanations of solar radiation forecasting methodologies and the current state of the art are 

provided in Chapter 9. The specific forecasting needs depend on the intended application. Essentially, 

solar radiation forecasts can be used for either planning maintenance downtime or for optimizing 

operations. Moreover, grid regulators increasingly tend to make them mandatory for grid stability and 

management reasons. 

11.5.3.1 Planning Maintenance  

Maintenance work is needed in all types of solar power plants. Examples include technical closure, 

replacing defective components, cleaning collectors, or conducting characterization tests. Depending 

on the expected duration of the maintenance work, the required forecasts correspond to different time 

horizons. Usually, a technical plant closure must be planned ahead of time and occurs on a fixed date 

based on the long-term forecasting on a monthly basis, whereas minor maintenance work is decided 

based on day-ahead forecasts. 
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11.5.3.2 Optimizing Operation and Revenue  

To optimize operation, forecasting knowledge will help improve electricity sales by better matching 

production with demand if the plant is equipped with storage, particularly in the case of CST projects. In 

that case, the plant’s annual revenue is conditioned by the quality of the solar forecasts (Ferretti et al. 

2016); thus, especially when subject to a fluctuating electricity market, the plant’s revenue can be 

maximized if production is appropriately predicted. Aside from increasing the revenue by maximizing 

the electricity sales prices, high-quality forecasts can also help to reduce incurred penalties for failing to 

match projected production schedules in specific market environments. 

If there are ramp rate or connection capacity limitations defined by the grid operator, the yield of a PV 

plant with batteries can be improved by storing the excess PV energy during positive ramps and using 

energy from the batteries during negative ramps. Forecasts can help manage the battery storage for 

this application and help limit the required storage capacity. Figure 11-9 shows the role of meteorological 

variables in forecasting demand and energy generation.  

  

 

Figure 11-9. Importance of weather variables in forecasting demand and energy production  

Image from Ramírez and Vindel (2017) 

11.5.4 Economic Value of Solar Radiation and Photovoltaic Forecasting 

Beyond general information on forecast applications, the economic value of applying forecast models 

for markets and the grid integration of solar power is of interest to forecast users. Here, some studies 

on the economic value of forecasting are summarized. 
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11.5.4.1 Economic Value of Photovoltaic Power Forecasting in Markets: A Case Study for  
     the Scandinavian Electricity Market 

In energy markets that have mandatory market gate closures, production from variable renewable 

energy assets, such as PV, must be forecasted prior to delivery. In many of these markets, e.g., 

Scandinavia (Klyve et al. 2023), imbalances between the contractual market agreements made at the 

market gate closures and the actual physical delivery must be financially accounted for on a hourly basis 

through a so-called imbalance settlement. Because the issued forecasts at the market gate closures 

determine the final imbalances that need to be financially settled, the forecast accuracy provides 

economic value. The income loss for PV producers that issue inaccurate forecasts in the Scandinavian 

day-ahead and intraday markets are quantified using historical market prices, meteorological data, and 

NWP estimates from 2017–2021 (Klyve et al. 2023). This study assumed that PV producers participated 

in the Scandinavian day-ahead and intraday markets. Moreover, the producers were assumed to submit 

their bids to the day-ahead auction daily at the day-ahead market gate closure time of 12:00 CET D-1 

(day before delivery), i.e., a forecasting horizon of 12–36 hours. Then at the gate closure of the intraday 

market, i.e., D-0–60 minutes (1 hour prior to a given settlement period), the PV producers use their 

updated intraday forecasts to sell or buy what they estimate the day-ahead forecast error will be. Note 

that PV power generation time series for synthetic 10-MWp plants are modeled using irradiance, 

temperature, and wind speed data from 11 meteorological weather stations across Scandinavia. 

Further, market forecasts for the same locations are generated using a NWP model, i.e., the Integrated 

Forecasting System (IFS) from the European Centre for Medium-Range Weather Forecasts (ECMWF) 

combined with a smart persistence forecast (SPF) model. Figure 11-10 illustrates how the SPF data are 

generated.  

 

Figure 11-10. Generation of SPF irradiance forecasts for the (left) day-ahead and (right) intraday 
markets in Scandinavia. For the day-ahead market gate closure (dotted, red line), the forecasts are 
issued for the entire day of June 9, 2020. The illustrated intraday market gate closure represents 
only the gate closure for the settlement period from 12:00–13:00 CET on June 9, 2020. The 
imbalance between the measured energy generation and the market committed schedule is shown 
(in red) in the lower part of the figure. 

Image from Klyve et al. (2023) 

 

Further, it is assumed that all PV producers are price takers in the markets, such that the historical day-

ahead prices, weighted-average intraday prices, and regulating prices (used in the imbalance 

settlement) are used to quantify the income loss caused by the forecast errors. Finally, four cases are 
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defined to quantify the value of PV forecasts under the past (1), present (2), and future (3, 4) 

Scandinavian market structures.  

• Case 1: Old market (until 2021-11-01)—Imbalance settlement at hourly resolution and a dual-price 

structure (imbalance surpluses and deficits are priced differently). The intraday gate closure is set 

60 minutes prior to delivery. 

• Case 2: Present market (2021-11-01 to 2025-01-01)—Same as Case 1 but with a single-price 

imbalance settlement structure 

• Case 3: Short-term future market (beyond 2025-01-01)—As with Case 2 but with the day-ahead 

market, intraday market, and imbalance settlement conducted at 15-minute resolutions. 

• Case 4: Future market with extended intraday trading—Same as Case 3 but with the intraday gate 

closure set to 1 second before the beginning of the settlement period.  

The income losses relative to providing perfect forecasts to the markets are given in Figure 11-11 using 

the ECMWF’s IFS for the day-ahead forecasts and SPF for the intraday forecasts. The main takeaways 

from this work are: 

• The value of providing accurate forecasts is largest under the dual-price imbalance settlement 

structure (Case 1—abolished, old market).  

• The transition from 60-minute to 15-minute settlement periods under the single-price imbalance 

settlement has little effect on the forecast value (from Case 2 to Case 3 or Case 4). 

• Extending the intraday gate closure to the beginning of a settlement period generally reduces the 

income losses (Case 3 to Case 4). 

• When bidding in the day-ahead market and trading the forecasted imbalances in the intraday 

market, the income losses for the modeled PV power plants range: 

o From 0.1–2.3% when bidding with SPF in the day-ahead and intraday market 

o From 0.6–2.4% when bidding with the ECMWF’s IFS in the day-ahead and intraday market 

o From -0.1–2.6% when bidding with the ECMWF’s IFS in the day-ahead and SPF in the intraday 

market. 

Klyve et al. (2023) clearly showed the importance of accurate PV forecasts for the profitability of PV 

power plants in the Scandinavian markets. The same analysis should be done for other markets to 

determine whether investing in more sophisticated forecasting methods would influence the overall 

profitability of solar power plants.  
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Figure 11-11. Income losses of the modeled Scandinavian PV power plants when bidding with the 
ECMWF’s IFS in the day-ahead market and SPF in the intraday market relative to bidding with 
perfect forecasts for these markets. The case studies represent the past (1), present (2), and future 
(3, 4) energy markets as well as the imbalance settlement structures. 

Image from Klyve et al. (2023) 

 

11.5.4.2 Value of Short-Term Forecast Uncertainty Information in Stochastic Photovoltaic  
      Power System Dispatch Optimization: A German Case Study 

In the German research project SOLREV,81 a tool from DLR-Oldenburg that was designed to assess 

the value of probabilistic feed-in forecasts for wind plants (Buller 2023) was used to study an example 

power network including PV systems, hence one fluctuating generator. This study focuses on the 

expected balancing costs at the time of delivery that would reduce the total system costs in a power 

system network. The expected balancing costs are estimated from the probabilities of PV feed-in 

scenarios. Details of the stochastic optimization problem are provided in Buller (2023). 

The specific network is shown in Figure 11-12 (Morales et al. 2014) and consists of a 100-MW PV 

system sited at each of the two buses that are connected via a 100-MW link. The static loads are set to 

80 MW and 90 MW, respectively. Further, a 30-MW storage with a capacity of 180 MWh is added to 

Bus 2. Optionally, the network can be modeled without storage. The flexible generator G1 has the 

highest marginal costs (35 $/MWh), and the inflexible generators have lower marginal costs of 30 and 

10 $/MWh, respectively. The marginal costs of PV and storage are assumed to be very small.  

 

 

81 See https://www.enargus.de/pub/bscw.cgi/?op=enargus.eps2&q=Deutsches%20Zentrum%20für%20Luft-

%20und%20Raumfahrt%20e.V.%20(DLR)&m=1&v=10&id=1224264.  

https://www.enargus.de/pub/bscw.cgi/?op=enargus.eps2&q=Deutsches%20Zentrum%20für%20Luft-%20und%20Raumfahrt%20e.V.%20(DLR)&m=1&v=10&id=1224264
https://www.enargus.de/pub/bscw.cgi/?op=enargus.eps2&q=Deutsches%20Zentrum%20für%20Luft-%20und%20Raumfahrt%20e.V.%20(DLR)&m=1&v=10&id=1224264
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Figure 11-12. Exemplary power system network with two PV systems and short-term storage  

Image modified from Morales et al. (2014) 

 

The simulations were carried out for an entire year using intraday PV forecasts for two grid points in 

southern Germany. The probabilistic PV forecasts are based on ECMWF GHI forecasts from July 2015–

June 2016 and consist of 50 ensemble members. For simplicity, a random member of the ensemble is 

used as the observed PV power to determine the deviation between the dispatched (planned) PV power 

and the delivered PV power.  

At the beginning of each day, the dispatch of each plant (including storage) for the entire day is computed 

using stochastic dispatch optimization. At the time of delivery, the balancing module is activated to 

balance any deviation between the dispatch and the real feed-in. In case of imbalances, the following 

actions are possible in the order of the related marginal costs: The storage is used, PV power is curtailed, 

the flexible power plant G1 is ramped upward or downward at slightly higher costs than 35 $/MWh 

(including balancing premiums), or, finally, the load is shed at a cost of 200 $/MWh. These costs are 

called balancing costs.  

The results of the stochastic dispatch optimization are evaluated in terms of total system costs that are 

the sum of the initial dispatch costs and the balancing costs. The reference case is the economic 

dispatch using a deterministic forecast for the PV systems. In this case, the merit order principle is 

clearly followed, i.e., stored energy is taken first, followed by PV, generator G3, G2, and, last, G1. The 

first ensemble member is always chosen as the deterministic forecast.  

Figure 11-13 shows an increase in the daily cost savings over the normalized mean absolute error of 

the deterministic PV forecast error. This is expected because high deterministic forecast errors require 

more expensive balancing. In those cases, the stochastic dispatch optimization dispatches more power 

from G1, G2, and G3 plus PV than actually needed (i.e., exceeding the static load) and ramps down the 

flexible G1 if enough PV is available at the time of delivery. 

The simulated storage (green crosses in Figure 11-13) more efficiently reduces the total system costs 

for the economic dispatch using deterministic forecasts; however, the use of probabilistic information in 

stochastic dispatch optimization is still more valuable, i.e., leads to lower costs. Without storage, the 

yearly average cost is 21.49 $/MWh for the stochastic dispatch optimization and 21.93 $/MWh for the 

economic dispatch. Using the 180-MWh short-term storage, the costs decrease to 21.26 and 21.35 

$/MWh for the stochastic and economic dispatches, respectively. In case no PV is considered in the 

network, the average costs are 24.41 $/MWh, whereas in case no PV forecast errors occur (perfect 

foresight), the average costs are 21.19 $/MWh (without storage).  
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Figure 11-13. Daily cost savings [$/MWh] using stochastic dispatch optimization compared to 
economic dispatch without storage (black) and with 180 MWh of storage (green). 

Image by DLR Institute of Networked Energy Systems 

11.6 Yield Estimation Methodologies 

This section provides a summary of the general approaches that use solar resource data to estimate 

the yield of solar energy systems. The resource data considered here include not only solar radiation 

but also other meteorological parameters (such as wind speed and temperature). First, PV systems are 

discussed, followed by CST systems. 

11.6.1 Yield Estimation of Non-Concentrating Photovoltaic Projects 

The value of electricity generated by a PV system depends on the amount of electricity generated and 

on the grid’s need (market driven) for that electricity at the time it is generated (i.e., its load curve). For 

small- to medium-size residential and commercial systems up to approximately 100-kWp capacity, the 

generated electricity will normally be consumed directly behind the meter of the premises where the 

system is located. In contrast, larger-size systems are connected directly to the grid to supply electricity 

directly to that grid. A quantitative understanding of the specific solar resource for the intended location 

and orientation of the PV system is essential to evaluate the former’s quantity. The relevant solar input 

for yield calculation is the irradiance incident on the POA (i.e., GTI), although other variables (particularly 

ambient temperature, wind, and soiling) also impact the system’s output. This section provides a high-

level overview; more detailed descriptions of PV system modeling can be found in Ellis, Behnke, and 

Barker (2011) and Holmgren, Hansen, and Mikofski (2018). Three general approaches exist to 

estimating a PV system’s yield. These are presented in order of increasing accuracy. 

11.6.1.1 Performance Ratio Method 

The output of a PV plant can be characterized by the performance ratio (PR) metric (Reich et al. 2012), 

which is the ratio of the electricity generated by the plant relative to its theoretical output during the same 

period. 
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When using this method, the first step is to determine the theoretical annual output of the system. The 

nameplate rating for PV systems refers to the system power output evaluated under standard test 

conditions (GTI of 1000 W/m2 at 25°C), and it is primarily a function of the efficiency, η, and area, A, of 

the PV modules in the system to convert incoming solar radiation to DC power output. The rated power, 

P0, of the system is given by: 

 P0 [kWp] = A [m²] · 1000 [W/m2] · η. (11-1) 

The reference annual energy yield, YR, of the module is then determined from the actual annual GTI 

[kWh/m2] at the site: 

 YR [kWh] = P0 [kW] · GTI [kWh/m2] / 1000 [W/m2]. (11-2) 

The annual performance ratio is then applied to Eq. 11-2 to determine the actual energy produced by 

the PV system, also called the final yield, YF, which is typically less than its theoretical energy output 

because of a variety of factors (as described next): 

 YF [kWh] = PR · YR [kWh] (11-3) 

where the PV plant size is derived from the sum of each module’s nameplate rating. The specific or 

normalized yield, yF [kWh/kWp] = YF / P0, is the normalized final yield of the system, which is mostly 

reported. Note that the performance ratio is usually calculated from the measured final and reference 

yields (Reich et al. 2012). In practice, deviations from this estimate can be expected because of the 

interannual variability of the solar resource and the variability of the performance ratio (van Sark et al. 

2012). 

Typically, for most recent PV power plants, the performance ratio ranges from 0.8–0.9. Factors that 

contribute to lower performance ratios include: 

• Shading losses 

• Soiling or snow cover losses 

• Nonideal system orientations 

• Wiring losses 

• Lower module efficiencies under high-temperature operations 

• Undersized inverters, making them “clip” the plant’s output part of the time 

• Older plants that have experienced module degradation, including potential-induced and light-

induced degradation 

• Modules whose performance is less than expected because of incorrect nameplate information. The 

situation has changed over time. In past years, manufacturers often placed modules in the bin with 

the larger nameplate value. Currently, many manufacturers now bin modules so that the actual 

performance is equal to or greater than (up to 3%) the nameplate value. Only measurements of the 

PV module power corrected to standard test conditions can provide correct values of the 

performance ratio. 

• In (residential) areas with high penetrations of PV systems, voltage limits are violated at high feed-

in, which leads to the shutdown of inverters, thus lowering the performance ratio. 

• Any curtailment, either required by grid operators in support of grid reliability or used by PV system 

operators for economic reasons, leads to yield loss. 
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Some factors that contribute to high observed performance ratios include: 

• Operation in cold climates  

• Modules with low-temperature coefficients. Typically, cadmium telluride (CdTe), copper-indium-

gallium-selenide, and high-efficiency silicon heterojunction modules tend to have the lowest 

temperature coefficients (Louwen et al. 2017). In this case, the power output degrades less when 

the temperature rises; hence, the modules will produce a higher energy yield. Such modules are the 

preferred option in high-temperature environments. 

• Modules that generate power above the nameplate rating (based on 1000 W/m²) as a result of high 

atmospheric transparency, cloud enhancement, and/or high ground reflection 

• Modules that have bifacial sensitivity, adding up to approximately 5–10% to annual yield (Stein et 

al. 2021), depending on ground albedo 

• Soiling or miscalibration of the radiation sensor, making it underestimate the incident irradiance and 

overestimate the performance ratio; therefore, regular cleaning and maintenance of the sensor is 

very important (see Chapter 4). 

• Time resolution. Due to varying irradiance intensity distributions as well as temperature variations 

over a year, the performance ratio is sensitive to the period over which it is determined. A graph of 

monthly or daily performance ratio reveals seasonal effects. A boxplot showing the average annual 

performance ratio as well as quantiles and outliers is very informative for system operators. 

 

Other impacts on the performance ratio are the choice of the irradiation sensor (thermopile pyranometer 

versus photodiode detector or reference cell, or even GHI from meteorological stations/services) and 

the methodology used to determine the PV system power (nameplate power, manufacturer flasher 

measurement, and/or on-site measurements). 

The performance ratio method is simple, but it might not be accurate in all cases. For instance, van Sark 

et al. (2012) found a few older PV systems with performance ratios surprisingly less than 50%. The 

method is particularly useful, however, to compare the performance of existing systems or to quickly 

use solar resource data that might not be available to the alternate performance models, which are 

presented in the next sections. Otherwise, using a more sophisticated performance model is most likely 

the better approach.  

11.6.1.2 Simple Photovoltaic Performance Models 

Among simple PV modeling tools, NREL’s PVWatts®82 or the European Commission’s Joint Research 

Centre PVGIS83 are free online tools that provide estimates of the electric energy production of roof- or 

ground-mounted PV systems based on a few simple inputs. The user needs to enter a street address 

or the geographic coordinates of the system’s location (latitude, longitude) and specify the main 

characteristics, including the installed power (kWp), array inclination (tilt) and orientation, and the 

module technology type. For PVGIS, four satellite irradiation sources can be selected (depending on 

location)—the Satellite Application Facility on Climate Monitoring (CM SAF) Surface Solar Radiation 

Data Set – Heliosat (SARAH), SARAH2, NSRDB, and ERA5 (see Chapter 8)—whereas PVWatts relies 

 

 

82 See http://pvwatts.nrel.gov.  

83 See https://joint-research-centre.ec.europa.eu/pvgis-online-tool_en.  

http://pvwatts.nrel.gov/
https://joint-research-centre.ec.europa.eu/pvgis-online-tool_en
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exclusively on the NSRDB. Both tools can model tracking PV systems, and PVGIS also provides 

estimates for off-grid systems. As output, both tools provide hourly and yearly estimates of energy 

incident on the PV installation and of the corresponding electricity production. The monetary value of 

the produced electricity is also calculated, for which the user needs to provide information about the 

system’s cost and the grid’s electricity consumer price.  

By default, for locations in the United States, PVWatts uses a TMY created from the NREL NSRDB 

Physical Solar Model (PSM) datasets, both labeled “tmy-2020,” and derived from the PSM Version TMY 

and the Himawari PSM V3 TMY, where the year corresponds to the latest year in the dataset. Advanced 

users can change the default assumptions for losses caused by shading, soiling, and other factors. 

Earlier versions of PVWatts were based on algorithms from Dobos (2014), but the recent Version 8 

update includes improved internal models of the PV module, module thermal effects, and inverter, which 

are consistent with implementations in NREL’s more detailed SAM.84 Note that some parts of PVWatts 

have been recently ported to the pvlib environment.85 

PVGIS provides hourly values of solar resource data and PV performance estimates for different 

technologies and system configurations based on averages of hourly calculations for time periods of 

more than 10 years. The effects of the irradiance spectral content, angle-of-incidence reflectance, and 

PV efficiency at low-irradiance or high-temperature conditions are considered as one lump loss 

parameter, as are other general losses.86 PVGIS uses automatically derived horizon profiles by default, 

which can be adapted by the user to the case of interest. PVGIS was originally developed for Europe, 

but it has been extended to Africa, and at present it offers data for most of Asia and America as well, 

thanks to the Joint Research Centre’s collaboration with NREL and the European Organisation for the 

Exploitation of Meteorological Satellites (EUMETSAT) CM SAF. PVGIS also offers TMY data following 

the ISO 15927-4 methodology. 

These simple tools provide a very convenient and more accurate analysis method than the performance 

ratio described in the previous section and are thus recommended when a quick estimate is needed. 

11.6.1.3 Detailed Photovoltaic System Performance Models 

Even more accurate estimates of PV system performance can be obtained by setting up a detailed 3D 

model of the PV plant that includes the appropriate selection of specific modules and inverters, an array 

layout, detailed losses, and shading (horizon, row-to-row) analysis. An increasing number of public 

domain and commercial tools are available to perform these detailed analyses. These elaborate models 

allow the user to have more control over the many submodels (constituting a “model chain”) necessary 

to go from irradiance to power output. These tools usually include options for: 

• Specifying irradiance and meteorological data sources 

• Transposing the irradiance data from horizontal to the POA 

• Modeling the impact of shading from both external objects and inter-row (self-) shading 

• Modeling or specifying loss percentages for soiling and snow cover 

• Modeling the impact of the irradiance’s spectral distribution on PV technologies 

 

 

84 See https://sam.nrel.gov/.  

85 See https://nrel-pysam.readthedocs.io/en/main/index.html.  

86 See https://joint-research-centre.ec.europa.eu/pvgis-online-tool/getting-started-pvgis/pvgis-user-manual_en.  

https://sam.nrel.gov/
https://nrel-pysam.readthedocs.io/en/main/index.html
https://joint-research-centre.ec.europa.eu/pvgis-online-tool/getting-started-pvgis/pvgis-user-manual_en
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• Modeling reflections from the cover of the PV module 

• Modeling the temperature of the PV module 

• Modeling the power output from the PV module based on the effective irradiance reaching the PV 

cells and the module temperature 

• Modeling or specifying losses resulting from a mismatch between the modules and the DC wiring 

• Modeling the inverter’s conversion of power from DC to AC 

• Modeling or specifying AC wiring losses and transformer losses 

• Specifying losses for planned or unplanned system maintenance and outages. 

 

Examples of freely available programs that include such detailed PV performance models are NREL’s 

SAM,87 First Solar’s PlantPredict,88 RETScreen,89 and Greenius.90 A set of software tools written in 

Python is pvlib.91 It is based on a toolbox developed in MATLAB at Sandia National Laboratories but is 

further developed with community support in the framework of the PV Performance Modeling 

Collaborative.92  

Some popular commercially available options include PVsyst,93 PV*SOL,94 Aurora Solar,95 

HelioScope,96 and archelios Pro.97 Some programs are desktop tools, whereas others are web tools 

performing cloud-based applications. For software programmers, SAM, PlantPredict, and PVWatts 

include options for accessing calculations from various programming languages via an application 

programming interface (API). Further, SAM’s code is open source, allowing interested parties to 

examine the underlying algorithms in great detail. 

All detailed PV modeling tools require not only irradiance but also meteorological parameters (most 

importantly ambient temperature and wind speed) to evaluate the power output. Because the incident 

irradiance is one of the biggest sources of uncertainty in the final modeled power output, care should be 

taken to minimize uncertainty in the irradiance resource data selected for PV modeling. Additional 

considerations for selecting the most appropriate input irradiance data can depend on the PV 

technology. For example, thin-film PV modules respond to a different part of the irradiance spectrum 

 

 

87 See https://sam.nrel.gov/.  

88 See https://plantpredict.com/. 

89 See https://www.nrcan.gc.ca/maps-tools-publications/tools/data-analysis-software-modelling/retscreen/7465.  

90 See https://www.dlr.de/sf/en/desktopdefault.aspx/tabid-11688/20442_read-44865/.  

91 See https://pvlib-python.readthedocs.io/en/stable/.  

92 See https://pvpmc.sandia.gov.  

93 See https://www.pvsyst.com/. 

94 See https://valentin-software.com/en/products/pvsol-premium/. 

95 See https://www.aurorasolar.com/. 

96 See https://www.helioscope.com/. 

97 See https://www.trace-software.com/archelios-pro/solar-pv-design-software/.  

https://sam.nrel.gov/
https://plantpredict.com/
https://www.nrcan.gc.ca/maps-tools-publications/tools/data-analysis-software-modelling/retscreen/7465
https://www.dlr.de/sf/en/desktopdefault.aspx/tabid-11688/20442_read-44865/
https://pvlib-python.readthedocs.io/en/stable/
https://pvpmc.sandia.gov/
https://www.pvsyst.com/
https://valentin-software.com/en/products/pvsol-premium/
https://www.aurorasolar.com/
https://www.helioscope.com/
https://www.trace-software.com/archelios-pro/solar-pv-design-software/
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than crystalline modules, making spectral corrections important for accurately modeling thin-film 

technologies (Huld and Amilio 2015) 

Evolving module technologies make it hard for modeling software to keep up with technological 

advancements. For example, when modeling thin-film CdTe modules, optimal results might not be 

obtained from conventional modeling software packages. PlantPredict has specifically focused on 

properly modeling thin-film CdTe modules, but it is not limited to the CdTe technology; it can also be 

used to model mono-passivated emitter and rear cell, bifacial, and other thin-film module technologies. 

The accuracy of predictions from these detailed PV modeling tools is very important to system feasibility 

and financing. Freeman et al. (2014) compared predicted outputs from multiple PV modeling tools to 

measured outputs for nine different systems. In parallel, Axaopoulos, Fylladitakis, and Gkarakis (2014) 

performed the same kind of comparison—but using a different set of modeling tools and measured 

data—for only one PV system. Recently, Riedel-Lyngskær et al. (2020) and Theristis et al. (2023) 

compared the predictions obtained with various PV simulation software against actual results from a few 

instrumented experimental systems and underlined the various sources of disagreement. Many of them 

were found at the level of the irradiance-related submodels mentioned in Chapter 7, which emphasizes 

the importance of following the best practices in terms of solar radiation modeling. 

11.6.2 Yield Estimation of Concentrating Solar Thermal Technology Projects 

Yield estimation models for CST plants cover the calculation of the concentrating optics performance; 

the conversion of concentrated light to electricity, process heat, or chemical energy; and the 

management of the storage systems, if included. 

In general, DNI is by far the most critical solar input for yield calculation in concentrating technologies. 

Moreover, the variability of DNI is much higher (and ramps faster) than GHI, which impacts the forecast 

errors of CSP plant output. Other meteorological variables are also usually required: dry air temperature, 

relative humidity (or, alternatively, wet-bulb temperature), and wind speed. Wind direction, precipitation, 

and snow height are also recommended to better characterize local conditions (Hirsch et al. 2017). 

Below are brief descriptions of the available types of optical performance models oriented to yield 

calculation. Some models are integrated with others for conversion into electricity, including storage, or 

with additional specialized modules for cost calculations (e.g., SAM, Greenius). Optical performance 

models can be separated into different categories: ray-tracing tools, analytical optical performance 

models, and models that determine the optical performance with lookup tables. 

11.6.2.1 Monte Carlo Ray-Tracing Tools 

The incident solar irradiance can be described as a multitude of solar rays transmitted from the sun to 

the concentrators (or heliostats in the case of CSP systems of the central tower type) and finally to the 

receiver. Although ray-tracing tools can provide highly accurate results, they are also highly demanding 

in terms of computing resources; thus, their use is usually limited to detailed design calculations (for 

example, calculation of the flux distribution on the receiver surfaces in central receiver systems) or to 

the elaboration of lookup tables or incidence angle modifiers for line-concentrating technologies; 

however, improvements in computational algorithms combined with additional tools might pave the way 

for the use of ray-tracing tools for design purposes (Blanco et al. 2021). 

Ray-tracing tools—such as the Solar Tower Ray Tracing Laboratory (STRAL) (Belhomme et al. 2009), 

SolTrace (Wendelin 2003), MIRVAL (Leary and Hankins 1979), the Solar Power Ray-Tracing tool 
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(SPRAY) (Buck 2010), Tonatiuh (Blanco et al. 2009; Cardoso et al. 2018), Tonatiuh++,98 or Heliosim 

(Potter et al. 2018)—calculate the path of the sun’s rays from the sun’s disk and the circumsolar region 

to the target by application of physical laws. Monte Carlo techniques are often implemented to achieve 

reasonable calculation times. 

For illustration, one method of ray tracing that is available in SPRAY is explained here. The method 

selects one concentrator element after another, and it traces a given number of rays from the current 

element. After calculating the vector to the center of the sun, the appropriate sunshape is included. (For 

details, see Chapter 2, Section 2.7.1, and Chapter 7, Section 7.9, respectively.) The specific ray under 

scrutiny is then related to a power calculated as the product of the incident DNI and the projected area 

of the current concentrator element divided by the number of rays per element. Then the path of the ray 

is followed until it reaches the receiver. This ray-tracing method can be based on actual measurements 

of the concentrator geometry or on its design geometry affected by typical optical errors. 

11.6.2.2 Analytical Optical Performance Models 

Analytical optical performance models are generally based on cone-optics convolution methods. One 

example of a calculation method that uses an analytical approach is the Bendt-Rabl model (Bendt et al. 

1979; Bendt and Rabl 1981). To accelerate calculations, analytical equations are derived and solved to 

describe the ray’s path throughout the optical system. For example, the model can be used for parabolic 

troughs and solar dishes. First, an angular acceptance function is determined from the design geometry. 

The angular acceptance function is defined by the fractional number of rays incident on the aperture at 

a specific angle that ultimately reach the receiver. Second, an effective source is determined that 

includes both the user-defined sunshape and any possible deviation from the design geometry. The 

optical errors of concentrators are described as Gaussian-distributed independent uncertainties. Their 

combination is also a Gaussian distribution with a standard deviation, which is often called an optical 

error. Third, the function that describes the optical errors is then combined with the sunshape using 

convolution. For line-focusing systems, such as parabolic troughs, a further integration step is required 

because the effect of circumsolar radiation on the incident irradiance strongly depends on angle. Finally, 

the intercepted radiation can be determined by summing the product of the effective source and the 

acceptance function over all angles. Similar analytical methods are used in HELIOS (Vittitoe and Biggs 

1981), DELSOL (Kistler 1986), HFLCAL (Schwarzbözl, Pitz-Paal, and Schmitz 2009), and Solar Power 

tower Integrated Layout and Optimization Tool (SolarPILOT) (Wagner and Wendelin 2018). 

11.6.2.3 Lookup Table-Based Optical Performance Models 

The fastest way to determine the optical performance of a CST collector uses only parameterizations or 

lookup tables that describe the change in optical performance with solar position. The necessary 

parameters can be derived from experimental data, analytical performance models, or ray-tracing tools. 

Such lookup tables or parameterizations are used in some SAM submodels (Blair et al. 2014) and in 

Greenius (Dersch, Schwarzbözl, and Richert 2011; Quaschning et al. 2001). 

11.7  Power Output Variability  

From an application perspective, the solar resource variability translates into power production 

variability, which could impact the stability of electric grids or the economics of the facility. One important 

question that has received specific attention is: How much is the temporal variability at one solar power 

 

 

98 See https://zenodo.org/record/7105107/. 

https://zenodo.org/record/7105107/
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plant site correlated with that at another site some distance away? A high correlation would tend to 

destabilize the grid and thus needs to be addressed in detail. 

11.7.1 Photovoltaic Applications 

Based on extensive studies (Hoff and Perez 2012), it appears that the output’s variability of a fleet of N 

PV plants over a given region will be reduced by the inverse of the square root of N if the plants’ output 

variability is uncorrelated and if the plants experience similar natural variability. This is a consequence 

of the spatial smoothing effect noted by many (Elsinga and van Sark 2014; Marcos et al. 2011; Murata, 

Yamaguchi, and Otani 2009; Wiemken et al. 2001; Woyte, Belmans, and Nijs 2007). This result means 

that nearby locations are highly correlated, experiencing the same ramp rates at nearly the same time 

and varying in sync. In contrast, the time series from distant locations are uncorrelated. Partial 

correlation exists between these two extremes. Hoff and Perez (2012) used hourly satellite-derived 

irradiances over the continental United States. They observed a similar asymptotic decay with distance 

and a predictable dependence of this decay upon t for time intervals of 1, 2, and 3 hours. They also 

noted that the rate of decrease of correlation with distance was different for various U.S. regions and 

attributed these differences to prevailing regional cloud speeds, as confirmed by personal 

communications with T. E. Hoff and N. Norris in 2010. Perez, Kivalov, and Hoff (2011) analyzed high-

resolution, high-frequency, satellite-derived irradiances (1 km, 1 minute) in climatically distinct regions 

of North America and Hawaii to investigate the site-pair correlation decay as a function of distance, 

timescale, and mean monthly regional cloud speed (see Figure 11-14), itself independently derived from 

satellite cloud motion vectors. Interestingly, as shown in this figure for various areas and periods, the 

rate of decrease of this correlation with distance is a strong function of the data’s temporal resolution. A 

distance of approximately 5 km might be sufficient to smooth out fluctuations on a 1-minute timescale, 

whereas distances greater than 50 km would be needed to smooth out hourly fluctuations. See also 

Remund et al. (2015) for examples pertaining to other regions in the world.  
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Figure 11-14. Site-pair correlations as a function of time and distance for sample regions in North 
America and Hawaii. Mean monthly cloud speed was estimated from satellite-derived cloud motion 
vectors computed for each data point.  

Image from Perez, Kivalov, and Hoff (2011) 

11.7.2 Quantifying Photovoltaic Output Variability 

The variability quantifying metric should adapt to a wide range of temporal and spatial scales and embed 

(1) the physical quantity that varies, (2) the variability timescale, and (3) the time span during which 

variability is assessed.  

11.7.2.1 Physical Quantity 

For energy producers and grid operators, the pertinent quantity is the power output, p, of a power plant 

or of a fleet of power plants at a given point in time. The power output variability reflects the underlying 

variability of irradiance impinging on the plant(s); therefore, understanding and quantifying the variability 

of irradiance amounts to quantifying and understanding the variability of p. DNI’s variability is relevant 
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for concentrating technologies, whereas the variability in GHI or GTI is representative of flat-plate 

technologies. This section focuses on the latter. 

The solar geometry-induced variability is fully predictable. Here, the focus is on cloud/weather-induced 

variability that is stochastic in nature. To better understand this variability component, it is useful to first 

remove the solar geometry effects. The clearness index, Kt (ratio between GHI and its extraterrestrial 

counterpart), or the clear-sky index, Kc (ratio between GHI and its clear-sky counterpart), both embed 

the stochastic variability of irradiance but are largely independent of solar geometry. The use of Kc is 

preferable in general because it more effectively removes solar geometry effects at low solar elevations 

(Perez et al. 1990). Nevertheless, its use implies that the clear-sky irradiance can be accurately 

estimated, which represents an additional step that many analysts try to avoid. 

11.7.2.2 Timescale 

The intuitive temporal example presented here suggests that the temporal scale of the selected physical 

quantity’s time series, t, is a fundamental factor. Depending on the application, t can range from 1 

second or less to hours and more. A variation in Kc corresponding to the selected timescale t is 

noted ∆𝐾𝑐∆𝒕. On short scales (milliseconds to minutes), this change is often referred to as the ramp rate. 

11.7.2.3 Time Span 

A proper measure of variability should include ramp events covering a statistically significant time span. 

This time span should be a large multiple of t. 

11.7.2.4 Nominal Variability Metric 

Nominal variability refers to the variability of the dimensionless clear-sky index. The maximum or mean 

∆𝐾𝑐∆𝒕 ramp rate over a given time span has been proposed as such a measure (Hoff and Perez 2010); 

however, most authors have recently settled on the ramp rate’s variance, or its square root—the ramp 

rate’s standard deviation—over a given time span as the preferred metric for variability. Eq. 11-7 

describes a nominal dimensionless metric: 

 Nominal variability = 𝜎(∆𝐾𝑐∆𝒕) = √𝑉𝑎𝑟[∆𝐾𝑐∆𝒕] (11-4) 

11.7.2.5 Power Output (Absolute) Variability Metric 

When dealing with power generation, it is necessary to scale up the nominal metric and to quantify the 

power variability in absolute terms. This is expressed by Eq. 11-5: 

 Power variability =  𝜎(∆𝒑∆𝒕) = √𝑉𝑎𝑟[∆𝒑∆𝒕] (11-5) 

Recall that p can be modeled from Kc via extraction of GHI, extrapolation to POA irradiance (GTI), and 

inclusion of PV specifications (i.e., without changing the inherent cause of variability); hence, Eq. 11-5 

does not include additional intrinsic variability information relative to Eq. 11-4. 

11.8 Data Bankability 

The bankability of solar radiation datasets is crucial for securing financing and insurance for solar energy 

projects. An accurate assessment of a project’s risks and potential returns will lead to increased 

confidence in the project, which will lead to increased investment in solar energy projects and the 

broader adoption of renewable energy sources. The bankability of solar radiation datasets refers to the 

level of confidence and reliability that lenders and investors have in using these datasets to assess the 

feasibility and financial viability of solar energy projects. In the context of solar power projects, accurate 
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solar resource data are crucial for estimating the energy generation potential, determining project 

performance, and conducting financial analysis (Vignola, McMahan, and Grover 2013). 

Key criteria that contribute to the bankability of solar radiation datasets include: 

• Data source and quality: The bankability of solar radiation datasets heavily depends on the source 

of the data and its quality. Data obtained from reputable meteorological agencies or well-known 

commercial vendors are generally considered more reliable. 

• Data quality control: A robust quality control process is necessary to identify and correct any 

anomalies or errors in the data. Quality control ensures that only reliable data are used for analysis. 

Ground-based sensors must be regularly cleaned and calibrated (see Chapter 4). 

• Long-term and historical data: Solar projects have a long lifespan, of 20–25 years or more; therefore, 

bankable datasets should provide historical solar radiation data over an extended period (typically 

at least 10–20 years) to support accurate long-term energy yield predictions. 

• Validation and calibration: The historical dataset must undergo validation and calibration processes 

to ensure accuracy. Bankable commercial vendors of solar resource datasets need to provide 

calibration and validation reports for them. For satellite or reanalysis model datasets, this means 

that the model should be validated against, and possibly calibrated with, existing ground 

measurement data in the region of the project location. For utility-scale projects in particular, 

validation information related to solar and meteorological data from nearby sites should be included 

to support the bankability of the assessment. On-site measurements, when available, can be 

integrated into the analysis to reduce uncertainty (site adaptation, see Chapter 7, Section 7.6) and 

give higher confidence to financial institutions. If a site adaptation is conducted, the input data and 

site-adaptation method that were used should be documented, and a comparison of the dataset 

with and without site adaptation including validation statistics should be performed. 

• Geographic coverage: The dataset should cover the specific geographic location of the solar project. 

Accurate solar radiation data at the project site or nearby locations are crucial for project planning 

and energy production estimations. 

• Temporal resolution: High-temporal-resolution data, such as hourly or subhourly measurements, 

are preferred because they capture short-term fluctuations and help provide accurate energy 

production estimations.  

• Transparency and documentation: Transparent documentation of data collection methods, sources, 

and any adjustments made during the calibration or quality control processes is essential. This helps 

financial investors understand the dataset’s reliability and make informed decisions. For ground 

measurements, documentation recommendations are summarized in Chapter 3, Section 3.6. 

• Availability and accessibility: Bankable solar radiation datasets should be readily available to all 

relevant stakeholders, including investors, lenders, and project developers. Open access to such 

data promotes transparency and encourages investment in solar projects. The budgetary 

implications should be considered early enough to allocate resources. 

• Acceptance by industry standards: The datasets should conform to industry standards, as described 

in detail in this handbook, and should be widely accepted within the solar energy industry. This 

recognition by experts and professionals provides additional credibility and confidence in the data. 

• Consistency and consensus: Bankability is also influenced by the consistency of solar radiation data 

with other related datasets, such as temperature, humidity, and wind speed. Consensus among 

multiple datasets can further validate the reliability of the information. 

Meeting these key requirements enhances the bankability of solar resource data, increasing confidence 

among financial institutions, investors, and project developers to invest in solar energy projects. It 
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facilitates accurate energy yield predictions, risk assessments, and financial modeling, ultimately 

supporting the growth and adoption of solar power as a sustainable energy source.  

As already described in this chapter, for large utility-scale solar power projects, a bankable solar 

resource assessment might require on-site measurements of at least 1 year to validate the long-term 

modeled time-series data and to correct them using an appropriate site-adaptation technique. There is 

no fixed threshold as to which project size requires an on-site measurement, but in practice it is often 

done for project sizes exceeding 100 MW, unless they are located in a region with abundant reference 

projects, good data availability, and low uncertainty of model datasets. For utility-scale CSP projects, 

on-site measurements are always recommended because DNI uncertainty in modeled datasets is 

typically larger and can be significantly reduced by site adaptation. 

For most PV projects, even including large-scale, multimegawatt power plants, financial institutions do 

not generally require ground-based measurements at the project’s site during the development stage 

until it is time to run the business. In most cases, a high-quality solar resource dataset from an institution 

that is accepted by the bank and that fulfills these criteria suffices to be bankable. Individual banks have 

their own requirements with regard to POE values, which thus need to be clarified case by case. 

11.9  Applying Solar Resource Data to Other Types of Solar  
    Energy Projects 

11.9.1 Projects Using Flat-Plate Thermal Collectors  

Energy simulation tools for flat-plate thermal collector systems usually include a suite of modules 

describing the thermal receiver and the thermal losses of the piping, parasitic losses, and thermal 

storage. Some typical tools for these simulations are Polysun99 and T*Sol100; however, some of the 

aforementioned general software tools also include these types of systems. For example, this is the 

case with RETScreen, SAM, and Greenius. Although the irradiance in the flat-plate collector plane (GTI) 

is the physically relevant irradiance, the separate specification of DNI and diffuse horizontal irradiance 

(DHI) can be of interest. Individual incidence angle modifiers can be used to determine the efficiency of 

the DNI and DHI energy conversion, respectively, for a given solar position. 

11.9.2 Solar Heating and Cooling in Buildings 

Solar heating and cooling in buildings (Sørensen 2012), smart cities, and smart grids are projects that 

include solar systems among other energy systems or energy conservation measures. Solar radiation 

data are still needed for sizing, simulation, and evaluation. Note, in particular, that TMYs and 

TRYs/DRYs (Crawley 1998; Hall et al. 1978; Lund 1974) were originally developed for building 

applications. The Transient System Simulation Tool (TRNSYS)101 software (University of Wisconsin) 

has also traditionally been applied to buildings. 

 

 

99 See http://www.velasolaris.com/. 

100 See http://www.valentin-software.com/. 

101 See https://www.trnsys.com/.  

http://www.velasolaris.com/
http://www.valentin-software.com/
https://www.trnsys.com/
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11.9.3 Smart Electric Grids  

Electric grids benefit from high-quality solar radiation data in both grid operation (now, later today, and 

the next days) and grid planning (over the next months to years). For example, solar radiation and 

forecasting data are used in grid operation for: 

• Power system state estimation  

• Unit commitment and scheduling of power plants and storage units 

• Congestion forecasting and management  

• Forward coordination among various stakeholders (e.g., transmission and distribution grid 

operators, plant operators, and other market players). 

The further the integration of solar PV into the grid proceeds, the more important it is to integrate 

information about current and upcoming electrical power production and feed-in into operation 

processes. Regulations such as the European System Operation Guideline102 define the need for data. 

Grid-connected PV power plants of a relevant size (e.g., more than 1 MWp) typically provide real-time 

measurement data and a regular schedule of the planned feed-in. Further, for a detailed congestion 

forecast in grid operation, one needs an additional estimate for the possibly large number of small grid-

connected installations. Because even smart meters do not always provide real-time data to grid 

operators, due to privacy concerns, among other reasons, those not receiving the data need to generate 

or buy an estimation of regional feed-in, typically based on some upscaling method. To do so, radiation 

data from NWP and satellite observations are a valuable source of information. Forecasting providers, 

making use of sophisticated statistical or even machine-learning models, usually process these inputs. 

For this, they rely on detailed master data about the individual plant or the large number of plants behind 

the meter. An extensive database (per grid and/or per nation) that collects and provides such master 

data should be available (van Sark 2023). In contrast to grid operation, where individual estimates and 

forecasts are permanently integrated into the processes, grid planning is based on a historical radiation 

dataset, and simultaneity factors within a portfolio of installed or expected power plants are assumed. 

An alternative to operational approaches intended to blend with standard transmission system operator 

(TSO) practice, such as those just described, is termed firm power (Perez et al. 2023). This is achieved 

by adding and operating dedicated hardware and controls to PV plants or fleets of plants so that the 

output seen by the grid operator exactly amounts to the forecast output. The hardware consists of 

optimized storage and plant oversizing to make up for all instances of forecast over- or underestimation 

as well as controls to equate actuals and predictions in real time. In addition to being a prospectively 

cost-effective operational forecast strategy for TSOs, the real value of this strategy lies in opening the 

door to least-cost firm power generation, hence the possibility of ultrahigh solar penetration at the lowest 

possible cost. 

• A prospectively cost-effective operational forecast strategy for TSOs: Firm forecast operations have 

been analyzed for individual Surface Radiation Budget Network (SURFRAD) locations in the United 

States as well as for a simulated fleet in California comprising 16 power plants—one in each state’s 

climatic region (Perez 2019a; Perez et al. 2019b). Applying the State University of New York (SUNY) 

forecast model to the California fleet would result in achieving a firm forecast cost less than 

$150/kWp today (i.e., an approximate 10% premium on current large-scale turnkey PV costs) for 

firm day-ahead forecasts. Future PV and storage costs anticipated in 10–15 years are expected to 

reduce the cost of entirely eliminating solar supply-side imbalances to less than $50 per kWp. Pierro 

 

 

102 See https://www.europex.org/eu-legislation/sogl/.  

https://www.europex.org/eu-legislation/sogl/
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et al. (2020) recently showed that such a firm forecast strategy could already be cost-effective for 

ratepayers today in Italy, compared to the existing market for load imbalance corrections, even 

including seasonal variations in PV power generation. 

• A least-cost ultrahigh penetration transition strategy: The same operational strategy—optimized 

storage plus overbuilding—applied on a larger scale has been shown to be the key to achieving 

firm, effectively dispatchable PV production at the least possible cost. A series of recent publications 

(Perez 2019a; 2019b) showed that 2040-targeted, firm, 24/7 electricity production levelized cost of 

energy (LCOE) on the order or less than U.S. $0.05 per kWh were realistic targets in the central 

United States, Italy, and the island grid of La Reunion, France. Figure 11-15 illustrates how PV 

overbuilding can sufficiently reduce storage requirements to achieve an acceptably low firm power 

generation LCOE. Pierro et al. (2021) showed that the entry-level firm forecast strategy can be 

gradually expanded over time, following technology costs and TSO practice learning curves to 

transition from low-level firmness requirements—meeting forecast production—to more stringent 

requirements, until meeting demand 24/7/365 becomes economically achievable with only minimal 

reliance on conventional resources. 

 
 

Figure 11-15. Impact of PV overbuilding on firm power generation LCOE  

Whereas unconstrained PV (A) is inexpensive (apparently below grid parity), firming PV to meet 
demand 24/7/365 with storage alone (B) is unrealistically expensive. Overbuilding PV fleets reduces 
storage requirements to the point (C) where firm PV power generation can achieve true grid parity 
(D).  

Image from Perez et al. 2019b. 

11.9.4 Chemical Applications  

Solar resource data are required for several chemical applications. These can be divided into two main 

topics because of their different use of the solar resource: solar desalination and solar photochemical 

applications. 
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11.9.4.1 Solar Desalination 

Global demand for freshwater is continuously increasing because of population growth and economic 

development. To meet this increasing demand, desalination has become the most important source of 

freshwater for drinking and agriculture in some world regions with huge solar energy potential, such as 

the Middle East and North Africa (Isaka 2012). 

Seawater solar thermal desalination via multistage flash or multi-effect distillation uses solar heat as the 

energy input. This methodology is the most promising desalination process based on renewable energy. 

As previously discussed, the CST part of the desalination project needs several years of high-quality, 

on-site data for simulation and design optimization or site-adapted data time series that are similar to 

the required data for CST plants. 

Many small PV-based membrane desalination systems have been installed worldwide, especially in 

remote areas and islands. As in the case of a standard PV plant, GHI and/or GTI data are needed as 

the most relevant solar inputs for these systems. 

11.9.4.2 Solar Photocatalysis: Detoxification and Disinfection of Fluids 

Solar photocatalytic detoxification and disinfection processes constitute a solution for the treatment of 

contaminated groundwater, industrial wastewater, air, or soil (Malato 2004). The development of these 

processes has reached a point where the solar technology can be competitive with conventional 

treatment methods, particularly at isolated locations with high solar potential, which can be the case with 

many agricultural farms. 

Solar photochemistry can be defined as the technology that collects solar photons and introduces them 

in an adequate reactor volume to promote specific chemical reactions (Blanco and Malato 2010). The 

equipment that performs this function is a solar collector—specifically, a compound parabolic collector 

with a relatively large acceptance angle; hence, they can use DNI and the part of DHI that emanates 

from the circumsolar region. The requirements for solar photochemical reactors are similar to any other 

photochemical reactor, with the particularity that their light input comes from the sun rather than from a 

lamp. For this reason, and according to the working temperature, the collector must be tilted or mounted 

on a tracking system with one or two axes. Figure 11-16 illustrates two different photoreactors installed 

at Plataforma Solar de Almería (CIEMAT), Spain.103 Depending on the type of solar collector, tilted or 

direct ultraviolet solar irradiance data will be needed. In the most general case that ultraviolet radiation 

is not measured locally, these variables must be empirically derived from DNI and/or GHI data (Habte 

et al. 2019). 

 

 

103 See http://www.psa.es/en/instalaciones/aguas.php.  

http://www.psa.es/en/instalaciones/aguas.php
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Figure 11-16. Compound parabolic collector photoreactors installed at Plataforma Solar de Almería 
for solar water disinfection and phytopathogen elimination from wastewater applications: (left) 
compound parabolic collector and (right) phytopathogen elimination system  

Photos from Plataforma Solar de Almería, CIEMAT 
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3 German Aerospace Center (DLR), Germany  

4 Danish Meteorological Institute (DMI), Denmark  

5 National Renewable Energy Laboratory (NREL), USA 

6 Fraunhofer ISE, Germany 

12.1 Introduction 

Advancing solar energy generation and its application will require improvements in our understanding, 

determination, and forecasts of solar radiation resources. This chapter briefly describes areas of 

research and development identified as emerging technology needs. The International Energy Agency 

(IEA) Photovoltaic Power System (PVPS) Task 16 work plan for its third phase (2023–2026) on “solar 

resource for high penetration and large-scale applications” seeks to address significant parts of the 

research and development needs presented in this chapter. 

The third phase of Task 16 will include the following new focus areas: 

• Meteorological data for advanced, integrated, and upcoming technologies like agrivoltaics and 

floating photovoltaics (PV), including albedo for bifacial modules 

• Analysis of climate model results and descriptions of how to optimally use them: 

A. Exploiting new machine-learning techniques for the forecasting of solar radiation and 

solar power before and behind the meter, or 

B. Exploiting new machine-learning techniques for the forecasting of solar radiation, solar 

power generation, and feed-in to electricity grids.  

 

Aside from the new focus areas of Task 16, participants will continue to work on many ongoing topics.  

Models must be updated regularly to include ongoing solar satellite innovations, like additional spectral 

channels or higher resolutions (e.g., Meteosat Third Generation or aerosol measurements with 

EUMETSAT Polar System-Second Generation (EPS-SG) Multi-Viewing Multi-Channel Multi-

Polarization Imaging). 

With the increasing diversity and complexity of solar resource data, it is necessary to invest significant 

effort in the application, evaluation, and standardization of these data. Users need to know which 

datasets are most suitable for their applications, and this requires readily available evaluations of 

existing products. A first evaluation of this kind was published in a report prepared by Task 16 

participants (Forstinger et al. 2023), but regular updates would certainly be useful to the whole solar 

industry. In parallel, the ground irradiance measurements that are necessary to validate modeled 

products must be of the highest possible quality. Forstinger et al. (2023) describe a detailed quality-

control algorithm, and a separate report (Blanc and Silva 2023) discusses some preliminary 
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developments aimed at filling data gaps in measurement time series. Follow-up efforts toward even 

more sophisticated quality-control and gap-filling algorithms, to be made publicly accessible, have 

already started.  

To create an efficient market, best practices and standards for the creation, documentation, and 

application of the resource data are needed. Task 16 contributes to relevant work in international 

standardization bodies, such as the International Organization for Standardization, International 

Electrotechnical Commission, and ASTM International. The standardization activities are related to solar 

spectra, radiation measurements, calibration and test methods, radiation forecasts, data formats, and 

meteorological measurements for power plant performance measurement.  

Some resource products are currently not used to their full extent. The potential benefits of their full 

applications might be understood by most stakeholders, but methods to use the data are yet to be 

developed or implemented. Examples of such resource products include diverse quantities such as time 

series of soiling rates; spectral mismatch factors; or circumsolar radiation data that are often included 

only as an approximation in solar power plant models. Other examples are probabilistic forecasts or 

spatially highly resolved forecasts based on sky cameras. Users and data providers must collaborate 

closely to create the best datasets and to fully exploit the potential of such resource data. In the area of 

forecasting, the Task is collaborating with IEA Wind Task 51.  

Work on firm power generation will be continued. This work shows how to build and run cost-efficient 

energy systems based on deep knowledge of renewable resources and their temporal and spatial 

variability. The findings of this work have great effects on other topics like regulations of curtailment or 

supporting schemes for PV. Therefore, close collaboration will expand with IEA PVPS Tasks 1 (markets 

and policy), Task 14 (grid and inverter modeling and regulations), and Task 18 (edge-of-the-grid 

modeling). 

12.2 Meteorological Data for Advanced, Integrated, and  
   Upcoming Technologies 

The ongoing development of solar energy technologies also brings the need for different and additional 

meteorological data. In particular, advanced, integrated, and upcoming technologies such as floating 

PV, agrivoltaics, and building- or vehicle-integrated PV require further developments of the resource 

data.  

Solar irradiance is still the most important meteorological input variable for solar yield analysis of such 

new technologies, but the characteristics of the needed irradiance data is different. For example, the 

role of the ground-reflected or rear-side irradiance and surface albedo is particularly complex and/or 

relevant for agrivoltaics, floating PV, and building-integrated PV. Cost-efficient and bankable ways to 

include these complex contributions to the yield modeling and its uncertainty must be found. Bi-

directional reflectance distribution functions (BRDF) and enhanced sky radiance data might be used by 

experts to provide the required data for yield estimations.  

Further, several additional quantities besides the irradiance must be provided at high spatial and/or 

temporal resolution for accurate yield analysis. For the economic success of a solar project, especially 

when involving the newest technologies, the role of variables such as temperature, wind loads, soiling, 

or precipitation is remarkable. Further, such data must be derived and provided in a way that fits the 

requirements of the specific technology of interest. For instance, temperature data obtained from a 

weather model or a meteorological station next to a lake contemplated for a floating PV power plant 

might significantly differ from that of the water body. In agrivoltaic projects, the important variables do 

not only affect the PV installation but also the crop yield, so the different effects must be considered as 

a whole in the project.   
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Overall, there are many reasons why various parameters must be studied in more detail in the future 

and methods must be developed to adapt the available data to the specific needs of solar projects. Even 

for well-known technologies, such as monofacial PV or solar thermal systems, some parameters still 

require significant further research. For example, accurate, robust, and low-maintenance soiling 

measurements are still under development, and soiling forecast models based on meteorological data 

must be improved. Research and development are also required to prepare recommendations and 

procedures so that these data become truly applicable in the context of commercial solar projects and 

enable the fast growth of the solar energy sector. Evaluations and comparisons of existing and new 

datasets, as well as prediction methods, are needed to empower users toward selecting the most 

adequate data and methods for their projects. Task 16’s future work will then necessarily focus on the 

evaluation of the related uncertainties and their impacts. 

12.3 Effects of Climate Change on Radiation and Solar  
   Energy Production 

Task 16 will have a new focus on climate model scenarios (e.g., SSP5-8.5; IPCC 2021) with respect to 

long-term solar resource assessments. In essence, the quality of the results of global and regional 

climate models will be analyzed with a particular focus on historical long-term dimming and brightening 

periods. Task 16 will review the future aerosol scenarios, including volcanic aerosols and cloud-aerosol 

effects. Other factors, like regional impacts of shifts in cloud cover and optical thickness, temperature, 

or heat waves caused by increased greenhouse gas emissions in the climate model scenarios will also 

be investigated because future aerosol scenarios related to anthropogenic emissions, with their 

associated cloud-aerosol effects, can lead to future dimming and brightening periods. It is anticipated 

that such effects will be better modeled in forthcoming climate models and therefore will be more 

realistic. It is also important to develop more representative typical and reference yearly datasets, for 

reasons explained in (Müller et al. 2014). For instance, these new developments would include: 

• A review of methods used to generate “plausible” or realistic artificial multiyear solar datasets, such 

as that in Fernández-Peruchena et al. (2015). These methods will be assessed with respect to the 

realism of their statistical properties, particularly as a function of the intrayear variability of the solar 

resource.  

• Evaluation of how extreme weather conditions will change in the future. This is because, for 

example, severe storms and hailstorms can damage solar PV modules and the mirrors in 

concentrating solar power systems. How the frequency of these events will change with global 

climate change varies regionally and will be reviewed on a regional basis. This work will be done in 

collaboration with PVPS Task 13. 

Additionally, statistical characteristics of interannual and non-stochastic variability (induced by, e.g., 

climate trends or volcanic activity) will be examined. 

12.4 Forecasting Solar Radiation and Solar Power,  
   Before and Behind the Meter, Based on  
   New Machine-Learning Techniques 

Solar power forecasting will be an essential component of the future energy supply system, which will 

use large amounts of variable solar power. Presently, solar power forecasting systems already 

contribute to the successful integration of considerable amounts of solar power to the electric grid, and 

solar power forecasting receives unprecedented attention from various scientific communities. The solar 

resource variability must be properly managed for various reasons, such as to increase the share of 

solar power into the energy mix, to maintain the stability of the grid, and to guarantee optimal grid 
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effectiveness in terms of unit commitments and economic dispatch. Consequently, new techniques and 

approaches will be proposed to improve the accuracy of the models to provide solar radiation and power 

forecasts.  

These new developments will build on existing data sources and models, including irradiance and PV 

power measurements, all-sky imagers, and satellite data and numerical weather predictions. Major 

changes are expected in the combination of solar power plants with local storage and demand and 

enhancing forecasts with machine-learning models. 

The usage of solar power forecasting in combination with local storage and energy management 

systems will strongly impact the feed-in characteristics of solar power and forecast requirements. In 

many countries, the current situation is that large shares of the generated solar power are directly fed 

into the grid. Thus, grid management is largely based on the result of using forecasts of regionally 

aggregated solar generation over the grid area. With the fast expansion of storage facilities combined 

with solar power plants, as well as the increasing share of self-consumption in urban areas, the solar 

power that is actually fed to the grid might increasingly deviate from its local generation. This poses new 

challenges for forecasting solar power feed-in to the grids, though in the long run energy management 

and storage evidently are essential for balancing fluctuating generation and therefore also for the large-

scale system integration of solar power. In addition to forecasting solar generation, self-consumption 

and storage must be considered when forecasting regionally aggregated PV power feed-in. Here, 

irradiance data with high spatiotemporal resolution are required to properly model solar generation, and 

thus will play an important role in complementing measurements at the feed-in point for behind-the-

meter applications. Further, high-resolution local forecasts for local and small-scale energy 

management systems are also considered more critically important. 

With the growing need for accurate predictions (both site-specific and regionwide), the scientific 

community has become increasingly aware of recent advanced data processing techniques aimed at 

exploiting the ever-increasing amounts of meteorological data in a large-scale spatiotemporal context 

(Schultz et al. 2021). The key elements that tend to push this transition to a data-driven approach are 

as follows: 

• The massive parallel processing power now offered by graphics processing units (GPUs), which 

has considerably enhanced all computing capabilities  

• The increased number of irradiance datasets available for benchmarks—an important topic within 

Task 16 (see Forstinger et al. 2023)  

• The specialized data processing techniques that make analyses more efficient through enhanced 

combinations of satellite-based or ground-based images with numerical data. Among these 

techniques, it is worth mentioning AutoML (auto machine learning), which has become a hot topic 

thanks to its high accuracy, deployment simplicity, and time efficiency.  

With the aim of providing a comprehensive overview of the performance of new solar radiation and 

power forecasting models to forecast users, their evaluation in benchmark studies will be an essential 

part of Task 16’s future work.  
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 GLOSSARY 

In the definition column, words in italics refer to another entry in the column labelled “Term.” 

 

Term Definition 

Absolute cavity radiometer 

(ACR) 

An instrument used as part of a primary reference measurement 

procedure for solar irradiance. It absorbs radiation on a blackened 

conical receiver and is electrically self-calibrating. It provides the 

reference from which other radiometers are calibrated. 

Absolute humidity ρv [g/m3] A measure of the actual amount of water vapor in the air. 

Absorption When the quantity of interest is captured by a substance, reducing the 

amount available. For example, solar radiation is absorbed by some 

atmospheric molecules, solar collectors, and the ocean. 

Aerosol Excluding cloud droplets and related precipitation, any small particle 

that tends to stay in the air, such as smoke, dust, salt, or pollen. 

Aerosol optical depth 

(AOD) 

[unitless] Extinction per unit path length due to aerosols alone. This is 

typically obtained at any wavelength  by evaluating the total 

atmospheric extinction and subtracting the extinction of as many of the 

other constituents as possible (water vapor [w], ozone [o], mixed gases 

[g], nitrogen dioxide (n), and atmospheric molecules [m]). The 

transmittance, T, and optical depth, , of an atmospheric constituent 

are related as follows:  

T = exp(– m), or  = –ln(T)/m 

where m is the airmass. Based on this, the AOD at  can be derived 

as: 

a  =  – (w + o + g + n + m) 

where  is the total optical depth of the atmosphere, typically sensed 

by a sunphotometer or spectroradiometer. See also Atmospheric 

turbidity and Langley. 

 

Airmass  AM or m [unitless]; also called optical air mass or relative air mass. The 

path length of the direct solar beam irradiance through an ideal 

atmosphere composed of only air molecules, relative to its vertical 

height. When the sun is at the zenith, i.e., directly above a location, the 

path length is defined as airmass 1 (AM 1.0). AM 1.0 is not synonymous 

with solar noon because the sun is usually not directly overhead at 

solar noon in most seasons and locations. AM0 is the term 

conventionally used to denote the conditions at the Top of atmosphere.  

When the solar zenith angle increases, the airmass increases 

approximately by its secant, i.e., 1/cos(SZA). Formulas of various 
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Term Definition 

complexity have been proposed to evaluate AM from SZA (Rapp-

Arrarás and Domingo-Santos 2011). The optical mass of specific 

atmospheric constituents, such as water vapor, ozone, or aerosols, is 

somewhat different from AM because they do not have the same 

vertical profiles as air molecules (Gueymard 2019).  

 

Albedo The fraction of solar radiation that is reflected by a surface (e.g., 

ground, vegetation, water, or snow) or atmospheric constituent (e.g., 

air or cloud). For the solar energy community, albedo usually refers to 

just the surface surrounding a solar installation.  

Albedometer A combination of two pyranometers specifically designed to measure 

albedo. One instrument faces up and the other faces down. 

Ambient temperature The air temperature measured with a thermometer, similar to dry-bulb 

temperature. 

Angle of incidence [rad or °] The angle that a ray (of solar radiation, for example) makes 

with a line perpendicular to the surface. For example, a surface that 

directly faces the sun has a solar angle of incidence of 0°, whereas if 

the surface is parallel to the sun (for example, sunrise striking a 

horizontal rooftop), the angle of incidence is 90°. At any instant, the 

angle of incidence can be calculated from sun position and the 

surface’s tilt and azimuth (Iqbal 2012). 

Angle of refraction [rad or °] The angle that a ray (of solar radiation, for example) makes 

with a line perpendicular to the boundary separating two media after 

bending caused by refraction. 

Angular response 

characterization 

Quantification of the effects of the irradiance incidence angle on 

pyranometer measurement performance. If a pyranometer is rotated 

while a beam of light is shined upon it, it will record the maximum 

energy when it is directly facing the beam, and the energy will fall to 

zero when it is sideways to (or facing away from) the beam. If the 

instrument were perfect, its signal should vary like the cosine of the 

angle of incidence. Pyranometers have imperfections that keep them 

from following this pattern. The actual cosine response of the 

instrument thus needs to be characterized. 

Anisotropic See Isotropy. 

Astronomical unit (AU) A unit of length defined by the International Astronomical Union exactly 

as 149,597,870.7 km, representing the approximate mean Sun-Earth 

distance. See Solar constant. 

Atmosphere Gaseous envelope surrounding a planet or a star. 

Atmospheric pressure  [mb or hPa] The pressure (force per area) created by the weight of the 

atmosphere. At higher elevations, the atmospheric pressure is lower 

because there is less air. 
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Atmospheric turbidity Haziness in the atmosphere caused by various kinds of aerosol 

particles. If turbidity is zero, the sky has no aerosols. In the past, 

turbidity was defined by the Linke turbidity factor or the Ångström 

turbidity coefficient. Currently, it is more precisely quantified by the 

aerosol optical depth at one (typically 550 nm) or more wavelengths. 

Attenuation In atmospheric physics, loss of radiation by optical phenomena. For 

example, solar irradiance attenuates through scattering and absorption 

as it passes through the atmosphere to the surface of the Earth. See 

also Scattered radiation. 

Azimuth angle Ψ [rad or °] The angle between the horizontal direction (of the sun, for 

example) and a reference direction (normally north, although some 

authors incorrectly measure the solar azimuth angle from due south). 

Barometer An instrument that measures atmospheric pressure, also called 

barometric pressure. 

Barometric pressure [mb or hPa] The pressure (force per area) created by the weight of the 

atmosphere, measured by a barometer. At higher elevations, the 

atmospheric pressure is lower because there is less air. 

Beam radiation A synonym for direct normal irradiance, the amount of solar radiation 

from the direction of the sun. 

Bias An indication of the average deviation of the predicted from the 

measured values. 

Bidirectional reflectance 

distribution function 

Angular function describing the distribution of reflected light at a surface 

in a specific direction for all possible angles of incidence of the 

incoming radiation. 

Bird clear-sky model  Named after Dr. Richard Bird, a scientist at the National Renewable 

Energy Laboratory. This radiation model uses properties of the 

atmosphere—such as albedo, atmospheric turbidity, and precipitable 

water—to determine the amount of solar radiation striking the Earth’s 

surface under a cloudless sky (Bird and Hulstrom 1981). 

Blackbody The theoretical “perfect” absorber of electromagnetic radiation at all 

wavelengths. As blackbodies heat up, they emit a characteristic 

double-exponential light frequency (energy) curve, which is imperfectly 

seen in nature. 

Broadband Outdoor 

Radiometer Calibration 

(BORCAL) 

A method of calibrating pyrheliometers and pyranometers based on the 

summation technique at NREL’s Solar Radiation Research Laboratory. 

Up to 3 days of clear-sky solar irradiance measurements taken at 30-

second intervals from sunrise to sunset are used to compute the 

individual radiometer responsivities. 

Broadband solar irradiance  [W m-2] Theoretically, the solar radiation arriving at the Earth from all 

frequencies or wavelengths, but in practice limited to the spectral range 

of radiometers, typically wavelengths from 290 nm to ≈3000 nm (for 

pyranometers), ≈4000 nm (for pyrheliometers), or infinite (for 
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windowless absolute cavity radiometers). Meteorologists often refer to 

this band as shortwave radiation. 

Calibration The process of comparing an instrument’s output signal to that of a 

reference. Instruments that measure solar energy tend to “drift”—that 

is, their output signals do not mean the same thing from one time period 

to another. Because of this, they are periodically (e.g., annually) 

recalibrated against more reliable reference instruments. 

Campbell-Stokes sunshine 

recorder 

A clear glass sphere that focuses the sun’s rays onto a special strip 

chart, producing a charred path when there is bright sunshine. The 

length of the path determines the bright sunshine duration. The lower 

limit for bright sunshine (based on a Campbell-Stokes recorder) might 

vary between ≈70 W/m2 (very dry air) and ≈280 W/m2 (very humid air).  

Circumsolar radiation  The amount of solar radiation coming from a circle in the sky centered 

on the sun’s disk. In radiometry, the region of most interest has a radius 

up to ≈3°, depending on the type of instrument being used to measure 

the beam radiation (broadband or spectral). This region can be smaller 

or wider in concentrating solar applications, depending on the 

concentration ratio. 

Clear-sky index Kc [unitless] Ratio between the observed or predicted global horizontal 

irradiance and its ideal clear-sky counterpart at any instant: 

Kc = GHI / GHIcs 

where GHIcs is estimated by a clear-sky radiation model. See Bird 

clear-sky model. 

Clearness index Kt [unitless] The global transmittance of the atmosphere, i.e., the ratio 

between global horizontal irradiance and top-of-atmosphere horizontal 

irradiance (also called extraterrestrial irradiance) at any instant: 

Kt = GHI / ETH = Kn + Kd 

where Kn and Kd are the direct and diffuse transmittances of the 

atmosphere, respectively. 

Climate The typical or expected (average) weather pattern over a long period, 

as opposed to the actual weather at any given instant. 

Cloud type The type of clouds (e.g., altostratus, cumulonimbus) that form each 

layer of the sky dome. Clouds are classified in 10 main groups, called 

genera. Each observed cloud is a member of one, and only one, genus. 

Collector A device that receives solar radiation and converts it to useful energy 

forms. 

Concentrating parabolic 

trough  

A collector system that tracks the path of the sun by pivoting on one 

axis (typically east-west or north-south) using shiny parabolic collector 

troughs to heat the collector fluid that passes through a tube at the 

focus. 
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Concentrator A collector that enhances solar radiation by focusing it onto a smaller 

area through mirrored surfaces or lenses. 

Cosine response The effects of the irradiance incidence angle on pyranometer 

measurement performance, compared to the expected angular 

response for an ideal instrument. See Angular response 

characterization.  

Dewpoint [K or °C] The temperature at which the water vapor in the atmosphere 

will condense as drops on a surface. 

Diffuse fraction K [unitless] The ratio between diffuse horizonal irradiance and global 
horizontal irradiance at any instant: 

K = DHI / GHI 

Diffuse horizontal 

irradiance (DHI) 

[W m-2] The irradiance generated by diffuse sky radiation when incident 

on a horizontal surface. 

Diffuse sky radiation  [W m-2] The radiation component that emanates from a point in the sky 

after scattering, in practice excluding circumsolar radiation. Low diffuse 

sky radiation exists at high-elevation sites under cloudless skies or at 

any location under thick cloudiness (e.g., strong thunderstorms). High 

values are produced by a turbid cloudless atmosphere or by intense 

scattering from clouds. 

Diffuse transmittance Kd [unitless] The ratio between diffuse horizontal irradiance and 

extraterrestrial (top-of-atmosphere) horizontal irradiance at any instant: 

Kd = DHI / ETH, 

See Clearness index. 

Direct horizontal irradiance 

(DIR) 

[W m-2] The amount of direct solar radiation that is incident on a 

horizontal surface, i.e., DNI cos(SZA), where SZA is the Solar zenith 

angle. 

Direct normal irradiance 

(DNI) 

[W m-2] A synonym for beam radiation, the amount of solar radiation 

from the direction of the sun collected at normal incidence. 

Direct  

transmittance 

Kn [unitless] The ratio between direct normal irradiance and 

extraterrestrial (top-of-atmosphere) normal irradiance at any instant: 

Kn = DNI / ETN. 

See Clearness index. 

Diurnal  Refers to the daily cycle. A diurnal plot is usually a representative 

midnight-to-midnight graph of values measured at a smaller time 

interval (e.g., hourly or 5-minute values). 

Dry-bulb temperature  [K or °C] The air temperature measured with a thermometer, similar to 

ambient temperature. The term dry-bulb distinguishes it from the wet-

bulb temperature measured by a psychrometer to determine relative 

humidity. 
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Electromagnetic radiation  A form of energy propagation where photons travel at the speed of light. 

Electromagnetic spectrum  The entire energy range of electromagnetic radiation specified by 

frequency, wavelength, or photon energy.  

Emissivity [unitless] The ratio of the actual amount of electromagnetic radiation 

emitted by an object to the amount emitted by an ideal blackbody at the 

same temperature. 

Energy [J or kWh] An amount of power that has been at work during a specified 

period.  

Equation of time (EqT)  [minutes] The annual east-west swing of the location of the sun, which 

can be detected by noting the position of the sun at the same time (such 

as noon) each day. This motion is caused by the libration (wobble) of 

the Earth. It varies between about –14 and +16 minutes during the year 

and is usually calculated with high accuracy by sun position algorithms. 

It can also be estimated (in minutes) by the simple formula of (Spencer 

1971): 

EqT = 229.18 (0.000075 + 0.001868 cosD – 0.032077 sinD  

        –0.014615 cos2D – 0.040849 sin2D) 

where: 

D = nD (360° / 365) 

and nD is the day number (e.g., nD = 32 for Feb. 1). See Local standard 

time. 

Equinox Literally “equal night,” a day when the number of hours of daylight 

equals the number of hours of night. In the Northern Hemisphere, the 

vernal equinox, usually March 21, signals the onset of spring, and the 

autumnal equinox, usually Sept. 21, signals the onset of autumn. 

Extraterrestrial irradiance  [W m-2] Also known as “top-of-atmosphere” irradiance, the amount of 

radiation that a location on Earth would receive if there was no 

atmosphere or clouds (i.e., in outer space). This number is typically 

used as the reference amount against which actual solar radiation 

measurements are compared. 

Fixed-tilt array  A set (array) of solar power collectors that are permanently installed on 

a fixed structure. They are usually mounted on an equator-facing tilted 

structure that maximizes the annual amount of energy that they can 

produce. 

Flat-plate collector  A solar power collector with a flat surface that absorbs solar radiation 

without concentrating or refocusing it. 

Global horizontal irradiance 

(GHI) 

[W m-2] Also called global (or total or surface) solar radiation; the sum 

of diffuse horizontal irradiance and direct horizontal irradiance: 

GHI = DHI + DNI cos(SZA) 

where SZA is the solar zenith angle. 



 Task 16 Solar Resource – Best Practices Handbook for the Collection and Use of Solar Resource Data – 4th Edition  

- 7 - 

Term Definition 

Global tilted  

irradiance (GTI) 

[W m-2] Also called POA irradiance. The sum of direct tilted irradiance, 

diffuse tilted irradiance (DTI, the diffuse sky radiance integrated over 

the visible fraction of the sky), and surface-reflected irradiance (RTI): 

GTI = DNI cos() + DTI + RTI 

where  is the angle of incidence. 

Ground-reflected radiation  The radiation from the sun that is reflected back into the atmosphere 

after striking the surface. 

Heliosat A modeling method originally developed by Cano et al. (1986) for the 

determination of global horizontal irradiance from meteorological 

satellite imagery. Various improved versions have followed. 

Heliostat A large flat mirror, usually on a 2-axis tracker so that it can continuously 

reflect the sun’s rays onto the central receiver of a concentrating solar 

power (CSP) plant. A typical central receiver system requires hundreds 

of heliostats. 

Hemispherical  Describing properties related to a half sphere, represented by a 2-π sr 

solid angle. 

Humidity (See Absolute humidity, Relative humidity, Specific humidity.) 

Illuminance  [lux] Photometric quantity representing the total luminous flux incident 

on a surface, per unit area. This corresponds to the solar radiation in 

the visible region of the solar spectrum to which the human eye 

responds.  

Incidence angle [°] See Angle of incidence. 

Incident radiation The incoming radiation, i.e., radiation that strikes a surface. 

Infrared radiation The radiation with wavelengths beyond ≈750 nm, i.e., greater than 

those of the visible radiation but shorter than those of microwaves (at 

≈800 µm). Infrared radiation is associated with heat energy. The near 

infrared contains wavelengths in the shortwave range ≈750–4000 nm. 

Irradiance E [W m-2] The rate at which radiant energy impinges on a specific area 

of surface during a specific time interval. This is also known as radiant 

flux density. 

Irradiation H [J m-2 or kWh m-2] The energy accumulated on a unit area surface 

during a specific period (1 kWh m-2 = 3.6 MJ m-2). 

Isotropy Characterizes an emission or reflection process in which the radiance 

is the same in all directions. To simplify calculations, the diffuse sky 

radiance and the reflectance of materials or ground surfaces are often 

considered isotropic, but this typically constitutes an oversimplification 

(Kamphuis et al. 2020). A process that is not isotropic is called 

anisotropic. 

Lambertian A Lambertian radiating surface is one whose intensity varies with angle 

according to Lambert's law [Johann H. Lambert, 1728–1777]. This 

https://en.wikipedia.org/wiki/Luminous_flux
https://en.wikipedia.org/wiki/Area
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applies to the characterization of the reflectance and albedo of a 

surface. The radiance of a Lambertian radiating surface is independent 

of the angle from which it is viewed. Hence, such a surface radiates 

isotropically. In particular, the radiance of a blackbody is Lambertian. 

Langley Samuel P. Langley (1834–1906) was an American astronomer and 

physicist who invented the bolometer. He dedicated substantial efforts 

to the evaluation of the solar constant and its possible variations, based 

on bolometer observations made at high-altitude observatories and 

airmass-based extrapolations to AM0 (Top of atmosphere; see also 

Airmass). In sunphotometry, this “Langley extrapolation” or “Langley 

plot” technique is used systematically to calibrate sunphotometers 

against the sun with a high degree of confidence (Shaw 1983). The 

“Langley ratio method” (Almansa et al. 2024) is also used to transfer 

the calibration of sunphotometers. 

In his honor, an irradiation unit (Langley or Ly) was named after him 

but is now deprecated. By definition, 1 Ly = 1 cal cm-2 = 41.84 kJ m-2. 

In terms of irradiance, 1 Ly min-1 = 697.33 W m-2.  

Latitude [°] The angular distance from the equator to the pole, counted positively 

toward the North Pole (+90°). Hence, the South Pole is 90° south, or –

90°. 

Light The visual portion of the electromagnetic spectrum between the 

ultraviolet (≈380 nm) and the infrared (≈750 nm). The term is 

sometimes used as a synonym for all electromagnetic radiation, at least 

in the shortwave. See also Visible radiation. 

Local apparent time LAT [hour]. Also called True Solar Time, or simply Solar Time. The time 

of day strictly based on the movement of the sun. See Solar noon. 

Local standard time  LST [hour]. The time of day based on the local time zone, irrespective 

of any daylight savings correction. The correspondence between LST 

and LAT depends on the local longitude (L), its time zone (TZ), and the 

Equation of time (EqT): 

LST = LAT + 4 (15 TZ – L) + EqT 

Longitude [°] The east-west angular distance of a locality from the Prime Meridian. 

The Prime Meridian originates from the Greenwich Observatory in 

England. Longitudes are counted positively toward the east, up to 

+180°, and negatively toward the west, down to –180°. The ±180° 

Meridian is where the date changes by one day. 

Longwave radiation See Infrared radiation. 

Macroclimate The general climate of a large region such as the Rocky Mountains or 

the Northern Great Plains in the U.S., or the Alps in Europe. 

Measurand A quantity intended to be measured. 

Measurement uncertainty The bounds that should be placed on a measurand because of 

uncertainties in the measurement. If there are several factors pertaining 

https://en.wikipedia.org/wiki/Bolometer
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to the measurement, such as voltage bias and temperature bias and 

the precision of the measurement scale, the total measurement 

uncertainty can be difficult to calculate and might be larger than the 

largest individual uncertainty of any one factor depending on the 

sensitivity of the measurement to the significant factors. There is no 

such thing as a perfect measurement, although some measurements 

are so precise that errors are negligible. Solar irradiance 

measurements are notoriously unreliable with the best usual methods 

having 1%–3% uncertainty. 

Megawatt [MW] A unit of power equal to 1 million (106) watts. 

Mesoclimate The climate that is peculiar to a small natural feature, such as a hill or 

a small lake, with typical distances in the range 1–100 km. This climate 

tends to be different from the general climate of the region in 

predictable ways. A statement such as “it snows more at the airport 

than downtown” characterizes a mesoclimate. 

Microclimate The local climate near the ground that is peculiar to a very small area, 

i.e., with a radius less than a kilometer and possibly as small as a 

millimeter. A microclimate region is defined by changes in behavior of 

the atmosphere’s surface boundary layer and not by obvious physical 

features. 

Mie scattering  The scattering of solar radiation by ideal spherical particles in the 

atmosphere that have the same approximate size as the wavelength of 

light, analyzed by Gustav Mie. Although Rayleigh scattering explains 

the blue sky, Mie scattering explains why hazy (turbid) skies are whiter 

than dry, mountainous skies. 

Nadir Vertical direction oriented straight down (toward the center of the 

Earth), typically from a satellite sensor. 

Normal radiation  Radiation striking a surface that is facing the sun. Global (total) normal 

irradiance is all solar radiation that strikes a flat surface that faces the 

sun at normal incidence, whereas direct normal irradiance excludes all 

radiation that does not come from the direction of the sun, but in 

practice includes the Circumsolar radiation emanating from a region of 

≈2.5° around the sun center. 

Optical depth [unitless] Also called optical thickness. The natural logarithm of the ratio 

of incident to transmitted radiant flux through a material (e.g., the 

atmosphere). See also Aerosol optical depth. 

Orientation [°] The direction that a solar energy collector faces, also referred to as 

geometry. The two components of orientation are the tilt angle and the 

azimuth angle (the angles the active surface of the collector makes 

from the horizontal and from north, respectively. 

Ozone layer The layer in the atmosphere with the most ozone, usually at an altitude 

of ≈25 km. Ozone is created from oxygen by ultraviolet radiation 

https://en.wikipedia.org/wiki/Natural_logarithm
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bombardment. Because ozone tends to absorb and block ultraviolet 

radiation, a substantial ozone layer reduces the risk of skin cancer.  

Parabolic collector trough  A system that tracks the path of the sun by pivoting on one axis 

(typically east-west or north-south), using reflective parabolic troughs 

to heat the collector fluid that passes through a tube at the focus. 

Peak power [W] The maximum amount of power produced or demanded in a time 

interval. 

Photoelectric  Pertaining to the conversion of light (radiant energy) to electricity. 

Photon The fundamental particle or quantum of electromagnetic radiation 

(radiant energy). 

Photovoltaic A technology for converting sunlight directly into electricity, usually with 

photovoltaic cells. 

Photovoltaic array A photovoltaic module or (most usually) set of modules used for 

converting solar radiation into electric energy. 

Photovoltaic cell A single semiconducting element of small size (for example, 1–100 

cm2) that absorbs light or other bands of the electromagnetic spectrum 

and produces electricity. 

Photovoltaic module A unit, comprised of several photovoltaic cells, that is the principal unit 

of a photovoltaic array. A photovoltaic module’s size is on the order of 

1–2 m2, although its size is governed by convenience and application. 

All modules in an array must be electrically connected in series or 

parallel. 

Physikalisch-

Meteorologisches 

Observatorium 

Davos/World Radiation 

Center 

Located in Davos, Switzerland, this institution (also known as PMOD) 

is mandated by the World Meteorological Organization to determine 

and maintain worldwide radiometric standards for the measurement of 

solar radiation, including the World Radiometric Reference. 

Power [W] The amount of work or energy expended in a given amount of time. 

The watt is defined as a joule per second. 

Precipitable water [mm, cm, or kg m-2] Also called integrated water vapor, characterizes 

the amount of water vapor in a vertical column of atmosphere. The unit 

of measure is typically the depth to which the water vapor would fill the 

vertical column if it were condensed to a liquid. For example, 6 cm of 

precipitable water indicates a very moist atmosphere, , as opposed to 

less than 0.5 cm for a dry one.  

Pyranometer An instrument with a hemispherical field of view, used for measuring 

total or global solar radiation, specifically global horizontal irradiance or 

global tilted irradiance. A pyranometer with a shadowband or shading 

disk blocking the direct beam measures the diffuse sky radiation. A 

pyranometer mounted downward (facing the ground) measures the 

reflected radiation from the ground  (see Albedo). 
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Pyrheliometer A radiometer with a narrow field of view (≈2.5° half-angle) that 

measures direct normal irradiance. Pyrheliometers are mounted on 

sun-following trackers so that the instrument is always aimed at the 

sun. 

Radiance L [W m-2 sr-1] The flux density of radiant energy per unit solid angle per 

unit of projected source area. This applies to the diffuse radiance 

emitted from any point in the sky. The total radiance emitted from all 

source points in the visible sky (minus the circumsolar region) 

determines the diffuse sky irradiance. 

Radiant emittance M [W m-2] The radiant energy emitted from a surface. 

Radiant energy Q [J] A portion of radiation in the form of photons or electromagnetic 

waves that are emitted by the atmosphere. 

Radiant flux Φ [W] The amount of radiant energy per unit of time in the form of 

photons or electromagnetic waves. 

Radiant intensity I [W sr-1] The radiant energy emitted by a source per unit solid angle. 

Radiation  Synonymous with electromagnetic radiation, or the energy produced 

by an oscillating electrical (and magnetic) field, transmitted by photons. 

See Electromagnetic spectrum. 

Radiometer Instrument constructed to measure electromagnetic radiation over a 

limited or unlimited spectral range. 

Rayleigh scattering  The scattering of solar radiation by ideally spherical particles in the 

atmosphere that are much smaller than the wavelength of light, as 

analyzed by Lord Rayleigh. Rayleigh scattering explains the blue color 

of the cloudless sky and the reddening of the sun at sunrise/sunset. 

Reanalysis A meteorological data assimilation method based on a numerical 

weather prediction (forecast) model that is run for the past and provides 

physical estimates of Earth System variables at any location and at any 

point in time consistent with the model physics. It assimilates historical 

atmospheric observational data spanning an extended period, using a 

single consistent assimilation (or “analysis”) scheme throughout the 

period, which can span many decades.  

Receiver  A device that receives solar radiation and converts it to useful energy 

forms. 

Reference cell  A photovoltaic cell mounted in a suitable enclosure and used as a 

radiometer to measure the photovoltaic-matched irradiance, which is 

sometimes also called the effective irradiance or photovoltaic resource. 

Reflectance  The fraction or percentage of a particular frequency or wavelength of 

electromagnetic radiation that is incident at a specific angle of 

incidence onto a surface and reflected by it without being absorbed or 

transmitted. When considering radiation emanating from the whole sky 

hemisphere rather than a specific direction, see Albedo. 

https://en.wikipedia.org/wiki/Meteorology
https://en.wikipedia.org/wiki/Data_assimilation
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Refraction  The bending of electromagnetic radiation by its passage through a 

medium of a high refractive index. Light is refracted by passing through 

a lens, water, or the atmosphere. 

Relative humidity  [%] The amount of water vapor in the air expressed as the ratio 

between the measured amount and the maximum possible amount (the 

saturation point at which water condenses as dew). 

Rotating shadowband 

radiometer  

An instrument that determines the total solar radiation and diffuse sky 

radiation by periodically shading the total sky sensor from the sun with 

a rotating shadowband. Typically once every minute, the curved black 

shadowband rotates 180° to obscure the sun for a few seconds and 

then returns to its resting position. 

Saturated air  Air that contains the maximum possible amount of water vapor; any 

increase in water vapor would then cause condensation. 

Scattered radiation  Radiation that has interacted with particles, to the effect of disrupting 

the original direction of the incident beam. 

Semiconductor  A material that has much lower resistance to the flow of electrical 

current in one direction than in another. Diodes, transistors, and many 

photovoltaic cells contain semiconductive materials, such as silicon. 

Shading disk  A small disk attached on a tracking arm that permanently blocks the 

direct normal irradiance so that a pyranometer can only sense the 

diffuse sky radiation. 

Shadowband  An adjustable metal strip that blocks the direct radiation so that a 

pyranometer can only sense the diffuse sky radiation. It must be 

adjusted manually on a ≈daily basis. 

Shortwave radiation  The principal portion of the solar spectrum that spans from 

approximately 290 nm to 4000 nm in the electromagnetic spectrum.  

Silicon sensor  A photovoltaic cell that is being used to measure solar irradiance. 

Because its spectral response is not flat, its signal depends on the 

instantaneous characteristics of the solar spectrum. 

Sky dome Refers to the appearance of the entire sky, from horizon to zenith in all 

directions. 

Sky radiation  See Diffuse sky radiation. 

Solar absorber  A sheet of material—usually copper, aluminum, or steel—that forms 

the surface of a solar collector. It collects and retains solar radiation, 

which is passed to a heat transfer medium. 

Solar cell A photovoltaic cell that is used to convert solar energy into electricity. 

Solar collector A device that receives solar energy and converts it to useful energy 

forms (usually heat). 

Solar concentrator A solar collector that enhances solar energy by focusing it onto a 

smaller area through mirrored surfaces or lenses. 
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Solar constant [W m-2] Long-term average amount of the Total solar irradiance 

received at the Top of atmosphere by a normal surface by a normal 

surface after passing through the mean Earth orbit. The currently 

accepted value, based on satellite measurements, is 1361.1 W m-2 

(ASTM 2022). Note that Earth-based pyrheliometers record lower 

values of solar power flux because of atmospheric attenuation. 

Solar irradiance [W m-2] The amount of solar energy that is incident on at a specific area 

of a surface during a specific time interval (radiant flux density). 

Solar noon The time at which the position of the sun is at its highest elevation in 

the sky. It is also the moment when the sun apparently crosses the 

local longitude. This time can be quite different from noon according to 

local standard time. 

Solar radiation The electromagnetic radiation emitted by the sun. 

Solar spectrum The electromagnetic spectral distribution emitted by the sun or received 

by a collector or instrument on Earth. In meteorology, the shortwave 

spectrum and the longwave spectrum correspond to wavelengths 

below and above ≈4 µm, respectively. 

Solar thermal electric  A technology for using the sun’s energy to produce steam to run 

turbines that generate electricity. 

Solar zenith angle (SZA) [rad or °] The angle between the sun and the zenith (directly overhead). 

It is usually calculated at any instant with a sun position algorithm. 

Spatial Pertaining to space or distance, such as spatial variation (variation over 

distance). 

Specific humidity q [g kg-1] The mass of water vapor per unit mass of humid air, usually 

expressed as grams of water vapor per kilogram of air. 

Spectral irradiance Eλ or E(λ) [W·m–2·nm–1 or W·m–2·μm–1] The amount of radiant energy 

flux expressed in terms of the solar spectrum. Spectral irradiance is 

typically measured with a spectroradiometer. 

Spectroradiometer  An instrument designed to measure spectral irradiance. 

Stratosphere  The relatively isothermal (constant temperature) layer of the 

atmosphere above the troposphere and below the mesosphere. 

Sunphotometer  An instrument designed to measure spectral irradiance at a few 

selected wavelengths and then derive the spectral aerosol optical 

depth and/or precipitable water. This type of instrument requires very 

precise calibration. See Langley. 

Sunshine Used interchangeably with the more precise term “bright sunshine”, 

when the sun casts an obvious shadow or when a sunshine recorder is 

recording. The World Meteorological Organization defines sunshine 

duration as the period during which the direct normal irradiance 

exceeds 120 W m-2. A previous definition used a higher value of 210 W 

m-2 (Iqbal 2012). Sunshine is measured by a sunshine recorder. 
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Whereas modern instruments exist, most historical data have been 

obtained with the Campbell-Stokes sunshine recorder. 

Sunshine duration  [hour] The length of time over which the sun casts an obvious shadow 

or when a sunshine recorder is recording. See also Sunshine and 

Campbell-Stokes sunshine recorder. 

Sun position The location of the sun in the sky, expressed in terms of solar azimuth 

angle and solar zenith angle. The sun position can be obtained from an 

ephemeris or astronomical almanac. In solar energy practice, it is 

calculated by a sun position algorithm. 

Suns An ad hoc unit (typically 1 kW m-2) that multiplies the amount of power 

a solar concentrator can receive from the sun. For example, a 

concentrator might focus the energy of 40 suns onto a central receiver. 

A high-performance solar cell can be tested at “1000 suns” if developed 

for concentrators. 

Temporal Pertaining to time, such as temporal variation (variation over time). 

Terrestrial radiation The electromagnetic longwave radiation that is emitted by the Earth, as 

opposed to the solar radiation that is emitted by the sun. 

Thermopile A set of thermocouple junctions connected in series to boost the 

voltage to a meaningful amount (usually measured in millivolts). A 

thermocouple is a metallic strip or wire that produces an 

electromagnetic potential (voltage) when the two ends (junctions) are 

at different temperatures. The “cold” junctions of thermopile 

radiometers are painted white to reflect radiation, and the “hot” 

junctions are painted black to absorb radiation. 

Top of atmosphere (TOA) Term frequently used in meteorology and atmospheric sciences, with 

the same meaning as “extraterrestrial” used more frequently in solar 

applications. See Extraterrestrial irradiance, Solar constant, and Total 

solar irradiance. 

Total solar irradiance (TSI) [W m-2] Full-spectrum solar irradiance emitted by the Sun at any instant, 

and corrected to correspond to the average Sun-Earth distance (≈1 

AU). See Astronomical unit and Solar constant. 

Total solar radiation See Global horizontal irradiance. 

Transmittance [unitless] The fraction of a particular wavelength or waveband of 

electromagnetic radiation that passes through a substance without 

being absorbed or reflected. 

Troposphere  The lowest region of the atmosphere between the surface of the Earth 

and the stratosphere. In the troposphere, the temperature usually 

decreases with increasing altitude. 

Trough See Parabolic collector trough. 
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Turbidity A measure of the optical opacity of the cloudless atmosphere. See 

Atmospheric turbidity. 

Typical meteorological year A “typical” year of hourly solar and meteorological values that is 

designed to simulate the expected climate of a location throughout a 

year. 

Ultraviolet radiation The range of radiation between ≈1 and 400 nm. In solar and other 

terrestrial applications, two different UV regions are considered: UV-A 

(320–400 nm) and UV-B (280–320 nm). 

Uncertainty The expression of the amount of doubt that remains after a result is 

obtained. See Measurement uncertainty. 

Visible radiation The radiation wavelengths that are visible to the human eye, covering 

the approximate range 380–750 nm. See also Light. 

Volt The metric unit of electric potential. 

Water vapor Gaseous water (individual water molecules) in the atmosphere. See 

also Precipitable water and Relative humidity. 

Watt A unit of power defined as a joule per second. 

Watt-hour A unit of energy (symbol Wh) equal to 3600 joules. A kWh is 1000 Wh 

or 3.6 MJ. 

Wavelength The distance between adjacent peaks or troughs of an electromagnetic 

wave. Wavelengths of light are typically expressed in terms of 

micrometers (10-6 m) or nanometers (10-9 m). 

Weather The state of the atmosphere at any given time. This includes 

temperature, relative humidity, cloudiness, precipitation type, wind, and 

the presence of aerosols or meteors. 

Wet-bulb temperature  The temperature to which air will cool when water is evaporated into 

unsaturated air; measured by a wet-bulb thermometer, which has a wet 

cloth sleeve that covers its bulb. Wet-bulb temperature and dry-bulb 

temperature are used to compute relative humidity. 

Wind The horizontal motion of air near the surface of the Earth. 

Wind rose Polar graphs that indicate the speed and relative frequency of wind 

according to its direction. Wind roses are useful for determining the 

most prevalent direction of winds of desired strength.  

World Radiometric 

Reference (WRR) 

Provides the basis for all measurements by radiometers in the world. 

Every 5 years, many of the best absolute cavity radiometers undergo 

an intercomparison at the Physikalisch-Meteorologisches 

Observatorium Davos/World Radiation Center in Davos, Switzerland. 

The most stable, accurate, and precise instruments provide the WRR 

for the coming years. Any credible radiometer measurement must be 

traceable to the WRR. 
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World Standard Group 

(WSG) 

Maintained by the World Meteorological Organization’s Physikalisch-

Meteorologisches Observatorium Davos/World Radiation Center 

(WRC). The WSG is a group of seven well-characterized absolute 

cavity radiometers used to define the World Radiometric Reference 

(WRR). International intercomparisons of national standard 

pyrheliometers with the WSG are held every 5 years at the WRC to 

transfer the WRR to national centers. The WRR has an uncertainty of 

≈0.3%. This means that the best possible measurements of direct 

normal irradiance have at least this uncertainty. 
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