

Field Insights on Optimizing Diffuse Light Tracking Performance

Maddalena Bruno *Bifacial Tracking Systems Workshop* Rome, 27.02.2025 www.ise.fraunhofer.de

Introduction

HSATs Tracking Algorithms Overview

2 © Fraunhofer ISE FHG-SK: ISE-INTERNAL

J. S. Stein et al., "Best Practices for the Optimization of Bifacial Photovoltaic Tracking Systems," International Energy Agency -Photovoltaic Power Systems Programme, 2024, vol. IEA-PVPS T13- 26:2024 https://iea-pvps.org/wp-content/uploads/2024/08/IEA-PVPS-T13-26-2024-REPORT-Bifacial-Tracking FINAL.pdf

Introduction Extreme Weather Response

Wind Response

- Most common extreme weather response
- Based on anemometer measurements.
- Threshold varies from 15 to 22 m/s (based) on system type and mounting)
- Stow position varies from 5 to 30° toward wind direction

Snow Response

- Quite extensively implemented
- Based sensor measurements
- Move to full tilt position when snow is detected to avoid accumulation

Flood Response

- Advanced tracker control system
- Based on sensor measurements
- Move to stow position when above a certain threshold

Hail Response

- Often based on manual override
- When automized is based on nowcasting techniques ⁶
- Move to full tilt position when detected or expected

3

J. S. Stein et al., "Best Practices for the Optimization of Bifacial Photovoltaic Tracking Systems," International Energy Agency -Photovoltaic Power Systems Programme, 2024, vol. IEA-PVPS T13- 26:2024 https://iea-pvps.org/wp-content/uploads/2024/08/IEA-PVPS-T13-26-2024-REPORT-Bifacial-Tracking FINAL.pdf

Classical tracking algorithms are optimized only for these conditions

- On cloudy days, diffuse irradiance prevails
- Horizontal position of the solar panels maximizes radiation capture from the sky dome
- Different studies assessed the **theoretical potential** → Ranging from **0.5% to 3%** yearly ⁷⁻¹⁰

- Lack of common understanding of required conditions to apply diffuse optimization
- Few field implementations \rightarrow needed to assess **practical potential**

4 © Fraunhofer ISE FHG-SK: ISE-INTERNAL J. S. Stein et al., "Best Practices for the Optimization of Bifacial Photovoltaic Tracking Systems," International Energy Agency -Photovoltaic Power Systems Programme, 2024, vol. IEA-PVPS T13- 26:2024 https://iea-pvps.org/wp-content/uploads/2024/08/IEA-PVPS-T13-26-2024-REPORT-Bifacial-Tracking_FINAL.pdf

Diffuse Tracking Experimental Setup

DeepTrack Project in collaboration with Zimmermann PV-Steel Group

- Trackers for diffuse algorithm testing to assess real potential
- 90 kWp installed in Merdingen Germany (Outdoor performance Lab)
- System divided into two groups:
- **Group 1**: control group following a standard backtracking strategy
- **Group 2**: following a diffuse tracking strategy

- String 2 and string 8 studied to:
- Avoid self shading
- Evaluate energy gains

Monitoring System

- Tracked Reference Cell for every PV row
- EkoTracker
 - GHI, DHI and DNI

- Lufft WS100
- Lufft WS200
- Horizontal Reference Cell
- Sunto Sensor (GHI, DHI and DNI)
- POAscan by PV Performance Labs
 - Gpoa at all angles (0°-360°)

Diffuse Tracking

Methodology

ISE

ISF

Diffuse Tracking Limitations

- In its current implementation the algorithm has some strong limitations:
 - It depends on the DR computed from the Sunto sensor which is subject to measurement uncertainty
 - It does not yet take into account weather forecasts so leads to:
 - > Excessive additional rotation time
 - \geq Wear and tear of motors
 - Subject to transmission network and trackers movement delays

Diffuse Tracking Results

The performance of the Diffuse Strategy has been studied for the period from the January 12 to January 28, 2025

- In the period studied, the Diffuse Strategy was activated 59% of the time
- For an overcast day, the current algorithm leads to daily energy gains from 5 up to 14%
- Over the entire period, a gain of 1% was measured due to the wide range of DR considered → 25% of the time the strategy results in energy losses
- Positive gains result in a 2.2% increase in yield which are aligned with previous simulation work
- Gains justify research efforts and interest

References

- 1. W. F. Marion and A. P. Dobos, "Rotation Angle for the Optimum Tracking of One-Axis Trackers," National Renewable Energy Laboratory, 2013, vol. NREL/TP-6A20-58891
- 2. E. Lorenzo, L. Narvarte, and J. Muñoz, "Tracking and back-tracking," Progress in Photovoltaics: Research and Applications, vol. 19, no. 6, pp. 747-753, 2011, doi: https://doi.org/10.1002/pip.1085
- 3. K. Anderson and M. Mikofski, "Slope-Aware Backtracking for Single-Axis Trackers," NREL, 2020, vol. Technical Report NREL/TP-5K00-76626.
- 4. K. S. Anderson and A. R. Jensen, "Shaded fraction and backtracking in single-axis trackers on rolling terrain," Journal of Renewable and Sustainable Energy, vol. 16, no. 2, 2024, doi: <u>https://doi.org/10.1063/5.0202220</u>
- 5. A. Dobos, "Improved Tracking Schemes for Half-Cut PV Modules," presented at the 2022 PV Performance Modeling Collaborative (PVPMC) Workshop, Salt Lake City, 2022.
- 6. N. Straub, W. Herzberg, A. Dittmann, and E. Lorenz, "Blending of a novel all sky imager model with persistence and a satellite based model for high-resolution irradiance nowcasting," Solar Energy, vol. 269, p. 112319, 2024/02/01/ 2024, doi: <u>https://doi.org/10.1016/j.solener.2024.112319</u>
- 7. K. Anderson and S. Aneja, "Single-Axis Tracker Control Optimization Potential for the Contiguous United States," in 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC), 5-10 June 2022 2022, pp. 1-6, doi: <u>https://doi.org/10.1109/PVSC48317.2022.9938629</u>
- 8. C. D. Rodríguez-Gallegos, O. Gandhi, S. K. Panda, and T. Reindl, "On the PV Tracker Performance: Tracking the Sun Versus Tracking the Best Orientation," IEEE Journal of Photovoltaics, vol. 10, no. 5, pp. 1474-1480, 2020, doi: <u>https://doi.org/10.1109/JPHOTOV.2020.3006994</u>
- 9. N. A. Kelly and T. L. Gibson, "Increasing the solar photovoltaic energy capture on sunny and cloudy days," Solar Energy, vol. 85, no. 1, pp. 111-125, 2011/01/01/ 2011, doi: https://doi.org/10.1016/j.solener.2010.10.015.
- 10. I. Muñoz, A. Guinda, G. Olivares, S. Díaz, A. M. Gracia-Amillo, and L. Casajús, "Evaluation of Horizontal Single-Axis Solar Tracker Algorithms in Terms of Energy Production and Operational Performance," Solar RRL, vol. 8, no. 1, p. 2300507, 2024, doi: <u>https://doi.org/10.1002/solr.202300507</u>

Thank you!

Maddalena Bruno <u>maddalena.bruno@ise.fraunhofer.de</u>

Fraunhofer ISE Heidenhofstraße 2 79110 Freiburg www.ise.fraunhofer.de **Fraunhofer** ISE