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What is IEA PVPS TCP? 
The International Energy Agency (IEA), founded in 1974, is an autonomous body within the framework of the Organization for Economic 
Cooperation and Development (OECD). The Technology Collaboration Programmes (TCP) were created with a belief that the future of 
energy security and sustainability starts with global collaboration. The programmes are made up of 6.000 experts across government, aca-
demia, and industry dedicated to advancing common research and the application of specific energy technologies.  

The IEA Photovoltaic Power Systems Programme (IEA PVPS) is one of the TCPs within the IEA and was established in 1993. The mission 
of the programme is to “enhance the international collaborative efforts which facilitate the role of photovoltaic solar energy as a cornerstone 
in the transition to sustainable energy systems.” To achieve this, the programme’s participants have undertaken a variety of joint research 
projects in PV power systems applications. The overall programme is headed by an Executive Committee, comprised of one delegate from 
each country or organisation member, which designates distinct ‘Tasks,’ that may be research projects or activity areas.  

The IEA PVPS participating countries are Australia, Austria, Belgium, Canada, China, Denmark, Finland, France, Germany, Israel, Italy, 
Japan, Korea, Malaysia, Mexico, Morocco, the Netherlands, Norway, Portugal, South Africa, Spain, Sweden, Switzerland, Thailand, Türkiye, 
and the United States of America. The European Commission, Enercity, Solar Energy Research Institute of Singapore and Solar Power 
Europe are also members. 

Visit us at: www.iea-pvps.org 

What is IEA PVPS Task 13? 
Within the framework of IEA PVPS, Task 13 aims to provide support to market actors working to improve the operation, the reliability and the 
quality of PV components and systems. Operational data from PV systems in different climate zones compiled within the project will help 
provide the basis for estimates of the current situation regarding PV reliability and performance.  

The general setting of Task 13 provides a common platform to summarize and report on technical aspects affecting the quality, performance, 
reliability, and lifetime of PV systems in a wide variety of environments and applications. By working together across national boundaries, we 
can all take advantage of research and experience from each member country and combine and integrate this knowledge into valuable 
summaries of best practices and methods for ensuring PV systems perform at their optimum and continue to provide competitive return on 
investment. 

IEA PVPS Task 13 has so far managed to create a framework for the calculations of various parameters that can indicate the quality of PV 
components, systems, and applications. The framework is available and can be used by the PV industry which has expressed appreciation 
towards the results included in the high-quality reports. 

The IEA PVPS countries participating in Task 13 are Australia, Austria, Belgium, Canada, Chile, China, Denmark, Finland, France, Ger-
many, Israel, Italy, Japan, the Netherlands, Norway, Spain, Sweden, Switzerland, Thailand, the United States of America, and the Solar 
Energy Research Institute of Singapore. 
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EXECUTIVE SUMMARY 

Key Performance Indicators (KPIs) are an important set of metrics used to assess various 
aspects of photovoltaic (PV) systems, including their long-term performance, economic viability 
and carbon footprint. Technical KPIs support data-driven and informed decision-making when 
optimizing PV systems and provide a comprehensive overview of how PV systems operate 
across different conditions and climates. Different KPIs are commonly employed throughout 
the entire value chain of PV projects and can be categorized into technical, economic and 
sustainability aspects. 

In this work, a set of best practices for handling PV system data to reliably calculate relevant 
KPIs is discussed. While most technical KPIs are generally well-known among asset owners, 
EPCs, O&M providers and consultants, not all stakeholders in the financing-to-operation chain 
are equally aware of the nuances and consequences of certain decisions, which are based on 
how technical KPIs are operationalized, i.e. translated from contracts to how and where raw 
data are stored, which data cleaning and imputation techniques are used, to how the technical 
KPIs are calculated and used for subsequent decision-making. In many cases, the decisions 
made in the development-to-construction phase, will affect the asset for a significant part of its 
lifetime. For example, the resolution at which data is measured, which data are stored, or 
whether data back-ups are on-site or in the cloud, can all affect how KPIs are calculated, affect 
future modifications to contractual clauses, or the need for SCADA upgrades. Hence, this work 
aims to provide all stakeholders deeper insights and a shared understanding of the most im-
portant technical KPIs. 

The work is divided into three parts, each addressing different aspects of KPIs, data manage-
ment, and their mapping potential. 

Table 1: Usage overview of technical KPIs. 

KPI Abbrevia-
tion 

Private  
equity / 
Bank 

Project 
Developer 

Asset Owner / 
Asset Manager EPC O&M 

Service 
provider / 
consultant 

Pxx energy yield P50 Yield T/C T/C T/C T  T/C 
Performance ra-
tio PR   T/C T/C T/C T/C 

Availability    T/C T/C T/C T/C 
Soiling ratio SR T T T T T T 
Degradation rate Rd T T T T T T/C 
Performance 
loss rate PLR T T T T T T/C 

Energy perfor-
mance index EPI   T/C T/C T  

Capacity test CapTest   T/C T/C T  
Capacity utiliza-
tion factor CUF / PLF    T T T 

Maintenance re-
sponse time MRT   C C C C 

T – technical, C – contractual binding 

A comprehensive overview of key performance indicators (KPIs) that are important across 
technical, economic, and sustainability domains, highlighting their common definitions and var-
iations, are presented. In addition, this work delves into the typical advantages and challenges 
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associated with each KPI, and which variations of each KPI exist. The focus of this report is 
centered on technical KPIs. It has been demonstrated that the application of all investigated 
KPIs poses challenges, either in terms of their formulation, interpretation, or due to inherent 
limitations. This work is based on an extensive literature review and feedback from stakeholder 
questionnaires across various markets and regions. The objective was to understand which 
KPIs are widely used within the industry, which have contractual binding, and which are pri-
marily applied in a technical framework. This information is summarized in Table 1. 

KPIs that are contractually binding carry direct financial implications, while those used in a 
technical context serve to support the performance assessment of PV plants, and the associ-
ated decision-making by stakeholders. The survey showed additionally that while there are 
certain KPI usage trends per region, a globalized world and market means that there are no 
strict differences to be seen. Despite the nominal standardization of contractual KPIs such as 
the performance ratio and temperature-corrected performance ratio, there are still considera-
ble variations in the data quality routines employed, and consequently, in the calculation of the 
resulting KPIs.  

The report focuses furthermore on the challenges and best practices in managing PV system 
and weather data, covering the entire data processing cycle from input data collection to KPI 
computation. The most important signals, such as power, current, and voltage values from the 
PV system, as well as climatic variables from weather stations, are discussed. Commonly rec-
orded variables include irradiance, temperature, wind speed, and wind direction. Additionally, 
the common structure of a PV system, along with its data and command streams, is presented. 
The quality of the input data directly influences the certainty of the calculated PV system KPIs. 
Therefore, the data quality and data cleaning steps within the data processing cycle are of 
utmost importance. Key data quality criteria to consider include accuracy, completeness, con-
sistency, timeliness, and reliability. The report also presents the latest findings on imputing, or 
filling, data gaps in PV system power, irradiance, and temperature time series. However, even 
the best imputation strategies will inevitably increase uncertainty. In this regard, high-quality 
data should be viewed as an investment that enables better evidence-based decision-making 
by ensuring reliable KPI calculations, rather than as a cost that diminishes system profitability. 

Finally, a holistic view on the mapping potential of KPIs is presented, emphasizing their appli-
cations in various contexts. These include performance ratio mapping of individual PV compo-
nents to assess system health, as well as global geographical mapping of climate stressors 
and their impact on PV system performance statistics. The discussion extends to exploitable 
data resources, including raw time series, aggregated KPIs, geospatial weather data from sat-
ellite, geospatial post-processed PV data, aerial images from drones, and static data from cur-
rent-voltage tracers. Additionally, five distinct case studies are presented, illustrating how data 
can be utilized to analyze specific aspects of PV system health. Each case study is broken 
down into its fundamental concept, required input data, the calculations performed, the data 
being analyzed, and how the results should be interpreted. This study sets the tone for future 
work, especially as the increasing availability of PV system data offers greater opportunities 
for comprehensive mapping and analysis. 

By providing a thorough and practical framework, this work aims to enhance the understanding 
and application of KPIs in the PV industry. It adheres to the three-part IEC 61724 standard, 
ensuring consistency and compatibility with existing industry standards, and contributes to the 
improvement and evolution of the current standard by identifying potential areas of enhance-
ment and providing recommendations for more efficient and standardized KPI usage. 
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 INTRODUCTION 

Key Performance Indicators (KPIs) are essential tools for assessing the performance of pho-
tovoltaic (PV) systems. They provide a framework for evaluating how PV systems operate 
across different conditions and climates. KPIs are commonly used to assess the value and 
viability of PV systems from both technical and economic perspectives. The latest Solar PV 
Analysis by the IEA showed that the Net Zero Scenario requires 7,400 TWh of solar PV gen-
eration provided by a PV capacity of about 5 TWp by 2030 [1]. Such goals demand an unprec-
edented increase in PV deployment and efficiency. Effective usage of KPIs is crucial for opti-
mizing PV system deployment while ensuring safe and efficient operation. 
This report focuses mainly on the operational stage of a PV system lifecycle. The reliable and 
regular calculation of KPIs is thereby the first step to carry out insightful and smart operation 
and maintenance (O&M) activities within PV plants. Through analyzing reliably calculated 
KPIs, underperformance of PV systems can be detected, downtime reduced, and the lifetime 
of systems and components prolonged. 
Not all stakeholders in the financing-to-operation chain are equally aware of the nuances and 
consequences of certain decisions, which are based on how technical KPIs are operational-
ized, i.e. translated from contracts to how and where raw data is stored, which data cleaning 
and imputation techniques are used, to how the technical KPIs are calculated and used for 
subsequent decision-making. In many cases, the decisions made in the development-to-con-
struction phase, will affect the asset for a significant part of its lifetime. For example, the reso-
lution at which data is measured, which data is stored, or whether data back-ups are on-site 
or in the cloud, can all affect how KPIs are calculated, affect future modifications to contractual 
clauses, or the need for Supervisory Control and Data Acquisition (SCADA) upgrades. Hence, 
this work aims to provide all stakeholders deeper insights and a shared understanding of the 
most important technical KPIs. 

 
Figure 1: Data processing cycle. 
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Major challenges are the handling and processing of the available raw data and the selection 
of reliable tools to do so. Figure 1 shows the general data processing steps going from raw 
data over the calculation of KPIs to actionable insights. A first important, although not exhaus-
tive, guide of how to process available PV performance data is the three-part standard IEC 
61724 [2, 3, 4]. 
This report addresses the most critical questions surrounding the use of KPIs in the PV sector: 
What, Why, How, Where, and Who, particularly in relation to PV plant monitoring [5], plant 
performance comparisons, and indicators dependent on external factors. It is thereby a direct 
extension of the IEC 61724 by critically discussing relevant KPIs and providing best practices 
in data acquisition, handling, and usage. The effective formulation and usage of domain related 
KPIs necessitate high-resolution data and sophisticated mapping techniques, which will addi-
tionally be explored in this and future work. 
The report lays the groundwork for advanced KPI mapping in the PV sector and is structured 
as follows:  
Chapter 2 describes technical, economic, and sustainability KPIs, their usage, derivations, 
and the contexts in which they are valuable. This part has been developed carefully by review-
ing current literature and incorporating expert knowledge through extensive interaction with PV 
specialists. This in turn was done through a number of stakeholder questionnaires and the 
execution of an interactive workshop. 
Chapter 3 covers the difficulties and best practices in data management for KPI determination 
including data types and structure, used hardware and software, data quality, data preparation, 
and data aggregation. Thereby, data quality issues and tools are described, the impact of data 
quality attributes on KPI determination discussed, and a best practice data quality routine es-
tablished. 
Chapter 4 presents an overview of the different types of input data for KPI calculations and 
gives several field examples of the entire process, from data to actions. Thereby, KPIs are 
connected to their calculation pathways and exploitable results.  
Chapter 5 closes with a summary and outlook. In future work, a great number of PV system 
KPIs will be computed and spatially mapped using extrapolation techniques to study KPI com-
putation sensitivity and to visualize global performance trends.  
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 OVERVIEW OF THE MAIN KEY PERFORMANCE INDICA-
TORS IN THE PV SECTOR 

In this chapter, the most important KPIs are summarized, focusing on technical, economic and 
sustainability KPIs. It describes how the KPIs are calculated, their intended purpose, and which 
stakeholders typically use them. Additionally, benefits and challenges associated with each 
KPI are discussed. 

While health & safety KPIs are not within the scope of this report, it is worth noting that health 
and safety measures can, under certain circumstances, be linked to performance.  

 

2.1 Technical Key Performance Indicators 

2.1.1 Pxx Energy Yield 
Description The most basic technical KPI is the expected energy production of the plant. 

The Pxx Energy Yield describes the probability of exceedance that the PV 
system will produce in a given year. The P50 Energy Yield is the median sce-
nario, where 50% of the years, the energy yield will exceed this value, and 
50% of the years the yield will be below. The P50 is typically the base case 
used by investors and proponents, which uses a Typical Meteorological Year 
(TMY). TMY datasets represent an average year based on historical weather 
data. By contrast, the P90 and P99 energy yield values are used to stress-test 
financial models, as these represent 1-in-10 and 1-in-100 probability scenarios 
of lower energy yields, where a PV project must still remain profitable or capa-
ble of servicing its debt. The inter-annual irradiation variability is the main 
weather uncertainty contributor to the spread of P90 versus P50, whereas 
other sources of uncertainty (modelling, system operation, system degrada-
tion, effects of climate change etc.) are also important. Non-P50 values, such 
as P90 or P99, are determined by interpolating a cumulative distribution func-
tion (CDF) to identify to many standard deviations it corresponds to. This CDF 
can be derived from Monte Carlo simulations using TMY datasets, long-term 
historical data from a nearby meteorological station, or, in some cases, Typical 
Reference Year (TRY) datasets, which are regionally standardized represen-
tations of typical weather conditions. 

Variations Varying probabilities of exceedance are used, the most common being P50, 
P75, P90, P95 and P99. 

Application The Pxx energy yield is an important KPI for financing and offtake contracts. It 
is also a comparison reference for the expected energy yield (given measured 
weather data) and the measured energy yield during the first year of operation. 
Pxx energy yield should not be used for naïve comparisons of different PV 
systems as it depends on PV technology and available solar resource at each 
site. 

Advantages Commonly used and easily understandable KPI. 
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Challenges Calculating the Pxx energy yield of a site requires an in-depth understanding 
of uncertainties related to weather data and PV plant performance as well as 
related to interannual weather variations. Climate change and its impact on 
weather predictability increases the uncertainty [6]. 

 

2.1.2 Performance Ratio 
Descrip-
tion 

The performance ratio (PR) is a measure of the efficiency and performance of 
the entire PV plant and can be considered a measure of energy production 
(𝐸𝐸out), normalized by the nominal size of the array (𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆) and the available 
plane-of array (POA) irradiation (𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃). 𝐸𝐸 is aggregated power (𝑃𝑃) and 𝐻𝐻 is 
aggregated irradiance (𝐺𝐺). Here, the specific (final) yield, 𝑌𝑌𝑓𝑓, of a system is set 
into relation with the reference yield 𝑌𝑌𝑟𝑟. The yields are ratios of measured val-
ues of energy or plane-of array irradiation with values obtained under standard 
test conditions (STC). 

𝑃𝑃𝑃𝑃 =
𝑌𝑌𝑓𝑓
𝑌𝑌𝑟𝑟

=
∑ 𝑃𝑃𝑜𝑜𝑜𝑜𝑡𝑡𝑘𝑘𝑘𝑘 /𝑃𝑃𝑆𝑆𝑡𝑡𝑆𝑆

∑
𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘
𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘

 =
𝐸𝐸𝑜𝑜𝑜𝑜𝑡𝑡/𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆
𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃/𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆

 

 

Variations Temperature-corrected PR 
The PR can additionally be corrected for temperature using power temperature 
coefficient, 𝛾𝛾, provided either by the PV module manufacturer or obtained from 
time series data, to better reflect the actual outdoor performance of the mod-
ules and to decrease temperature-related seasonal variations. The correction 
should be performed according to standard IEC 61724-1:2021 [2]. 𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑜𝑜𝑟𝑟𝑟𝑟 is 
calculated by estimating the module temperature 𝑆𝑆𝑚𝑚𝑜𝑜𝑚𝑚,𝑘𝑘 at each time interval 𝑘𝑘 
and factoring in its difference with reference temperature 𝑆𝑆𝑚𝑚𝑜𝑜𝑚𝑚,𝑟𝑟𝑟𝑟𝑓𝑓 using the 
module temperature coefficient (𝛾𝛾) [5]:  

𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑜𝑜𝑟𝑟𝑟𝑟 =
∑ 𝑃𝑃𝑜𝑜𝑜𝑜𝑡𝑡𝑘𝑘𝑘𝑘 /𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆

∑ �
𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘
𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆

∗ �1 + 𝛾𝛾 ∗ �𝑆𝑆𝑚𝑚𝑜𝑜𝑚𝑚,𝑘𝑘 − 𝑆𝑆𝑚𝑚𝑜𝑜𝑚𝑚,𝑟𝑟𝑟𝑟𝑓𝑓���𝑘𝑘

 

The reference temperature, 𝑆𝑆𝑚𝑚𝑜𝑜𝑚𝑚,𝑟𝑟𝑟𝑟𝑓𝑓, can either be the annual weighted module 
temperature, or the STC temperature of 25°C. It is crucial that 𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑜𝑜𝑟𝑟𝑟𝑟 is cal-
culated as a correction on the energy at the highest available data resolution 
(preferably sub-daily resolution), as correcting the PR at lower data resolutions 
will lead to erroneous results due to averaging issues. 

Bifacial PR 

The IEC 61724-1:2021 [2] proposes to correct the PR for bifacial PV systems, 
using the bifaciality coefficient at maximum power (𝜑𝜑𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚) and the in-plane 
rear-side irradiance ratio at each time interval 𝑘𝑘 (𝜌𝜌𝑘𝑘):   

𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 =
∑ 𝑃𝑃𝑜𝑜𝑜𝑜𝑡𝑡𝑘𝑘𝑘𝑘 /𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆

∑ �
𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘
𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆

∗ �1 +𝜑𝜑𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 ∗  𝜌𝜌𝑘𝑘��𝑘𝑘
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The bifaciality coefficient, or more commonly bifaciality factor, is the ratio of 
rear efficiency to the front efficiency when subject to the same irradiation [7]. 
The rear-side irradiance ratio 𝜌𝜌𝑘𝑘 is the ratio between in-plane rear-side and 
front-side irradiance. If in-plane rear-side irradiance sensors are available, they 
can be used along with the front-side sensors to calculate 𝜌𝜌𝑘𝑘. IEC 61724-
1:2021 rightfully warns about non-uniformity of rear-side irradiance and the 
need to place multiple sensors to capture this variability. Another option is to 
measure horizontal albedo or use albedo values from an accurate table ac-
cording to the type of environment and use an optical model to estimate rear-
side irradiance. Both options are complex and error-prone. 

Contrac-
tual exclu-
sions 

The following types of contractual exclusions may be applied: 

• curtailment 

• planned system/component shutdown  

• force majeure, including grid outage 

• tracker wind-stow 

• missing data 

Periods of curtailment may be excluded, even if the curtailment is partial and 
thereby not causing unavailability. 

While only targeted at performance indices as described in [4], the concepts 
“in-service” (excluding all unavailability) and “external-cause-excluded” (ex-
cluding only external sources of unavailability) may be applied as well. 

Applica-
tion 

The PR is the most commonly used KPI in Europe and other parts of the world 
(except US). No significant differences within Europe have been observed. 
Temperature correction is usually only applied in countries with warmer climate 
(e.g. Spain). It is a bankable KPI, as it is straight-forward and easily understood 
by all project stakeholders. 

Ad-
vantages 

The main advantage is that it is simple, clearly defined, and easily accessible 
to all stakeholders. 

Chal-
lenges 

There are well-known limitations to the PR. Among the challenges that are 
growing in importance are data losses and exclusions (e.g. due to curtailment 
or grid events), as systems increasingly operate with mandatory curtailment. 

For heavily oversized PV plants with a high DC-to-AC ratio, higher irradiation 
reduces the PR due to clipping. 

The main limitation is the temperature dependency. The temperature-corrected 
PR is used to lower the temperature dependency of the PR. In absence of 
module temperature measurements, the estimation of this parameter poses 
additional complexity. 
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2.1.3 Availability 
Descrip-
tion 

Availability KPIs measure the extent to which the plant was generating electric-
ity throughout the period of examination [5]. The basic formula for technical 
availability of any component is [8]:  

𝐴𝐴𝑡𝑡 =
𝑆𝑆𝑜𝑜𝑢𝑢𝑟𝑟𝑓𝑓𝑜𝑜𝑢𝑢 − 𝑆𝑆𝑚𝑚𝑜𝑜𝑑𝑑𝑑𝑑

𝑆𝑆𝑜𝑜𝑢𝑢𝑟𝑟𝑓𝑓𝑜𝑜𝑢𝑢
  

Here, 𝑆𝑆𝑜𝑜𝑢𝑢𝑟𝑟𝑓𝑓𝑜𝑜𝑢𝑢 is defined as time periods when the irradiance is above a prede-
fined threshold (daytime – based on elevation or irradiance thresholds), and 
𝑆𝑆𝑚𝑚𝑜𝑜𝑑𝑑𝑑𝑑 is a subset of this period in which the component under investigation is 
not operating. This formula can be used at plant level, but also at component 
level such as inverter, junction box or also for trackers. In case of component 
availability, the availability across the plant can be calculated by the availability 
sum of all components, 𝐴𝐴𝑡𝑡,𝑘𝑘, weighed by the installed DC power of the compo-
nent, 𝑃𝑃𝑘𝑘, and compared to the DC power of the plant 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆  [8]:  

𝐴𝐴𝑡𝑡 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑢𝑢 = �𝐴𝐴𝑡𝑡,𝑘𝑘 ∗
𝑃𝑃𝑘𝑘  
𝑃𝑃0𝑘𝑘

 

The inverter is the most commonly used availability level. The time resolution 
is also an important aspect and is typically 15 minutes or 1 hour.   

Variations Energy-based Availability 
The definition of energy-based availability varies depending on the source. Two 
commonly used equations are [8, 4]:  

 

𝐴𝐴𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒 =
𝑌𝑌𝑟𝑟𝑒𝑒𝑒𝑒 − 𝑌𝑌𝑜𝑜𝑑𝑑𝑡𝑡𝑢𝑢𝑡𝑡𝑢𝑢𝑢𝑢𝑡𝑡𝑢𝑢𝑢𝑢𝑟𝑟

𝑌𝑌𝑟𝑟𝑒𝑒𝑒𝑒
=
𝑌𝑌𝑟𝑟𝑒𝑒𝑒𝑒,𝑡𝑡𝑢𝑢𝑡𝑡𝑢𝑢𝑢𝑢𝑡𝑡𝑢𝑢𝑢𝑢𝑟𝑟

𝑌𝑌𝑟𝑟𝑒𝑒𝑒𝑒,𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑢𝑢
 

𝐴𝐴𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒 =
𝑌𝑌𝑚𝑚𝑟𝑟𝑡𝑡𝑢𝑢

𝑌𝑌𝑚𝑚𝑟𝑟𝑡𝑡𝑢𝑢 + 𝑌𝑌𝑟𝑟𝑒𝑒𝑒𝑒,𝑢𝑢𝑜𝑜𝑢𝑢𝑢𝑢
 

 
𝑌𝑌𝑟𝑟𝑒𝑒𝑒𝑒 is the expected yield and 𝑌𝑌𝑚𝑚𝑟𝑟𝑡𝑡𝑢𝑢 the measured yield. The first definition has 
the advantage that it’s independent of the performance of the plant. In turn, the 
latter definition yields a lower availability if the measured yield during times of 
availability is lower.  

There are known examples in Asia where energy-based availability takes into 
account tracker downtime. The estimated loss of energy between the tracker-
based irradiance profile and the irradiance profile in stow position is added to 
𝑌𝑌𝑜𝑜𝑑𝑑𝑡𝑡𝑢𝑢𝑡𝑡𝑢𝑢𝑢𝑢𝑡𝑡𝑢𝑢𝑢𝑢𝑟𝑟.   

Contrac-
tual exclu-
sions 

Regardless of the type of availability calculated, certain periods may be ex-
cluded from the calculation. In general, this comprises external sources of un-
availability, including: 

• curtailment 

• planned system/component shutdown  
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• force majeure, including grid outage 

• tracker wind-stow (only applicable for tracker availability or energy-
based Availability) 

• missing data 

According to [4], missing data should always be substituted, as long as the total 
period is less than 1 week per year. However, it is common practice to fully 
exclude periods with missing data. Chapter 3 elaborates further on data clean-
ing and filtering approaches. 

Applica-
tion 

Availability is typically a contractually binding KPI in operation & maintenance 
(O&M) and engineering, procurement, and construction (EPC) contracts. Both 
time-based and energy-based availability are commonly used. Availability KPIs 
are relevant for most stakeholders including O&M parties, asset managers 
(AM), investors and asset owners (AO). Additionally, they are used during PR 
liability periods for EPCs. Power purchase agreements (PPAs) can also specify 
a minimum availability, which is typically lower than the O&M requirements. 

Lastly, with most new utility-scale systems being installed on trackers, tracker 
availability is becoming more widely used. 

Ad-
vantages 

Time-based availability is well understood and therefore easy to use for all 
stakeholders, independently of their technical background. Energy-based 
availability has the advantage of being irradiation- and therefore energy-de-
pendent, which means that outage times where high losses are recorded have 
a higher weight. 

Chal-
lenges 

In deregulated markets, energy may be worth less during times of high irradia-
tion. Also, energy-based availability is less transparent, as it relies on a simu-
lation model to calculate the expected energy. For those reasons, time-based 
availability is still the most contractually used availability KPI.  

Tracker-based availability is even more challenging to calculate, partially be-
cause of the typically wireless communication causing frequent data gaps or 
stalled data. Furthermore, safety-related stow times, for example due to high 
winds or hail, should be distinguished from outages. 

 

2.1.4 Soiling ratio 
Descrip-
tion 

The soiling ratio (SR) is calculated as the ratio of the measured power output 
of a soiled PV cell to the power output that would be expected if the array was 
clean. The soiling ratio calculation is far from being standardized. The IEC 
61724-1:2021 [2] describes the soiling detection approach, but in very general 
terms. The soiling ratio can be calculated in various ways, including [9]:  

• optical soiling sensors 

• manual calculation of the ratio of power or short-circuit current of an 
uncleaned module versus a clean module 

• soiling extraction algorithms based on monitoring data 
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• image analysis of aerial photos 

• calculation based on environmental factors 

Variations Soiling level 
The soiling level/loss (SL) is calculated as 1-SR. It describes the transmission 
loss of the soiled PV array/system. 

Soiling rate 

The soiling rate describes the daily value of the soiling ratio, if no cleaning oc-
curs. 

Applica-
tion 

The SR is used in several ways. O&M contracts may stipulate a maximum soil-
ing loss. O&M operators may use detailed soiling data of their plants to do 
condition-based cleaning [10]. Asset owners may keep track of the soiling ratio 
per region to assess required actions and to improve projections for future 
yield.  

The relevance of soiling depends heavily on the climate. For example, in most 
of Europe, rainfall is frequent throughout the year. Due to simplicity, most asset 
owners define a fixed cleaning schedule or no cleaning at all. However, in de-
sert areas, cleaning schedules should be optimized based on periods of heavy 
soiling to maintain efficiency. 

Ad-
vantages 

A reliably calculated SR allows for well-informed decisions on cleaning sched-
ules and business plan projections. 

Chal-
lenges 

The main challenge is to get a reliable assessment of soiling losses. Each of 
the determination methods has advantages and disadvantages. For instance, 
soiling sensors require periodical maintenance, are an indirect way of measur-
ing performance loss presenting limitations [11], and provide a low spatial res-
olution. Similarly, the frequency of cleaning for the reference clean module can 
affect the SR. Soiling extraction algorithms are susceptible to noise in the mon-
itoring data, and the quality of the results depends heavily on the calibration 
and postprocessing steps of the specific algorithms.  

 

2.1.5 Degradation and performance loss rate 
Descrip-
tion 

The degradation rate (Rd), often wrongly equated with the performance loss 
rate (PLR), describes irreversible (e.g. material degradation) losses that can 
occur in a PV plant and is an essential parameter for performance modelling, 
monitoring, and O&M [12]. Instead, the PLR represents all irreversible and re-
versible (e.g. soiling) losses a PV system can experience. Figure 2 depicts the 
relation between the two closely interrelated parameters. In general, the PLR 
is calculated by linearizing a selected performance metric and taking the slope 
of the linear model as the rate of performance loss. An accurate assessment 
of the PV module degradation rates requires standardized indoor tests. 

Applica-
tion 

The Rd, and PLR, are relevant for PPAs and project finance (investor, AO, AM). 
The calculation requires several years of high resolution data and is generally 
used for project finance to feedback estimates and correct the finance model. 
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Ad-
vantages 

It is the primary KPI to predict and monitor the decreasing performance of a 
plant over time. 

Chal-
lenges 

A reliable calculation of both Rd and PLR requires several years of data. While 
two years is the minimum to theoretically calculate this KPI; Jordan et al. [13] 
showed that PLR calculated even on five years of data with limited weather 
data accuracy are expected to have high uncertainties. Statistical approaches 
used to determine PLR and Rd are also highly influenced by climatic variability. 
To this day, there is no standardized way of calculating the Rd/PLR. Best prac-
tices have been developed by the IEA PVPS Task 13 [14]. 

It is very difficult to accurately divide Rd from PLR and can only be attempted 
if all reversible losses are determined and subtracted from the PV system per-
formance. 

 
Figure 2: Relation between Rd and PLR; PLR includes all system-wide 
performance loss mechanisms while Rd describes only material degra-
dation; taken from [12]. 

 

2.1.6 Energy Performance Index  
Descrip-
tion 

The Energy Performance Index (EPI) expresses the ratio of the measured yield 
and the expected yield:  

𝐸𝐸𝑃𝑃𝐸𝐸 =
𝑌𝑌𝑚𝑚𝑟𝑟𝑡𝑡𝑢𝑢

𝑌𝑌𝑟𝑟𝑒𝑒𝑒𝑒
 

The calculation of the expected yield is a key aspect of calculating the EPI. 
While not specifying which performance model in particular, standard IEC TS 
61724-3:2016 [4] stipulates the use of a performance model which, given the 
input weather data, is used to calculate the expected energy output at any 
given time. Ideally, the performance model is the same as the model being 
used during the design of the plant. This is not always practically possible: as-
set models may get lost as assets change hands, and performance modelling 
tools are generally not built for continuous re-computation based on measured 
weather data. 
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Contrac-
tual exclu-
sions 

The following types of EPI exist:  

• In-service EPI: excluding periods of unavailability 

• External-cause-excluded EPI: excluding only external sources of una-
vailability – the same exclusion sources listed under the availability in-
dicator 

In [4], it is not clearly defined whether partial curtailment, which is not defined 
as unavailability, is to be considered an external cause. 

Applica-
tion 

Technical asset managers, especially in Europe, are increasingly referring to 
the EPI as a complementary KPI to the PR. The contractual implementation of 
this KPI is slowly but surely increasing. 

Ad-
vantages 

For a well-performing system, the EPI typically is more stable (around 100%) 
compared to the PR, as it is less influenced by system design and weather-
related variations, even when compared to the temperature-corrected PR. For 
instance, with a high DC-to-AC ratio, the PR may decrease due to inverter clip-
ping, whereas the EPI remains unaffected. 

Chal-
lenges 

There are practical boundaries, e.g. the fact that design tools are not typically 
integrated in monitoring platforms, so that the EPI calculation is a semi-manual 
process. Nevertheless, the main reason for the slow adoption is the uncer-
tainty. The EPI calculation requires more sophisticated and less straightforward 
equations compared to the PR, and as a result is also less transparent. This 
causes reluctance in using it. While the physical model to be used is not yet 
defined in the standard, machine learning models are emerging as alternative 
options for reliably calculating the expected yield. However, their inclusion may 
introduce more uncertainty when it comes to standardization, as these models 
can vary in methodology and outputs. 

Bifacial modules present the same challenges in terms of uncertainty to EPI as 
to PR. 

 

2.1.7 Capacity test 
Descrip-
tion 

The Capacity test is described both in ASTM-E2848-13 [15] and in IEC 61724-
2:2016 [3]. The two standards follow a different approach to arrive at similar 
results. Both evaluate the correlation between power (not energy) and weather 
conditions at reference weather conditions, which can differ from standard test 
conditions (STC). The estimated power at these reference conditions is then 
compared to a target power at those conditions. The ASTM approach uses 
multiple linear regression to compare measured power with expected power 
derived under reference conditions (irradiance 𝐺𝐺𝑅𝑅𝑆𝑆, temperature 𝑆𝑆𝑅𝑅𝑆𝑆, wind 
speed 𝑣𝑣𝑅𝑅𝑆𝑆) according to: 

𝑃𝑃𝑅𝑅𝑆𝑆 = 𝐺𝐺𝑅𝑅𝑆𝑆(𝑚𝑚1 + 𝑚𝑚2 ∙ 𝐺𝐺𝑅𝑅𝑆𝑆 + 𝑚𝑚3 ∙ 𝑆𝑆𝑅𝑅𝑆𝑆 + 𝑚𝑚4 ∙ 𝑣𝑣𝑅𝑅𝑆𝑆  ) 

The coefficients 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 and 𝑚𝑚4 are determined based on measured data 
from the plant over a defined period. Either the specific reference conditions, 
or the method to calculate the reference conditions based on the data, are 
agreed upon contractually. On the other hand, the IEC method uses a non-



Task 13 Reliability and Performance of Photovoltaic Systems – Best practice guidelines for the use of economic and technical KPIs 

 

 

21 

 

regression comparison of measured to expected power. This approach utilizes 
plant design parameters to calculate a correction factor. This factor adjusts the 
measured performance to compare it against the targeted performance under 
reference conditions. IEC 61724-2:2016 states that the approaches can be 
used interchangeably. The IEC standard is currently under revision exploring 
the idea to account for bifaciality. 

In the implementation within the Python package pvcaptest [16], the ASTM 
method is used to calculate the 𝑃𝑃𝑅𝑅𝑆𝑆,𝑢𝑢𝑢𝑢𝑚𝑚 based on simulated data, with the same 
reporting conditions. The capacity ratio is then calculated as 𝑃𝑃𝑅𝑅𝑆𝑆/𝑃𝑃𝑅𝑅𝑆𝑆,𝑢𝑢𝑢𝑢𝑚𝑚. If the 
capacity ratio is within predefined bounds, the test is considered as passed. 

Contrac-
tual exclu-
sions 

In the ASTM test, missing data, incorrect data and non-linear behavior, like 
clipping or curtailment, are excluded from the regression. The IEC test foresees 
an optional additional target under “constrained” operation for inverter clipping 
and curtailment.  

Applica-
tion 

The capacity test is most commonly used in the US for acceptance testing of a 
PV plant. 

Ad-
vantages 

It could be considered a slightly more accessible alternative to the EPI. Instead 
of building a performance model and comparing real to theoretical perfor-
mance, this method works the other way around. A performance model of the 
real plant is calculated and used to simulate the power output under reference 
conditions. 

Chal-
lenges 

The ASTM capacity test has similar challenges as the EPI in terms of lacking 
transparency. Additionally, the exclusion of all non-linear events, for example 
derating because of overheating, may give a less complete representation of 
the system performance compared to the EPI. Climatic variability and data 
quality may influence the regression resulting in a bias in the capacity ratio 
estimation. Furthermore, this test captures only a snapshot of performance 
over a year. As such, phenomena that average out on an annual basis (e.g., 
spectral effects) may introduce significant errors when not accounted in shorter 
timescales. 

 

2.1.8 Capacity Utilization factor 
Descrip-
tion 

The Capacity Utilization Factor (CUF) is the ratio of the energy production to 
the maximum energy theoretically achievable given the nominal AC capacity 
of the plant [4]:  

𝑆𝑆𝐶𝐶𝐶𝐶 =
𝐸𝐸𝑜𝑜𝑜𝑜𝑡𝑡

𝐴𝐴𝑆𝑆 𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 24 × 𝑑𝑑𝑚𝑚𝑐𝑐𝑑𝑑
  

The CUF is usually in the range of 10% to 20%, with higher values found for 
systems installed in high-insolation regions using trackers and having high 
DC:AC ratios. 

Variations The term Plant Load Factor (PLF) is sometimes used instead of CUF in an 
operational context. Alternatively, the term Capacity Factor (CF) is used. 
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Applica-
tion 

It can be considered a different way to represent the P50 energy yield. 

Ad-
vantages 

The CUF is technology-independent, so it can be used to intercompare PV 
plants with different energy production technologies.  

Chal-
lenges 

CUF/PLF is highly dependent on the weather conditions (especially annual in-
solation), and much care must be applied to compare performance between 
different periods or geographical regions. For example, solar brightening (in-
crease in solar irradiation, typically caused by a reduction in atmospheric aer-
osols, clouds, or other particles that scatter or absorb sunlight) can cause an 
upward trend in CUF, which may mask a decrease in plant performance. 

2.1.9 Maintenance response time 
Descrip-
tion 

The maintenance response time, described in detail in [5], is the time required 
by an O&M operator to have a technician dispatched to a PV plant after an 
alarm has been triggered (based on detection of a fault). The guaranteed re-
sponse time depends on the severity of the fault. The resolution time, which 
describes the period between a technician's arrival and the resolution of the 
fault, is typically not guaranteed [8]. 

Variations Other related KPIs are:  

• Mean time to repair [17] 

• Mean time before failure [17] 

• Failure rate [8] 

Applica-
tion 

Maintenance response times are sometimes used in O&M contracts, though 
they are partially redundant with the availability KPIs. 

Ad-
vantages 

It is a good internal KPI for O&M providers to track their performance and for 
asset managers/owners to verify the efficacy of the O&M team. 

Chal-
lenges 

An advanced digital system is required to track this KPI reliably. In contrast to 
availability or other performance KPIs, the maintenance response time is not 
directly related to the revenues of the asset.  
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2.2 Economic KPIs 
Although not really being KPIs, capital expenditures (CAPEX) and operational expenditures 
(OPEX) are important parameters to be aware of, as they drive most economic KPIs. CAPEX 
is the initial investment made by the asset owner. The main component is the Engineering, 
Procurement and Construction (EPC) cost. Other owner’s costs include development costs, 
permitting costs, etc. [18]. OPEX represents the costs required to operate and maintain a plant 
over its lifetime. It includes fixed costs (including insurance and land lease), replacement of 
large components, maintenance and replacement costs [18]. 

2.2.1 Levelized Cost of Electricity 
Descrip-
tion 

The Levelized Cost of Electricity (LCOE) is a broadly used way to compare the 
cost of different energy generation systems.  

The PV LCOE includes all the costs and profit margins of the whole value chain 
including manufacturing, installation, project development, O&M, inverter re-
placement, etc. A parameter that will become even more important in future 
LCOE calculations is the system residual value, also called salvage value. In 
other words, the residual value corresponds to the possible earnings coming 
from the disposal of the power plant at the end of its life. It is like a revenue, 
which has the effect of reducing the overall costs of the plant because of the 
possible recycling and sales of the reused materials, thus decreasing the 
LCOE. PV LCOE also includes the cost of financing but excludes the profit 
margin of electricity sales and thus represents the generation cost, not the elec-
tricity sales price which can vary depending on the market situation. A typical 
simplified formula is the following [19]:  

𝐿𝐿𝑆𝑆𝐿𝐿𝐸𝐸 =
𝑆𝑆𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶0+ ∑ 𝑂𝑂𝑂𝑂𝑂𝑂𝑋𝑋𝑡𝑡

(1+𝑖𝑖)𝑡𝑡
𝑁𝑁
𝑡𝑡=1

∑ 𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖𝑃𝑃𝑃𝑃𝑡𝑡
(1+𝑖𝑖)𝑡𝑡

𝑁𝑁
𝑡𝑡=1

 , 

with 𝑆𝑆𝐴𝐴𝑃𝑃𝐸𝐸𝐶𝐶 and 𝐿𝐿𝑃𝑃𝐸𝐸𝐶𝐶 as described in this section, 𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃 the energy 
yield per timepoint, and 𝑐𝑐 the discount rate. 
Another, more detailed approach is [20]: 

𝐿𝐿𝑆𝑆𝐿𝐿𝐸𝐸 =
𝑆𝑆𝐴𝐴𝑃𝑃𝐸𝐸𝐶𝐶 + 𝐸𝐸𝑃𝑃𝑣𝑣𝑃𝑃𝐼𝐼𝑐𝑐𝐼𝐼

(1 + 𝑊𝑊𝐴𝐴𝑆𝑆𝑆𝑆𝑑𝑑𝑜𝑜𝑚𝑚)𝑁𝑁 2�
+ 𝑃𝑃𝐼𝐼𝑑𝑑𝑅𝑅𝑚𝑚𝐼𝐼𝑃𝑃𝐼𝐼

(1 + 𝑊𝑊𝐴𝐴𝑆𝑆𝑆𝑆𝑑𝑑𝑜𝑜𝑚𝑚)𝑁𝑁 + ∑ 𝐿𝐿𝑃𝑃𝐸𝐸𝐶𝐶(𝑐𝑐)
(1 + 𝑊𝑊𝐴𝐴𝑆𝑆𝑆𝑆𝑑𝑑𝑜𝑜𝑚𝑚)𝑡𝑡

𝑁𝑁
𝑡𝑡=1

∑ 𝑌𝑌𝑐𝑐𝐼𝐼𝐼𝐼𝑑𝑑0 ∙ (1 − 𝑃𝑃𝐿𝐿𝑃𝑃)𝑡𝑡
(1 + 𝑊𝑊𝐴𝐴𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑡𝑡𝑢𝑢)𝑡𝑡

𝑁𝑁
𝑡𝑡=1

 [
€

𝑘𝑘𝑊𝑊ℎ
] 

Where N is economic lifetime of the system, t is year number ranging from 1 to 
N, 𝑆𝑆𝐴𝐴𝑃𝑃𝐸𝐸𝐶𝐶 is total capital expenditure of the system (at t = 0 in €/kWp), 𝐿𝐿𝑃𝑃𝐸𝐸𝐶𝐶(𝑐𝑐) 
is operation and maintenance expenditure in year t in €/kWp, 𝐸𝐸𝑃𝑃𝑣𝑣𝑃𝑃𝐼𝐼𝑐𝑐𝐼𝐼 is the 
cost of inverter replacement (at t = N/2 in €/kWp), 𝑃𝑃𝐼𝐼𝑑𝑑𝑅𝑅𝑚𝑚𝐼𝐼𝑃𝑃𝐼𝐼 is the residual 
value of the system at t = N in €/kWp (can be either positive or negative), 𝑌𝑌𝑐𝑐𝐼𝐼𝐼𝐼𝑑𝑑0 
is initial annual yield in year 0 in kWh/kWp (equivalent to P50 yield), 𝑊𝑊𝐴𝐴𝑆𝑆𝑆𝑆𝑑𝑑𝑜𝑜𝑚𝑚 
is nominal weighted average cost of capital per annum and 𝑊𝑊𝐴𝐴𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑡𝑡𝑢𝑢 is real 
weighted average cost of capital per annum. 

Variations ACOE (Actual cost of electricity) [21] is a metric where the actual electricity 
demand and curtailment are considered, aimed as an expansion or correction 
to the LCOE. 



Task 13 Reliability and Performance of Photovoltaic Systems – Best practice guidelines for the use of economic and technical KPIs 

 

24 

 

Applica-
tion 

LCOE is a metric that can compare various generation technologies (see chal-
lenges below for completeness). LCOE is also used as the benchmark for de-
velopers to bid in auctions and it is used to develop business models and cal-
culate Net Present Value (NPV) and IRR. LCOE is also used as a floor value 
to define the profitability of investments. 

Chal-
lenges 

Even though the LCOE is intended to compare generating technologies on a 
neutral basis, the assumptions used can affect results strongly. For example, 
front-loading O&M expenses, or distributing these over the project life, will af-
fect the LCOE [22]. One of the most important factors that affect the LCOE is 
the (assumed) discount rate [22, 20]. There are many ways to calculate the 
components of the LCOE, with various degrees of sophistication and detail. 
For example, Lazard’s LCOE is calculated by “creating a power plant model 
representing an illustrative project for each relevant technology and solving for 
the $/MWh value that results in a levered IRR equal to the assumed cost of 
equity” [23]. By contrast, NREL’s System Advisor Model has different methods 
to calculate the LCOE, depending on the project type and financing structure 
[24]. 

The LCOE is a techno-economic parameter used to evaluate the cost of a kil-
owatt-hour of energy produced from a selected power plant. The most typical 
approach to calculate the LCOE does not account for the interaction of the new 
power plant with the existing energy system, assuming indirectly the power 
plant as stand-alone. Some research studies have been proposing methodol-
ogies to overcome these limits by estimating the impacts of high VRES pene-
tration on the LCOE. They have determined the so-called integration costs that 
can be combined with the LCOE to include the impacts of adding new intermit-
tent generation in the existing energy systems. In this way, a new parameter 
can be defined (system LCOE) which include the integration costs as the sum 
of balancing costs, grid costs, adequacy costs (or backup costs), full-load hours 
reduction, and overproduction costs [25].  

Other more recent attempts to go beyond the classical LCOE formulation are 
represented by Levelized Avoided Cost of Electricity developed by the US En-
ergy Information Administration and the value-adjusted LCOE (or VALCOE) 
developed by the IEA, as well as the ACOE. 

The LCOE as a metric can continue to be used, even in the context of very 
high levels of curtailment and/or negative prices. It does, however, require in-
creasingly sophisticated (sub)models for the metric to be calculated correctly. 
For example, the denominator of the LCOE is essentially an energy sales fore-
cast model which is brought to the present, which historically assumed 100% 
of possible energy generation to be sold. Today, very few systems worldwide 
have such a certainty over the technical or financial lifetime and must therefore 
include curtailment for the correct calculation of the LCOE. 
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2.2.2 Net Present Value 
Descrip-
tion 

The Net Present Value (NPV) is the discounted difference between the present 
value of cash inflows and the present value of cash outflows over a period of 
time and it is used to analyze the profitability of an investment or project over 
its financial lifetime. The NPV gives an idea of how much revenue a solar pro-
ject will bring, accounting for the time value of money. The NPV is displayed in 
currency and is thereby an absolute measure. It is calculated as: 

𝑁𝑁𝑃𝑃𝑅𝑅 = ∑ 𝑆𝑆𝑡𝑡𝑢𝑢ℎ 𝑓𝑓𝑢𝑢𝑜𝑜𝑑𝑑𝑂𝑂𝑃𝑃
(1+𝑢𝑢)𝑡𝑡

𝑁𝑁
𝑡𝑡=1 − 𝑆𝑆0. 

Here, 𝑐𝑐𝑚𝑚𝑑𝑑ℎ 𝑓𝑓𝐼𝐼𝑃𝑃𝑤𝑤𝑃𝑃𝑃𝑃 represents the annual net of money earned through selling 
electricity vs. spent on the PV project. Expenditures can be, among other 
things, OPEX costs or loan payments. 𝑐𝑐 represents the interest rate, 𝑐𝑐 number 
of years the system is expected to operate, and 𝑆𝑆0 the initial investment. 

Variations  A simplified evaluation of a PV project is the return of investment (ROI). It de-
scribes the time for a project to pay for itself and is the ratio between net income 
and investment. The issue is that ROI does not account for factors such as 
inflation, depreciation, OPEX, project lifetime, and other relevant considera-
tions, which are factored in when calculating metrics like NPV or IRR. 

Applica-
tion 

The NPV is used to assess the profitability of investing in a solar project. If the 
NPV is positive over the lifetime of the PV system, the project can be consid-
ered profitable. 

Chal-
lenges 

Inflation as well as discount rates must be assumed, which affects the final 
NPV value. 

2.2.3 Internal Rate of Return 
Descrip-
tion 

IRR, or internal rate of return, is a metric used in financial analysis to estimate 
the profitability of potential investments. IRR is a discount rate that makes the 
NPV of all cash flows equal to zero in a discounted cash flow analysis. The IRR 
is given in percentage and expresses the annual return over the lifetime of the 
PV project. The IRR can be calculated when setting the NPV formula to 0 and 
solving the equation for the discount rate 𝑐𝑐. 

Applica-
tion 

It represents at what rate the project would have to make money in order to 
break even over the lifetime of the PV project. 

Ad-
vantages 

The IRR is used as decision-making KPI, as the percentage value makes for 
easy comparison with other investments under consideration. 
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2.3 Sustainability KPIs 

2.3.1 Global Warming Potential 
Descrip-
tion 

Mitigating climate change is one of the main reasons for the large-scale de-
ployment of solar PV. The impact of electricity generation on climate change is 
assessed using the Global Warming Potential (GWP). GWP is expressed in 
units of carbon dioxide equivalents, a standardized measure that quantifies the 
global warming impact of various greenhouse gases (mainly CO₂, CH₄, N₂O, 
and SF₆) based on their radiative effects in the atmosphere. This unit provides 
a consistent way to compare the climate impact of different gases on a common 
scale. For comparing electricity generation technologies, it is mostly expressed 
as carbon intensity per kWh of generated electricity, e.g. in gCO2-eq/kWh. This 
metric is determined by calculating the total gCO2-eq released during the lifecy-
cle of the PV system and dividing it by the total lifetime electricity generation in 
a lifecycle assessment (LCA) analysis.  

Applica-
tion 

The GWP of electricity generation is mostly used in research, to compare dif-
ferent forms of electricity generation. This knowledge of the GWP of electricity 
generation is driving the transition of fossil fuel-based electricity generation to 
lower GWP electricity sources like PV. Within the context of PV, the GWP is 
further applied to compare different types of existing and prospective PV tech-
nologies. PV module producers are increasingly publishing so-called environ-
mental product declarations (EPDs), showing the environmental impact of the 
module production, determined based on LCA, including the GWP.  

Ad-
vantages 

The advantage of the GWP is that it expresses the impact of electricity gener-
ation on climate change, and as such allows the comparison of different tech-
nologies of electricity generation with each other. Since climate change poses 
one of the main challenges for our energy system, this metric evaluates the 
suitability of an electricity generation source within this context and compared 
to other sources of electricity. By performing LCA analyses, it also allows us to 
evaluate the effects of improvements in PV technology on its GWP.  

Chal-
lenges 

Like other environmental impacts, the GWP can only really be determined by 
means of an LCA analysis, which is a challenging and time-consuming activity. 
It requires the collection of data on manufacturing processes along the whole 
lifecycle of a PV system. There are frequent efforts within IEA PVPS Task 12 
to collect up-to-date life cycle inventory data for different PV technologies, but 
due to the fast development of the PV market and PV technologies this remains 
a difficult endeavor. Another issue with the GWP is that it expresses the envi-
ronmental impact of PV electricity in only one environmental impact category. 
Hence, the GWP is not a suitable indicator to assess the full environmental 
impact.  
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2.3.2 Energy payback time 
Descrip-
tion 

The energy payback time (EBPT) is defined as the time required for a renew-
able energy system to generate an amount of electricity that is equivalent to 
the amount of energy needed to manufacture and install the PV system. Since 
the manufacturing of a PV system requires different forms of energy (e.g. elec-
tricity and heat), the energy terms should be expressed in primary energy 
equivalents.  

The EPBT is calculated as [26]: 

𝐸𝐸𝑃𝑃𝐸𝐸𝑆𝑆  =  
𝐸𝐸𝑚𝑚𝑡𝑡𝑡𝑡 + 𝐸𝐸𝑚𝑚𝑡𝑡𝑑𝑑𝑜𝑜𝑓𝑓 + 𝐸𝐸𝑡𝑡𝑟𝑟𝑡𝑡𝑑𝑑𝑢𝑢 + 𝐸𝐸𝑢𝑢𝑑𝑑𝑢𝑢𝑡𝑡 + 𝐸𝐸𝐶𝐶𝑃𝑃𝐸𝐸

𝐸𝐸𝑡𝑡𝑑𝑑𝑑𝑑𝑜𝑜𝑡𝑡𝑢𝑢
𝜂𝜂𝐺𝐺

− 𝐸𝐸𝑃𝑃𝑂𝑂
 

Here, Emat, Emanuf, Etrans, Einst, EEOL and EOM are the primary energy demand for 
the used materials, the manufacturing process, transport of the system com-
ponents, installation, end-of-life treatment and annual operation and mainte-
nance, respectively. Eannual is the mean annual electricity generation. The pa-
rameter 𝜂𝜂G describes the grid efficiency, from primary energy to electricity, for 
the grid as a whole. Determining the value of 𝜂𝜂𝐺𝐺 is one of the key methodolog-
ical challenges of the EPBT. It should be determined based on the scope of 
the study. Currently, it is typically fair to assume that the electricity generated 
with PV systems is replacing non-renewable electricity generation, and 𝜂𝜂𝐺𝐺 
should reflect the primary energy to electricity ratio of non-renewable electricity 
generation. However, as the penetration of PV in electricity grids increases, it 
will be more important to consider the 𝜂𝜂𝐺𝐺 of marginal electricity mixes. 

Variations  Two variations are used: the regular energy payback time (EPBT), and the 
non-renewable energy payback time (NREPBT). These should be applied de-
pending on the assumption of whether the generated electricity of the PV sys-
tem under study will replace all sources of electricity in the grid where it is to 
be installed (regular EPBT) or solely the non-renewable sources of electricity 
in the grid where the PV system is to be installed (NREPBT). The NREPBT 
goes beyond the methodological choice of 𝜂𝜂G as discussed above, and addi-
tionally only considers non-renewable energy use in the demand side and op-
erational phase (Emat, Emanuf, Etrans, Einst, EEOL and EOM from the equation 
above). For more information see a recent report developed in IEA PVPS 
Task 12 by [26]. 

Applica-
tion 

The EPBT is commonly applied, together with the GWP, to express the envi-
ronmental impact of PV electricity in a simple and relevant manner. The EPBT 
was first used around the time of the oil crises, when it seemed that energy 
scarcity was one of the main challenges of the global energy system. Since the 
EPBT depends so heavily on the annual electricity generation, it is a method 
by which to show the lifecycle energy efficiency of installing a PV system in a 
certain location. 

Ad-
vantages 

One of the main advantages of the EPBT is that it is a clear metric that is rela-
tively easy to understand, that expresses the energy efficiency of a PV system 
installed in a certain location. It is a reasonable proxy of environmental impact, 
as energy efficiency and environmental impact are reasonably well correlated. 
However, specific environmental impacts are not necessarily well represented 
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by an energy-based indicator. Like the GWP, the EPBT can be tracked over 
time to show the effects of technological progress in PV on reducing the envi-
ronmental impact. 

Chal-
lenges 

Like the GWP, the EPBT can be only properly determined by performing a full 
lifecycle assessment of the system under study. As mentioned before, perform-
ing an LCA is a complex and time intensive process. Additionally, the EPBT 
does not account for system lifetime, hence two PV systems with an equal 
EPBT could have very different lifetimes and as such a substantially different 
environmental impact. In this case, the EPBT is not a good metric to compare 
these systems. Finally, the choice of 𝜂𝜂𝐺𝐺 strongly affects the final EPBT value 
calculated, but choosing and determining the right value can be challenging.  

2.3.3 Energy Return on (Energy) Investment 
Descrip-
tion 

The Energy Return on (Energy) Investment (EROI) was developed to comple-
ment the EPBT and address some of its issues. It describes the ratio of the 
useful energy output of the PV system to the total energy invested over its 
lifetime. In general terms, the EROI is defined as [27]: 

𝐸𝐸𝑃𝑃𝐿𝐿𝐸𝐸  =  
𝐿𝐿𝑃𝑃𝑐𝑐
𝐸𝐸𝑃𝑃𝑣𝑣

 

Here, Out refers to the lifetime energy output of the PV system, and Inv to the 
total of invested energy during the lifetime (e.g., the sum of Emat, Emanuf, Etrans, 
Einst, EEOL and EOM from the EPBT equation). A high EROI value indicates an 
energy-efficient PV system that generates substantially more energy over its 
lifetime compared to the total energy invested. 

Variations  In the context of EROI, two definitions are presented in literature [27]: the 
EROIel, where Out and Inv are the direct energy units of the delivered form of 
energy, or EROIPE-eq, where Out and Inv are both converted to primary en-
ergy, as with the EPBT. The choice of which to use is not trivial, and the cal-
culation methods and assumptions underpinning them are not either. For 
more information, see the report from IEA PVPS Task 12 by Raugei et al. 
[27].  

Applica-
tion 

The main application of the EROI is to assess the energetic balance of a PV 
system over its entire lifecycle. It is a metric that allows us to evaluate PV in 
the context of energy security, and to compare PV electricity to other forms of 
electricity generation, both renewable and non-renewable.  

Ad-
vantages 

Like EPBT, the EROI is a single, clear, and relatively easy to understand metric 
to express the energy efficiency of a PV system. It is similarly also a reasonable 
proxy for environmental impact, but as mentioned for the EPBT, not a complete 
indicator for it.  

Chal-
lenges 

As with the other KPIs, the EROI can only be determined by performing a com-
plex and time-consuming LCA and expresses environmental impact only in one 
impact category: energy.   
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2.3.4 Environmental Footprint 3.1 - Single Overall Score 
Descrip-
tion 

The Environmental Footprint 3.1 (EF3.1) method is the latest version of the 
Environmental Footprint (EF) method developed by the European Commission 
[28]. The method aims to offer a comprehensive environmental impact assess-
ment to be used in LCA studies, to perform Product Environmental Footprint 
(PEF) and Organization Environmental Footprint (OEF) evaluations. The EF 
method determines environmental impact in 16 impact categories in topics 
such as climate change, resource depletion, human health and ecosystem 
quality, and water and land use. The European Commission recommends that 
for a comprehensive PEF the EF3.1 method is applied, however, with 16 im-
pact categories the interpretation and communication of results is complex. 
Hence, from version EF3.1 the method includes a first proposal of combining 
the impacts into a single score, by using weighting factors for each impact.  

The determination of the EF3.1 Single Overall Score is complex and is based 
on a full LCA study of the PV system lifecycle.  

Applica-
tion 

The EF3.1 Single Overall Score is a KPI that is not commonly applied in the 
PV sector, especially compared to the many KPIs in this report. We present it 
here as a potential alternative to the single-impact sustainability KPIs dis-
cussed above.  

Ad-
vantages 

Compared to the other sustainability KPIs, the EF3.1 single overall score in-
cludes the environmental impact in a broad set of impact categories, allowing 
to get a single score for the environmental impact of PV systems or PV elec-
tricity.  

Chal-
lenges 

This KPI suffers from the same issue as the other sustainability KPIs: its cal-
culation can only be performed by means of a complex and time-consuming 
LCA study. Additionally, the process of weighting and aggregation of the 16 
EF3.1 impact indicators into a single score is a procedure for which there is no 
real consensus in the scientific community, as the authors of the first European 
Recommendation for the weighting factors also acknowledge, stating that the 
choice of the weighting factors is inherently not natural science-based, but ra-
ther a result of value choices [29].  
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2.4 Standard technical KPIs per stakeholder  
In order to reliably map the different technical KPIs used per stakeholder and per region, PV 
industry experts have been approached using the following different channels: 

• One-on-one conversations with contacts in the industry 
• A workshop at Solar Quality Summit Europe 2024, with 60 participants 
• A survey which was disseminated via LinkedIn, with 23 respondents. 

 

Most of the information was obtained from experts of a large variety of countries in Europe, 
which made up about 90% of respondents. The US was represented by 4 respondents, 
whereas other regions had only one respondent, or no respondents at all in the case of South 
America and Africa. About 40% of respondents were Asset Owners or Asset Managers, with 
other roles well represented by at least 2 respondents.  

Initially, a clear trend in regional variations across different markets and the use of certain KPI 
variations was expected. However, these assumptions were relativized when compiling the 
results: 

• Regional variations: While trends do exist within regions, a globalized world and mar-
ket mean that no strict differences are apparent. 

• Contractual KPIs: There is no consistent pattern in which KPI variations are used con-
tractually. For example, both PR and temperature-corrected PR, as well as both time-
based and energy-based availability, are used depending on the specific contract. 

Table 2: Usage overview of technical KPIs. 

KPI Abbrevia-
tion 

Private  
equity 
/ Bank 

Project  
Developer 

Asset Owner / 
Asset Manager EPC O&M 

Service 
provider / 
consultant 

Pxx energy 
yield P50 Yield T/C T/C T/C T  T/C 

Performance 
ratio PR   T/C T/C T/C T/C 

Availability    T/C T/C T/C T/C 
Soiling ratio SR T T T T T T 
Degradation 
rate Rd T T T T T T/C 

Performance 
loss rate PLR T T T T T T/C 

Energy perfor-
mance index EPI   T/C T/C T  

Capacity test CapTest   T/C T/C T  
Capacity utili-
zation factor 

CUF / 
PLF    T T T 

Maintenance 
response time MRT   C C C C 
T – technical, C – contractual binding 
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Hence, the overview below, where KPIs are mapped along the PV value chain, is combined 
for all regions and for all variations of a single KPI. Where applicable, different stakeholders 
were merged because the same KPIs apply. Insurance companies, product manufacturers and 
authorities were excluded because technical KPIs were not applicable and/or because no in-
formation was obtained. Whenever there were inconsistencies in the data, the authors used 
experience and best judgment to decide.  

Table 2 summarizes the technical (T) and contractual (C) use of technical KPIs. 
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 DATA PROCESSING 

This chapter discusses the crucial implementation of data preparation or data processing, so 
that the KPIs discussed in the last section can be calculated reliably. Data processing for PV 
projects involves several steps to transform raw data into meaningful information that can be 
used for decision-making. One important, although not exhaustive, reference for PV data anal-
ysis including data terminology, equipment, and methods is the standard IEC 61724-1:2021 
[2]. The standard is designed to apply to a wide range of PV systems, including both grid-
connected and off-grid systems. 

The standard covers several key areas: 
1. Measurements: The standard provides guidelines on what measurements should be 

taken to monitor the performance of a PV system. This includes measurements of irra-
diance, temperature, and wind speed. 

2. PV System Performance: The standard provides guidelines on how to measure the 
performance of the PV system itself. This includes measurements of DC power and 
energy (before the inverter), AC power and energy (after the inverter), and system ef-
ficiency. 

3. Data Acquisition: The standard provides guidelines on how to collect and store the data 
from the PV system. This includes recommendations on data acquisition systems, data 
logging intervals, and data storage. 

4. Performance Indices: The standard provides guidelines on how to calculate perfor-
mance indices from the collected data, such as the PR. These indices provide a meas-
ure of the performance of the PV system. 

5. Uncertainty: The standard provides guidelines on how to calculate the uncertainty of 
the measurements and performance indices. This helps to provide a measure of the 
reliability of the data. 

6. Reporting: The standard provides guidelines on how to report the collected data and 
calculated performance indices. This includes recommendations on what information 
should be included in the report and how it should be presented. 

In summary, IEC 61724-1:2021 provides a comprehensive set of guidelines for monitoring the 
performance of PV systems. It helps to ensure that performance data is collected and reported 
in a consistent and reliable manner, making it easier to compare the performance of different 
PV systems, and to identify any issues that may need to be addressed. 

Figure 3 depicts the general data processing steps. The first step is data collection. This in-
volves gathering data from various sources such as solar irradiance sensors, temperature sen-
sors, inverters, power meters, and other system monitoring tools. The data collected includes 
parameters like solar irradiance, ambient and module temperature, wind speed, system output 
(DC and AC), and system downtime. Once the data is collected, it is logged and stored in a 
database. The data logging system should be reliable and secure to prevent data loss. The 
next step is data cleaning, which involves checking the data for errors or inconsistencies and 
correcting or removing them. This includes dealing with missing data, outliers, or data that is 
clearly incorrect. Data analysis follows data transformation. This involves analyzing the pro-
cessed data to extract meaningful insights. This involves calculating KPIs, identifying trends, 
or comparing actual performance with expected performance. The results of the data analysis 
are then interpreted in the context of the PV project. This involves identifying issues that need 
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to be addressed, assessing the performance of the PV system, or making decisions about 
future operations. The results are then reported in a clear and understandable format. This 
may involve creating a dashboard, generating a report, or presenting the results in a meeting. 
The report should include key findings, interpretations, and recommendations. Finally, based 
on the insights gained from the data, actions are taken to improve the performance of the PV 
system. This may involve adjusting the operation of the system, carrying out maintenance, or 
making changes to the design of the system. 

As shown in Figure 3, data processing should be an ongoing process, with data being collected 
and analyzed regularly to monitor the performance of the PV system and make informed deci-
sions. In the following section, important data processing concepts are discussed focusing on 
the first four points: data collection, data logging, data cleaning and data aggregation. 

 
Figure 3: Preparational stages in data processing cycle. 
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3.1 Data collection 
Apart from advanced measurements using imaging techniques or similar approaches, meas-
ured data types for PV system performance assessments can be generally divided into two 
groups: electrical data coming from PV system components and weather data from on-site 
installed sensors. These sensors are either attached to the PV system itself (modules, frames, 
structure) or are integrated into a dedicated weather station. Basic measurements include 
plane-of-array (POA) irradiance, ambient temperature, module temperature and wind speed 
and direction. Optional measurements are global horizontal irradiance (GHI), direct normal 
irradiance (DNI), diffuse horizontal irradiance (DHI), rainfall and relative humidity (RH). Com-
plementary modelled data based on satellite data can be added to impute missing data or 
improve the overall data quality. It is important to obey certain taxonomy guidelines as best as 
possible. The names and abbreviations of some parameters are defined in standards such as 
the IEC 61724-1:2021 [2]. Users can also refer to specifically developed guidelines such as 
the Orange Button Solar Data Standard [30], the DuraMAT pv-terms project [31], or the 
TRUST-PV Risk Matrix [32], which is a standardized taxonomy to improve and standardize the 
categorization and the readability of O&M tickets. 

 

The geographical location of a PV system and the complexity of the project play a significant 
role in determining the environmental measurement requirements. Different PV applications, 
such as agrivoltaics or floating PV systems, face distinct environmental challenges compared 
to traditional ground-mounted PV systems. It’s essential to identify and monitor these stressors 
as accurately as possible. For instance, in an agrivoltaic system, where crops grow beneath 
solar panels, specific sensors might be needed to monitor factors like soil moisture, humidity, 
and temperature to ensure both the farming activity and the PV system operate efficiently. In 
addition, depending on the climate, a PV system in a hot, dry environment may accumulate 
more soiling than one in a region with consistent rainfall, which could require the installation of 
dedicated soiling sensors.  



Task 13 Reliability and Performance of Photovoltaic Systems – Best practice guidelines for the use of economic and technical KPIs 

 

 

35 

 

3.2 Data logging 
Standard IEC 61724-1:2021 [2] lays out guidelines concerning PV system performance moni-
toring. Depending on the PV plant size, weather monitoring systems are divided into three 
classes based on measured variables and performance assessment types. Class A signifies 
the most comprehensive data monitoring and quality, while Class C represents the least. The 
selection of the class is a trade-off between data accuracy and cost, and usually the monitoring 
system quality tends to increase together with the size of a PV project. A reliable and well-
functioning monitoring system is an indispensable component to calculate most KPIs, which 
are used to evaluate PV system performance. This in turn enables personnel to detect/verify 
possible deviations from the norm to trigger and implement performance improving actions. 
One general issue when computing KPIs is that the measurements coming from the installed 
sensors must be trusted. Certain data tests can be executed to verify the reliability of the sen-
sors, discussed in greater detail in chapter 3.3. Apart from following calibration and cleaning 
recommendations, the insertion of a certain redundancy by having more sensors than the bare 
minimum is another way of improving data coverage and quality. 

Arguably the most important measurement for PV system assessment comes from reliable 
plane-of-array, or in-plane, irradiance measurements. These are recorded using either ther-
mopile pyranometers or photovoltaic reference devices. Guidelines for device use, calibration 
intervals, and potential measurement adjustments are covered in IEC 60904-2:2015 [33] and 
IEC 61724-1:2021 [2]. The placement of the sensors in the PV system will contribute to the 
accuracy of the measurements in comparison to the PV system power measurements. A re-
cent study by OTT HydroMet has shown that irradiance sensors should be placed away from 
PV plant edges, at least 5 rows away from the north/south end and not along the most eastern 
or western row, to minimize induced measurement errors [34]. This also means that sensor 
measurements installed at dedicated weather stations are subject to even higher uncertainties. 

While both pyranometers and PV reference cells serve the purpose of measuring solar irradi-
ance, PV reference cells offer certain unique advantages. One of the key benefits of PV refer-
ence cells is their possible similarity to the PV modules they monitor. If the reference cell ma-
terial is the same as the material of the selected PV module technology, they respond to 
changes in irradiance, temperature, and other environmental conditions in a manner akin to 
one another, thereby providing a more accurate representation of the module’s performance. 
Unlike pyranometers, which measure total solar irradiance, PV reference cells of the same 
material possess a spectral response like that of PV modules. This makes them more suitable 
for monitoring the performance of PV systems, as they provide a more precise measurement 
of the irradiance that the PV module can convert into electricity. However, pyranometers are 
generally of higher quality and offer more accurate and stable long-term measurements, mak-
ing them the preferred choice in most cases, especially when precise irradiance data is needed 
for performance analysis and system comparisons. Regardless of the choice of sensors, peri-
odic calibration and maintenance is essential to ensure reliable readings. 

After irradiance, temperature is the most significant and common climatic factor affecting PV 
system performance. Measuring module temperatures accurately over long periods of time in 
outdoor conditions is a challenge, as the temperature sensors are exposed to the module tem-
perature cycles and are required to remain in place over time. Temperature data are captured 
using sensors such as thermo-couples or resistance-based devices like Pt100 (where Pt de-
notes platinum). While ambient air temperature must be sufficiently ventilated and shielded 
from solar radiation, PV module temperature sensors are affixed at the module's back, requir-
ing strong adhesion for accurate readings. Adhesives with thermal conductivity are used for 
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extended outdoor use, aiming for uncertainties below 2°C. The number of sensors depends 
on the plant size as defined in IEC 61724-1:2021 [2]. Industry experience has identified that 
the center of the module, of a module in the center of the array, will best approximate the 
(average) module temperature of the array [35]. Temperature sensors are thus best avoided 
at module and array edges. IEC 61724-1 recommends temperature sensors to be replaced or 
recalibrated regularly, with temperature sensors being recalibrated every two years in Class A 
systems, while less clarity exists for Class B and Class C systems [2]. However, typical module 
temperature measurements are often permanently fixed to module backsheets with tape or 
glue (and possibly a high-conductivity thermal conductive paste). The mode of sensor place-
ment is important, as the sensor itself may disturb the module, e.g. by creating a local insulation 
point, which then results in localized heating, as well as introducing different temperature 
measurement dynamics [36]. Permanent installation of temperature sensors can result in 
mixed class monitoring systems according to IEC 61724, where for example pyranometers 
and reference cells are recalibrated on a regular basis to Class A or B, while temperature 
sensors remain fixed in place (and thus are categorized as Class B or C).  

In addition to irradiance and temperature, wind speed is an important parameter to monitor in 
PV systems, as it can significantly affect the cooling of PV modules and, therefore, their overall 
efficiency. Additionally, extreme winds may pose mechanical stress on the panels, mounting 
systems, and other infrastructure, making it essential to track wind data to assess the potential 
impact on system durability. Wind speed measurements are carried out using anemometers. 
Challenges with wind speed measurements include wind gusts occurring over short bursts 
(0.1 s – multiple seconds), while typical SCADA data storage resolution is at one minute aver-
age resolution or longer. Such wind gusts may thus cause trackers to move into a safe wind 
stow position, while the root cause is not easily detectable from stored data. 

A more recent development is the usage of soiling sensors. The reliable detection of soiling 
losses, which can enable optimized cleaning schedules, is very difficult, as soiling losses are 
often masked within other PV system losses. Soiling sensors can help to achieve more reliable 
results. IEC 61724-1:2021 [2] defines the functionality and calibration of a soiling sensor. The 
described soiling detection approach is experimental and has several drawbacks which can 
influence the reliability of the results. For example, the measured soiling ratio will always de-
pend on the cleanness of a reference device, or the physical properties of the devices used. 
That is why several soiling sensors have been developed in recent years based on different 
physical approaches. This in turn makes it harder to follow standardized maintenance sched-
ules and intercompare results of different devices. Reliable soiling measurements are still sub-
ject to ongoing discussions. 

Data loggers are used to record the data collected by the sensors. They can store data over 
time for later download or transmit data in real-time to a remote server. Power meters are used 
to measure the power output of the PV system, measuring both DC power before the inverter 
and AC power after the inverter. Modern inverters often come with built-in data logging capa-
bilities. They can record data on the power output of the PV system and other parameters such 
as voltage and current. Weather stations can provide additional data that may be useful in 
analyzing the performance of the PV system, such as rainfall, humidity, and atmospheric pres-
sure. Power plant controllers are used to regulate, and control connected inverter, devices, 
and equipment to meet certain setpoints and to also change grid parameters at the point of 
interconnect. SCADA systems, equipped with protocol adapters and device drivers required to 
communicate with all connected devices and equipment, are used to collect, order, store and 
visualize all data efficiently and in real-time. Servers, either local or cloud-based, are used to 
store the data collected by the data loggers, power meters, inverters, and other devices. 
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Figure 4: Components and connections in a PV plant [37]. 
Computers are used to analyze the data and generate reports. They can run software for data 
analysis, data visualization, and performance modeling. Communication devices like modems 
or routers are used for transmitting the data from the PV system to the server, especially in the 
case of remote monitoring. An uninterruptible power supply (UPS) can be used to ensure that 
data collection and transmission can continue even in the event of a power outage. The spe-
cific hardware required can vary depending on the size and complexity of the PV project, as 
well as the specific data collection and analysis needs. 
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3.3 Data quality & cleaning 
While this section is aimed primarily at stakeholders (asset owners, EPCs, O&M providers) 
responsible for ensuring that data is of the highest possible quality, it may also be useful to 
other stakeholders in understanding the importance of these steps and philosophies to achieve 
better outcomes. This chapter discusses data quality concepts, the impact of data quality on 
result reliability, data filtering and imputation approaches, and introduces a unified data quality 
routine. 

Data cleaning and data filtering are crucial steps to receive reliable results in any data driven 
evaluation. High-quality data is crucial for obtaining accurate and meaningful insights from PV 
system monitoring and analysis and the cleaning process plays a vital role. Data quality in the 
context of PV systems can be categorized into the following aspects: 

• Accuracy 
• Completeness 
• Consistency 
• Timeliness 
• Reliability 

Accuracy is directly linked to the quality of the measurements being performed. It expresses 
the trust we can have in a measurement. Measured input data coming of PV systems and 
associated weather stations are the basis for all downstream performance analyses. There-
fore, highly accurate data are indispensable. Measuring the accuracy of measured data can 
be very challenging. Common approaches include logical thresholds depending on the meas-
urements source, known physical relations between different parameters and comparison with 
other nearby measurements of the same kind, i.e. peer-to-peer assessments.  

Completeness of data is essential to provide a seamless analysis of the studied subject. In the 
context of PV system performance analytics, long outages of measurements or missing meas-
urements result either in incomplete calculated performance indicators or the usage of impu-
tation techniques to recover missing data, which will have unquestionably an impact on the 
overall quality of calculated results. An example of the effect of missing data on the reliability 
of performance loss rate (PLR) calculation results is discussed in chapter 3.3.1. A minimum 
threshold of data completeness must always be provided to produce an accurate performance 
evaluation. The level of completeness will depend on the task at hand. 

Consistency describes data integrity across different sources, systems, or calculation steps. A 
measured data point must be the same, regardless of where or when we query the measure-
ment. Consistency secures that evaluations accurately capture and utilize the data value. 

Timeliness of data is affected by the period between data collection and processing, the time 
resolution of measurement of each data point, and the communication speed of the SCADA 
system, as well as the sensors to the SCADA. Synchronization of data is an important aspect, 
as it affects performance evaluations, and it may affect control of a power plant, e.g. the time 
taken for a curtailment signal to travel through the plant, interpretation by inverters, and its 
measurable effect at the plant connection point. 

Data reliability combines completeness and accuracy. 

Usually, data quality is evaluated across different data quality aspects. PV power data quality 
criteria specifically for PLR analyses have been suggested by the IEA PVPS Task 13 [14]. 
Here, PV power input data are graded depending on the number of outliers, the amount of 
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missing data and the longest gap in the time series. It was seen that these are the most critical 
data quality parameters for this specific KPI. 

Data cleaning and filtering goes hand in hand with data quality, as it improves the quality 
through removing a part of the data, which would otherwise impact the reliability of the analysis 
carried out or the KPIs calculated. However, if the raw data quality is too low to begin with, 
cleaning and filtering may remove too much data so that the remaining dataset is no longer 
representing the inherent information the data was carrying. Cleaning is applied to ensure and 
improve the data quality categories. Filters are applied to remove unnecessary data, outliers, 
and, in the case of many PV-related KPIs, data which deviate from the known or expected 
relationship between the output of a PV system on one hand and weather inputs (irradiance, 
temperature, spectrum, …) on the other. This step is very complex, as there is ongoing debate 
of what are good vs bad data and each analysis/KPI might require a different approach. The 
impact of different filtering criteria on performance time series of a PV system was studied by 
Lindig et al. [38]. As laid out in this work, IEC standard 61724-3:2016 [4] provides a set of basic 
range filter for AC power and weather parameter where data have a 15-min resolution: 

Table 3: Recommended filter IEC 61724-3:2016 [4]. 

Minimum   Parameter  Maximum 
-0.01 * PSTC  < AC power < 1.02 * PSTC 

-6 W/m2  < Irradiance < 1500 W/m2 
-30 °C  < Ambient temperature < 50 °C 
0 m/s  < Wind speed < 32 m/s 

 
Furthermore, the standard specifies to detect and omit missing data or duplicates, stuck values 
and data with abrupt changes. Stuck, or dead, values as well as abrupt changes are detected 
using derivatives. The application of these filters should be the minimum requirement of a 
cleaning process but will often not be sufficient. According to the standard, erroneous data can 
be either filtered out or imputed. Once detected, missing data, outliers, and duplicates are 
essentially treated equally. As such, erroneous values can be derived from interpolation or 
other imputation techniques. The primary drawback of the IEC 61724 lies in its qualitative de-
scription, lacking a case-specific approach that could facilitate reproducible and unbiased out-
comes. For example, the standard does not specify at what levels of erroneous data imputation 
or filtering should be conducted. 

Figure 5 provides a detailed overview of input variables, common data issues and filtering 
approaches to choose from. The selection of individual cleaning/filtering strategies will depend 
on the target. Nevertheless, this table serves as a common guideline framework. The Python 
package pvanalytics [39] is an easy-to-use toolbox where many of the mentioned strategies 
are formalized. Other recommended tools which can help analysts in studying PV system data 
are pvlib [40], RdTools [41] and Solar Data Tools [42]. 
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Figure 5: Data quality issues and tools. 

3.3.1 Impact of data quality 
Data quality is a driving factor for the reliability of any KPI calculation. As discussed above, 
data quality is a property inherent to raw input data, but, to a certain degree, can also be 
improved using filtering and cleaning approaches. Usually, KPIs represent an aggregated view 
on specific issues PV systems can be exposed to. They give indications of how a system is 
performing, either from a global performance perspective, for example through the energy per-
formance index, or regarding a specific issue, such as the soiling rate. KPIs can be utilized 
only if the underlying data are reliable, so that the conclusions drawn from certain KPIs can be 
trusted. This is extremely important in operating PV systems, as KPIs are the primary driver to 
evaluate PV system performance, thereby detecting underperforming components. Based on 
these results, data-driven and informed decisions can be made to optimize PV system perfor-
mance on one hand, but also to assign liquidated damages to the responsible parties. A data-
driven O&M approach will improve the selection and timing of maintenance activities. Early-
state, or even predictive, detection of PV system issues allows for a proactive approach to 
resolve issues before they have detrimental impacts. 

Various research initiatives investigated the effects of data quality on PLR, including the works 
of Jordan et al. [43], Romero-Frances et al. [44], and Theristis et al. [45]. As described in 
chapter 2.1.5, this KPI encapsulates both reversible and non-reversible losses that can occur 
in PV installations. Nonetheless, the true PLR value is unknown when only processing opera-
tional data. The only way to derive the exact value would be to monitor each loss type individ-
ually. To assess the precision and uncertainty involved in distinct PR estimation techniques, 
Theristis et al. [45] developed a framework utilizing approximately 200 million synthetic da-
tasets of known data quality and PLR behavior across the contiguous USA. Regarding data 
quality, the study focused on the effects of: 
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a) Application of erroneous power temperature coefficients (γ):  
The common assumption that any γ would provide accurate PLR estimations was found to be 
invalid. The study (see Figure 6) showed that a substantial bias could be introduced when 
applying an erroneous γ, especially in shorter time series. Nevertheless, it is worth noting that 
employing a standard γ still enhances PLR precision and reduces uncertainty compared to no 
temperature coefficient at all. 

 
Figure 6: Impact of temperature correction on a) estimated PLR, b) width of confidence 
intervals & c) the fraction of correct confidence intervals as a function of dataset length 
in years. Three scenarios are investigated: 1) no temperature correction (γ = 0%/°C), 2) 
temperature correction with incorrect temperature coefficient (γ = -0.30%/°C), 3) temper-
ature correction with correct temperature coefficient (γ = -0.41%/°C). The true PLR is 
linear at -0.75%/year (dotted horizontal line in a)). Figure obtained from Theristis et al. 
[45]. 
 

b) Erroneous data:  
An increase in the prevalence of erroneous data, attributed to extended periods of system 
downtime, decreases accuracy of PLR assessments while increasing uncertainty (in relation 
to confidence intervals [CI]). While data sets without outages attained narrow CIs of 0.2%/year 
within a five-year span, those missing 30% of data needed a decade to reach similar CIs. 
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Moreover, the correlation between dataset length and the presence of errors is not linear. To 
quantify this effect, a new metric called "Effective dataset length", based on the CI width, was 
proposed to account for the influence of faulty data. 

 
Figure 7: Impact of erroneous data on the a) estimated PLR, b) width of confidence intervals & 
c) the fraction of correct confidence intervals as a function of dataset length in years. The time 
series are temperature corrected, aggregated daily and their true PLR is linear at -0.75%/year 
(dotted horizontal line in a)). Figure obtained from Theristis et al. [45]. 

 

c) Irradiance sensor drift:  
This phenomenon will introduce a bias when evaluating a power plant’s PLR. Sensor drifting 
will have a compounding effect on the calculated PLR, meaning that it causes a positive bias 
in an almost linearly dependent manner. Furthermore, the study found the RdTools clear-sky 
normalization method [41] to be unreliable, especially at sites prone to overcast conditions. 
Hence, for time series impacted by sensor drift, the utilization of satellite data with clear-sky 
filtering could be a viable alternative, provided that the inherent uncertainties of such data are 
considered. 

In conclusion, the investigation demonstrated that the impact of data quality on PLR evaluation 
is significantly dependent on climatic variables. For instance, the effect on PLR accuracy and 
uncertainty from a dataset with a specific percentage of missing data at a clear-sky location 
would differ from that of a dataset with an identical amount of missing data in a region with 
more dynamic weather conditions (example in Figure 8). 
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Figure 8: Example of PLR uncertainty depending on climatic variability and dataset 
length. The map shows the minimum number of years of data to achieve uncertainties 
within ±0.05%/year. When assessing PV systems across diverse climates, attention is 
required as universal assumptions are not applicable. Figure obtained from Theristis et 
al. [45]. 
 

3.3.2 Data imputation 
As mentioned before, data are aggregated to calculate KPIs. The aggregation step will depend 
on the KPI itself and the intended purpose and can usually range from one hour to annual, with 
daily being the most common. Data cleaning and filtering is applied to the input data to remove 
non-relevant or false data points, which could otherwise impact the results. In case of missing 
data or removal of large parts of the data due to low data quality there will be a trade-off be-
tween accepting the non-existence of a certain amount of data or the application of data impu-
tation techniques to recover that data. If the missing/removed data is only a small percentage 
of the overall data, and if these data holes are well spread across the dataset, it is likely that 
the data and information loss will not have a big impact on the final results. Once a certain 
threshold of missing data is crossed, and that threshold will also depend on the distribution 
across the dataset, data imputation could be a last resort to fill the missing data. In the PV 
sector, imputation is mostly applied to weather signals such as irradiance or temperature, as 
these are used to establish the intended relationships within KPIs, or power signals coming 
from the PV array. In a recent study by Deville at al. [46], it has been shown that input data 
availability and quality is far more important than the selected imputation model itself. If a model 
has generic input data, like spec sheet or a generic PAN file, then even the most complex 
model cannot provide adequate accuracy. In the following, different models depending on the 
target variable are discussed. 

If only small portions and single datapoints are to be imputed, simple interpolation approaches 
such as linear, polynomial or cubic-spline interpolation or moving averages can be applied 
without significantly affecting the data quality. For larger parts of the datasets, regression ma-
chine learning techniques such as k-nearest neighbors, decision trees, random forests [47] or 
gradient boosting regressors [48] might be a valuable approach. The downside is that they 
require more expertise and reliable training data in the form of other dependent variables. An 
important part of building such an imputation model is to have thoroughly cleaned training data 
and to select useful training inputs, which highly correlate with the target signal. Apart from 
these data science driven approaches, signal-specific imputation approaches can be used. 
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For power data, empirical models may also be a viable alternative. Here, the PVWatts model 
[49, 50], the Sandia PV array performance model (SAPM) [51, 52] and the three parameter 
model [53] are commonly used candidates. Lindig et al. [54, 55] performed a comparative study 
to find optimal imputation approaches depending on the amount and type of missing data, the 
predictor availability and the ratio between training and test data. Here, the empirical models, 
different machine learning approaches and several univariate methods have been tested. For 
univariate methods, no additional signal is available as training data, and only power data be-
fore and after the outage instance are used to train the models and to perform the imputation. 
For smaller data gaps, empirical power models and machine learning imputation models per-
form well, and machine learning models seem to be preferable for bigger data gaps. The SAPM 
model, multivariate regression and ExtraTree regression [56] showed the highest accuracy. 

Irradiance correlates strongly with PV power and is thereby the most valuable weather input 
parameter. In practice, irradiation data from different sources are prepared, rated, and selected 
to ensure the usage of the best possible data source for any operation. From the field, meas-
ured POA irradiance or decomposed and transposed GHI signals are generally used. A de-
composed GHI signal is split into its direct and diffuse components which are the input for the 
transposition (together with ground albedo estimates), which presents the calculation of the 
incident irradiance on a tilted plane. Different models exist, with the Perez model being the 
most popular followed by Hay Davies, and their accuracy often depends on the geographical 
location [57]. If no, or only unreliable, weather data are available, data from nearby weather 
stations can be considered as distance-weighted averages, or single data points if the station 
is in very close proximity. The accepted distance will depend on the terrain topology and com-
plexity. Another important resort are satellite derived irradiance data. Nowadays, there are 
multiple providers delivering data in different spatial and temporal resolutions. A way to im-
prove the quality of satellite-derived data is to apply site-adaptation techniques. Site-adaptation 
refers to the process of optimizing and adjusting input satellite irradiance data using high-qual-
ity short-term ground measurements to reduce the bias and overall error in the data. Important 
contributions for benchmarking modelled solar irradiance data as well as regarding site-adap-
tation techniques have been and are published by IEA PVPS Task 16 [58, 59]. 

On-site ground measurements should be prioritized over the mentioned alternatives. This is 
expressed through the irradiance data categorization according to Ascencio-Vásquez et al. 
[60]: 

1. High accuracy: POA irradiance is measured on-site. 
2. Medium accuracy: GHI is measured on-site and POA is estimated using decomposition 

and transposition approaches. 
3. Low accuracy: POA is estimated using decomposition and transposition approaches 

from extracted GHI, which is taken from one of the following sources: interpolated 
(weighted regression) using peered data of different weather stations in relatively close 
proximity to the test side, satellite or reanalysis-based datasets (atmospheric data gen-
erated by combining historical observations with numerical weather prediction models), 
clear-sky modeled datasets. 

Louwen et al. [61, 38] compared different data imputation strategies for POA time series using 
measured GHI, DHI and relative humidity datasets. The dataset was taken from the publicly 
available DKA Solar Centre which operates PV plants in Alice Springs/Australia [62]. The aim 
was to impute four years of missing POA data for a ten-year dataset. Different traditional irra-
diance transposition models, available in the Python package pvlib [40], were compared with 
several machine learning-based models. The machine learning models consisted of random 
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forest [47], extra trees [56], gradient boosting [48], and histogram-based gradient boosting [63], 
utilizing the scikit-learn library [64]. Solar position parameters (solar zenith, solar azimuth, and 
solar elevation) were incorporated into the input dataset, and measurements with solar eleva-
tion equal to or less than zero were excluded. Upon assessing all considered methods for 
estimating the plane-of-array irradiance, it was evident that the machine learning-based mod-
els outperformed the transposition-based models. The histogram-based gradient boosting re-
gressor demonstrated the highest accuracy. However, this approach should be considered 
primarily for larger data gaps, as simpler methods, such as linear interpolation or transposition-
based models, are sufficient for short data gaps. 

Module temperature data are a key parameter for system performance analysis and (temper-
ature) corrections, e.g. the temperature-corrected PR for performance loss rates [65], and 
weather-corrected PR [66] for PV system contractual evaluations during the EPC system ac-
ceptance testing period. Data imputation for missing data or as quality control is often based 
on explicit equation-based models, where the Ross [67], SAPM [68], Faiman [69], Herteleer-
WM1 and Herteleer-WM2 models [70] can be used. At “lower” timescales of 15 min to 1 hour, 
equation-based thermal models can be used with few issues and reasonably high accuracy 
(RMSE 2-3°C for 1 year of data). However, at shorter timescales (1 s to 5 min), the thermal 
lag of PV modules versus irradiance and wind speeds increases the thermal model error of 
standard models as the timestep shortens, unless the model is made dynamic. The methodol-
ogy of Prilliman et al. [71], implemented in pvlib-python [40], requires knowledge of module 
parameters (unit mass: kg/m²), and achieves better results with calibrated coefficients which 
are found through Finite Element Analysis (FEA). The approach of Herteleer et al. [70] can be 
either data-driven (finding coefficients from measured data) or using the average values to 
model the dynamic thermal behavior of PV modules. This method uses the thermal time con-
stant to find the smoothing coefficient in python pandas and uses this to calculate the expo-
nential weighted mean value of the irradiance and wind speed signals, which drive the module 
temperature. Both the methods of Prilliman et al. and of Herteleer et al. can be applied to 
different “root” or steady-state thermal models, to calculate the temperature of PV modules in 
dynamic (1 s to 5 min) time resolution. Machine learning approaches can also be employed to 
model module temperatures [72], even in cases where a system lacks module measurements 
[73]. Even though these approaches are promising, it is still recommended to have multiple 
temperature sensors installed and routinely checked or calibrated, to have a ground truth for 
models, while the models can then be used for quality control on the sensors and data impu-
tation when needed. 

 

3.3.3 A unified Data Quality Routine 
Inconsistency in datasets might be caused when data quality controls are applied by different 
analysts. This may occur because analysts may implement these controls in different se-
quences. Furthermore, when standards like IEC 61724 or other PV data quality reports do not 
quantitatively define a data processing step, interpretation is left to the analyst. Consequently, 
the absence of a standardized approach to data quality control in PV performance and relia-
bility analyses presents significant challenges such as inconsistent data interpretation or data 
integrity issues. 

To address this issue, Livera et al. published a comprehensive and quantitative PV data pro-
cessing methodology. The methodology, which relies on quantifiable criteria from IEC 61724 
and other PV data quality reports, reduces the ambiguity and qualitative nature of current 
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practices. It consists of a sequentially structured pipeline of Data Quality Rules (DQRs) involv-
ing initial statistics, consistency examination, filtering, invalid data detection and data rate 
quantification, treatment of invalid data, and aggregation at various granularities. The overall 
objective is to reduce uncertainty when datasets are excessively filtered or aggregated differ-
ently, and how data should be inferred. 

To develop the methodology, artificially invalid datasets were created by introducing invalid 
data at various rates and sequences and DQRs were applied to detect and treat invalid da-
tasets using different filtering and inference methods. Each step of the parametric analysis was 
then compared against reference values to optimize the DQR methodology (Figure 9). The 
analysis showed that when invalid data exceed 10%, data inference techniques should be 
applied to minimize uncertainty. 

 

 
Figure 9: Flowchart of a unified data quality approach for PV performance and reliability 
analytics. Figure adapted from Livera et al. [74]. 
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3.4 Data aggregation  
When monitoring a PV plant, the processing of data from collection to actionable insights in-
volves a structured process that starts with sampling and culminates in reporting. 

At the most granular level, we have the sampling process, where individual data points are 
acquired from sensors or measuring devices. These samples are taken at regular intervals, 
known as the sampling interval, which can vary from seconds to minutes depending on the 
parameter being measured and the desired level of detail. 

Once samples are collected, they are compiled into records. A record is an aggregation of 
samples that is stored at the end of a predefined time period, the recording interval. This inter-
val is carefully chosen to be an integer multiple of the sampling interval, ensuring that a con-
sistent number of samples is used to create each record and that these intervals align neatly 
within an hour. 

The value of each record is not just a random or isolated sample; rather, it is a calculated 
representation—such as an average, maximum, minimum, or sum—of all the samples taken 
during the recording interval. This method provides a more accurate and meaningful picture of 
the data collected. Records can also include supplementary information, such as additional 
statistics, counts of missing data points, error codes, or notes on any transients, enriching the 
dataset with valuable context. 

Finally, the reporting stage is where data is synthesized over multiple recording intervals into 
reports. These reports provide actionable insights by summarizing the aggregated data, high-
lighting trends, and identifying any anomalies or issues that need attention. 

Example: Considering a PV plant where the sampling interval is set to 1 minute, and the re-
cording interval is set to 30 minutes. Over the course of an hour, 60 samples are collected for 
each parameter (e.g., power output, temperature, irradiance). These samples are then aggre-
gated into two 30-minute records. Each record might include the average power output, the 
maximum and minimum temperatures, and the sum of irradiance over the 30-minute period. 

At the end of the day, these 30-minute records are further aggregated into daily reports. The 
daily report might include the total energy produced, the average daily temperature, and any 
periods of significant deviation from expected performance. For example, the report might 
highlight that the total energy produced was 12 MWh, the average temperature was 22°C, and 
there was a significant drop in power output between 2 PM and 3 PM due to a transient shading 
event. 

These reports are then used by plant operators to make informed decisions, such as schedul-
ing maintenance, optimizing performance, or investigating anomalies. By providing a clear and 
comprehensive overview of the plant's performance, the reporting stage ensures that the data 
collected is transformed into valuable insights that drive operational efficiency and reliability. 

 
Figure 10: Temporal behavior between samples, records, and reports; adapted from [2].  
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 EXPLOITATION AND ACTIONABLE INSIGHTS 

As described in the previous chapters, the solar industry relies on different standardized and 
non-standardized KPIs during the lifecycle of PV assets. KPIs are an essential part of the data 
pipeline, where input data (in any form but mostly time series from SCADA systems) are pro-
cessed to provide numerical outputs that, aggregated, would take the common name of a KPI 
(e.g., monthly performance ratio). What is the value of calculating a KPI if it does not translate 
into tangible outcomes, improved performance reporting, or meaningful enhancements? This 
section focuses on using KPIs during different phases along the value chain of a PV asset.  

As indicated in Figure 11, this section focuses on the workflow steps of analysis, interpretation, 
reporting and actions. 

 

 
Figure 11: Stages of data processing cycle that can provide outcomes in a PV asset. 
 

From Data Collection to Data Aggregation, as the names indicate, the data is collected, pro-
cessed, cleansed and prepared for analysis. At the data analysis stage, the relevant KPIs will 
be computed, and a preliminary assessment will be made to make sure that any following 
stage has the correct resources (i.e., valid data) to make decisions. Having the correct data 
will serve the Interpretation phase with information to make decisions; those decisions can be 
made in the form of Reports, as industry conventions to share outcomes with other stakehold-
ers, or as Actions mainly on the field where the asset performance, reliability, safety or eco-
nomics can be hopefully optimized. 

In the following sections, examples of typical data sources and tools for Data Analysis are 
given, as well as real-world case studies where KPIs result in tangible outcomes in different 
stages of the PV value chain.  
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4.1 Most common sources of data 

4.1.1 Time series from monitoring systems 
Solar farms need to be constantly monitored to support ongoing technical activities or some-
times energy trading operations, so the need for such data is primordial to secure sufficient 
knowledge for decision-makers. In order to provide reliable data and KPIs, the solutions need 
to include proper on-site hardware (i.e., sensors, data loggers, servers, gateway, etc.), and the 
software needs to follow standard taxonomies to ensure interoperability [30]. After well defining 
data structures and connectivity, algorithms can process, clean, and aggregate the data. Fig-
ure 12 shows a screenshot of a commercial monitoring software application aggregating PV 
production and irradiation per hour on the left, and it shows detailed data on the right side. 

 
Figure 12: Screenshot of typical dashboards in real-time monitoring software tools [75].  

4.1.2 Aggregated KPIs from time series 
Simple aggregations, such as power to energy values or irradiance to irradiation in specific 
periods, are good enough for certain PV operations; however, as described in previous chap-
ters, many other KPIs are needed to get a better picture of the health state and performance 
of a PV system, and they require a certain level of calculations and process. When analyzing 
large-scale PV systems, any form of manual data handling process becomes too expensive 
due to the time-consuming process, so automatic tools can support such tasks if they are 
appropriately set up.  

In Figure 13, a screenshot of a typical dashboard in analytics software tools is presented. Here, 
three KPIs are displayed over time for a single PV plant. The following technical KPIs are 
computed and shown: 

- PRTcorr: temperature-corrected performance ratio  
- TBA: time-based availability 
- EPI: energy performance index 

To achieve a high level of accuracy, each of the previous data processing stages, from data 
collection to data aggregation, had to be carried out thoroughly. 

 
Figure 13: Screenshot of typical dashboards in analytics software tools [37]. 
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Figure 14 displays another representation of KPIs computed in analytics software tools, where 
the temperature-corrected PR, PRTcorr, is obtained daily for each inverter in a PV system. This 
type of data calculation and visualization is intended to support data-driven decision-making 
tasks in operations or technical asset management. This heatmap representation allows for a 
fast and easy inverter-to-inverter performance comparison to detect underperforming compo-
nents. 

 
Figure 14: Screenshot of a heatmap representation with PRTcorr calculations for many 
inverters in analytics software tools [37].  

 

4.1.3 Geospatial weather data from reanalysis- and satellite-based methods 
Reanalysis-based and satellite-based information can support KPI calculations for geospatial 
analysis by providing historical weather data like ambient temperature, global horizontal irra-
diance, and wind speed for PV modelling in different geographical regions. Such data can also 
serve as a backup source when on-site sensors present issues like miscommunication, mis-
calibration, or simply wrong installation. 

 
Figure 15: Referential illustration of 
a mesh over the Earth representing 
where reanalysis-based models run 
calculations [76]. 

Figure 16: Practical illustration indicating vari-
ous types of data input sources for reanalysis-
based models enabling calculations with global 
coverage [77]. 

4.1.4 Geospatial post-processed PV data 
Physics- or empirical-based models on top of geospatial weather data can be used to simulate 
PV-related information, such as expected energy for predefined PV systems and estimated 
soiling rates at the regional or country level, among others. This type of information also rep-
resents a source of data for KPIs and further actions from this. For example, in Figure 17, the 
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usage of geospatial data resulted in estimations of soiling rates and further soiling risks at 
global and country levels. A potential use-case of such information can be region- or climate-
tailored PV system designs or adapted O&M approaches and routines.  

 

 
Figure 17: Geospatial post-processed PV data indicating Soiling Risk from AOD and 
physics-based soiling models [78]. 
 

4.2 Other forms of data  
More sources of data are being used in PV operations with specific goals such as failure de-
tection, warranty claims, yield optimization or reliability analysis. All those data streams are 
part of the digitalization era that PV plants are currently experiencing.  

4.2.1 Aerial Imaging from drones 
Essential KPIs can be retrieved by processing thermographic images using drones (see Figure 
18). The thermal signatures of PV cells and PV modules can be indicators of hotspots, poten-
tial-induced degradation, diode, or interconnection failures, etc. Such indicators can be repre-
sented by additional KPIs, such as the number of PV modules impacted or the ratio of PV 
power plant damage. 
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Figure 18: A stylized image showing aerial IR imaging conducted by a drone [79].  
 

4.2.2 Static data from IV tracers 
Typical O&M procedures to analyze PV module or string health include the measurement of 
current-voltage (I-V) curves in the field. Besides manual measurements, some inverter manu-
facturers have improved inverter capabilities by including the option to trigger measurements 
regularly and remotely.  

I-V curves provide a set of pair values that characterize the PV behavior. Thereby, a trained 
eye can evaluate PV performance based on the shape. As shown in Figure 19, the evolution 
of series resistance (RS) or shunt resistance (RSH) can be understood, or certain defects such 
as mismatches or shading detected. After data processing and analysis, KPIs, such as actual 
STC power, can support triggering different actions like PV module layout reorganization or 
PV module warranty claims in exceptional circumstances. 

 
Figure 19: Illustration of the I-V curve 
from a PV string [80]. 
 

 
 

Figure 20: Illustration of I-V curve pat-
terns under local near shading - com-
mon underperformance scenario [79]. 
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4.3 Case studies 
Depending on the source of data and the KPIs, numerous applications and decision-making 
processes can be generated. In this section, various case studies are presented, closing the 
loop from data collection to reporting or actions in the field. To summarize each case study, a 
table is included, going from input data to action. 

4.3.1 From soiling KPI to cleaning planning 
Concept field data to cleaning annual planning 
Input data monitoring/sensor data 
Calculation physics-based or statistical-based 
Data Analysis soiling ratio, KPI 
Interpretation/ 
Reporting/Action optimized cleaning planning 

 

Dust accumulation on PV modules can have a high impact on yield in specific climatic zones. 
Development of O&M management including plans for cost-effective mitigation require good 
estimates of soiling rates and ratios. Diverse methods and solutions have been proposed to 
offer proper O&M management in terms of cleaning procedures and schedules, and some of 
the advanced methods use field data for this task. 

Soiling sensors are frequently used devices in dusty or polluted zones. These devices offer 
local field estimates of soiling rates and soiling levels; some examples include DustIQ [81], 
Fracsun [82], and Atonometrics [83]. Such sensors provide raw time series data that require 
appropriate processing and filtering to offer high accuracy. The resulting data analysis involves 
calculating average soiling rates or soiling ratios over time. Those KPIs can then be used as 
input to data-driven cleaning planning optimization, enabling O&M teams to better allocate 
resources ahead of time. 

Soiling ratios can also be calculated from production data time series available from the invert-
ers [84]. Below, data regarding soiling and cleaning observed in a utility-scale PV power plant 
with a nominal capacity exceeding 150 MWp in a tropical wet and dry climate with seasonal 
rainfall is shown. Production data is available from more than 100 inverters installed in the PV 
power plant. Moreover, 12 Atonometrics RDE300-series soiling stations are installed across 
the site. Inverter data enables calculations of both the daily, median performance index 
(𝑃𝑃𝐸𝐸𝑢𝑢𝑜𝑜𝑢𝑢𝑢𝑢𝑢𝑢𝑑𝑑𝑒𝑒) and Soiling Ratios (𝑆𝑆𝑃𝑃). In this case, the calculation is performed using the Com-
bined Degradation and Soiling (CODS) algorithm [85]. The calculated values based on inverter 
data are compared to soiling station measurements on site and are in good agreement. Also 
included in the graph are measured precipitation events and logged cleaning events. The 
shaded grey data points of the soiling station measurements indicate measurements where 
output from the soiling station is deemed faulty. 
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Figure 21. (a) Normalized PIsoiling with CODS model fit for an inverter, and (b) CODS and 
stochastic rate and recovery (SRR) estimates of the soiling ratio SR obtained from the 
performance time series data compared with independent measurements from the clos-
est soiling station to the selected inverter [85].  

4.3.2 From KPIs to corrective actions and O&M planning 
Concept time series to economic KPIs and corrective actions 
Input data monitoring data 
Calculation loss detection and breakdown 
Data Analysis from energy losses to monetary losses 
Interpretation/ 
Reporting/Action 

prioritized corrective actions based on cost-benefit analysis for O&M 
planning 

 

Nowadays, the primary devices in the PV plants are being monitored, and data are collected 
through data loggers or similar, ending up on a data lake or SCADA solution. The vast amount 
of data gathered by inverters, combiner boxes, weather stations, trackers, and more, together 
with advanced monitoring and analytics tools, are helping to digitalize the daily operations of 
many stakeholders.  

Considering all the operational monitoring data of PV plants, diverse algorithms can be used 
to detect losses and disentangle such losses into several categories, such as curtailment, clip-
ping, DC issues, or tracker malfunction. The estimated energy losses can be multiplied by the 
energy prices or PPA values to obtain the monetary losses per category.  

The data analysis of the energy and monetary losses can be further extended to the automatic 
triggering of corrective actions whenever an event happens, and its consequences are worse 
than the actual O&M cost to fix the issue. An approach to quantify this breakpoint and to relate 
monetary losses due to lost energy with fixing costs is the cost priority number (CPN) method-
ology [55]. 
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4.3.3 From geospatial data to PV design  
Concept satellite data to single values 
Input data satellite and reanalysis information 
Calculation physics-based PV model to compute irradiance POA and energy pro-

duction for different scenarios 
Data Analysis from energy production to payback and ROI  
Interpretation/ 
Reporting/Action 

engineers can rapidly get preliminary assumptions for basic and de-
tailed design 

 
Another important type of input data is all the information given and resulting from satellite 
images and geospatial data. Satellite- and reanalysis-based datasets are becoming increas-
ingly essential in small and large PV power plants, mainly triggered by significant consistency 
over time and reliable data coverage in contrast with weather stations and potential communi-
cation issues. Such information can help to geospatially map large regions worldwide and give 
quick estimations of energy production, as well as even more potential payback and return-of-
investment (ROI) of photovoltaic projects. 

A good example of this use case is a tool offered by the Joint Research Centre (JRC), called 
PVGIS [86], where users can freely access and select any location on the map and quickly get 
preliminary assumptions for the basic design of PV plants. KPIs such as energy yield or annual 
effective irradiation can be enough information to kick-off projects at an early stage. 

 

 
Figure 22: Dashboards available on the application PVGIS from the Joint Research 
Centre of the European Commission [86]. 



Task 13 Reliability and Performance of Photovoltaic Systems – Best practice guidelines for the use of economic and technical KPIs 

 

56 

 

4.3.4 From geospatial and physics-models to risk maps 
Concept satellite data to technical KPIs 
Input data satellite data and reanalysis data 
Calculation physics-based models 
Data Analysis degradation rates 
Interpretation/ 
Reporting/Action 

geographical zones expect less production due to environmental fac-
tors and support climate-specific design 

 

Following the usage of satellite- and reanalysis-based data, geospatial modelling, including 
physics-based models, can be an interesting approach to produce maps that can help cluster 
geographical regions into specific PV KPIs. As an example of this, PV degradation maps can 
be constructed to indicate risky areas for long-term PV operations based on climatic risks. 
Such outcome can be considered for interpretation for geographical zones with less expected 
production due to environmental factors and support climate-specific PV module designs. 

 

 
 
Figure 23. Graphical abstract with 
main calculation steps to con-
struct degradation rates global 
maps [87]. 

 
Figure 24. Total degradation rates [%/year] mod-
elled using reanalysis data and physical models 
for the European Continent [87]. 
 

4.3.5 Detection of PV module faults and PV module replacement actions  

Concept  combined analysis of time series data and IR imaging to detect faulty PV 
modules for subsequent replacement 

Input data  monitoring data, UAV-based IR imaging 
Calculation  loss detection  
Data Analysis  from energy losses to actionable information  
Interpretation/  
Reporting/Action  

prioritized corrective actions when combined with cost-benefit analysis for 
O&M planning  

 

Although the impact of single, faulty PV modules in a utility-scale PV power plant are usually 
miniscule, the accumulated impact of all PV module faults can become substantial over time. 
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Identification of faulty PV modules combined with an impact analysis and local O&M costs can 
enable cost-effective replacement strategies.  

Time series analysis performed on string level can allow for quantification of losses associated 
with faulty PV modules. However, the granularity is limited, as several tens of PV modules are 
connected into each individual inverter channel. Unmanned aerial vehicle (UAV)-based infra-
red (IR) imaging, on the other side, can localize hot spots in individual PV modules. However, 
this method does not directly give access to the impact of the observed thermal signatures 
[88]. This complementarity makes the combination of these two methods quite powerful. Be-
low, the result of combining string-level time series analysis with IR imaging for identifying 
faulty PV modules for subsequent replacement is shown. In this case, the focus is on activated 
bypass diodes, which can give clear signatures in the production time series. The data was 
obtained from central inverters installed in a 75 MWp PV power plant located in a cold, arid 
steppe climate with a mean of 160 strings in parallel per maximum power point tracker, each 
consisting of 24 PV modules. The shown IR imaging was obtained by a commercial third party 
after approximately 5 years of operation. 

 
Figure 25. (a) IR images of PV modules in a string with a total of 3 detected bypass diode 
signatures, and (b) the calculated, normalized yield based on the time series data clearly 
showing the timing of each bypass diode activation, as well as their individual impact 
on normalized yield. Figure taken from [89] - Reprinted with permission from the IEEE 
JPV. 
The case study presented in Figure 25 was extended beyond the time of the IR scan, after 
which a replacement campaign was performed, resulting in close to complete recovery of the 
normalized yield (Event #4).  
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 CONCLUSIONS & OUTLOOK 

This report focuses on the calculation and application of the main key performance indicators 
(KPIs) for operating PV systems, used for technical and contractual purposes. 

Contractual agreements and associated KPIs vary by project size, market, locations. KPIs 
even vary by their definition and/or method of calculation, with attendant financial conse-
quences. For example, in the hypothetical scenario where a KPI (e.g., performance ratio) cal-
culation is based on a highly filtered raw dataset, a positive or negative bias might be intro-
duced: in this case, an operation and maintenance (O&M) provider will falsely meet (or fail to 
meet) their agreement while the asset owner will falsely lose/earn revenues. Transparency and 
standardization of KPI definitions (where it does not exist) to eliminate bias and promote re-
producibility is therefore of utmost importance. 

By collecting expert knowledge from stakeholders and through a comprehensive literature re-
view, a list of the most used KPIs and their usage within day-to-day operation was collected. 
Furthermore, each individual KPI is clearly defined, and their advantages and challenges are 
being discussed to have a critical view on their application and limitations. This concludes the 
first part of this report. 

The second part is walking through the most important data processing applications. Here, 
existing standards and guidelines are the starting point. This part of the report is intended to 
guide the reader towards best practices in data handling and to help avoid common pitfalls 
when handling PV system data. Commonly used devices and weather sensors are discussed, 
going from data collection and logging to recommended cleaning and filtering techniques to-
wards data aggregation. This part closes with a graphical representation of a unified data qual-
ity approach for PV performance and reliability analytics. 

In the last section, KPI mapping possibilities beyond contractual agreements and minimum 
performance thresholds are discussed. Many exciting advanced evaluation possibilities arose 
in recent years and will be more and more common practice in order to provide the best pos-
sible insights into PV system data, so that PV system performance can be tracked better and, 
through pro-active data driven actions, kept at high and desired levels. Thereby, special atten-
tion is paid to the geo-spatial mapping of performance related KPIs. This type of mapping 
exercise is extremely valuable for early-stage PV system design. Based on local requirements, 
equipment, installation design and climatic load resistance, O&M approaches could be tailored, 
something which is today not fully utilized. 

For future work, PV system performance data from large PV system analytics platforms are 
being collected to calculate technical system KPIs and interpret this data in the form of geo-
spatial maps. This approach will serve to expand the knowledge from specific sites where data 
are available to locations where PV systems might not even be installed yet. This exercise will 
be very valuable for the design of new PV plants and tailoring PV system contracts utilizing 
higher certainty in performance estimates.   
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