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EXECUTIVE SUMMARY 

As the shift to electric mobility gains momentum, deploying efficient and sustainable Electric 

Vehicle (EV) charging solutions becomes crucial. In this context, the first report published by 

IEA Task 17 Subtask 2 highlights the main requirements and feasibility conditions for 

maximizing the benefits of photovoltaic (PV) energy through PV-powered charging stations 

(PVCS). 

This second report explores the technical, economic, environmental, and social dimensions of 

EV charging infrastructure, with particular emphasis on microgrid-based stations that integrate 

photovoltaic sources and the smart energy management of these stations using intelligent 

charging systems. Additionally, it examines the socio-technical challenges related to user 

acceptance and the social acceptability of EV charging infrastructure, reflecting on how these 

factors influence the successful implementation of electromobility solutions. 

This executive summary addresses five key topics. First, it outlines what was studied and the 

main findings. Then, it presents the key recommendations. 

A. EV charging control and power management with demand response 

The contribution of EVs in reducing greenhouse gas emissions depends on the energy mix of 

the public grid. However, the public grid may become vulnerable as the number of EVs 

increases drastically, as predicted in many global scenarios. Considering several factors—

such as the number of passenger EVs, charging power values, EV consumption, and average 

daily urban or peri-urban trips of 20–60 km—a study investigates the power grid issues related 

to EV charging. The results show that while the grid can accommodate the total energy 

required for EV charging, the total power demand may pose a challenge. Although this study 

is based on data from the French electricity grid, the conclusions are broadly applicable. 

B. Human-System Interface for PVCS 

Human-System Interface (HSi) is essential for the local control of a PVCS. It enhances user 

interaction and system management. A well-designed HSi provides users with real-time data 

on charging status, energy production, and consumption, enabling them to make informed 

decisions about their charging habits. It also facilitates the monitoring and control of the 

charging process, allowing users to adjust settings based on their needs or preferences. 

Furthermore, the HSi plays a crucial role in troubleshooting and maintenance by providing 

alerts for system malfunctions or performance issues. By improving the overall user 

experience, the HSi encourages greater adoption of PV charging technology and supports the 

transition to renewable energy sources. 

C. Smart Charging and real-time management for EVs  

Smart charging and real-time management for EVs represent a transformative approach to 

energy utilization in the transportation sector, especially when integrated with PV systems. By 

leveraging advanced technologies and communication networks, smart charging systems 

optimize the charging process based on grid conditions, energy prices, and user preferences. 

This dynamic management allows vehicles to charge during off-peak hours when energy 

demand is low, reducing costs for users and minimizing strain on the grid. When combined 

with PV integration, these systems can harness solar energy to power EV charging, further 

enhancing sustainability. 
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Real-time data analytics enables efficient energy distribution, ensuring that charging stations 

adapt to fluctuating demand and effectively utilize renewable energy sources. A real-time 

energy management system using MILP optimization, implemented in France, demonstrated 

the feasibility of controlling EV charging while reducing energy costs. Another study conducted 

in France showed that synchronizing the power consumption of 24 charging points with solar 

energy production is feasible, increasing the self-production ratio while meeting user needs. A 

study in Portugal highlighted the potential of solar parking lots to enhance electric mobility 

while addressing challenges in aligning peak solar production with demand. With careful 

management and consideration of electricity pricing, these systems can achieve favourable 

economic returns within a reasonable payback period. 

Although these findings are based on case studies in France and Portugal, they provide 

insights that lead to generalizable conclusions. 

D. Technical and economic feasibility analysis of PVCS  

The PVCS has been analyzed from technical, economic, and environmental perspectives. A 

three-step methodology leading to a quantitative evaluation of the PV benefits for the PVCS 

was designed. A tool has been proposed to adjust the investment cost of the PVCS based on 

four parameters: the type of PV panels, the number of PV panels, the number of terminals, 

and the capacity of the stationary storage. This decision-support tool can be used to optimally 

size the PVCS and, through simulation, determine the operating modes that maximize the use 

of PV energy for EV charging. 

E. Societal impact and social acceptability of PVCS 
 
The social acceptability of PVCS should be studied alongside the technical analysis, with the 

aim of improving the project and increasing public awareness. The purpose is to assess the 

acceptability of PVCS and their new associated services, such as smart charging and 

bidirectional energy transfer, through a field study. The study was conducted on a city scale 

and involved a large number of stakeholders. Consequently, it seeks to analyze the concept's 

limitations from the public's perspective and highlight the evolution of people’s mindsets over 

the years. 

Key recommendations  

• Public grid impact  

o Considering the possibility that 10% of EVs may simultaneously use rapid charging 

(50 kW), the network must allocate at least 19% of its total installed power to meet 

the charging needs of 5 million EVs. Smart charging is essential and must go beyond 

the usual practice of reducing power at charging terminals. 

o The widespread use of PV sources for daytime charging can reduce dependence 

on the electricity grid. Through local energy production, PVCS enables EV charging, 

the return of excess energy to the grid, and the implementation of vehicle-to-grid 

(V2G) applications. 

• Optimized Energy Use 

o Smart charging adjusts charging power and timing based on PV energy availability, 

grid conditions, and user preferences, ensuring the efficient use of PV energy and 

preventing grid overload. 

o Human-System Interfaces (HSI) for PVCS are essential for enabling the 

characterization of services and facilitating the retrieval of various types of 
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information. This includes the frequency of charging sessions, EV load patterns, 

management of EV charging sessions, PV energy consumption, sustainability 

reports of charging sessions via email, valley and peak power consumption from the 

utility grid, and time-of-use tariff proposals for EV drivers. HSI is crucial for 

communicating with users to meet their requests and inform them about the energy 

distribution during charging, whether from the grid, PV, or stationary storage. 

o Real-time control, based on an energy management optimization algorithm, 

maximizes PV energy benefits and minimizes total energy costs while meeting user 

demand through HSi. 

o Based on users' forecasted departure times, real-time control can fully recharge the 

EV's battery while maximizing the use of PV energy during the process. Depending 

on the departure time, most EVs are charged with more than 80% PV energy. 

o Using real parking occupancy data collected over a full year, smart charging at a 

PV-powered parking lot near a suburban train station on the outskirts of Lisbon, 

Portugal, resulted in a significant reduction (over 35%) in electricity imports from the 

grid. 

• Global Cost and Carbon Impact Assessment 

o Based on the LCA, a specific calculation methodology is necessary to assess the 

overall cost and carbon impact of PVCS. 

o For a 30-year life cycle for PVCS: 

o The global cost includes approximately 40% investment costs and 49% 

maintenance costs. 

o Compared to traditional charging stations powered by grid electricity, the PVCS 

carbon impact is between 1,5 and 10 times smaller, depending on the energy 

mix implemented in the electricity grid. 

o Case Study: PVCS located in the north of France, covering 5 parking spots, 

equipped with a 22kWh stationary battery storage capacity, and recycled using 

pyrometallurgy. The installation consists of 28 kWp peak power across 70 panels 

installed on a surface of 124 m². 

o The global cost requires an initial investment of almost 65 k€, and may present 

a total cost of 150 k€ after 30 years. 

o The carbon impact assessment results show 40,7 gCO2eq/kWh, while a public 

grid-powered charging station shows an average of 275 gCO2eq/kWh for the 

European Union and 368 gCO2eq/kWh for the USA. 

• Social acceptance  

o Based on a survey conducted in France on the social acceptance of PVCS and new 

services (particularly V2G), the study reveals that PVCS is socially acceptable to a 

large majority. However, some aspects, such as location, business model, and 

design, require careful consideration. Notably, over 83% of the 864 respondents 

agree with the V2G service. The main obstacles to the use of PVCS are often related 

to the efficiency of the PV panels, the recycling process, and pollution during the 

production phase.  
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1  REQUIREMENTS, BARRIERS AND SOLUTIONS FOR PV-
POWERED CHARGING INFRASTRUCTURE FOR EV 
CHARGING 

PVCS are becoming a sustainable solution for charging EVs. However, their integration 

requires comprehensive studies on specific requirements, barriers, and solutions. The 

technical requirements include the selection of an appropriate PV system, storage systems, 

and a control system. Meanwhile, barriers involve factors such as high initial investment costs, 

complex integration processes, and the need for standardized regulations. Innovative solutions 

like smart charging algorithms, grid integration techniques, and communication algorithms can 

help overcome these challenges. By adopting these measures, the widespread adoption of 

EVs will be facilitated, accelerating the transition to a low-carbon transportation system. 

The first section explores the influence of the increasing number of EVs on the French 

electricity system. Through various scenarios, the analysis reveals the grid's capacity to 

manage the overall energy needed for EV charging, with potential challenges in total power 

demand. Additionally, it underscores that controlling EV charging can efficiently limit grid power 

demands, fostering the use of local and green energy sources. 

The second section discusses the design of an interface for a PVCS that offers real-time 

monitoring and control of the charging process. The interface integrates information about the 

PV system, battery storage, and charging status to provide users with relevant and up-to-date 

data on the charging process. It also highlights the importance of effective human-system 

interfaces for promoting sustainable energy use and reducing greenhouse gas emissions. 

The third section presents a cost optimization model for real-time power management of 

PVCS. The study considers various factors such as the availability of solar power, EV charging 

demand, and grid connection constraints to optimize the power allocation in real-time. The 

proposed model was tested using simulation and real-time experimentation, with results 

showing that it can effectively manage the power supply for EV charging while maximizing the 

utilization of solar energy and minimizing the charging cost.  

The fourth section discusses the development of a supervision system to control EV charging 

at the CEA Cadarache research centre. The supervision system controls EV charging in real-

time with two objectives: fully charging the EV batteries and synchronizing the power 

consumption of 24 charging points with the power production of a solar photovoltaic plant. The 

system aims to reduce the impact of EV charging on the power grid. Experimental results show 

that it is technically feasible to increase the self-production ratio by up to 60 percentage points 

while satisfying EV users. 

The fifth section, examines the integration of solar energy and electric mobility in solar parking 

lots, focusing on park-ride locations near public transport connections. Its results highlight the 

relative mismatch between peak solar power and peak demand, as well as excess solar 

generation during weekends, challenging the economic returns for the investment. It also 

shows that smart charging or battery storage increases self-consumption rates but, at current 

prices, lead to lower returns than simpler energy management.  

The final section proposes a methodology to assess the global cost and carbon impact of a 

PVCS. The results indicate that PVCS can significantly reduce both carbon emissions and 

implementation costs. However, the success of the implementation depends on various 

factors, including the use of newer technologies and recycled materials, which can lower the 
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carbon footprint of the station below that of the French energy mix that is almost the most 

decarbonized in the world.  
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1.1 Public grid and distribution system operator point of view: EV 
charging control and power management with demand response 

This section1 studies the potential impact on the electricity grid following the integration of EVs. 

Additionally, it examines various strategies to mitigate the high-power demand caused by EVs. 

1.1.1 Introduction 

Based on the global growth in the number of electric vehicles (EVs) and the recent future 

scenarios released recently by the International Energy Agency [1], it appears that EVs, 

especially passenger cars, are becoming the norm for transportation. In 2020, the number of 

EVs reached 10 million, and considering the various policies and targets recently announced 

by governments and the private sector, the projection for 2030 is between 140 million and 245 

million, depending on the sustainable development scenario. However, while there is currently 

a significant number of charging stations—primarily slow charging (private or public) and fast 

charging (public)—new trends and developments are required for EV charging stations, as well 

as changes in end-user behaviour. 

The expected massive penetration of EVs raises questions about the charging process, the 

energy and power available from the public grid, and potential solutions in the event of grid 

vulnerabilities, considering the same power and energy capacity of the grid. The charging of 

EVs is generally done by drawing electrical power through a point of common coupling with 

the public grid. While the energy capacity of the grid may not seem problematic, the 

simultaneous charging of multiple EVs can cause local grid congestion, leading to severe 

issues, especially during peak hours. However, EVs are considered a flexible load, unlike 

uncontrollable loads. As a result, EV charging can be controlled and shifted to off-peak times 

to prevent peak loads by implementing a smart charging framework [2]. 

Different charging frameworks of EVs exist:  

• Uncontrolled charging occurs when the EV begins charging immediately until its battery 

is fully charged or the EV user unplugs his vehicle. This approach is also referred to as 

uncoordinated or immediate charging, where the EV charges at maximum power 

without any restrictions. As a result, there is no interaction between the EV users and 

the electrical grid. This is considered the worst-case scenario because it charges the 

EV at maximum power to achieve full charge in the shortest time, placing strain on the 

grid and contributing to peak load issues [3] - [6]. 

• Delayed charging occurs when the park time (the duration an EV is parked at a station) 

is longer than the actual charging time required, therefore, the EV charging can be 

delayed, considering time-of-use pricing, and carried out during low-cost, off-peak 

energy periods [3] , [4]. However, the park time must be known by the charging terminal 

in advance. 

• Average charging is considered when the EV is charged at constant power depending 

on the parking time during which the EV is able to meet the requested state of charge—

 

 

1 This section is based on the following publication: M. Sechilariu, S. Cheikh-Mohamad and F. Locment, 

“Electric Vehicle Charging and Power Grid Issues Scenarios versus PV-powered charging stations”, in 

Colloque InterUT Systèmes sûrs et durables, Feb 2023. https://hal.science/hal-04011877   

https://hal.science/hal-04011877
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either partial or full—without needing to charge at full power [4] - [6]. This charging 

operation requires data from the EV’s user and abilities to run the terminal with the 

calculated constant power, respecting the limited power of the charging terminal. 

• Smart charging: EV users provide the charging station management with information 

regarding their parking time and the requested charge that must be supplied before 

leaving the station. Therefore, energy is used to supply the EVs while the public grid 

may control and shape the EV charging profiles, minimizing the charging costs. In 

addition, smart charging may be combined with renewable energy production, whether 

local or remote [3]. 

This generic classification implies, however other comments. can also be considered a smart 

charging framework, as it changes the charging start time, charging end time, and charging 

power, while most importantly delivering the requested energy to the EV. Additionally, average 

charging can be considered an uncoordinated charging framework, as it starts charging 

immediately when the EV is plugged in, but with limited power [6]. The delayed charging profile 

is similar to the uncontrolled charging profile but the peak load is shifted to overnight/dawn 

(around 05:00 AM to 09:00 AM). In contrast, in average charging, the profile is flattened instead 

of having a peak [4]. Uncoordinated charging of EVs may increase peak load, imposing a 

heavy burden on the public grid and leading to greater losses. Therefore, through smart or 

coordinated charging, EVs can become an asset for the grid by helping to increase the 

penetration of renewable energy, balance the energy system, and improve overall efficiency 

while satisfying EV user demands [7]. Coordinated charging is classified into two types, time-

coordinated charging and power-coordinated charging as in [8]. In time-coordinated charging, 

the number of EVs that can charge is controlled to ensure the total load demand within the 

available power for EV charging. In contrast, in power-coordinated charging, the power 

allocated for EV charging is controlled to ensure that the total load demand stays within the 

available power. 

The most important parameters in EV modeling are the charging/discharging rate, initial state 

of charge (SOC), battery capacity, charge-depleting distance, and user behaviour, which is 

difficult to predict in advance. Additionally, the arrival time at the charging station, departure 

time, and driving distance of the EV are variables that depend on user habits. However, these 

can be assumed to follow probability distribution functions [5], [9]. For this purpose, probability 

distribution functions are generated to determine the arrival time at the charging station, the 

departure time, and the driving distance of the EV. Then, the energy needed to fully charge 

the EV is calculated, and the total charging time of the EV is determined as the energy needed 

to fully charge the EV over the charging rate [5], [9], [10]. 

Following the literature review, scheduling the charging process of EVs is compulsory and the 

demand response highlights the off-peak hours as the best choice. Nevertheless, reconciling 

the incentive to switch from an internal combustion vehicle to an EV with the constraints 

imposed on users regarding hourly charging options will be difficult [11]. On the other hand, 

the literature does not reveal studies on the impacts on the public grid based on scenarios 

calculated or estimated from a power perspective. Therefore, it is less pertinent to analyse 

whether the proposed smart charging will meet users’ requirements and the needs of the public 

grid without a significant enhancement of the grid’s infrastructure. 

To overcome this issue, an alternative may be the full utilization of renewable energies, thereby 

avoiding reliance on the public grid's spinning reserve, which is primarily composed of fossil 

fuel-based power plants [12]. 
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Therefore, the electromobility requires EVs charging infrastructures based on renewable 

energy sources. In urban and peri-urban districts, photovoltaic (PV) panels are the most 

commonly used renewable energy sources. However, the intermittent nature of PV energy 

production makes the direct use of the PV power less efficient. Thus, for local production and 

consumption, a microgrid, based on PV sources, storage devices, loads, real-time power 

management, optimization subsystem, data collection system, and interfaces communication 

system become a solution for EVs charging. 

This paper first introduces several scenarios regarding the impacts on the French public grid. 

Following that, it presents a PV-powered EV charging station, including stationary storage and 

public grid connection as backup power sources. Through three case studies, the conditions 

under which the PV energy production can alleviate the burden on the public grid—especially 

during peak hours—while satisfying end-user demand are investigated. 

The main highlights presented in this study are the vulnerability of the public grid vulnerability 

under various scenarios based on the number of EVs, charging power values, EV 

consumption, and average daily urban and peri-urban trip of 20 to 60 km, along with data from 

the French public grid; and the conditions under which PV energy production involved in EV 

charging may mitigate issues faced by the public grid. 

The article is organized as follows, Section 1.1.2 describes the impacts on the public grid when 

passenger EVs number drastically increases while Section 1.1.3 concludes the paper and 

provides perspectives. 

1.1.2 Public grid impacts considering electromobility 

The development of electric mobility, according to all forecasts, will be particularly sustained 

by 2035, everywhere in the world. In France, EVs have known sustained growth in the first half 

of 2020, with nearly 70 000 units sold in France, i.e., twice as many as over the same period 

in 2019, despite the health crisis. This strong growth is accompanied by a densification of the 

network of charging stations across the French territory. In December 2021 there were nearly 

32 000 charging stations open to the public, directly or indirectly connected to the public grid 

and it is expected 100 000 charging stations in France by the end of 2022. Mechanically, this 

increase in the number of EVs and charging stations will induce an increase in power demand 

due to new charging needs. The electrical system must therefore adapt.  

1.1.2.1  French transmission and distribution system operators’ considerations 

Regarding the French public grid, in [13] the French electricity public grid operator claim that 

the integration of the EVs into the French electricity system does not present particular 

difficulties for the public grid, both at the local level and at the national level, from an energy 

point of view. In addition, it is highlighted that the possibility of controlling EVs charging will 

facilitate a better integration of EVs in the medium term and also make it possible to promote 

local and / or green energy supply for extra-economic reasons, in particular by synchronizing 

the charging of EVs with the production of renewable energy.  

From a power point of view, depending on their needs, in [13] it is well-considered that the end-

users can choose a technical charging controlling solution by the activation on command or 

programming of the recharge / discharge and by smart communicating metering control 

functions leading to the adjustment of its charging power according to that of the home / 

building electric network. Thus, the users of the distribution network are the main beneficiaries 

of the control of EVs charging. In fact, the more the charging is controlled, the integration of 
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the EVs into the power grid will be better. The benefit, for the electricity system and the 

community, goes to all public grid users. Furthermore, the assessment of the charging control 

gain against existing time-of-use offers is based on the difference between the cost of 

controlled charging and ‘natural’ charging. The control is optimized to minimize the cost of 

charging, as a function of the different price signals, which are the different elements of the 

invoice for charging. For a residential EV charging, by shifting charging during the off-peak 

period, when the home consumption is very low, the charging control can avoid increasing the 

contract subscription fee. For a fleet of a limited number of utilities charging, if the site does 

not have enough available power, the management of the charging may be operated by shifting 

it over time and over the different vehicles. 

However, in [13] the studies are limited at up to 11 kW charging power. Moreover, the power 

analysis is not deeply investigated as well as how to reduce the cost of upgrading electrical 

networks without constraints for the users such as that of differentiated tariffs. 

The French public grid operator estimates that in 2035 there could be up to 15,6 million EVs 

circulating in France [13]. Each of them would travel 14 000 kilometres per year with an 

average consumption of 15 kWh / 100 km. According to these assumptions, around 40 TWh 

of electricity would be needed to supply French EVs in 2035. This amount of energy represents 

approximately 7,5 to 8% of the 537,7 TWh of electricity produced each year in France (data 

from 2019), which it is not huge. However, these statistics remain limited to the energy 

consumption. However, regarding the power demand, for slow and fast charging terminals 

considering also the case of simultaneous connecting of some EVs, an analysis under several 

scenarios is necessary to identify the future issues that a public grid can have during the 

massive increase of EVs. The purpose of this section is to enlighten the reader on the public 

grid impacts considering the EVs massive growth. 

Knowing that an EV consumes often between 10 and 20 kWh of electricity every 100 km, 

therefore, millions of EVs traveling thousands of kilometres each year could end up consuming 

a large part of the electricity produced in France each year. Thus, to assess how much energy 

and power will be required in the coming years to charge EVs, it is necessary to design a 

robust model based on the number of EVs in circulation in the future, number of kilometres 

traveled each day in a year by these EVs, and the amount of the power demanded by these 

vehicles to charge depending mainly on the traveled distance. Nevertheless, the charging 

power may be very different depending on EV model, traveled distance, user needs and 

behaviour, etc.  

1.1.2.2  Impact of EVs energy and power demand on a public grid 

To design a reliable model of power demand for EV charging, data obtained through learning 

methods (such as deep learning coupled with artificial intelligence) or measured data are 

necessary. However, to our knowledge, these models have not yet been developed or 

published. Therefore, regarding the power demand for EV charging—whether for slow, fast, or 

ultra-fast charging—considering the case of simultaneous connections of multiple EVs and the 

associated charging power distribution coefficients, an analysis based on several key 

assumptions is necessary to identify the future issues that a public grid may face during the 

massive increase in EV adoption. 

For a public grid, the suggested analysis—considering both the demanded energy and the 

demanded power—may be conducted based on several assumptions: 
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• the total number of EVs in circulation, 𝑁𝐸𝑉𝑠; 

• the daily distance in kilometres, 𝐷; 

• the available power of the charging terminals,𝑃𝐶𝐻𝐴𝑅𝐺 𝑇𝐸𝑅𝑀
 ; 

• the simultaneous connection of some EVs.  

Based on a daily urban/peri-urban trip and an average consumption of kWh per 100 km, the 

total energy demand of EVs is calculated in kWh following (1.1-1): 

 𝐸𝐸𝑉𝑠𝐷𝐸𝑀 𝑇𝑂𝑇
[𝑘𝑊ℎ] =

(𝐶 ×𝐷 ×𝑁𝐷𝐴𝑌𝑆×𝑁𝐸𝑉𝑠)

100
 (1.1-1) 

where 𝐸𝐸𝑉𝑠𝐷𝐸𝑀 𝑇𝑂𝑇
 is the total EVs energy demand in kWh, 𝐶 is the average consumption in 

kWh / 100 km, 𝑁𝐷𝐴𝑌𝑆 is the considered number of days, and 𝑁𝐸𝑉𝑠 is the number of EVs. 

Regarding the power analysis, the theoretical total power demand of EVs is calculated in kW 
following (1.1-2): 

𝑃𝐸𝑉𝑠𝐷𝐸𝑀 𝑇𝑂𝑇
[𝑘𝑊] = 𝑃𝐶𝐻𝐴𝑅𝐺 𝑇𝐸𝑅𝑀

× 𝑁𝐸𝑉𝑠   (1.1-2) 

where 𝑃𝐸𝑉𝑠𝐷𝐸𝑀 𝑇𝑂𝑇
 is the theoretical total EVs power demand in kW. 

Assuming that a number of EVs charge simultaneously, the simultaneous demanded power is 

calculated in kW according to (1.1-3) or (1.1-4): 

𝑃𝐸𝑉𝑠𝑆𝐼𝑀
[𝑘𝑊] =  𝛾 × 𝑃𝐸𝑉𝑠𝐷𝐸𝑀 𝑇𝑂𝑇

  (1.1-3) 

Where 𝛾 is the simultaneity coefficient during the peak hours in percentage and the 𝑃𝐸𝑉𝑠𝑆𝐼𝑀
 is 

the simultaneous demanded power in kW. 

Knowing that the charging power may vary significantly depending on the EV model, traveled 
distance, user needs and behaviour, and other factors, several charging powers may be 
considered. To simplify, this study only considers simultaneity under a charging power 
distribution for slow, fast, and ultra-fast charging. In this case, the simultaneously demanded 
power is calculated in kW according to (1.1-4) : 

𝑃𝐸𝑉𝑠𝑆𝐼𝑀
[𝑘𝑊] =  𝛾 × [(𝜎𝑆 × 𝑃𝐶𝐻𝐴𝑅𝐺 𝑇𝐸𝑅𝑀𝑆

) + (𝜎𝑓 × 𝑃𝐶𝐻𝐴𝑅𝐺 𝑇𝐸𝑅𝑀𝐹
) + (𝜎𝑢𝑓 × 𝑃𝐶𝐻𝐴𝑅𝐺 𝑇𝐸𝑅𝑀𝑈𝐹

)]   (1.1-4) 

where 𝜎𝑆, 𝜎𝑓, and 𝜎𝑢𝑓 are the number of EVs charging in slow, fast, and ultra-fast charging 

respectively and the 𝑃𝐶𝐻𝐴𝑅𝐺 𝑇𝐸𝑅𝑀𝑆
, 𝑃𝐶𝐻𝐴𝑅𝐺 𝑇𝐸𝑅𝑀𝐹

, and 𝑃𝐶𝐻𝐴𝑅𝐺 𝑇𝐸𝑅𝑀𝑈𝐹
 are the terminal charging 

power for slow, fast and ultra-fast charging respectively in kW. 

Knowing that the energy consumption for an EV is often between 10 kWh/100 km and 20 

kWh/100 km, an average consumption of 15 kWh/100 km may be considered reasonable. 

Therefore, based on a daily urban/peri-urban trip with a consumption of 𝐶 =  15 𝑘𝑊ℎ/100 𝑘𝑚, 

the total energy and power demand of EVs is calculated for domestic, slow, fast, and ultra-fast 

charging terminals. 

Considerations regarding the French public grid are also required: the grid is characterized by 

a total yearly energy production of 537,7 TWh (𝐸𝐺) and a total installed capacity of 135,328 

GW (𝑃𝐺) (data from 2019, before COVID-19 crisis).  

Regarding the increase in the numbers of EVs, three different stocks of EVs are considered in 
the following. 
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1.1.2.3 Impact of EVs on French power grid for 𝛾 = 10% 

Table 1.1-1 summarizes the impacts on energy of three scenarios regarding the EVs stocks, 

considering a distance of 60 km. Based on these assumptions, EVs charging induces a minor 

impact on the total energy produced. 

Table 1.1-1 Impact of EVs on energy 

EVs data Energy 

𝑁𝐸𝑉𝑠 𝐷 𝐸𝐸𝑉𝑠𝐷𝐸𝑀 𝑇𝑂𝑇
 (GWh/year) 𝐸𝐸𝑉𝑠𝐷𝐸𝑀 𝑇𝑂𝑇

 /𝐸𝐺 (%) 

1 Million 60 3 285 0,61 

5 Million 60 16 425 3,05 

15 Million 60 49 275 9,16 

 

Table 1.1-2 and Table 1.1-3 summarize the impacts on power with 10% of possible 

simultaneous charging of EVs. 

Table 1.1-2 Impact of EVs on French power grid for domestic and slow charging 

terminals. 

𝑁𝐸𝑉𝑠 

𝑃𝐶𝐻𝐴𝑅𝐺 𝑇𝐸𝑅𝑀
= 2,3 𝑘𝑊 

Domestic terminal 

𝑃𝐶𝐻𝐴𝑅𝐺 𝑇𝐸𝑅𝑀
= 7 𝑘𝑊 

Slow charging terminal 

𝑃𝐸𝑉𝑠𝐷𝐸𝑀 𝑇𝑂𝑇
 

GW 

𝑃𝐸𝑉𝑠𝑆𝐼𝑀
 

GW 

𝑃𝐸𝑉𝑠𝑆𝐼𝑀
/𝑃𝐺  

% 

𝑃𝐸𝑉𝑠𝐷𝐸𝑀 𝑇𝑂𝑇
 

GW 

𝑃𝐸𝑉𝑠𝑆𝐼𝑀
 

GW 

𝑃𝐸𝑉𝑠𝑆𝐼𝑀
/𝑃𝐺  

% 

1 Million 2,3 0,23 0,17 7 0,7 0,52 

5 Million 11,5 1,15 0,85 35 3,5 2,59 

15 Million 34,5 3,45 2,55 105 10,5 7,76 

 

Table 1.1-3 Impact of EVs on French power grid for fast and ultra-fast charging 

terminals. 

𝑁𝐸𝑉𝑠 

𝑃𝐶𝐻𝐴𝑅𝐺 𝑇𝐸𝑅𝑀
= 22 𝑘𝑊 

Fast charging terminal 

𝑃𝐶𝐻𝐴𝑅𝐺 𝑇𝐸𝑅𝑀
= 50 𝑘𝑊 

Ultra-fast charging terminal 

𝑃𝐸𝑉𝑠𝐷𝐸𝑀 𝑇𝑂𝑇
 

GW 

𝑃𝐸𝑉𝑠𝑆𝐼𝑀
 

GW 

𝑃𝐸𝑉𝑠𝑆𝐼𝑀
/𝑃𝐺  

% 

𝑃𝐸𝑉𝑠𝐷𝐸𝑀 𝑇𝑂𝑇
 

GW 

𝑃𝐸𝑉𝑠𝑆𝐼𝑀
 

GW 

𝑃𝐸𝑉𝑠𝑆𝐼𝑀
/𝑃𝐺  

% 

1 Million 22 2,2 1,63 50 5 3,69 

5 Million 110 1,1 8,13 250 25 18,47 

15 Million 330 3,3 24,39 750 75 55,42 

 

One notes that for the most critical case of 15 million EVs in circulation charged by a slow 

charging terminal with a required power of 7 kW, the impact of EV charging on energy demand 

and total installed power is minor; however, demand response management must be involved. 

Conversely, for 15 million EVs charged by a fast charging terminal with a required power of 22 

kW, EV charging induces a major impact on the public grid (nearly 25% of the total installed 
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power), and a significant impact (more than 55% of the total installed power) occurs for EVs 

charged by an ultra-fast charging terminal with a required power of 50 kW. Even with strong 

implementation, demand response management will not be sufficient to maintain a correct 

supply for the French territory. 

Considering only fast-charging terminals with power up to 50 kW and only 10% of possible 

simultaneous charging during peak hours, the installed power is significantly impacted when 

connecting millions of EVs. 

1.1.2.4 Impact of EVs on French power grid for 𝛾 = 10% and distributed charging power 

This scenario becomes more realistic considering that, by 2035, most of users will have 

integrated the control of EV charging by shifting their charging to off-peak periods, avoiding 

exceeding the subscribed power, and managing EV charging operations by shifting them over 

time and across different vehicles. Among the projected 15,6 million of EVs in 2035, it is 

assumed that 30% will always be under charging control, while the other 70% may charge 

depending on users’ needs at public charging stations. Thus, the scenario focuses on these 

𝑁𝐸𝑉𝑠  =  10,9 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 of EVs, with 10% charging simultaneous at slow, fast, and ultra-fast 

power during the peak hours (meaning that a global 𝛾 of 10% is considered). To differentiate 

the various charging operations, the following distribution of the number of EVs charging at 

slow, fast, and ultra-fast rates is taken into account: 𝜎𝑆 = 3,27 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 (30% of NEVs), 𝜎𝑓 = 

5,45 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 (50% of NEVs), and 𝜎𝑢𝑓 = 2,18 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 (20% of NEVs). This distribution of 

charging power during peak hours is an arbitrary choice, but it makes sense given the 

assumptions made at the beginning of this third scenario. 

The  𝑃𝐸𝑉𝑠𝑆𝐼𝑀
 in kW is calculated following (1.1-4) and the result is given in (1.1-5) 

𝑃𝐸𝑉𝑠𝑆𝐼𝑀
= 25,18 𝑘𝑊  (1.1-5) 

According to (1.1-5), it is noted that even under an optimistic scenario and without considering 

the already existing ultra-fast charging terminal between 100 kW and 400 kW, there is always 

a significant impact on the public grid, with more than 18,5% of the total installed power. 

Therefore, although the electricity grid operator considers that the overconsumption of 

electricity generated by EVs should be absorbed without difficulty by the current infrastructure, 

this study shows that the growth of EVs must be approached with careful consideration of 

power demand and peak demand across different charging types. Additionally, robust EV 

charge control and power management solutions are required. 

Furthermore, it is essential to ensure that users can charge their EVs throughout the territory 

and not only at their homes. Traditional tariff control systems, based on peak and off-peak 

hours, combined with smart metering signals, could be strengthened to encourage EVs to 

charge automatically during periods of low power demand. 

On the other hand, local PV energy production combined with efficient energy management, 

can reduce the impacts of EVs on the electrical system by decreasing the power demanded 

from the grid [13], consequently increasing the proportion of PV energy used for charging EVs. 

Therefore, a charging control system based on a microgrid is necessary to prevent the 

saturation of the power grid. 
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1.1.3 Conclusions 

The public grid impact study shows that the energy consumption of EVs is not an issue for a 

well-developed power grid, while the power demand of EVs—especially during peak hours—

represents the major impact. Even under the scenario calculated with the most optimistic 

conditions and without considering the already existing ultra-fast charging terminals (greater 

than 100 kW), a significant impact remains, with more than 18,5% of the total installed power. 

Despite the electricity grid operator's optimistic opinion regarding the current infrastructure, this 

study indicates that the growth of EVs necessitates charging control and peak power demand 

management with as few user constraints as possible. However, in all scenarios, user 

behaviour is identified as a key parameter in this issue.  
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1.2 Human-System Interfaces for PV-Powered Electric Vehicles 
Charging Station  

In this section2©, a human-system interface (HSi) for PV-powered EV charging stations is 

presented. The proposed environment is designed to analyze the energy system in three main 

segments: EVs’ charging behaviour, drive decarbonization, and grid optimization. The HSi can 

work in ‘simulation mode’ and ‘real-time mode’. In both cases, it calculates, collects, and 

transmits data from a MATLAB-Simulink model of a grid-connected DC microgrid. The tool 

displays useful information about the microgrid’s status, the charging behaviour of EV users 

and the adoption of green energy in each charging session.  

1.2.1 Introduction 

The electric vehicle (EV) market is steadily expanding worldwide. To further propel this 

technology, development and research efforts are focused on enhancing the charging 

infrastructure for EVs. Additionally, the focus also lies on increasing the interest of new EV 

users by ensuring that the charging infrastructure offers them a level of comfort comparable to 

that of internal combustion engine vehicles [1][2]. To further encourage EV adoption, the 

literature presents technical, social, and economic studies [3]. The challenges related to the 

sustainability of the power grid are also analyzed in [4]. Due to the growth of the EV market 

and the higher current rates needed in the charging process, the power demand from the utility 

grid is expected to soar in the coming decades [5][6]. In order to cope with this issue, studies 

focus on how to power EVs with renewable energy as stated in [7][8]. Likewise, the 

implementation of smart charging strategies is analyzed to minimize the energy cost and 

optimize charging time [9][10]. Moreover, in the last decade, new services enabling the 

provision of energy to the grid, home, or building— known as vehicle-to-grid (V2G), vehicle-to-

home (V2H), and vehicle-to-building (V2B), have been introduced [11]. 

Recent studies [12][13] have presented the microgrids as a feasible alternative in the 

development of the EVs charging network. Founded on renewable energy sources, microgrids 

offer advantages to utilities, customers, and society at large. They enhance power quality, 

providing economic benefits to users. Another positive aspect is the improvement of electric 

reliability, ensuring a continuous power flow during grid outages. Lastly, microgrids promote 

clean energy and reduce CO2 emissions [14]. However, their implementation relies on prior 

knowledge of technical-economic aspects, environmental information (location, climate, 

standards, regulations, local energy price, etc.) and coverage. Several software tools and new 

approaches are employed to address these factors. The aim is to support engineers in 

proposing optimal designs and ensuring the correct behaviour of the microgrid while in 

operation [15][16]. In these studies, the tools widely used are HOMER® Microgrid Software by 

the company HOMER Energy, and EnergyPLAN, developed by the Sustainable Energy 

 

 

2 This section is based on the following publication: C.E. Montaño-Salcedo, M. Sechilariu and F. 
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Planning Research group at Aalborg University (in cooperation with the company PlanEnergi). 

Both tools primarily focus on analysing and evaluating the economic and technical impact of 

various energy technologies, considering their cost, availability, and electric load. However, 

these tools do not include environmental and social analyses, which could lead to project 

failures. Regarding monitoring technologies, microgrid requires supervisory control and data 

acquisition systems [17][18] to monitor and control measurements, thereby ensuring the proper 

performance of this type of energy system.  

In the following, a user-friendly graphical interface for a PV-Powered EVs charging station is 

presented. The graphical environment is based on MATLAB® App designer, as it is interactive 

and ensures ease of use. It helps to the HSi’s operator to study smart charging techniques, 

propose efficient and optimal green energy management schemes, and evaluate the capacity 

of the energy system considering different EV charging behaviour patterns. Furthermore, it 

allows for the assessment of the potential to connect EVs with an urban energy system and 

the utility grid via V2B and/or V2G services. From the EV driver’s side, the tool may support 

the design of EV user-welfare strategies based on monetary benefits, cost savings in EV 

charging, and the environmental repercussions of charging. The remainder of this paper is 

organized as follows: Firstly, a PV-Powered EVs charging station is presented in Section 1.2.2. 

The interface design and the algorithms implemented are described in Sections 1.2.3 and 

1.2.4. The testing results and simulation results are given in Sections 1.2.5 and 1.2.6. Finally, 

conclusions and perspectives are drawn. 

1.2.2 Theoretical framework 

The PV-powered EVs charging station is based on an intelligent infrastructure for recharging 

EVs (IIREVs) as presented in [3]. It is an innovative and environmentally friendly urban energy 

system based on a grid-connected DC microgrid. The IIREVs mainly comprises a renewable 

source (PV arrays), storage devices (lithium-ion batteries and supercapacitors), a connection 

to the public grid, loads (a heterogeneous fleet of EVs and buildings), and charging terminals 

(CTs). The entire system is presented in Figure 1.2-1, where I2B, I2H, and I2V denote 

infrastructure-to-building, infrastructure-to-home, and infrastructure-to-vehicle respectively. 

 

Figure 1.2-1 Example of IIREVs 

The storage devices are used to complement the intermittency of the PV power, supply energy 

to end users and, if available, inject power to the public grid. The public grid supports the 

energy system when the solar irradiance is low, making the PV power insufficient to charge 

the EVs. Furthermore, when the PV power and the storage power are higher than required 

from EVs or building, the excess power can be sold to the public grid. The energy management 
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and control scheme subsystems are essential for maintaining the power supply-demand 

balance and ensuring generation and energy consumption at minimal cost. In addition to a 

detailed description of each component of the system and the interactions among them, control 

and energy management algorithms are presented in [14]. 

The IIREVs interacts with different energy sources in the system, such as the storage system, 

the public grid, the PV, as well as with EVs users, and a nearby building. The urban energy 

system is able to manage optimized power flows in accordance with the requirements of EVs 

users, building/home owners, and the public power grid, considering the services shown in 

Figure 1.2-1: 

• V2G service: An EV discharges its battery into the public grid;  

• V2B/V2H service: An EV discharges its battery into a building or home;  

• I2B/I2H service: IIREVs provides electrical supply to a building or home; 

• I2V service: IIREVs provides electrical supply to EVs. 

The V2G service helps to flatten consumption peaks at the power grid level, whereas V2B/V2H 

services level out consumption peaks at the building or home level and ensure a continuous 

supply during electrical outages. The I2B/I2H implies that any excess energy generated by 

IIREVs, which is not utilized by the EVs, is directly directed to supply the building. 

1.2.3 HSi for PV-powered EVs charging stations 

1.2.3.1 Graphical User Interface description 

This section introduces the HSi for PV-powered charging stations. The HSi facilitates the 

adjustment, definition, and customization of IIREVs' operational criteria while monitoring their 

control performance. From the perspective of an HSi operator, the interface functions as an 

analysis tool, enabling the study of the implications of technical constraints within a microgrid. 

This includes other entities involved in the charging station, such as EVs and the utility grid, 

which affect the design and planning of the energy system. Additionally, it plays a crucial role 

in ensuring reliability and efficiency in this specific application. 

The primary objective of this tool is to delineate the services offered by IIREVs, as mentioned 

in Section 1.2.2. To achieve this, the interface utilizes various operational parameters from 

IIREVs while considering restrictions imposed by the public grid. Similarly, it considers EV user 

preferences, such as the desired charging mode and the state of charge (𝑆𝑂𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡). 

Furthermore, the HSi incorporates additional features that enable the examination of various 

energy segments within IIREVs, as outlined in Table 1.2-1. 
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Table 1.2-1 HSi features for IIREVs’ energy segment 

IIREVs’ Energy 

Segment 

Key Performance Indicators (KPI) 

EV Charging 

Behaviour 

• The frequency and distribution of charging sessions over time. 

• Identification of patterns and EV load in the parking lot. 

• Verification and monitoring of charging sessions at the parking 

lot. 

Decarbonization 

Efforts 

• Identification of EVs that are currently using or not renewable 

source/storage energy. 

• Generation of a sustainability report via email once a charging 

process is completed. 

• Generation of educational messages to the EV user about the 

economic and environmental impact before they being a 

charging session. 

Grid 

Optimization 

• Determine the valley and peak power consumption from the 

utility grid. 

• Propose a time-of-use (TOU) tariff to the EV user based on 

electricity price forecasting. 

• Suggest that the EV user participate in a demand response 

program through the V2G service. 

1.2.3.2 Layout design  

Figure 1.2-2 shows the interface windows of the developed graphical environment. It 

comprises three principal tabs:  

• the Charging Station tab,  

• the IIREVs parameters tab and  

• the Dashboard tab.  

The initial tab establishes user preferences for the EVs situated in the parking lot. The IIREVs 

parameters tab provides control and monitoring capabilities for the parameters of each energy 

source within the microgrid, including their load status. The subsequent tab is specifically 

designed to showcase, track, and analyze essential data and metrics. The remaining tabs are 

used to dynamically display results obtained from PV, storage device, and each CT. 

In simulation mode, the interface offers the HSi user the ability to choose between three 

different charging modes (slow, average, fast) and set the (𝑆𝑂𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡) each CT. The panel 

EV data emulates the information provided by the EV, such as the initial SOC (𝑆𝑂𝐶𝑎𝑟𝑟𝑖𝑣𝑎𝑙) and 

the type of EV from various manufactures. To make the simulation as realistic as possible, a 

switch button was included to mimic the locking connector located in the CT’s power cable. 

When the unlock/lock switch is set to the lock position, the power cable is secured to the inlet 

connector of the EV. In this condition, the simulator detects an EV at the parking lot.  
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Then, a status button facilitates the initiation of the charging process within the CT. Similarly, 

the interface allows the definition of two services (I2V and V2G) and sets the power limitation 

for the IIREVs. 

 

 

Figure 1.2-2 Main tabs of the HSi 

The status information table displays the status of the CTs. To study the implications of ‘user-

welfare’ and ‘supplier-welfare’ on the charging station, a priority management component was 

added to the HSi. This feature allows a priority to be assigned to each CT based on its number 

and arrival time. Additionally, it considers the maximum price that an EV user is willing to pay 

for the service, referred to as their ‘willingness-to-pay’. 

The IIREVs parameters tab covers the global parameters related to the PV, the public grid, the 

storage, loads, and the DC bus voltage of the IIREVs. The PV panel allows to set the peak 

power provided by the PV panel manufacturer under industrial standard test conditions 𝑃𝑃𝑉𝑆𝑇𝐶
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and the minimum of solar irradiance. The latter represents the lowest level for the PV power 

and the power output to be greater than zero. To obtain an effective, accurate, and reliable 

simulation, real data on solar irradiance and PV cell temperature can be enabled from the 

interface. From the grid and the storage parameters panels, the HSi operator can customize 

the maximum power supply or inject into the public grid, along with and other storage 

parameters. The power consumption of EVs is displayed on the load parameter panel, which 

also includes a module to record the number of EVs in the IIREVs and their status (e.g., EV 

arrivals, waiting for charge, charging, or leaving the station).  

In ‘real-time mode’, the interface can manage and control parameters of a real IIREVs, such 

as inverters enabler and the adjustments of various setpoints. Additionally, all measurement 

data can be accessed through the interface. A summary on this tool is shown in Table 1.2-2. 

Table 1.2-2 Summary of the HSi modules in the tool 

Tab interface HSi module 

Charging 

Station tab 

• Status Information Table: Displays the status information of each 

charging session. 

• Parking lot: Emulates EV arrivals and user preferences. 

• Priority management: Manages prioritization strategies at the 

charging station. 

• Random behaviour: Simulates random EV behaviour over the 

course of a day. 

• Energy sources: Specifies the type of energy source per unit of 

energy. 

IIREVs 

parameters tab 

• Simulation and real-time parameters: the management and 

monitoring of parameters related to the energy system, energy 

sources, and loads. 

Forecast tab 

• Daily grid load forecasting.  

• Electricity price forecasting from France’s utility grid. 

• Solar irradiance forecasting. 

• Cloud opacity forecasting. 

Energy sources 

and charging 

terminal tabs 

• These tabs dynamically display incoming data from each energy 

source and each CT. 

Dashboard tab 
• A basic dashboard that shows the HSi operator, the total energy 

distribution of IIREVs, as well as each charging session. 

1.2.4 HSi’s Management Strategy  

Figure 1.2-3 illustrates the EV management strategy implemented for each CT within the HSi. 

An EV arrival is identified when three conditions are met on the interface: the 𝑆𝑂𝐶𝑎𝑟𝑟𝑖𝑣𝑎𝑙 > 0 , 

the unlock/lock indicator is set to ‘1’, and a type of EV is specified. In standby mode, an EV 
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may initially enter a waiting state if the power available at the station 𝑃𝐸𝑉𝑠𝑙𝑖𝑚
 is insufficient for 

any of the available charging modes. Alternatively, the EV user has the option to abort the 

charge and leave the station (EV disconnect state). If the user agrees to the initial power 

system restriction or if the 𝑃𝐸𝑉𝑠𝑙𝑖𝑚
 is adequate for the chosen charging mode, the 𝑆𝑂𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡 

can be indicated by the EV user. This action serves as a transition to the priority assignment 

state, where the priority management strategy is activated, assigning a priority to the EV. 

The charging mode preference initiates the available power test state. In this state, the HSi 
executes an algorithm that compares the power available in the IIREVs with the power 
demanded by the selected charging mode 𝑃𝐸𝑉𝑠𝐷

. 

 

Figure 1.2-3 I2V’s service state diagram implemented on the HSi 

The strategy is explained in more detail in [19]. Table 1.2-3 describes the conditions, options 

and events involved in this state. If the condition,  𝑃𝐸𝑉𝑠𝑑𝑒𝑚𝑎𝑛𝑑  < 𝑃𝐸𝑉𝑠𝑙𝑖𝑚  , comes into effect, the 

EV can be charged. Conversely if  𝑃𝐸𝑉𝑠𝑑𝑒𝑚𝑎𝑛𝑑  > 𝑃𝐸𝑉𝑠𝑙𝑖𝑚   is fulfilled, the user must choose 

between waiting or aborting the charge. If the user decides to wait, and the  𝑃𝐸𝑉𝑠𝑙𝑖𝑚  >

𝑃𝐸𝑉𝑠𝑑𝑒𝑚𝑎𝑛𝑑  occurs, the EV starts the charging process. By comparing the   𝑃𝐸𝑉𝑠𝑙𝑖𝑚   with the total 

power demanded by EVs at the station  (𝑃𝐸𝑉𝑠𝐷  ), the shedding and restoration operation is 

carried out. When the user desires to stop charging, or when 𝑆𝑂𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is reached, the 

charging process is finalized. 
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Table 1.2-3 Conditions and transitions for the available power test state 

Condition Option Transition 
States 

Previous New 

 𝑃𝐸𝑉𝑠𝑑𝑒𝑚𝑎𝑛𝑑   < 𝑃𝐸𝑉𝑠𝑙𝑖𝑚      The EV can be 
charged 

start available 
power test 

charging process 

 𝑃𝐸𝑉𝑠𝑑𝑒𝑚𝑎𝑛𝑑  > 𝑃𝐸𝑉𝑠𝑙𝑖𝑚   The EV shall wait 
to charge or abort 

the charge. 

wait /abort available 
power test 

standby mode/ EV 
disconnect. 

 𝑃𝐸𝑉𝑠𝑑𝑒𝑚𝑎𝑛𝑑  < 𝑃𝐸𝑉𝑠𝑙𝑖𝑚   The EV can be 
charged 

restauration standby 
mode 

charging process 

1.2.5 Functional Testing  

An essential process carried out before a real-time implementation of the HSi is the testing 
phase. The purpose of this phase is to validate that the interface design complies with the 
initial requirements proposed in accordance with the needs of the operator and the user. 
Likewise, it serves to ensure that all features are functioning properly. The HSi testing 
conducted in this study is based on a black-box testing technique [20]. This technique 
evaluates and validates the functional characteristics of the tool by simulating its actual use 
while disregarding the code structure. The testing encompasses the performance of each 
component on the interfaces, such as buttons control, menus, dialog boxes, lamps status, 
input/output fields, and so on. In this study, the Seeheim Model is used to test the basic 
functional aspect of the HSi [21]. 

 

Figure 1.2-4 The Seeheim Model adapted for testing the HSi 

In Figure 1.2-4, the black arrow indicates the actions taken from one layer to another while the 

blue arrow refers to feedback received from a layer. The presentation layer is responsible for 

the physical appearance of the HSi, including the screen presentation, display components 

and their remaining interaction functions. The dialogue control layer manages the interaction 

with the users, whereas the application model layer integrates the user interface with a real 

application. In this work, a MATLAB® -Simulink model of the IIREVs is used to emulate this 

latter layer. To test the functional characteristics of the HSi, several test scenarios are 

proposed. EVs (EV User) arrive at the charging station at different interval, varying in their 

initial SOC and desired SOC. It is assumed that all EVs have the same type of battery and the 

intention to charge it. The testing procedure for a charging process on the interface is shown 

in Figure 1.2-5. 

When the unlock/lock switch is set to the lock position, the power cable is secured to the EV’s 

inlet connector. The charging station detects an occupied EV charging slot (stage 1). Once all 

EV data and user preferences are provided, the process can be initialized by pressing the start 

button HSi (stage 2). The charging station complies with demanded power requirements (stage 

3), and charging can be initiated by pressing the start button (stage 4). The SOC requested, 
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charging mode, lock /unlock switch and state of the start button serve as action inputs to 

stimulate the presentation layer. The power demanded by EV users is the action input for the 

dialogue control layer. If the charging station does not have available power, the new power 

demand must be chosen by the EV user; this power serves as the action input to the application 

model layer. The action input and feedback outputs of the test procedure are shown in Figure 

1.2-5. 

 

Figure 1.2-5 Test procedure for evaluating the HSi 

1.2.6 Simulation results 

While the HSi has been successfully tested in real-time, this paper specifically aims to verify, 

through simulation, the performance of the HSi, considering two KPIs. 

• The frequency of charging sessions and  

• The identification of EVs that are currently using renewable source or storage energy.  

Figure 1.2-6 illustrates the simulation scenario where EVs arrive at each charging terminal 

within the IIREVs between 09:00 AM and 06:00 PM on April 27, 2021. To replicate the 

environmental conditions on that day, the HSi communicates with a cloud-based service 

known as Solarcast®, which offers tailored, site-specific predictions of solar irradiance, cloud 

opacity, and air temperature. This real-time data and technical parameters set up in [18] is 

defined on the HSi and used while the simulation is running in the background. 

 

(a) (b) 
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(c) (d) 

(e) 

Figure 1.2-6 Charging sessions and user preferences in the IIREVs: 

 a) Charging terminal 1; b) Charging terminal 2; c) Charging terminal 3; d) Charging terminal 4; 

e) Charging terminal 5 

Upon each arrival at IIREVs, the EV user chooses three preferences: the 𝑆𝑂𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡 , the 

charging mode (Fast mode = 83 kW, Average mode = 27 kW, Slow mode = 7 kW) and all 

cases in which they wish to utilize the I2V service. The EV user preferences in each charging 

session and CTs are depicted in Figure 1.2-6. In CT4 and CT5, eight charging sessions were 

initialized and completed. In the case of CT1, CT2, and CT3, 9,10,13 charging sessions were 

reached, respectively. In total, 48 EVs arrived at the charging station and most of them chose 

the fast or average charging mode. The preceding scenario seeks to emulate the hypothetical 

situation in which EVs require fast charging to continue any commercial activity. Figure 1.2-7 

shows the energy consumption distribution at the charging station. The storage capacity is 

initially set to 50%, while the over-charge/over-discharge protections are set to 30% and 90% 

respectively. While the storage capacity does not exceed these limits, the EVs charging 

processes are supported solely by the PV and storage.  

 

(a) (b) (c) 
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(d) (e) (f) 

Figure 1.2-7 Energy consumption distribution at IIREVs: 

a) Charging terminal 1; b) Charging terminal 2; c) Charging terminal 3; d) Charging terminal 4; 

e) Charging terminal 5; f) At charging station 

On the contrary, the charging process for EVs is solely supported by the PV and the public 

grid. In this particular scenario, the overall adoption of green energy by EV users was 86%, 

offset by the contribution of grid energy, which accounted for 14%. 

The HSi is designed to evaluate the utilization of conventional and renewable energy for two 

key stakeholders in the energy ecosystem: the IIREVs operator and the EV user. This 

approach may pave the way for creating a well-designed business model that facilitates the 

economic and sustainable development of PV-powered EV charging stations. It also promotes 

the integration and engagement of EV users in utilizing renewable energy, ultimately 

contributing to the increased adoption of EVs in the years to come. 

1.2.7 Conclusion 

This paper introduces an HSi designed for a PV-powered EV charging station. From the 

perspective of a system operator, the HSi enables the characterization of I2V and V2G 

services. Additionally, it facilitates the retrieval of various information, including the frequency 

of charging sessions, EV load patterns, management of EV charging sessions, renewable 

energy consumption by EVs, a sustainability report of the charging sessions via email, and 

valley and peak power consumption from the utility grid, as well as a time-of-use tariff proposal 

for EV drivers. 

Furthermore, the graphical environment provides valuable insights into daily grid load, 

electricity prices, solar irradiance, and cloud opacity forecasting. Future work will focus on 

experimental tests to validate how the interface collects data from real IIREVs and enables an 

HSi operator to have supervisory control and efficient energy management. 
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1.3 Real-Time Power Management Including an Optimization 
Problem for PV-Powered Electric Vehicle Charging Stations 

This section presents real-time power management, including an optimization problem 

formulated as MILP, for a microgrid-based intelligent infrastructure for recharging EVs 

(IIREVs). The DC microgrid includes photovoltaic sources, stationary storage, a power grid 

connection, and EV batteries as the load. The objective of the optimization problem is to 

minimize the total energy cost. Simulation and experimental results under different 

meteorological conditions demonstrate the feasibility of the proposed control and its superiority 

over the storage-priority strategy.3  

1.3.1 Introduction 

CO2 emissions are a major contributor to global warming. The transport sector accounts for 

25% of global energy consumption and, as a result, contributes significantly to these emissions 

[1][2]. Renewable energy sources have the potential to reduce greenhouse gases, including 

CO2, by decreasing reliance on fossil fuel-powered electrical plants. In this context, the energy 

transition promotes the expansion of renewable energy, but it also introduces new challenges 

for grid operators regarding reliability and quality [3]. Microgrids, in particular, can help balance 

local energy production and consumption, offering benefits to end-users by reducing electricity 

costs, such as lower transmission and distribution expenses, and minimizing energy loss 

during transmission. Microgrids typically incorporate renewable energy sources, such as 

photovoltaics (PV) and wind power, as well as storage devices and loads, and they can be 

connected to the larger grid [4]. Electric vehicles (EVs) have garnered global attention due to 

their advantages: zero tailpipe emissions, quiet operation, high energy efficiency, and simple 

mechanical structure [5][6]. The EV market continues to grow [1][7][8]. However, the increasing 

demand for EV charging, which adds more loads to the grid, poses significant challenges for 

grid operators [9][10]. As a result, effectively managing EV charging will become a critical 

priority. 

1.3.1.1 Literature review 

Recent studies have aimed to design microgrids for EV charging. The authors of [11] proposed 

a mixed-integer linear programming (MILP) model for an EV charging station integrated into a 

DC microgrid to determine optimal operation planning, focusing on optimizing daily operational 

costs based on forecasts of PV production and EV operation. A hybrid optimization problem 

for energy storage management was proposed in [12], aiming to minimize EV charging costs 

in a PV-integrated charging station using time-of-use wholesale electricity pricing. In [13], the 

authors presented meta-heuristic methods such as binary particle swarm optimization and 

binary grey wolf optimization, studying an optimal charging coordination strategy for randomly 

arriving plug-in EVs. A MILP optimization model was proposed in [14] to minimize microgrid 

operation costs by aggregating an EV charging station for an islanded microgrid, and in [15], 

 

 

3 This section is based on the following publication: S. Cheikh-Mohamad, M. Sechilariu, and F. Locment, 

“Real-Time Power Management Including an Optimization Problem for PV-Powered Electric Vehicle 

Charging Stations,” Applied Sciences, vol. 12, no. 9, p. 4323, Apr. 2022, 

http://dx.doi.org/10.3390/app12094323    

http://dx.doi.org/10.3390/app12094323
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to minimize energy generation costs and load shedding, considering various constraints in a 

microgrid integrating battery EV charging stations. 

A heuristic operation problem was proposed in [2] for a commercial building microgrid that 

integrates EVs and a PV system, with a strategy focused on acquiring real-time data rather 

than forecasting EV charging demand or PV production. In [16], a genetic algorithm 

optimization was studied to solve a multi-criteria optimization problem, aiming to minimize EV 

charging costs, maximize the use of PV and storage devices, and reduce storage device 

degradation. MILP optimization was also proposed in [17] to address a day-ahead optimization 

problem for the optimal scheduling and operation of a prosumer owning renewable energy 

sources and a plugged-in EV. A feed-forward artificial neural network was used for weather 

prediction in the energy management system. Linear programming and quadratic 

programming optimization problems were addressed in [18] to minimize the total operating 

costs of building a microgrid integrating a heterogeneous fleet of EVs. 

A multi-objective scheduling optimization problem based on genetic algorithms was presented 

in [19] for microgrids including EVs, aimed at reducing grid loss and charging costs, 

considering various constraints on microgrid sources and EV charging characteristics. In [20], 

the authors presented an optimal model for an energy management strategy in a real microgrid 

integrating a PV system with storage devices, smart buildings, and a plug-in EV, minimizing 

total energy consumption costs by reducing the power supplied from the grid. A robust 

optimization was described in [21] and compared with stochastic optimization to minimize the 

economic and environmental costs of a microgrid integrating PV and EVs. They developed a 

mathematical model to account for the uncertainty of EV charging behaviour and PV power 

production. 

Model predictive control was depicted in [22], utilizing a smart charging strategy that considers 

future EV charging demand, aiming to reduce peak energy demand at an EV parking lot with 

PV sources. A multi-objective evolutionary particle swarm optimization problem was presented 

in [23] to minimize costs and grid overloading for high energy demands in EV scheduling based 

on a day-ahead scenario. In [24], a novel convex quadratic objective function was proposed to 

minimize power losses in a microgrid through a two-stage optimization method, exploring 

different penetration levels of plug-in hybrid EVs and their behaviour. 

The authors of [25] proposed a stochastic planning model as a convex programming problem 

to optimize component sizes by minimizing total costs at an EV charging station, considering 

uncertainties in PV production, EV charging demand, and various constraints. In [26], an 

improved optimal sizing methodology for a typical residential microgrid integrating renewable 

energy sources and EVs was proposed to lower greenhouse gas emissions and costs. An 

annealing mutation particle swarm optimization was studied in [27] for optimal microgrid 

dispatching to minimize environmental protection costs and operation and maintenance costs 

in a multi-objective economic dispatch model. In [28], a multi-agent particle swarm optimization 

model was presented for a grid-connected PV, energy storage system, and EV charging station 

to size the PV and energy storage systems and set the charging/discharging pattern for the 

storage system. 

A machine learning-based approach was proposed in [29] for energy management in a 

microgrid with a reconfigurable structure based on remote switching of ties and sectionalizing. 

The authors also introduced a modified optimization problem based on the dragonfly algorithm 

due to the complexity of the problem. The optimal configuration of PV-powered EV charging 

stations was studied in [30], evaluating the technical and economic impacts under different 

solar irradiation profiles in Vietnam using the HOMER Grid program. In [31], a genetic 

algorithm-based optimization model was proposed to optimize the scheduling and usage of 
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energy sources in an intelligent hybrid energy system, including EVs and a micro-combined 

heat and power system. 

In [32], a bi-level robust optimization was proposed to optimize the design of an EV charging 

station with distributed energy resources. In [33], an optimization model for a battery-swapping 

station was introduced to minimize EV charging costs by optimizing the charging schedule for 

swapped EV batteries. An optimal charging profile was proposed in [34] to minimize EV battery 

degradation and extend battery lifetime. 

A robust optimal power management system was presented in [35] for a standalone hybrid 

AC/DC microgrid. The MILP optimization problem aimed to supervise power flow in the hybrid 

microgrid, satisfying load demand while maximizing the usage of renewable sources (PV and 

wind), minimizing diesel generation, extending battery life, and limiting converter usage 

between AC and DC microgrids. An energy management system for a grid-connected 

microgrid was addressed in [36] using a MILP model to minimize total energy costs over 24 

hours, factoring in load demand, grid tariffs, and renewable energy production. A long short-

term memory network was proposed for power prediction of renewable energy sources and 

load demand, with real-time implementation enabled by a receding horizon strategy to 

minimize prediction errors and optimize the first-hour forecast, updated every hour. 

Finally, in [37], a modular modeling method was described for an energy management system 

for urban multi-energy sources, including cooling, heating, and renewable sources, allowing 

for complex system topologies. They conducted various case studies under different climate 

conditions and electrical loads, comparing their results with a rule-based algorithm to 

demonstrate annual cost reductions. In [38], the technical, economic, and environmental 

aspects of renewable energy in a microgrid were investigated, where an equilibrium 

optimization problem minimized operational costs for a system including PV, wind turbines, 

and a biomass generator. The simulation results confirmed the proposed algorithm's 

effectiveness in reducing costs and emissions. Similarly, in [39], an equilibrium optimization 

problem was presented for optimal PV-storage system integration in a radial distribution 

network, addressing multi-objective functions to minimize investment, operational, and 

environmental costs. The method was compared with other techniques to validate its 

effectiveness. 

Lastly, in [40], the authors proposed an equilibrium algorithm to optimally find the parameters 

for lithium-ion batteries, formulated as a nonlinear optimization problem. The proposed method 

was compared with recent techniques, proving its accuracy and closeness to experimental 

results. An artificial hummingbird optimization technique was presented in [41] to find unknown 

parameters of lithium-ion batteries used in EVs. The experimental tests demonstrated that the 

proposed technique achieved the highest precision compared to other methods. 

1.3.1.2 Research gaps  

In the previously cited references, the optimization was performed using the EV charging 

prediction profile for the entire day as part of day-ahead planning. This prediction is based on 

contextual assumptions, such as the schedule according to the occupancy of a car park or the 

average EV autonomy, which have not yet been validated in real-world scenarios. In this work, 

the objective is to perform real-time control under optimization to minimize energy costs and 

maximize PV energy utilization for each EV within an intelligent infrastructure for recharging 

electric vehicles (IIREVs), considering the intermittent and random arrival of EVs and 

incorporating EV user interaction.  
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In this approach, the optimization is performed more realistically at the random arrival of each 

EV. Therefore, when a new EV arrives at the station, the state of charge (𝑠𝑜𝑐𝑠) of the stationary 

storage and the current state of charge of EVs (𝑠𝑜𝑣𝐸𝑉𝑣
) already charging are updated for 

appropriate optimization. 

1.3.1.3 Contributions 

The main contributions of this work are: 

• Proposing EV power profiles based on the EV users' interactions with the human-

machine interface (HMI); 

• Introducing a new method for real-time power management, including energy cost and 

PV energy optimization for the IIREVs, considering the intermittent and random arrival 

of EVs, where optimization is performed at each EV's arrival; 

• Analysing the energy distribution by source category for EV charging and the entire 

station energy system; 

• Validating the proposed control through simulations and real-time experimental tests 

under different meteorological conditions and random EV power profiles. 

This article is organized as follows: Section 1.3.2 presents the control system for the IIREVs, 

followed by a detailed explanation of the MILP optimization problem, including constraints and 

the objective function. Section 1.3.3 presents simulation results and analyses for different case 

studies. Section 1.3.4 discusses the results obtained from real-time experimental tests. Finally, 

the conclusions and future work are presented in Section 1.3.5. 

1.3.2 Supervisory and Control System Based on Real-Time Power Management 

Figure 1.3-1 shows the DC microgrid, referred to as IIREVs, which includes PV sources, 

stationary storage, a power grid connection, and EVs as DC loads. The PV sources operate in 

two modes: maximum power point tracking (MPPT), where maximum power is drawn using a 

perturb-and-observe algorithm, and PV power limitation, where the PV power is restricted in 

case of excess production [42], as the surplus can no longer be fully injected into the storage 

or the grid. 

The stationary storage acts as a backup source, serving as an energy reservoir when PV 

power is insufficient to charge the EVs. In cases of insufficient PV power, the grid ensures 

system security by supplying power to the EVs if the stationary storage has reached its lower 

limit (empty or at minimum discharge power). Conversely, the DC microgrid can sell power to 

the grid by injecting excess PV power when production is surplus, and the stationary storage 

has reached its upper limit (full or at maximum charging power) [43]. 

As for EV charging, two modes are available: full charging, as requested by the users, and EV 

shedding, which occurs when it is not possible to fully supply the EVs with power. 
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Figure 1.3-1 Power flow for the intelligent infrastructure for recharging EVs 

The power flow for IIREVs is shown in Figure 1.3-1, where 𝑝𝑃𝑉𝑀𝑃𝑃𝑇
 is the PV MPPT power, 

𝑝𝑃𝑉 is the PV power, 𝑝𝑃𝑉𝑆
 is the PV shed power, 𝑝𝐺𝐼

 is the grid injection power, 𝑝𝐺𝑆
 is the grid 

supply power, 𝑝𝑆𝐶
 is the stationary storage charging power, 𝑝𝑠𝐷

 is the stationary storage 

discharging power, 𝑝𝐼𝐼𝑅𝐸𝑉𝑠𝐷
 is the IIREVs’ total demand power, 𝑝𝐼𝐼𝑅𝐸𝑉𝑠  is the IIREVs’ total 

power, and 𝑝𝐼𝐼𝑅𝐸𝑉𝑠𝑆
 is the IIREVs’ shed power.  

The components of the IIREVs are connected to a common DC bus via their dedicated 

converters. PV sources are linked to the DC bus through a DC/DC converter to extract 

maximum power using MPPT. The stationary storage is connected through a reversible DC/DC 

converter. The EV batteries, as DC loads, are also connected via DC/DC converters. The grid 

is linked through a three-phase bidirectional AC/DC converter. It is essential to ensure a 

constant power supply and mitigate any power imbalance between production and EV 

demand. 

The supervisory control system for the IIREVs is shown in Figure 1.3-2. The supervisory control 
system consists of four layers: prediction, energy cost optimization, operation, and HMI. The 
design and implementation of the IIREVs' control are based on the interaction between EV 
users and the DC microgrid. The energy cost optimization and operation layers form the control 
block, which is responsible for maintaining power balance. 

The prediction layer is based on weather forecasts. The energy cost optimization is based on 

the production prediction and consumption profile. They are calculated based on data from the 

prediction layer and the interaction with the HMI. From the prediction layer, messages from the 

smart grid about energy system limits, grid power limits, and dynamic energy pricing are 

communicated. From the interaction with the HMI, the EV users choose their charging mode 

(𝑀𝑣), desired state of charge of their EV at departure (𝑆𝑂𝐶𝐸𝑉𝑑𝑒𝑠𝑣
) in real-time, and get the state 

of charge of their EV at arrival (𝑆𝑂𝐶𝐸𝑉𝑎𝑟𝑟𝑣
). 

MILP optimization is used for the technical-economic dispatching of the microgrid sources and 
load. This supervisory control has the advantage of interacting with the EV users to perform 
the optimization; however, if the choices of the EV users are not feasible, they have to change 
them in order to perform the optimization [44]. 

The main challenge lies in handling the discrete events from the HMI. The optimization results 
communicate the predictive control settings to the operation layer and update the smart grid 
about the power references for the stationary storage and the power grid. The operation layer 
contains the algorithm that maintains power balance while respecting the system's constraints 
and physical limits [4]. It also sets the PV power limitations and performs EV shedding if 
necessary. 
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Figure 1.3-2 Supervisory control system for the IIREVs 

1.3.2.1 Prediction layer 

Météo France provides hourly predictions allowing the calculation of PV power prediction, 

which is based on solar irradiation (𝑔) and ambient temperature (𝑇𝑎𝑚𝑏) forecast data [45]. The 

PV power prediction 𝑝𝑃𝑉𝑀𝑃𝑃𝑇𝑝𝑟𝑒𝑑
 is calculated in MPPT mode for each time instant 𝑡𝑖 [46] as 

given in following equations: 

𝑝𝑃𝑉𝑀𝑃𝑃𝑇𝑝𝑟𝑒𝑑
= 𝑃𝑃𝑉𝑆𝑇𝐶

×
𝑔(𝑡𝑖)

1000
 × [1 + 𝛾 × (𝑇𝑃𝑉(𝑡𝑖) − 25)] × 𝑁𝑃𝑉  

𝑤𝑖𝑡ℎ 𝑡𝑖 = {𝑡0, 𝑡0 + ∆𝑡, 𝑡0 + 2∆𝑡, … , 𝑡𝑓 },  

(1.3-1) 

𝑇𝑃𝑉(𝑡𝑖) =  𝑇𝑎𝑚𝑏(𝑡𝑖) +  𝑔(𝑡𝑖) ×
𝑁𝑂𝐶𝑇−𝑇𝑎𝑖𝑟−𝑡𝑒𝑠𝑡

𝐺𝑡𝑒𝑠𝑡
    (1.3-2) 

where 𝑃𝑃𝑉𝑆𝑇𝐶
 is the PV power under standard test conditions (STC), 𝛾 is the power temperature 

coefficient (−0,29%/°𝐶), 𝑇𝑃𝑉 is the PV cell temperature, 𝑁𝑃𝑉  is the number of PV panels, 

𝑡0, 𝑡0 + ∆𝑡, and 𝑡𝑓 are the initial time instant, time interval between two samples, and time 

instant at the end of time operation, respectively, 𝑁𝑂𝐶𝑇 is the nominal operating cell 

temperature (41°𝐶), 𝑇𝑎𝑖𝑟−𝑡𝑒𝑠𝑡 is the fixed air temperature (20°𝐶), and 𝐺𝑡𝑒𝑠𝑡 is the fixed solar 

irradiation (800 𝑊/𝑚²).  

1.3.2.2 Human-Machine Interface 

As for the EVs, it is possible to charge them in three modes: slow, average, and fast. All EVs 

can handle up to fast mode, and they are considered to have the same energy capacity. The 

HMI allows the EV users to set their 𝑆𝑂𝐶𝐸𝑉𝑎𝑟𝑟𝑣
, 𝑀𝑣 and 𝑆𝑂𝐶𝐸𝑉𝑑𝑒𝑠𝑣

, and, therefore, the 
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estimated charging time, 𝑡𝑒𝑠𝑡𝑐ℎ𝑣
 , which is the required time to reach 𝑆𝑂𝐶𝐸𝑉𝑑𝑒𝑠𝑣

 , is calculated 

as given in : 

𝑡𝑒𝑠𝑡𝑐ℎ𝑣 =  
𝑆𝑂𝐶𝐸𝑉𝑑𝑒𝑠𝑣

− 𝑆𝑂𝐶𝐸𝑉𝑎𝑟𝑟𝑣 

𝑃𝐸𝑉𝑚𝑎𝑥𝑣

 × 𝐸  (1.3-3) 

where 𝐸 is the EV’s battery capacity, and 𝑃𝐸𝑉𝑚𝑎𝑥𝑣
 is the maximum charging power based on 

the charging mode set by the EV user. The HMI for the IIREVs is shown in Figure 1.3-3 and is 

well explained in detail in [47]. 

 

Figure 1.3-3 Human-machine interface for the IIREVs 

1.3.2.3 Energy cost optimization 

The energy cost optimization layer interacts with the prediction layer and the HMI to execute 

the optimization. The objective of the optimization is to achieve the lowest energy cost and 

maximize PV power for each EV. The power sharing between the stationary storage and the 

grid is represented by the power distribution coefficient, which is calculated from this layer 

using the power references obtained during optimization. The benefits of optimization 

encompass several aspects: reducing grid peak power consumption, minimizing energy costs, 

determining whether stationary storage or the grid provides the better contribution, and 

avoiding EV and PV shedding. Communication with the smart grid informs the system about 

grid power limits for injection and supply, as set by a contract with the grid operators, as well 

as real-time energy pricing. Additionally, the physical limits of the stationary storage must be 

known. The objective is to minimize the total energy cost while adhering to various constraints 

[45]. 

The constraints and objective function are presented in the following subsections. 



Task 17 PV and Transport – PV-Powered Electric Vehicle Charging Stations 

43 

1.3.2.3.1 PV Sources 

The two operation modes for the PV are MPPT and limited power. The PV power that must be 

shed is noted as 𝑝𝑃𝑉𝑆
 . Therefore, 𝑝𝑃𝑉 is calculated [45] as given by: 

𝑝𝑃𝑉(𝑡𝑖) =  𝑝𝑃𝑉𝑀𝑃𝑃𝑇
 (𝑡𝑖) −  𝑝𝑃𝑉𝑆

(𝑡𝑖)  (1.3-4) 

where 𝑝𝑃𝑉𝑆
= 0 is in MPPT mode; it should not be negative in power limitation mode. 

Thus, constraints are added as follows: 

𝑝𝑃𝑉(𝑡𝑖)  ≥ 0   (1.3-5) 

0 ≤ 𝑝𝑃𝑉𝑆
(𝑡𝑖)  ≤  𝑝𝑃𝑉𝑀𝑃𝑃𝑇

 (𝑡𝑖)   (1.3-6) 

1.3.2.3.2 Stationary Storage 

The stationary storage, represented by lithium-ion batteries, must be protected from 

overcharging and over-discharging; thus the maximum storage power 𝑃𝑆𝑚𝑎𝑥
 and the maximum 

and minimum state of charge of the storage 𝑆𝑂𝐶𝑆𝑚𝑎𝑥
 and 𝑆𝑂𝐶𝑆𝑚𝑖𝑛

 must be respected to extend 

the storage lifetime [45][48] as given by (1.3-7) and (1.3-8) . The simplified state of the charge 

of the storage 𝑠𝑜𝑐𝑆 evolution [43] is given by (1.3-9) for simplicity, where self-discharge and 

temperature are not considered: 

− 𝑃𝑆𝑚𝑎𝑥 ≤ 𝑝𝑆(𝑡𝑖) ≤  𝑃𝑆𝑚𝑎𝑥
  (1.3-7) 

𝑆𝑂𝐶𝑆𝑚𝑖𝑛 ≤ 𝑠𝑜𝑐𝑆(𝑡𝑖) ≤  𝑆𝑂𝐶𝑆𝑚𝑎𝑥
   (1.3-8) 

𝑠𝑜𝑐𝑆(𝑡𝑖) = 𝑆𝑂𝐶𝑆0
+  

1

3600 × 𝐸𝑏𝑎𝑡
 ∫ 𝑝𝑆(𝑡𝑖) 𝑑𝑡

𝑡

0
  (1.3-9) 

where 𝑆𝑂𝐶𝑆0
 is the initial 𝑠𝑜𝑐𝑆 , and 𝐸𝑏𝑎𝑡 is the storage energy capacity (kWh) and the storage 

power 𝑝𝑆(𝑡𝑖) =  𝑝𝑆𝐶
(𝑡𝑖) − 𝑝𝑆𝐷

(𝑡𝑖) . The PV power should not be limited if 𝑆𝑂𝐶𝑆𝑚𝑎𝑥
is not reached; 

this constraint is given by: 

𝑝𝑃𝑉𝑆
= 0 𝑖𝑓 𝑆𝑂𝐶𝑆(𝑡𝑖) < 𝑆𝑂𝐶𝑆𝑚𝑎𝑥

  (1.3-10) 

1.3.2.3.3 Grid Connection 

The smart grid transmits messages to IIREVs to respect the maximum grid supply 𝑃𝐺𝑆𝑚𝑎𝑥
 and 

injection 𝑃𝐺𝐼𝑚𝑎𝑥
limits set by the grid [45], as in (1.3-11) , where :𝑝𝐺(𝑡𝑖) =  𝑝𝐺𝐼

(𝑡𝑖) − 𝑝𝐺𝑆
(𝑡𝑖)   

 −𝑃𝐺𝑆𝑚𝑎𝑥
 ≤  𝑝𝐺

(𝑡𝑖)  ≤  𝑃𝐺𝐼𝑚𝑎𝑥
   (1.3-11) 

1.3.2.3.4 Electric Vehicles 

EV batteries, seen as the entire microgrid’s load, can be shed, 𝑝𝐼𝐼𝑅𝐸𝑉𝑠𝑆 , when 𝑝𝐼𝐼𝑅𝐸𝑉𝑠𝐷
 cannot 

be fully supplied due to deficient in power, e.g., the storage and grid have reached their limits 

[45]. Hence, 𝑝𝐼𝐼𝑅𝐸𝑉𝑠  is given by equation (1.3-12), and knowing that 𝑝𝐼𝐼𝑅𝐸𝑉𝑠𝑆  , should not be 

negative, thus, constraints equations (1.3-13)  and (1.3-14) are added as follows: 
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𝑝𝐼𝐼𝑅𝐸𝑉𝑠 (𝑡𝑖) =  𝑝𝐼𝐼𝑅𝐸𝑉𝑠𝐷
(𝑡𝑖) −  𝑝𝐼𝐼𝑅𝐸𝑉𝑠𝑆 (𝑡𝑖)    (1.3-12) 

𝑝𝐼𝐼𝑅𝐸𝑉𝑠 (𝑡𝑖) ≥ 0  (1.3-13) 

0 ≤  𝑝𝐼𝐼𝑅𝐸𝑉𝑠𝑆  (𝑡𝑖) ≤ 𝑝𝐼𝐼𝑅𝐸𝑉𝑠𝐷 (𝑡𝑖)  (1.3-14) 

No PV shedding power is required when PV power can be fully used, and no EV shedding 
power is imposed when EVs can be fully charged. Thus, the constraints of equations  (1.3-15)
and (1.3-16) must be respected. 

 𝑖𝑓 𝑝𝑃𝑉𝑀𝑃𝑃𝑇
(𝑡𝑖) ≥  𝑝𝐼𝐼𝑅𝐸𝑉𝑠𝐷 (𝑡𝑖) 𝑡ℎ𝑒𝑛 {

𝑝𝐼𝐼𝑅𝐸𝑉𝑠𝑆 (𝑡𝑖) = 0 

𝑝𝐺(𝑡𝑖) ≥ 0

𝑝𝑆(𝑡𝑖) ≥ 0

   

(1.3-15) 

 𝑖𝑓 𝑝𝑃𝑉𝑀𝑃𝑃𝑇
(𝑡𝑖) ≤  𝑝𝐼𝐼𝑅𝐸𝑉𝑠𝐷 (𝑡𝑖) 𝑡ℎ𝑒𝑛 {

𝑝𝐼𝐼𝑅𝐸𝑉𝑠𝑆 (𝑡𝑖) = 0 

𝑝𝐺(𝑡𝑖) ≤ 0

𝑝𝑆(𝑡𝑖) ≤ 0

  

(1.3-16) 

The EV users can select their charging mode and other choices that are expressed in the 

IIREVs’ interface. The following EV constraints given in (1.3-17)  – (1.3-31) represent the EV 

users’ interaction: 

a) EV charging mode 

𝑖𝑓 𝑀𝑣 = 1 𝑡ℎ𝑒𝑛 0  ≤  𝑝𝐸𝑉𝑣
(𝑡𝑖) ≤ 𝑃𝐸𝑉𝑓𝑎𝑠𝑡𝑚𝑎𝑥

 ∀ 𝑡𝑖 ∈ [𝑡𝑎𝑟𝑟𝑣
; 𝑡𝑑𝑒𝑝𝑣

]   

𝑤𝑖𝑡ℎ 𝑣 = {1,2, … 𝑁𝑣}   

(1.3-17) 

𝑖𝑓 𝑀𝑣 = 2 𝑡ℎ𝑒𝑛 0  ≤  𝑝𝐸𝑉𝑣
(𝑡𝑖) ≤ 𝑃𝐸𝑉𝑎𝑣𝑒𝑟𝑚𝑎𝑥

 ∀ 𝑡𝑖 ∈ [𝑡𝑎𝑟𝑟𝑣
; 𝑡𝑑𝑒𝑝𝑣

]   (1.3-18) 

𝑖𝑓 𝑀𝑣 = 3 𝑡ℎ𝑒𝑛 0  ≤ 𝑝𝐸𝑉𝑣
(𝑡𝑖) ≤ 𝑃𝐸𝑉𝑠𝑙𝑜𝑤𝑚𝑎𝑥

 ∀ 𝑡𝑖 ∈ [𝑡𝑎𝑟𝑟𝑣
; 𝑡𝑑𝑒𝑝𝑣

]   (1.3-19) 

 𝑝𝐸𝑉𝑣
(𝑡𝑖) = 0 ∀ 𝑡𝑖 ∉ [𝑡𝑎𝑟𝑟𝑣

; 𝑡𝑑𝑒𝑝𝑣
] (1.3-20) 

where 𝑣 is the index of the EV, 𝑝𝐸𝑉𝑣
 is the EV charging power of v vehicle, 𝑡𝑎𝑟𝑟𝑣

 and  𝑡𝑑𝑒𝑝𝑣
are 

the arrival and departure time of 𝑣 vehicle, respectively, and 𝑁𝑣 is the total number of EVs. 

b) Total EV charging power 

𝑝𝐼𝐼𝑅𝐸𝑉𝑠𝐷
=  ∑ 𝑝𝐸𝑉𝑣

(𝑡𝑖) ∀ 𝑡𝑖 ∈ [𝑡𝑎𝑟𝑟𝑣
; 𝑡𝑑𝑒𝑝𝑣

]
𝑁𝑣
𝑣   (1.3-21) 

c) EV state of charge: 

𝑆𝑂𝐶𝐸𝑉𝑚𝑖𝑛 ≤ 𝑠𝑜𝑐𝐸𝑉𝑣
(𝑡𝑖) ≤  𝑆𝑂𝐶𝐸𝑉𝑚𝑎𝑥

 ∀ 𝑡𝑖 ∈ [𝑡𝑎𝑟𝑟𝑣
; 𝑡𝑑𝑒𝑝𝑣

]   (1.3-22) 

𝑠𝑜𝑐𝐸𝑉𝑣
(𝑡𝑖) = 0  ∀ 𝑡𝑖 ∉ [𝑡𝑎𝑟𝑟𝑣

; 𝑡𝑑𝑒𝑝𝑣
]  (1.3-23) 

𝑠𝑜𝑐𝐸𝑉𝑣
(𝑡𝑖) =  𝑆𝑂𝐶𝐸𝑉𝑎𝑟𝑟𝑣

(𝑡𝑖) ∀ 𝑡𝑖 = 𝑡𝑎𝑟𝑟𝑣
  (1.3-24) 

𝑆𝑂𝐶𝐸𝑉𝑎𝑟𝑟𝑣
(𝑡𝑖) ≥ 𝑆𝑂𝐶𝐸𝑉𝑚𝑖𝑛

 ∀ 𝑡𝑖 = 𝑡𝑎𝑟𝑟𝑣
  (1.3-25) 

𝑠𝑜𝑐𝐸𝑉𝑣
(𝑡𝑖)  ≥ 𝑆𝑂𝐶𝐸𝑉𝑎𝑟𝑟𝑣

(𝑡𝑖) ∀ 𝑡𝑖 ∈ [𝑡𝑎𝑟𝑟𝑣
; 𝑡𝑑𝑒𝑝𝑣

]   (1.3-26) 

𝑆𝑂𝐶𝐸𝑉𝑑𝑒𝑝𝑣
(𝑡𝑖) ≥ 𝑆𝑂𝐶𝐸𝑉𝑑𝑒𝑠𝑣

(𝑡𝑖) ∀ 𝑡𝑖 = 𝑡𝑑𝑒𝑝𝑣
  (1.3-27) 

𝑠𝑜𝑐𝐸𝑉𝑣
(𝑡𝑖+1) = 𝑆𝑂𝐶𝐸𝑉𝑎𝑟𝑟𝑣

(𝑡𝑖) + 
𝑝𝐸𝑉𝑣

(𝑡𝑖) ×∆𝑡𝑖

𝐸
 ∀ 𝑡𝑖 ∈ [𝑡𝑎𝑟𝑟𝑣

; 𝑡𝑑𝑒𝑝𝑣
]   (1.3-28) 
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𝑠𝑜𝑐𝐸𝑉𝑣
(𝑡𝑖) =  𝑆𝑂𝐶𝐸𝑉𝑑𝑒𝑝𝑣

(𝑡𝑖) ∀ 𝑡𝑖 = 𝑡𝑑𝑒𝑝𝑣
  (1.3-29) 

where 𝑠𝑜𝑐𝐸𝑉𝑣
  is the state of charge of 𝑣 vehicle, 𝑆𝑂𝐶𝐸𝑉𝑚𝑖𝑛  , 𝑆𝑂𝐶𝐸𝑉𝑚𝑎𝑥

 , and 𝑆𝑂𝐶𝐸𝑉𝑑𝑒𝑝𝑣
are the 

minimum, maximum, and departure state of charge of 𝑣 vehicle, respectively; 

d) Acceptance criteria 

The estimated charging time of the EV set by the user is 𝑡𝑐ℎ𝑣
, given by (1.3-30). 

𝑡𝑐ℎ𝑣
= 𝑡𝑑𝑒𝑝𝑣

− 𝑡𝑎𝑟𝑟𝑣
  (1.3-30) 

𝑆𝑂𝐶𝐸𝑉𝑑𝑒𝑠𝑣
 − 𝑆𝑂𝐶𝐸𝑉𝑎𝑟𝑟𝑣 

(𝑡𝑖)

𝑃𝐸𝑉𝑣

 × 𝐸 ≤ 𝑡𝑐ℎ𝑣
 ∀ 𝑡𝑖 ∈ [𝑡𝑎𝑟𝑟𝑣

; 𝑡𝑑𝑒𝑝𝑣
]   

(1.3-31) 

If the constraints defined by (1.3-30) and (1.3-31) are not qualified, then the EV user must 
change their choices, e.g., estimated charging time and/or desired  𝑠𝑜𝑐 of EV at the departure 

time and charging mode. It is worth mentioning that 𝑡𝑒𝑠𝑡𝑐ℎ𝑣
 is the minimum charging time 

imposed by the IIREVs, which is calculated based on the choices of the EV user. 𝑡𝑐ℎ𝑣
 is the 

time of the EV spent at the IIREVs, which is set by its user. Therefore, 𝑡𝑐ℎ𝑣
 should be equal to 

or greater than 𝑡𝑒𝑠𝑡𝑐ℎ𝑣
 .The dynamic 𝑠𝑜𝑐 evolution of 𝑣 vehicle, 𝑆𝑂𝐶𝐸𝑉𝑣

, is given by (1.3-28). 

1.3.2.3.5 Power balancing  

All power signs are assigned positives, and the physical law of power balancing [45] can be 

given by (1.3-32): 

𝑝𝑃𝑉(𝑡𝑖) + 𝑝𝑆𝐷
(𝑡𝑖) + 𝑝𝐺𝑆

(𝑡𝑖) = 𝑝𝐼𝐼𝑅𝐸𝑉𝑠 (𝑡𝑖) + 𝑝𝑆𝐶
(𝑡𝑖) + 𝑝𝐺𝐼

(𝑡𝑖)   (1.3-32) 

As previously noted, 𝑘𝐷 is the coefficient representing the sharing power between the 

stationary storage and the grid, given by (1.3-33): 

𝑘𝐷(𝑡𝑖) =  
𝑝𝑆𝐶(𝑡𝑖)+ 𝑝𝑆𝐷(𝑡𝑖)

𝑝𝑆𝐶(𝑡𝑖)+ 𝑝𝑆𝐷(𝑡𝑖)+𝑝𝐺𝐼(𝑡𝑖)+𝑝𝐺𝑆(𝑡𝑖) 
  (1.3-33) 

1.3.2.3.6 Objective function 

The total energy cost, 𝐶𝑡𝑜𝑡𝑎𝑙, considers the cost of the supplied power from the grid, the profit 

of injected power into the grid, the cost of the storage degradation when operating, the penalty 

cost if the EV at departure has not reached its desired SOC, and the cost of the PV shedding 

power, which represents the PV power that has not taken advantage of it. Therefore, the 

objective function is to minimize 𝐶𝑡𝑜𝑡𝑎𝑙 , given by equations (1.3-34) – (1.3-38) : 

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝐺 + 𝐶𝑆 + 𝐶𝑃𝑉𝑆 + 𝐶𝐸𝑉𝑝𝑒𝑛𝑎𝑙𝑡𝑦
  (1.3-34) 

𝐶𝐺 =  ∑ [𝑐𝐺(𝑡𝑖) × ∆𝑡 × (−𝑝𝐺𝐼
(𝑡𝑖) + 𝑝𝐺𝑆

(𝑡𝑖) )]
𝑡𝐹
𝑡𝑖=𝑡0

  

𝑐𝐺(𝑡𝑖) =  {
𝑐𝐺𝑁𝐻

 𝑓𝑜𝑟 𝑡 ∈ 𝑛𝑜𝑟𝑚𝑎𝑙 ℎ𝑜𝑢𝑟𝑠

𝑐𝐺𝑃𝐻
 𝑓𝑜𝑟 𝑡 ∈ 𝑝𝑒𝑎𝑘 ℎ𝑜𝑢𝑟𝑠

  

(1.3-35) 

𝐶𝑆 =  ∑ [𝑐𝑆(𝑡𝑖) × ∆𝑡 × (𝑝𝑆𝐶
(𝑡𝑖) + 𝑝𝑆𝐷

(𝑡𝑖) )]
𝑡𝐹
𝑡𝑖=𝑡0

  (1.3-36) 

𝐶𝑃𝑉𝑠 =  ∑ [𝑐𝑃𝑉𝑆(𝑡𝑖) × ∆𝑡 × 𝑝𝑃𝑉𝑆(𝑡𝑖)]
𝑡𝐹
𝑡𝑖=𝑡0

  (1.3-37) 
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𝐶𝐸𝑉𝑝𝑒𝑛𝑎𝑙𝑡𝑦
=  ∑ [𝑐𝐸𝑉𝑝𝑒𝑛𝑎𝑙𝑡𝑦

× (𝑆𝑂𝐶𝐸𝑉𝑑𝑒𝑠𝑣
−  𝑆𝑂𝐶𝐸𝑉𝑑𝑒𝑝𝑣

) ×  𝐸]
𝑁𝑣
𝑣   (1.3-38) 

where 𝐶𝐺 , 𝐶𝑆 , 𝐶𝑃𝑉𝑆 , and 𝐶𝐸𝑉𝑝𝑒𝑛𝑎𝑙𝑡𝑦
 are the grid, storage, PV shedding energy costs, and EV 

penalty cost, respectively, and 𝑐𝐺 , 𝑐𝑆 , 𝑐𝑃𝑉𝑆 , and 𝑐𝐸𝑉𝑝𝑒𝑛𝑎𝑙𝑡𝑦
 are the grid, storage, PV shedding 

energy tariffs, and EV penalty tariff, respectively. Lastly, the final optimization problem is given 

by:  

𝑚𝑖𝑛 ( 𝐶𝑡𝑜𝑡𝑎𝑙 =  𝐶𝐺 + 𝐶𝑆 + 𝐶𝑃𝑉𝑆 + 𝐶𝐸𝑉𝑝𝑒𝑛𝑎𝑙𝑡𝑦
)   

with respect to all the aforementioned equations. 

(1.3-39) 

The decision variables in this optimization problem are 𝑝𝐸𝑉𝑣
 , 𝑝𝐼𝐼𝑅𝐸𝑉𝑠𝑆 , 𝑝𝐺, 𝑝𝑃𝑉𝑆

, 𝑝𝑆 , 𝑠𝑜𝑐𝑆 , and 

𝑠𝑜𝑐𝐸𝑉𝑣
  , in which they are continuous variables. 

1.3.2.4 Operation layer 

The energy optimization layer finds the optimal power flow of the sources and the EVs based 

on 𝑝𝑃𝑉𝑀𝑃𝑃𝑇𝑝𝑟𝑒𝑑
 and 𝑘𝐷. The coefficient is calculated based on the optimized power flow 

obtained by CPLEX [49]. This coefficient controls the operational layer for the IIREVs in real-

time operation. The advantage of 𝑘𝐷 is balancing the power flows, coupling the energy 

management easily while respecting all constraints [45]. 

The operational layer must consider optimized power flow in real operating conditions, 𝑝𝑃𝑉𝑀𝑃𝑃𝑇
 

and 𝑝𝐼𝐼𝑅𝐸𝑉𝑠𝐷
 . In addition, the operation management must ensure robustness and withstand 

uncertainties in the forecast data. Then, this layer calculates the power references and 

performs PV shedding or EV shedding when necessary. The actual operating conditions lead 

to a reference power 𝑝𝑟𝑒𝑓 to stabilize the DC bus voltage, defined by (1.3-40) and (1.3-41). 

𝑝𝑟𝑒𝑓(𝑡𝑖) = 𝑝𝑃𝑉𝑀𝑃𝑃𝑇
(𝑡𝑖) −  𝑝𝐼𝐼𝑅𝐸𝑉𝑠𝐷

(𝑡𝑖) − 𝐶𝑝(𝑉𝑟𝑒𝑓 − 𝑣𝐷𝐶 𝑏𝑢𝑠
)   (1.3-40) 

𝑝𝑟𝑒𝑓(𝑡𝑖) = 𝑝𝐺𝑟𝑒𝑓
(𝑡𝑖) + 𝑝𝑆𝑟𝑒𝑓

(𝑡𝑖)   (1.3-41) 

where 𝐶𝑝 , 𝑉𝑟𝑒𝑓 and 𝑣𝐷𝐶𝑏𝑢𝑠
 are the proportional controller gain, reference voltage, and the 

actual voltage of the DC bus, respectively. The stationary storage power reference can be 

calculated as in (1.3-42): 

𝑝𝑆𝑟𝑒𝑓
(𝑡𝑖) = 𝑘𝐷(𝑡𝑖) × 𝑝𝑟𝑒𝑓(𝑡𝑖)   

where 𝑘𝐷 is defined in the interval [0;1]. 

 (1.3-42) 

The grid power reference 𝑝𝐺𝑟𝑒𝑓
 is calculated taking into account the stationary storage physical 

limit, which means 𝑝𝑆𝑟𝑒𝑓
= 0  if the storage reaches its maximum 𝑆𝑂𝐶𝑆𝑚𝑎𝑥

 or minimum 𝑆𝑂𝐶𝑆𝑚𝑖𝑛
 

limits or its maximum power 𝑃𝑆𝑚𝑎𝑥
, and the grid power reference becomes. Figure 1.3-4 shows 

the control algorithm of the power balancing strategy for the IIREVs. 
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Figure 1.3-4 Control algorithm for IIREVs. 

To prove the feasibility of the optimization problem, it is compared with a storage priority 

algorithm simulation without optimization ‘Sim w/o opt’, where 𝑘𝐷 is one in this operation mode. 

Moreover, these operation modes are compared with an ideal case, ‘Opt for real conditions’, 

which is based on real PV MPPT and IIREV powers. 

1.3.3 Simulation Results and Analyses 

A Simulink model is developed to simulate the IIREVs with a step time of 0,01 s, which contains 

five chargers with three charging modes in real-time operation and balances the power of DC 

bus. 𝑆𝑂𝐶𝐸𝑉𝑎𝑟𝑟𝑣
 , 𝑆𝑂𝐶𝐸𝑉𝑑𝑒𝑝𝑣

, 𝑡𝑎𝑟𝑟𝑣
 and 𝑀𝑣 are randomly generated. 𝑆𝑂𝐶𝐸𝑉𝑎𝑟𝑟𝑣

 and 𝑆𝑂𝐶𝐸𝑉𝑑𝑒𝑝𝑣
 are 

generated in the interval (20%, 50%) and (70%, 100%), respectively. Regarding the EV 

batteries, lithium-ion batteries were considered, and their capacities are assumed to be 

capable of handling up to fast charge. Sunpower SPR X21-345 with 21% efficiency under STC 

is considered as PV panels, and the system loss was estimated at 14%. 

 

 

Table 1.3-1 provides the parameters used for optimization and power balancing control, and 

Table 1.3-2 provides the options assumed by the EV users, randomly generated in MATLAB, 

where five EVs are expected to come for charging. The grid peak hours are arbitrarily assumed 

to be 12:00 PM – 01:00 PM and 03:00 PM – 04:00 PM. The energy tariffs are chosen arbitrarily 

in a way to prioritize the sources used for the EV charging as given by: 

𝑐𝑆 ≤ 𝑐𝐺 ≤ 𝑐𝑃𝑉𝑆 ≤ 𝑐𝐸𝑉𝑝𝑒𝑎𝑛𝑙𝑡𝑦
  (1.3-43) 
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Table 1.3-1 Optimization and simulation parameter values 

𝑆𝑂𝐶𝑆𝑚𝑖𝑛
 20% 𝑃𝐸𝑉𝑓𝑎𝑠𝑡𝑚𝑎𝑥

 50 kW 𝑃𝑆𝑚𝑎𝑥
 34,5 kW 𝑐𝐺𝑁𝐻

 0,1 €/kWh 

𝑆𝑂𝐶𝑆𝑚𝑎𝑥
 80% 𝑃𝐸𝑉𝑎𝑣𝑒𝑟𝑚𝑎𝑥

 22 kW 𝑝𝑃𝑉𝑀𝑃𝑃𝑇
 28,98 kWp 𝑐𝐺𝑃𝐻

 0,7 €/kWh 

𝑆𝑂𝐶𝐸𝑉𝑚𝑖𝑛
 20% 𝑃𝐸𝑉𝑠𝑙𝑜𝑤𝑚𝑎𝑥

 7 kW 𝑁𝑃𝑉 84 PV 𝑐𝑆 0,01 €/kWh 

𝑆𝑂𝐶𝐸𝑉𝑚𝑎𝑥
 100% 𝑃𝐺𝐼𝑚𝑎𝑥

 50 kW 𝑉𝑟𝑒𝑓 400 V 𝑐𝑃𝑉𝑆 1,2 €/kWh 

𝑆𝑂𝐶𝑆0
 50% 𝑃𝐺𝑆𝑚𝑎𝑥

 50 kW 𝐸𝑏𝑎𝑡 90 kWh 𝑐𝐸𝑉𝑝𝑒𝑛𝑎𝑙𝑡𝑦 
 2,5 €/kWh 

 𝐸 50 kWh  

 

Table 1.3-2 Assumed options by the EV users 

EVs 𝑆𝑂𝐶𝐸𝑉𝑎𝑟𝑟
 𝑆𝑂𝐶𝐸𝑉𝑑𝑒𝑠

 𝑡𝑎𝑟𝑟 𝑡𝑒𝑠𝑐ℎ
 𝑀 

EV1 29% 74% 09:10 AM 03h 13 min Slow 

EV2 23% 78% 09:40 AM 01h 15 min Average 

EV3 22% 88% 12:20 PM 04h 43 min Slow 

EV4 32% 78% 02:20 PM 03h 18 min Slow 

EV5 29% 70% 02:30 PM 25 min Fast 

 

At each event, like EV arrival, the optimization is executed. Then, the corresponding 𝑘𝐷 is 

calculated as in equation (1.3-33) from the optimized power flow for the corresponding EV 

arrival event. The obtained 𝑘𝐷 is then inserted into the Simulink model, which runs in real-time 

conditions. At each EV arrival, the desired parameters, 𝑠𝑜𝑐𝑆 and 𝑠𝑜𝑐𝐸𝑉𝑣
 currently in charge, 

are actualized and inserted; then, the supervisory control of the IIREVs executes the 

optimization, and the EV starts charging. 

The following subsections present different case studies to prove the feasibility of the 

optimization problem formulated as MILP under different meteorological conditions. 

1.3.3.1 Case 1—High Irradiation Profile without Fluctuations 

The case of 29 June 2019, in Compiegne, France, is considered. Figure 1.3-5 shows 

𝑝𝑃𝑉𝑀𝑃𝑃𝑇𝑝𝑟𝑒𝑑
 and 𝑝𝑃𝑉𝑀𝑃𝑃𝑇

. 
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Figure 1.3-5 PV MPPT real and predicted powers—case 1 

In this case, the PV power production is considered significant since the weather is sunny and 
clear, so the irradiation is high, and there are no fluctuations. The IIREVs demand power is 
based on the data given in Table 1.3-2. Figure 1.3-6 shows the power flow and storage state 
of charge for ‘Sim w/o opt’ and simulation with optimization ‘Sim with opt’ for case 1, which is 
based on introducing the 𝑘𝐷, which is calculated in the optimization layer, into the real-time 
operation algorithm in Simulink. 

(a) 

(b) 

Figure 1.3-6 Power flow and storage state of charge in (a) ‘Sim w/o opt’ and (b) ‘Sim 

with opt’—case 1 

In Figure 1.3-6 (a), the storage has priority over the grid either to be discharged or to be 
charged. However, when EV5 arrives, the IIREVs demand power greater than the PV and 
storage powers that they can supply, where the black dotted lines represent the maximum 
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storage power and the red dotted lines represent the maximum grid power that can be reached. 
Therefore, the grid supplies power to charge the EVs. On the other hand, in Figure 1.3-6 (b), 
the power flow of the storage and the grid is based on the coefficient 𝑘𝐷 . Since between 12:00 
PM and 01:00 PM is considered a peak period, by selling energy to the grid operator, it is 
possible to make profits and, thus, reduce the total cost of energy. However, after 01:00 PM, 
the storage can be recharged to be able to charge the future EVs with sufficient storage energy. 
Therefore, when EV5 arrives, the PV, storage and grid can together supply the EVs. 

Figure 1.3-7 shows the EV energy distribution for ‘Sim w/o opt’ and ‘Sim with opt’. The 
calculation of EV energy distribution is detailed in [50]. 

(a) 

 

(b) 

 

Figure 1.3-7 EV energy distribution in (a) ‘Sim w/o opt’ and (b) ‘Sim with opt’—case 1 

EV1, EV3, and EV4 depend mainly on PV energy since they charge in slow mode. EV2 

depends on PV and storage with a slightly equal percentage. EV5 depends on the PV, storage 

and grid energy. The percentage of grid energy is significantly greater than the other EVs, 

since it is charging in fast mode. 

Figure 1.3-8 (a) shows the energy system distribution for ‘Sim w/o opt’, ‘Sim with opt’ and ‘Opt 

for real conditions’. There is no grid injection in the ‘Sim w/o opt’, while for the ‘Sim with opt’ 

and ‘Opt for real conditions’, there is grid injection, which indicates that selling energy to the 

grid and the charging energy of the storage was sufficient to get the best energy distribution 

for the EVs. 

The percentage of accuracy is the ratio of the total cost over the total cost of the ‘Opt for real 

conditions’. The closer the percentage to 100%, the more accurate it is. If the percentage is 

greater than 100%, the total cost is greater than ‘Opt for real conditions’, while if the percentage 

is below 0%, the total cost is the opposite case of ‘Opt for real conditions’. Figure 1.3-8 (b) 

shows the energy system cost, where the energy costs in ‘Sim with opt’ are closer to the ideal 

case ‘Opt for real conditions’, resulting in profits with 99,95% accuracy. Conversely, it is the 

opposite situation in ‘Sim w/o opt’ with −11,96% accuracy. Thus, this proves the superiority of 

the optimization algorithm over the storage priority algorithm. The negative sign implies that 

the IIREV operators make a profit in particular by selling energy to the grid. 
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(a) 

 

(b) 

 

 

Figure 1.3-8 Energy system distribution and (b) energy system cost—case 1 

1.3.3.2 Case 2—Low Irradiation Profile without Fluctuations 

The case of October 5th, 2018, in Compiegne, France, is considered. Figure 1.3-9 shows 

𝑝𝑃𝑉𝑀𝑃𝑃𝑇𝑝𝑟𝑒𝑑
 and 𝑝𝑃𝑉𝑀𝑃𝑃𝑇

. 

 

Figure 1.3-9 PV MPPT real and predicted powers—case 2 

In this case, the weather is clear, so there are no fluctuations; however, the PV power 

production is not very high. The IIREV demand power is based on the data in Table 1.3-2. 

Figure 1.3-10 shows the power flow and storage state of charge for ‘Sim w/o opt’ and 

simulation with optimization ‘Sim with opt’ for case 2. 

(a) 
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(b) 

Figure 1.3-10 Power flow and storage state of charge in (a) ‘Sim w/o opt’ and (b) ‘Sim 

with opt’—case 2 

In Figure 1.3-10 (a), the storage always has priority over the grid. However, when EV5 arrives, 

the grid supplies power with the PV and the storage to charge the EVs, where the black dotted 

lines represent the maximum storage power and the red dotted lines rep-resent the maximum 

grid power that can be reached. On the other hand, in Figure 1.3-10 (b), the power flow of the 

storage and the grid is based on the coefficient 𝑘𝐷 . Since the PV production is not high, the 

storage reached its lower limit at the departure of EV2. Therefore, the storage is required to 

be recharged to be able to charge the future EVs with sufficient storage energy. Therefore, 

when EV5 arrives, the PV, storage and grid can together supply the EVs. However, between 

12:00 PM and 01:00 PM is considered a peak period, so by selling a little energy to the grid 

operator, it is possible to make small profits. Additionally, between 03:00 PM and 04:00 PM is 

a peak period, so in ‘Sim with opt’, the power flow is better distributed since the storage is kept 

to supply power instead of grid power, while in ‘Sim w/o opt’, the storage reached its lower limit 

before 04:00 PM, and the grid continued to supply power to the EVs. 

Figure 1.3-11 shows the EV energy distribution for ‘Sim w/o opt’ and ‘Sim with opt’. 

(a) 

 

(b) 

 

Figure 1.3-11 EV energy distribution in (a) ‘Sim w/o opt’ and (b) ‘Sim with opt’—case 2 

EV1, EV3, and EV4 depend mainly on PV energy since they charge in slow mode. EV2 

depends on PV and storage. Figure 1.3-11 shows that EV5, which is in fast mode, is charged 

from the grid with a high percentage. This will increase the charging price for the EV user. In 

Figure 1.3-11 (b), EV5 is charged from the grid with a higher percentage than in ‘Sim w/o opt’, 
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while EV3 and EV4 have been charged from the storage with a higher percentage than in ‘Sim 

w/o opt’, based on   giving a better energy cost as shown. 

Figure 1.3-12(a) shows the energy system distribution for ‘Sim w/o opt’ and ‘Sim with opt’. 

There is no grid injection in the ‘Sim w/o opt’, while for the ‘Sim with opt’, there is a little bit of 

grid injection, which refers to selling energy to the grid and having ap-proximately the same 

storage charging energy. Figure 1.3-12 (b) shows the energy system cost, where the energy 

costs in ‘Sim with opt’ are closer to the ideal case ‘Opt for real conditions’ with 99,37% accuracy 

and lower cost than in ‘Sim w/o opt’ with 164,04% accuracy (overpriced). In this case, the PV 

production is not high; however, selling a little bit of energy to the grid during the peak time 

could reduce the total cost of the system. Thus, it proves the superiority of the optimization 

algorithm over the storage priority algorithm. 

(a) 

 

(b) 

 

Figure 1.3-12 (a) Energy system distribution and (b) energy system cost—case 2 

1.3.3.3 Case 3—High Irradiation Profile with High Fluctuations 

The case of 12 May 2019, in Compiegne, France, is considered. Figure 1.3-13 shows 

𝑝𝑃𝑉𝑀𝑃𝑃𝑇𝑝𝑟𝑒𝑑
 and 𝑝𝑃𝑉𝑀𝑃𝑃𝑇

. 

 

Figure 1.3-13 PV MPPT real and predicted powers and IIREV demand power—case 3 

In this case, the irradiations are high, and the weather is cloudy, so there are high fluctuations. 

The IIREVs demand power is based on the data Table 1.3-2. Figure 1.3-14 shows the power 

flow and storage state of charge for ‘Sim w/o opt’ and simulation with optimization ‘Sim with 

opt’ for case 3. 
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(a) 

(b) 

Figure 1.3-14 Power flow and storage state of charge in (a) ‘Sim w/o opt’ and (b) ‘Sim 

with opt’—case 3 

In Figure 1.3-14 (a), the storage always has priority over the grid, either to be discharged or to 

be charged. However, when EV5 arrives, the IIREV demand power is greater than the PV and 

storage power that can be supplied, where the black dotted lines represent the maximum 

storage power and the red dotted lines represent the maximum grid power that can be reached. 

Therefore, the grid supplies power to charge the EVs. On the other hand, in Figure 1.3-14 (b), 

the power flow of the storage and the grid is based on the coefficient 𝑘𝐷 . Since between 12:00 

PM and 01:00 PM is considered a peak period, by selling energy to the grid operator, it is 

possible to make profits. However, after 01:00 PM, the storage can be recharged to be able to 

charge the future EVs with sufficient storage energy.  

Figure 1.3-15 shows the EV energy distribution for ‘Sim w/o opt’ and ‘Sim with opt’. 
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(a) 

 

(b) 

 

Figure 1.3-15 EV energy distribution in (a) ‘Sim w/o opt’ and (b) ‘Sim with opt’—case 3 

EV1, EV3, and EV4 depend mainly on PV energy since they charge in slow mode. EV2 

depends on PV and storage with a slightly equal percentage. Figure 1.3-15 shows that EV5, 

which is in fast mode, is charged from the grid with a high percentage. This will increase the 

charging price for the EV user. In Figure 1.3-15 (b), EV3, EV4, and EV5 are charged from the 

grid with a higher percentage than in ‘Sim w/o opt’; due to the high fluctuations, the power 

distribution was not as suitable. However, the energy cost obtained from optimization stays 

better than in ‘Sim w/o opt’ and returns profits due to selling energy to the grid. 

Figure 1.3-16 (a) shows the energy system distribution for ‘Sim w/o opt’ and ‘Sim with opt’. 

There is no grid injection in the ‘Sim w/o opt’, while for the ‘Sim with opt’, there is grid injection, 

which is referred to selling energy to the grid and maintaining a little storage charging energy. 

Figure 1.3-16 (b) shows the energy system cost; due to the high fluctuations in the real PV 

profile, the prediction profile was not so accurate. However, the energy costs in ‘Sim with opt’ 

are closer to the ideal case ‘Opt for real conditions’ with 75,45% accuracy and return profits, 

while it is the opposite situation in ‘Sim w/o opt’ with −26,46% accuracy. Thus, it proves the 

superiority of the optimization algorithm over the storage priority algorithm. 

(a) 

 

(b) 

 

 

Figure 1.3-16 (a) Energy system distribution and (b) energy system cost—case 3 

1.3.3.4 Discussion 

In case 1, the PV production is high without fluctuations. In ‘Sim with opt’, selling energy to the 

grid is preferred to make profits. Moreover, charging the storage a little bit could be interesting 

to get the same EVs energy distribution in ‘Sim with opt’ as in ‘Sim w/o opt’. 

In case 2, the PV production is low without fluctuations. The energy distribution especially for 

EV5 is better in ‘Sim w/o opt’ since it is charged with a lower percentage of grid energy than in 

‘Sim with opt’. This could be explained by the fact that in ‘Sim w/o opt’, the storage is always 
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used until it reaches its limits, while in ‘Sim with opt’, the power flow is based on the coefficient 

𝑘𝐷 to minimize the total cost. Therefore, the total cost in ‘Sim with opt’ is lower than ‘Sim w/o 

opt’. Moreover, charging the storage is necessary after the departure of EV2, since the storage 

has reached its limit. 

In case 3, the PV production is high with high fluctuations. In ‘Sim with opt’, selling energy to 

the grid is preferred to make profits. Moreover, charging the storage a little bit could be 

interesting to get a closer EV energy distribution in ‘Sim with opt’ as in ‘Sim w/o opt’. Since 

there are high fluctuations, the power distribution is not that accurate; however, the total cost 

for ‘Sim w/o opt’ brings profits to the IIREVs operator, and it is better than ‘Sim w/o opt’. 

To summarize the three cases studied, ‘Sim with opt’ performs better than ‘Sim w/o opt’ in 

minimizing the total cost of the IIREVs with high accuracy in case 1 and case 2, where they 

are without fluctuations. For the EV energy distribution, in ‘Sim with opt’, the results are 

satisfying in case 1 as they are approximately identical, while in case 2, the coefficient  𝑘𝐷 

gives better energy distribution for the system to have a lower cost than ‘Sim w/o opt’ instead 

of giving a better energy distribution for EVs. Therefore, the EV user charging in fast mode 

should be willing to pay a high price. In case 3, due to high fluctuations, the optimization is not 

very accurate, as the PV prediction is hourly coming from Météo France. However, the total 

cost in ‘Sim with opt’ is still better than ‘Sim with opt’ due to selling energy to the grid and 

making profits, yet the EV energy distribution is not as well distributed in ‘Sim with opt’ as in 

‘Sim with opt’. 

In optimization, it is always preferred to sell energy to the grid to make profits. However, the 

goal, besides minimizing the total cost, is to have better EV energy distribution by reducing the 

grid energy consumed by the EVs. Therefore, it is important to recharge the storage. For the 

three cases taken in this study, after the departure of EV2, 𝑠𝑜𝑐𝑆 decreases, and in case 2, it 

has reached the lower limit. It is expected for three more EVs to come for recharging at the 

IIREVs, and it is supposed that at least one EV could charge in fast mode. The average energy 

demand for each EV is 25 kWh, and so it is 75 kWh for the three EVs to come. Based on the 

data from Table 1.3-2, the capacity of the storage that can be used is 27 kWh (30% of 90 kWh). 

After the departure of EV2, if 𝑠𝑜𝑐𝑆 is 20%, then it is empty, and if it is 30%, then only 9 kWh 

with PV and grid energy could be used to charge 75 kWh. This will result in increasing the 

energy supplied by the grid to charge the coming EVs. Thus, after the departure of EV2, if PV 

power is higher than the IIREV demand power, the storage should be recharged. Hence, the 

interest is to minimize the total cost of the IIREVs and to have the best EV energy distribution. 

1.3.4 Real-Time Experimental Tests 

The real-time experimental tests were done in the testbed presented in Figure 1.3-17(a) that 

emulates the IIREVs, having a step time of 1/14 kHz. The chargers are emulated with two DC 

emulators having each 6 kW, designated by charging terminals equipped with multi-electrical 

outlets as shown in Figure 1.3-17 (b). It is considered that the DC emulator 1 is a charging 

terminal with two electrical outlets to emulate EV1 and EV2 and the DC emulator 2 is a charging 

terminal with three electrical outlets to emulate EV3, EV4, and EV5. The existing testbed allows 

the PV power profile to be emulated, which permits it to repeat the experimental test and 

compare it in two scenarios, with and without optimization. 
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(a) 

 

(b) 

 

Figure 1.3-17 (a) Testbed for the IIREV experimental platform and (b) representative 

image of the multi-outlet charging terminals 

 

Table 1.3-3 Real-time experiment parameter values 

𝑆𝑂𝐶𝑆𝑚𝑖𝑛
  35% 𝑃𝐸𝑉𝑓𝑎𝑠𝑡𝑚𝑎𝑥

  5 kW 𝑃𝑆𝑚𝑎𝑥
  3,45 kW 𝑐𝐺𝑁𝐻

  0,1 €/kWh 

𝑆𝑂𝐶𝑆𝑚𝑎𝑥
  60% 𝑃𝐸𝑉𝑎𝑣𝑒𝑟𝑚𝑎𝑥

  2,2 kW 𝑝𝑃𝑉𝑀𝑃𝑃𝑇
    4,14 kWp 𝑐𝐺𝑃𝐻

  0,7 €/kWh 

𝑆𝑂𝐶𝐸𝑉𝑚𝑖𝑛
  20% 𝑃𝐸𝑉𝑠𝑙𝑜𝑤𝑚𝑎𝑥

  0,7 kW 𝑁𝑃𝑉  12 PV 𝑐𝑆  0,01 €/kWh 

𝑆𝑂𝐶𝐸𝑉𝑚𝑎𝑥
  100% 𝑃𝐺𝐼𝑚𝑎𝑥

  5 kW 𝑉𝑟𝑒𝑓  400 V 𝑐𝑃𝑉𝑆  1,2 €/kWh 

𝑆𝑂𝐶𝑆0
  50% 𝑃𝐺𝑆𝑚𝑎𝑥

  5 kW 𝐸𝑏𝑎𝑡    37,44 kWh 𝑐𝐸𝑉𝑝𝑒𝑛𝑎𝑙𝑡𝑦 
  2,5 €/kWh 

 𝐸  5 kWh  

 

The parameter values used in Table 1.3-3 were chosen with a scale divided by ten, compared 

to the simulation, due to the physical limitations of the available sources and equipment. The 

existing stationary storage had an energy capacity of 37,44 kWh, which is considered high; 

therefore, the SOC limits were chosen to be between 60% and 35% in-stead of 80% and 20%. 

In the real-time experiment, at each EV arrival, the optimization was executed when the EV 

user came to the charging station and input their preferences, which were communicated with 

the dSPACE. Then, Python read the data from dSPACE and created the files required to run 

the optimization in C++, solved by CPLEX. Then, Python calculated 𝑘𝐷and sent it in dSPACE 

to be read in a real-time experimental model. Figure 1.3-18 shows the flowchart of the 

optimization solving for the ‘real-time exp’. The corresponding 𝑘𝐷 was calculated as in (1.3-33) 

from the optimized power flow for the corresponding EV arrival event. The obtained 𝑘𝐷 was 

then updated into the Simulink model. 
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Figure 1.3-18 Flowchart of optimization solving 

To be specific, at the start of the real-time experimental test, when no EVs were present, the 

optimization algorithm was executed for the first time using only the predicted PV power. When 

the first EV arrived at the station, the EV data were registered, and the user selected their 

desired SOC and charging mode. These data were communicated instantly by the real-time 

experimental model and transmitted via a fiber optic cable to ensure communication with 

analog input/output ports. 

Next, dSPACE received the EV data as an analog input, which Python then read to create the 

necessary files, including the parameters and profiles for predicted PV power and EV power 

profiles acquired from the HMI. Python then called C++ to solve the optimization problem using 

the CPLEX solver. Once resolved, Python calculated 𝑘𝐷 and sent it as an analog output to 

dSPACE, which in turn transmitted it to the real-time experimental model. When additional EVs 

arrived at the station, the same procedure was repeated with updated DC microgrid data (such 

as the SOC of the stationary storage and the SOC of the charging EVs). The following 

subsections present two case studies to prove the feasibility of the optimization problem in 

real-time experimental tests formulated as MILP under different meteorological conditions. 

1.3.4.1 Experimental Test 1 

The case of October 14th, 2021, in Compiegne, France, is considered. Figure 1.3-19 shows 

𝑝𝑃𝑉𝑀𝑃𝑃𝑇𝑝𝑟𝑒𝑑
 and 𝑝𝑃𝑉𝑀𝑃𝑃𝑇

,  where the irradiations are intermediate with low fluctuations. 

 

Figure 1.3-19 PV MPPT real and predicted powers and IIREV demand power—

experimental test 1 
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In this case, the irradiations are intermediate, and the weather is a bit cloudy, so there are low 

fluctuations. The IIREV demand power is based on the data in Table 1.3-2. Figure 1.3-20 

shows the power flow and storage state of charge for ‘real-time exp’ with opt and the DC bus 

voltage - experimental test 1a. 

(a) 

(b) 

Figure 1.3-20 Power flow and storage state of charge for ‘real-time exp’ with opt (a) 

and (b) storage state of charge and DC bus voltage—experimental test 1a 

In Figure 1.3-20 (a), the power flow of the storage and the grid is based on the coefficient 𝑘𝐷 . 

From 09:00 AM until 09:10 AM and 03:00 PM until 04:00 PM, the grid is used, but this is not 

accurate since, in prediction, PV power is higher than the real PV power, and it is also higher 

than the IIREV demand power. However, when EV5 arrives, the IIREV demand power is 

greater than the PV and storage power that they can supply. Therefore, the grid supplies power 

to charge the EVs. Between 11:00 AM and 02:20 PM, by selling energy to the grid operator, it 

is possible to make profits, especially from 12:00 PM and 01:00 PM, as it is considered a peak 

period. Around 05:00 PM, when there is no PV power and the storage is empty, the grid 

supplies power, regardless of the   value. Figure 1.3-20 (b) shows the evolution of the storage 

SOC, where the storage discharge energy from 09:10 AM to 10:50 AM, 02:25 PM to 02:50 PM 

and around 04:20 PM to 04:50 PM. Figure 1.3-20 (b) also shows the stability of the DC bus 

voltage even with small fluctuations, which are due to the switching of DC converters, and 

spikes of a few voltages happen when each EV starts charging and when it finishes charging. 

Figure 1.3-21 shows the power flow and storage state of charge for ‘real-time exp’ without 

optimization and the DC bus voltage - experimental test 1b. 
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(a) 

(b) 

Figure 1.3-21 Power flow and storage state of charge for ‘real-time exp’ without 

optimization (a) and (b) storage state of charge and DC bus voltage—experimental test 

1b 

In Figure 1.3-21 (a), the storage is always prioritized to be either charged or discharged. 

However, when EV5 arrives, the IIREV demand power is greater than the PV and storage 

power that they can supply. Therefore, the grid supplies power to charge the EVs. The grid 

continues supplying power to the IIREVs as the storage is empty around 05:10 PM Figure 

1.3-21 (b) shows the evolution of the storage SOC, where the storage is recharged from 10:50 

AM to 02:25 PM after being discharged and then again discharges energy when EV5 arrives 

until it is empty. Figure 1.3-21 (b) also shows the stability of the DC bus voltage even with small 

fluctuations, which are due to the switching of DC converters, and the spikes of a few voltages 

happen when each EV starts charging and when it finishes charging. 

Table 1.3-4 shows the energy system cost for ‘real-time exp’ with opt, where the energy costs 

are low due to selling energy to the grid and are far from the optimal energy cost for real 

conditions, which is 11,12 c€. For ‘real-time exp’ without optimization, the energy cost is lower 

than in optimization due to the storage discharging energy in the peak hour from 03:00 PM to 

04:00 PM. As shown in Figure 1.3-19, the PV power prediction is overestimated and much 

higher than the real PV power. Therefore, in ‘Opt for real conditions’, where the optimization is 

performed without uncertainties, it gives the optimal energy cost without error. It avoids grid 

supply energy, whereas in ‘real-time exp’ with opt, it predicted falsely to inject around 12:30 

PM and 03:00 PM to 04:00 PM, as shown in Figure 1.3-20 (a). Moreover, when EV5 arrives, 

the storage is discharged to the maximum power and then becomes empty around 05:00 PM. 
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However, in ‘Opt for real conditions’, the grid supplies its maximum power when EV5 arrives, 

and the storage is preserved to discharge at peak hours from 03:00 PM to 04:00 PM. This 

explains the difference in the grid cost and the total cost for both cases. 

Table 1.3-4 Energy system cost - experimental test 1 

Case Operation Grid Cost (c€) Storage Cost (c€) Total Cost (c€) 

Real-time exp w/o opt 13,90 8,52 22,73 

Real-time exp with opt 59,18 5,68 64,86 

Opt for real conditions 5,51 5,61 11,12 

 

Figure 1.3-22 shows the EV energy distribution for ‘real-time exp’ with and without opt. 

In Figure 1.3-22, EV1 and EV3 depend mainly on PV energy since they charge in slow mode. 

EV2 depends on storage more than PV. EV5 depends on PV, storage and grid energy. The 

percentage of grid energy is significantly greater than the other EVs since it is charging in fast 

mode. Figure 1.3-21 (a) shows a better EV energy distribution than in Figure 1.3-21 (b), 

especially for EV4, where it was charged by the storage in the peak period from 03:00 PM to 

04:00 PM and the grid is less used for all EVs. 

(a) 

 

(b) 

 

Figure 1.3-22 EV energy distribution for ‘real-time exp’ (a) without opt and (b) with 

opt—experimental test 

1.3.4.2 Experimental Test 2 

The case of October 27th, 2021, in Compiegne, France, is considered. Figure 1.3-23 shows 

𝑝𝑃𝑉𝑀𝑃𝑃𝑇𝑝𝑟𝑒𝑑
 and 𝑝𝑃𝑉𝑀𝑃𝑃𝑇

, where the irradiations are intermediate and the weather is a bit cloudy, 

so there are low fluctuations. The IIREV demand power is based on the data in Table 1.3-2. 

 



Task 17 PV and Transport – PV-Powered Electric Vehicle Charging Stations 

62 

 

Figure 1.3-23 PV MPPT real and predicted powers and IIREV demand power—

experimental test 2 

Figure 1.3-24 shows the power flow and storage state of charge for ‘real-time exp’ without 

optimization and the DC bus voltage - experimental test 2. 

(a) 

(b) 

Figure 1.3-24 Power flow and storage state of charge for ‘real-time exp’ without 

optimization (a) and (b) storage state of charge and DC bus voltage—experimental test 

2 
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In Figure 1.3-24 (a), the storage is always prioritized to be either charged or discharged. 

However, after EV5 arrives and around 02:45 PM, the storage is empty. The grid supplies 

power, but it is insufficient to fully charge the EVs, and therefore, EV shedding is applied from 

02:45 PM until the departure of EV5 from the IIREVs at 02:55 PM. After EV5’s departure, the 

grid continues supplying power to the IIREVs as the storage is empty. Figure 1.3-24 (b) shows 

the evolution of the storage SOC, where it is always discharging almost all the time until it is 

empty around 2:45 PM, and the stability of the DC bus voltage is present even with small 

fluctuations. Spikes of a few voltages happen when each EV starts charging and when it 

finishes charging. 

Figure 1.3-25 shows the power flow and storage state of charge for ‘real-time exp’ with 

optimization and the DC bus voltage - experimental test 2b. 

(a) 

(b) 

Figure 1.3-25 Power flow and storage state of charge for ‘real-time exp’ with 

optimization (a) and (b) the storage state of charge and DC bus voltage—experimental 

test 2b 

In Figure 1.3-25 (a), the power flow of the storage and the grid is based on the coefficient 𝑘𝐷. 

From 12:00 PM until 02:20 PM, the PV injects little energy to the grid during the peak hour, yet 

some fluctuations still happen where the grid supplies power. However, when EV5 arrives, the 

IIREV demand power is greater than the PV and storage power that they can supply. 

Therefore, the grid supplies power to charge the EVs with maximum power, and the storage is 

preserved. From 03:15 PM to 04:15 PM, the storage discharges energy until it is empty to 

avoid the high cost of grid supply power, as it is considered a peak period. After 04:15 PM, the 

grid supplies power, regardless of the value. Figure 1.3-25 (b) shows the evolution of the 
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storage SOC, where the storage discharges energy from 09:10 AM to 10:50 AM, 02:25 PM to 

02:50 PM and around 03:15 PM to 04:15 PM. Figure 1.3-25 (b) also shows the stability of the 

DC bus voltage even with small fluctuations, which are due to the switching of DC converters, 

and the spikes of a few voltages happen when each EV starts charging and when it finishes 

charging. 

Table 1.3-5 shows the energy system cost for ‘real-time exp’ without optimization, where the 

energy costs are higher than in optimization due to the cost of EV shedding. The real-time 

experiment with optimization is closer to the optimization for real conditions, as it avoids EV 

shedding and gives better energy costs of 60,91 c€. In ‘Opt for real conditions’, where the 

optimization is performed without uncertainties, it gives the optimal energy cost without error, 

which is 53,37 c€. It avoids EV shedding and grid supply energy, and when EV5 arrives, the 

storage is discharged to the maximum power, then becomes empty around 02:45 PM, 

provoking EV shedding. However, in ‘Opt for real conditions’, the grid supplies its maximum 

power when EV5 arrives, and the storage is preserved to discharge at peak hours from 03:00 

PM to 04:00 PM. This explains the difference in the grid cost and the total cost for both cases. 

Table 1.3-5 Energy system cost - experimental test 2 

Case Operation Grid Cost (c€) Storage Cost 

(c€) 

EV Shedding 

Cost (c€) 

Total Cost (c€) 

Real-time exp w/o 

opt 

109,83 6,17 40,72 156,73 

Real-time exp with 

opt 

54,88 5,73 0 60,91 

Opt for real 

conditions 

47,75 5,61 0 53,37 

 

Figure 1.3-26 shows the EV energy distribution for ‘real-time exp’ with and without optimization. 

(a) 

 

(b) 

 

Figure 1.3-26 EV energy distribution for ‘real-time exp’ (a) without optimization and (b) 

with optimization—experimental test 2 

In Figure 1.3-26, the share of PV energy is not significant even for EVs charging in slow mode. 

Thus, the share of storage energy is high for EV1 and EV2, while the share of grid energy is 

high for EV3, EV4, and EV5 as the storage is empty early, around 02:45 PM. Figure 1.3-26 (b) 

shows a better EV energy distribution than Figure 1.3-26 (a), where EV3 and EV4 were 

charged by the storage instead of the grid, whereas for EV5, the storage was preserved to 
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discharge at the peak hour from 03:00 PM to 04:00 PM, and therefore EV5, charging in fast 

mode, was charged mainly by the grid. 

1.3.4.3 Discussion 

For ‘real-time exp’ with optimization, selling energy to the grid is preferred to make profits 

based on the coefficient 𝑘𝐷 to minimize the total cost. Thus, with optimization gives better 

energy cost than without optimization. Furthermore, the EV energy distribution can be 

considered for ‘real-time exp’ with optimization to be better than without optimization. 

To sum up, ‘with opt’ performs better than ‘w/o opt’ in minimizing the total cost of the IIREVs, 

and for the EV energy distribution, the results are satisfying with optimization, which is not the 

case without optimization, as the share of storage and grid energies are higher than the share 

of PV energy. 

1.3.5 Conclusion 

The simulation and real-time experimental results prove the superiority of the optimization 

problem formulated as MILP and solved by CPLEX over the storage priority algorithm. The 

results also show the feasibility of the proposed supervisory control of the IIREVs, which 

contains the HMI and the energy management with power balancing and interacts with the 

smart grid. The proposed supervisory control executes efficiently with respect to the 

constraints and fulfilling the EV user demands. Furthermore, the EVs that charge in slow mode 

depend mainly on PV energy, while for average or fast charging, they depend on the PV, 

storage and grid power sources. The EV energy distribution is considered good compared to 

the storage priority; only in the case with high fluctuations was the EV energy distribution better 

in storage priority. In addition, selling energy to the grid returns profits to the IIREV operator 

and makes optimization better than the storage priority algorithm. 

The optimization takes into consideration the intermittent arrival and departure of EVs. Further 

works will concentrate on realizing optimization taking into consideration the intermittent arrival 

and departure of EVs with services such as vehicle-to-grid, vehicle-to-home, and 

infrastructure-to-home. 
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1.4 Case study: experimental results of solar charging of electric 
vehicles at CEA Cadarache 

Sales of electric vehicles (EVs) are increasing, necessitating the development of systems to 

manage their charging and mitigate impacts on the power grid. This paper presents a 

supervision system for charging EVs used by employees at the CEA Cadarache research 

centre, which features over 80 charging points established in 2016. The system aims to fully 

charge EV batteries while synchronizing power consumption of 24 charging points with solar 

energy production. Experimental results indicate that it is feasible to increase the self-

production ratio by up to 60 percentage points while meeting user needs4. 

1.4.1 Introduction 

The European Commission plans to ban the sale of new non-zero-emission commercial and 

passenger light vehicles starting in 2035 [1]. This decision will accelerate the development of 

full Battery Electric Vehicles (BEVs), which represented 9% (880 000 units) of sales of light 

vehicles in Europe over 2021 [2].  This growth needs to be supported by the rapid development 

of the Electric Vehicle Charging Infrastructure (EVCI).  By the end of 2021, there were 225 000 

charging points available in the European Union [3], but by 2030, a total of four million charging 

points are expected [4], for approximately 34 million BEVs and 14 million Plug-in Hybrid Electric 

Vehicles (PHEVs). The impacts of this growth on the power grid must to be carefully 

anticipated: greater electricity production will be needed, and electricity transmission and 

distribution networks will have to be improved [5][6]. For example, the French transmission 

system operator, RTE, estimated in a recent study [7] that, in France, the electricity production 

will have to be increased by 100 TWh in 2050 in a ‘reference scenario’, considering that 95% 

of light vehicles and 21% of heavy-duty vehicles are electrified. This energy will represent 

approximately 15% of the projected electricity consumption in this scenario. Nonetheless, in 

the same study, RTE concludes that the control of the charge of electric vehicles (EVs) is a 

‘no regret’ solution from a technical and economic standpoint, i.e., it is profitable in all 

situations. 

Many control algorithms and associated systems have been proposed in the literature [8][9]. 

For example, some authors propose providing primary reserve [10][11], which involves 

changing the charging power of the EV according to the frequency deviation of the network, or 

limiting EV load to the available capacity of the power network [12] - [14]. Other authors suggest 

providing reactive power [15] or minimizing the effects on the grid from rapid fluctuations in 

photovoltaics (PV) production output due to cloud transients [16] or even balancing wind 

energy [17]. Additionally, some control algorithms aim to minimize charging costs for users 

[18], fleet managers [19], or parking operators [20]. Some studies also analyze the EV charging 

when integrated in to a microgrid with the consumption of residential or/and commercial 

buildings, solar carport and/or solar plant, and potentially an energy storage system [21] - [27]. 

All these articles are either based on synthetic data (i.e., generated from mathematical models 

only) or use real data (i.e., obtained from physical measurements) as inputs for simulations. 

Such real data are obtained from laboratories or from field scale demonstrators. Marinelli et al. 

 

 

4 This section is based on the following publication: B. Robisson, S. Guillemin, L. Marchadier, G. Vignal, 

and A. Mignonac, “Solar Charging of Electric Vehicles: Experimental Results,” Applied Sciences, vol. 

12, no. 9, p. 4523, Apr. 2022, http://dx.doi.org/10.3390/app12094523   

http://dx.doi.org/10.3390/app12094523
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propose a review of projects that address such demonstrators in Europe [28]. Descriptions of 

other demonstrators can also be found in [29] - [34]. 

Nonetheless, the literature lacks papers or public reports that describe in detail experiments 

controlling the charge of EVs in a field-scale demonstrator, except in the following four studies. 

In [30], the authors described tests conducted from January 2017 to December 2018 in the 

United Kingdom, involving more than 600 EV drivers. During one of these tests, called ‘Trial 

3’, the users were financially incentivized to allow the system charge their EVs outside of peak 

hours. The results show that the incentive, combined with smart charging, significantly 

impacted drivers’ behaviour. In [35], the authors describe an experimental setup involving 

commercial EVs and two commercial unidirectional charging stations in the test-site of 

University Campus Lyngby. The authors demonstrate that it is technically feasible to control 

the unidirectional charging of EVs to provide primary frequency regulation. The 

ChargeForward project [31] - [36] has managed a set of more than 400 EV-driving households 

(approximately 250–300 at any given time during the project) that participated in real-world 

experiments in the San Francisco Bay area. Several use cases of EV grid integration were 

studied. One of them, called ‘Earth Week Renewable Energy Use Case’, involved encouraging 

participants to charge during the middle of the day to utilize excess solar energy. This use case 

lasted one week in 2018. The project showed that 55% of the charging power came from 

renewable energy, compared to the national average of 23%. In [37], the authors describe the 

results of an experiment conducted over a year at a test site consisting of six 22 kW AC 

charging stations. They show that their algorithm ensures a fair distribution of the charging 

power between the six charging stations, even when the grid connection only allows two EVs 

to charge concurrently. In [32], a similar test was conducted but on a larger scale, involving an 

EVCI consisting of more than 1 000 public charging points in the Netherlands. The researchers 

demonstrated that it was possible to limit the charging speed of EVs to avoid exceeding the 

available power network capacity. 

This paper describes the setup and results of smart charging tests conducted at the CEA 

Cadarache site. During these tests, the charging of EVs was controlled to recharge their 

batteries and maximize the self-production rate of the system, which consists of 24, 22 kW AC 

charging stations and a 160 kWp PV plant. More than 300 users, who own over 40 different 

EV models, participated in these tests. 

The remainder of the paper is organized as follows: the experimental setup is detailed in 

Section 1.4.2, with a section focusing specifically on the control algorithm. The main results 

obtained over a four-month period and the lessons learned are presented in Section 1.4.3. 

Section 1.4.4 presents the conclusion of these experiments and discusses future perspectives. 

1.4.2 Context of the experiments 

This section describes the research centre where the experiments take place. The charging 

infrastructure is detailed, as well as the supervision system. A subsection will focus on the 

control algorithm developed by CEA, which consists of synchronizing PV production and EV 

charging. 

1.4.2.1 R&D Centre of Cadarache  

The experiments take place at the Cadarache research centre of the French Alternative 

Energies and Atomic Energy Commission, or CEA. It is a 60-year-old research centre located 

near Aix-en-Provence. This 60-year-old research centre is located near Aix-en-Provence and 
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spans 1 600 hectares, of which 900 hectares are fenced (by a 22 km fence). The Cadarache 

centre consists of 480 buildings, including office spaces as well as research laboratories.  The 

centre is directly connected to the electricity network. It is directly connected to the electricity 

network, and the CEA manages its own water network, heat network, and medium-voltage 

electricity distribution network (made up of 18, 15 kV loops). The research centre acts as a 

Distribution System Operator (DSO).  A public lighting network and an Electric Vehicle 

Charging Infrastructure (EVCI) are connected to this power network. Two thousand five 

hundred CEA employees work at the Cadarache site, along with employees from partner 

companies. In total, around 5 000 people are employed at Cadarache. The CEA offers a private 

bus service for commuting. Thus, the Cadarache centre can be seen as a small town privately 

owned and managed by the CEA. 

The CEA conducts research on solar thermal energy and solar photovoltaics. Therefore, PV 

solar plants are installed at the Cadarache site in two different locations: the internal solar 

platform and the Mégasol platform. On the internal platform, the CEA tests and evaluates 

innovative PV solutions ranging in size from modules to systems of a few tens of kilowatts. On 

the Mégasol platform, the CEA tests these innovative solutions on four PV plants totalling 12 

MWp, owned by industrial partners. 

1.4.2.2 EVCI 

The CEA’s EVCI was set up during the summer of 2016. It involves 40 Diva-type terminals 

produced and installed by G²Mobility, which was bought out by TotalEnergies in 2018. Each 

Diva terminal has two 22 kW AC charging points. Each of these charging points has a Type 2 

socket for mode 3 connections and a Type E socket for mode 1 and 2 connections. These 

charging stations have been installed individually or in groups of up to four Diva terminals, 

creating 30 charging stations spread throughout the entire centre. Each charging station has 

an embedded IoT gateway that enables communication through 3G networks using Open 

Charge Point Protocol (OCPP) commands. 

The CEA maintains and operates this EVCI and, therefore plays the role of Charging Point 

Operator (CPO). The user must use a badge to authorize charging of the EV. To obtain a 

badge, the user must be registered and specify their contact details, such as mobile phone 

number, as well as their car’s model. Thus, the CEA assumes the role of e-Mobility Service 

Provider (e-MSP). 

1.4.2.3 EVCI charging history   

Before the experiments were performed, data were collected from an OCPP supervisor over a 

period of four years (from June 2016 to June 2020). During this period, a total of 17 045 

charging sessions were recorded, resulting in an energy consumption of 253 MWh. The mean 

duration and mean energy consumption of each charging session were recorded as 12 h and 

14,8 kWh. The histograms of the start and end times of the charging sessions were also 

computed (Figure 1.4-1). The X-axis was designated to represent local time. The start times 

of the charging sessions were shown in blue, while the end times were displayed in orange. It 

was observed that three main periods could be identified for the start of the charging sessions: 

primarily at the beginning of the working day (around eight in the morning), then at lunchtime 

when cars were charged at the business restaurant, and finally at the end of the afternoon 

when service cars returned from business trips. Three main periods were also observed for 

the end of charging sessions. The first occurred at 09:00 AM when service cars that had been 

connected the day before were disconnected for business trips, the second took place at 
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lunchtime, and the last period was at the end of the working day (around 05:00 PM – 06:00 

PM) when employees left the centre. 

 

Figure 1.4-1 Histograms of start and end times of charging sessions 

1.4.2.4 EVCI users 

As of February 1st, 2022, 376 RFID badges were issued for EV (including PHEV) owners. The 

number of badges is steadily increasing by around 100 badges per year. Two hundred sixty 

cars are used by employees for personal use, and there are also 84 service cars. The 

Cadarache site has setup a taxi service provided by three Renault ZOE cars. Additionally, the 

CEA authorizes external companies to charge their 29 EVs. 

There are three levels of user involvement in the experimentations: 

• Seventy-five EV owners (about 78% of the volunteer experimenters) agreed to give 

control over the charging power of their charging sessions. They also consented to 

provide information about the State of Charge (SOC) of their batteries and their forecast 

departure times. Additionally, they supplied details about their cars’ features (battery 

capacity and maximum power of the onboard charger). The set of these cars is further 

referred to as ‘PControlled’. 

• Twenty-one employees have not given control over the charging of their cars but have 

agreed to send information about their SOC and forecast departure times. They also 

provide details about their cars. The set of these cars is further referred to as 

‘PUncontrolled’. 

• The remaining users do not participate to the experiments and are referred to as 

‘Others’. 

The union of the first two categories of people is referred to as ‘Participants’, while the union 

of the last two categories is called ‘Uncontrolled’. 

In terms of car models, there is a clear predominance of the Renault ZOE, which represents 

38% of all the EVs. Among others, there are 10% of Peugeot e-208, 7% of Renault Twingo, 

8% of Tesla (Model 3 and Model S), and 5% of Nissan Leaf vehicles.  
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1.4.2.5 OCPP supervisor 

From June 2021, the CEA has set up an IT architecture to control part of its EVCI. Twenty-four 

(out of 80) charging points have been connected to an information system developed by the 

CEA, called SIGE, which stands for ‘Système d’Information pour la Gestion optimisée de 

l’Energie’ in French (or EMIS for ‘Energy Management Information System’ in English). This 

information system stores all the data necessary to control the charging of the EVs (including 

data on EVs, the electrical network, characteristics of PV plants, and charging stations, etc.). 

SIGE can also automatically download external data. For example, SIGE is connected to 

servers to retrieve PV production forecasts and to PV plants to obtain the values of PV 

production. SIGE and the Diva stations communicate through a 3G connection using the OCPP 

1,6 protocol. The interactions of SIGE with the managers of the EVCI and the EV users are 

described below. 

1.4.2.6 SIGE for the Managers of the EVCI and for the EV Users  

SIGE offers a web user interface for the managers of the EVCI. It allows operators not only to 

monitor the status of all the charging stations but also to act on them. For example, the operator 

can stop the current charging session or restart it. Additionally, the operator can unlock a plug 

or set the maximum charging power. The web interface also provides statistics categorized by 

user, area, charging station, and charging point. 

The EV user must authenticate using the RFID badge issued by the CEA to connect their 

vehicle to one of the charging points. This badge is first presented to the RFID reader of the 

Diva. The reader then scans the ID number stored in the badge, and the Diva station queries 

SIGE. If the badge ID is in the database and the user participates in the experiments, SIGE 

sends a text message inviting them to fill in their forecast departure time (𝑡𝑑𝑒𝑝 ) and the SOC 

of their car at the start of the charging process (𝑆𝑂𝐶𝑖𝑛𝑖𝑡). Without a response from the user, 

SIGE considers default values ( 𝑡𝑑𝑒𝑝   = 05:00 PM and  𝑆𝑂𝐶𝑖𝑛𝑖𝑡 =  25%). At the same time, 

SIGE sends the authorization to charge to the charging station while the user plugs their EV 

into the Diva terminal connector. The charging station then communicates with the vehicle via 

the cable using carrier current, in accordance with the IEC 61851 standard, which is an 

international standard for electric vehicle conductive charging systems. SIGE then sends a 

charging test profile to the Diva consisting of two phases. The first phase, called the 

‘discovering phase’, involves charging the EV battery at its maximum power for a short period. 

This phase enables SIGE to estimate the maximum charging power of the EV, 𝑃𝑀𝑎𝑥, and also 

confirms to the user that their vehicle is electrically connected. In the second phase, SIGE 

controls the charge of the EV according to specified objectives (see Section 1.4.2.7). When 

the charge is finished, SIGE sends a text message to the user, inviting him to disconnect their 

vehicle and clear the parking place. 

1.4.2.7 Control Algorithm  

1.4.2.7.1 Objectives 

The CEA has developed a software module in SIGE that controls the charging of the EVs 

connected to a set of charging stations. This module manages processes according to given 
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objectives based on all the data stored and retrieved by SIGE. The primary objective is to 

satisfy the EV user, ensuring that their EV battery is fully charged by the forecasted departure 

time. The secondary objective is to maximize the self-production rate of the system, which 

consists of 24 charging points and 1,3% of the electricity produced by the Mégasol platform 

(160 kWp). The self-production rate is commonly defined as the value of the PV energy 

consumed when it is produced, divided by the total consumption. However, to isolate the 

effects of the EV charging control algorithm and the PV forecast algorithm, it was decided not 

to consider PV production in this definition; instead, the best forecast of this production will be 

considered, referred to as the ‘available power’ and detailed in the subsection 1.4.2.7.4. Thus, 

the self-production rate, 𝑆𝑃 , is defined as the value of the energy consumed when it is 

forecasted to be produced (𝐸𝑎𝑣) divided by the total consumption (𝐸𝑐𝑜𝑛𝑠). It is defined by the 

following equation:  

𝑆𝑃 =  
𝐸𝑎𝑣

𝐸𝑐𝑜𝑛𝑠
  (1.4-1) 

1.4.2.7.2 Charging Power Models 

In the considered set-up, controlling the charge of an EV involves managing its SOC by 

modifying over time the power that the station can deliver. The set of maximum power values 

over time is called ‘SetPoints’. The function that links the SetPoints and the SOC is very 

complex. It depends on the maximum power accepted by the car when it is charging with an 

AC connection. This parameter is influenced by the car model, the size of its onboard charger, 

the type of connection with the charging station, and the cable used to connect the car to the 

station. It also depends on the external temperature and the traction battery temperature. 

Additionally, the user may utilize software (generally an application on a smartphone) that may 

also limit the value of 𝑃𝑀𝑎𝑥. In the experiments, participants are encouraged to deactivate such 

external control. It is assumed that 𝑃𝑀𝑎𝑥 is constant and equal to the value measured during 

the ‘discovering phase’. The energy that can be stored in the traction battery, further referred 

to as ‘Capacity’ (𝐸𝑀𝑎𝑥), is also a key parameter that depends on the vehicle model and options. 

For example, a Tesla Model 3 may have four sizes of battery: 55, 62, 75, and 82 kWh. In this 

case, Capacity is assumed to be constant and equal to the value declared by the participants. 

For the cars of individuals not participating in the experiments, Capacity is considered the 

maximum size of the battery for the EV model. Other parameters exist, such as the number of 

phases used to charge the car. Public information is utilized to obtain these data. Generally, if 

the onboard charger is less than 11 kW, it is a single-phase charger; otherwise, it is a three-

phase charger. However, there are exceptions; for example, the Seat Mii charges at 7,4 kW 

with a two-phase charger. 

1.4.2.7.3 Control Principle 

The planning algorithm is executed at the start of each new charging session and periodically 

every 10 minutes. Let 𝑡0 be the current time, with the 24 hours after the current time discretized 

by a time step of ∆t =  10 𝑚𝑖𝑛, noted as 𝑡𝑛. In this setup, as it is not possible to directly measure 

SOC of the cars, the planning algorithm first estimates the SOC of all the EVs at the current 

time 𝑡0 . These estimations are based on the initial values of the SOC and the measurements 
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from the energy meters of the charging stations (see details in the subsection 1.4.2.7.5). Then, 

for all 𝑡𝑛, the control algorithm follows two steps:  

The available power values are calculated, as detailed in the subsection 1.4.2.7.4. These 

values are allocated among the cars that are connected and waiting to be charged (i.e., their 

SOC estimate is lower than 100%). The allocation process is based on a basic scheduling 

mechanism, i.e., ‘earliest deadline first’ [20], which was adapted to achieve the objectives. In 

this context, the ‘deadline’ of a car, also called ‘lead-time’, is the difference between the time 

before departure (𝑡𝑑𝑒𝑝) and the time needed to recharge the battery without a charging control 

(𝑡𝑒𝑛𝑑). The computation of this lead-time is detailed in the subsection 1.4.2.7.6. The planning 

algorithm estimates the lead-time of all the EVs. The available power is first allocated to the 

EVs that are not under control (i.e., EVs in the set ‘Uncontrolled’) and to the cars that have a 

negative lead-time. The maximum charging power is allocated to each of these cars. The 

remaining power is then distributed in the inverse order of the lead-time, with the maximum 

charging power allocated to the cars that have the smallest lead-time. If there is not enough 

available power for the cars with the highest lead-time, they do not recharge during this time 

step, but they will be charged during the subsequent time steps. The powers allocated to each 

EV for each time step are the SetPoints sent over the 3G network to the charging points. 

The following simple example illustrates the principle of the control algorithm. Consider an EV 

owner not participating in the experimentation, who connects a car (a ZOE with a battery 

capacity of 50 kWh) to the EVCI. Since SIGE has no information about the initial SOC of the 

car battery, it takes 𝑆𝑂𝐶𝑖𝑛𝑖𝑡 =  25% as a default value. Thus, SIGE considers that around 40 

kWh are needed to fully charge the battery. In this example, it is assumed that there is enough 

available power to supply the car battery at 𝑃𝑀𝑎𝑥 (22 kW) during the time needed to fully charge 

the battery, which is about 1 hour and 50 minutes. In such a case, the planning algorithm sends 

the associated set points (i.e., 22 kW for 1 hour and 50 minutes) to the station. Then, SIGE 

estimates the charging power as explained in the subsection 1.4.2.7.5. Two cases arise during 

the charging process: 

• The car may either stop charging prematurely because it is full (i.e., before 1 hour and 

50 minutes of charge). SIGE may underestimate the real SOC. This situation may occur 

when the real initial SOC is greater than 25%. In that case, the set points are null power 

values, and the charging power is allocated to another car. 

• Alternatively, the car may continue to charge even after 1 hour and 50 minutes. SIGE 

may overestimate the real SOC. This situation may occur when the real initial SOC is 

less than 25%. In that case, the set points do not change until the charging stops. 

The effect of this control algorithm on the historical charging session data presented in Section 
1.4.2.3 was simulated. This simulation step allowed for the confirmation of the choice of 
different parameters and proved the effectiveness of the control algorithm. 

1.4.2.7.4 Available Power 

Figure 1.4-2 illustrates how the power considered available in the future for the charging of 
EVs is computed. It shows the solar production data from November 1st, 2021. First, the PV 
production forecasts, based on weather forecasts, are retrieved every two hours from the web 
server of the National Oceanic and Atmospheric Administration in the United States of 
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America. These data are referred to as ‘rawPowerForecast’ and are represented as orange 
dots Figure 1.4-2. Second, the power production of the PV plant, assuming clear skies, is 
computed using homemade software based on the public software library PV_LIB [38]. These 
data are called ‘clearskyPower’ and are represented as a dark blue line. This curve is bell-
shaped because solar production increases during the morning until it reaches solar noon (the 
time when solar production is at its peak) and then decreases at the same rate as it increased 
a few hours earlier. Third, a bell-shaped interpolation of the ‘rawPowerForecast’ is computed. 
These values are called ‘powerForecast’ and are represented as a black line. The power 
measured at the PV plant is collected with a System Control and Data Acquisition (SCADA) 
system and transmitted over the 3G network. These data are referred to as ‘Power’ and are 
represented as a blue line. From all these data, SIGE computes the ‘correctedPowerForecast’, 
which is represented by a green line. Roughly speaking, these last data are equal to the 
‘powerForecast’, unless the previous values (i.e., in the near past) of ‘powerForecast’ are too 
far from the previous values of ‘Power’. In that case, ‘correctedPowerForecast’ is computed 
using ‘Power’ and the persistence method (i.e., the weather in the near future is considered 
the same as the weather in the near past). Finally, the power considered available in the near 
future for charging EVs is the ‘correctedPowerForecast’. 

 

Figure 1.4-2 Illustration of the computation of the available power 

1.4.2.7.5 SOC Estimation 

The value of the SOC estimated at a given time 𝑡0  is denoted as 𝑆𝑂𝐶𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 (𝑡0). This 

estimation is computed using the initial value of 𝑆𝑂𝐶𝑖𝑛𝑖𝑡  and the values from the energy meter, 

which are read every 𝑑𝑡 = 2 𝑚𝑖𝑛. For many charging stations, this is the minimum time to 

retrieve data without encountering any synchronization or timestamp issues. The power 

withdrawn by the car 𝑃𝑤(𝑡0) is first estimated from the values measured by the energy meters 

at the considered time 𝑡0, denoted as 𝐸𝑤   (𝑡0), and from 𝑄 minutes before 𝑡0, denoted as 

𝐸𝑤   (𝑡−𝑄) . The power 𝑃𝑤   (𝑡0) is computed according to the following formula: 

𝑃𝑤(𝑡0) =  
𝐸𝑤  (𝑡0) − 𝐸𝑤  (𝑡−𝑄) 

𝑄 ×∆𝑡
  

(1.4-2) 

𝑄 is a parameter chosen equal to 3 to obtain an accurate value of the power as quickly as 

possible (i.e., every 6 min). It is considered that if the car does not withdraw energy during the 

six minutes before 𝑡0, the measured 𝑃𝑤   (𝑡0) withdrawn power is equal to zero. This 

phenomenon occurs because the car battery is fully charged, resulting in the 𝑆𝑂𝐶𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 being 

equal to 100%. 
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If 𝑃𝑤  (𝑡0) is not equal to zero, 𝑆𝑂𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 (𝑡0 ) is computed according to equation (1.4-3). In 

this equation, 𝑡𝑖𝑛𝑖𝑡  represents the time at the start of the charging process, and 𝑌 is the yield 

of the charging process, which is assumed to be equal to 95%. 

𝑆𝑂𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 (𝑡0 ) = 𝑆𝑂𝐶𝑖𝑛𝑖𝑡 + 𝑌 ×  
𝐸𝑤  (𝑡0) − 𝐸𝑤  (𝑡𝑖𝑛𝑖𝑡) 

𝐸𝑚𝑎𝑥
 × 100  (1.4-3) 

If the car keeps charging (i.e., 𝑃𝑤  (𝑡0 ) > 0) while 𝑆𝑂𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 (𝑡0) equals a threshold value 

(typically 99%), the value of 𝑆𝑂𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 is considered overestimated compared to the real 

SOC. In that case, without any other information about the real SOC, 𝑆𝑂𝐶𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 is assumed 

to remain equal to the threshold value. In other cases, 𝑆𝑂𝐶𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 is considered equal to 

𝑆𝑂𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦. 

1.4.2.7.6 Lead-time 

As explained, the lead-time is the difference between the time before departure and the time 

needed to fully charge the battery without a charging control. This lead-time has to be 

estimated at each time step 𝑡𝑛. The set points from 𝑡0 and 𝑡𝑛−1 have been computed by the 

previous iteration of the planning algorithm. Let Setpoint (𝑡𝑝) denote the power set point 

computed for the period [𝑡𝑝; 𝑡𝑝 +  ∆𝑡]. During this period, it is considered that the car charges 

at the constant value Setpoint (𝑡𝑝). Thus, at 𝑡0, the value of the 𝑆𝑂𝐶𝑓𝑢𝑡𝑢𝑟𝑒, in a future point in 

time 𝑡𝑛, is calculated according to the following formula: 

𝑆𝑂𝐶𝑓𝑢𝑡𝑢𝑟𝑒 (𝑡𝑛) = 𝑚𝑎𝑥(100, 𝑆𝑂𝐶𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑡0) + 
100 ×𝑌

𝐸𝑚𝑎𝑥
 ×  ∑ 𝑆𝑒𝑡𝑃𝑜𝑖𝑛𝑡(𝑡𝑝) × ∆𝑡

𝑝=𝑛−1
0 )  (1.4-4) 

Then, from time 𝑡𝑛, it is considered that the EV charges at 𝑃𝑀𝑎𝑥 until its battery is fully charged. 

Given this 𝑆𝑂𝐶𝑓𝑢𝑡𝑢𝑟𝑒 value, the point in time 𝑡𝑒𝑛𝑑 can be computed such that the battery is full 

when charged with the following formula: 

𝑡𝑒𝑛𝑑 = 𝑡𝑖𝑛𝑖𝑡 + (100 − 𝑆𝑂𝐶𝑓𝑢𝑡𝑢𝑟𝑒(𝑡𝑛) ×
𝐸𝑚𝑎𝑥 

100 × 𝐸𝑚𝑎𝑥
)  (1.4-5) 

The lead-time is the difference between the time before departure 𝑡𝑑𝑒𝑝 and the time 𝑡𝑒𝑛𝑑  taken 

to charge the battery at 𝑃𝑀𝑎𝑥 . 

𝐿𝑒𝑎𝑑𝑇𝑖𝑚𝑒(𝑡𝑛) = 𝑡𝑑𝑒𝑝(𝑡𝑛) − 𝑡𝑒𝑛𝑑    (1.4-6) 

1.4.3 Results  

1.4.3.1 Preliminary 1: Data Selection  

The following experimental data were recovered between October 1st, 2021 and February 1st, 
2022 inclusive (124 days in total). It is considered that 73 days provided exploitable results. 
The other days are either without any EV charging session (34 days) or with measurement 
errors or chad measurement errors, communication issues, or hardware breakdowns (17 
days). During these field tests, a total of 887 charging sessions were recorded, and 12,4 MWh 
were transferred to the EVs. The batteries of the EVs were all charged before the departure 
time forecasted by the users, except in very few cases (mainly short sessions of 1 or 2 hours). 
In these cases, the users were informed by email or phone that there were issues with their 
charging sessions. 
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In order to estimate the efficiency of the control algorithm, two self-production rates were 
compared. The first rate, SP, is computed from the available power and the energy 
consumption measured by the charging stations, as explained in the subsection 1.4.2.7.1. The 
second rate is computed in the same way, except that the energy consumption is considered 
as the simulated consumption of all the EVs, under the assumption that none of them are 
controlled. In other words, the total energy is quantified in the case where the EVs charge at 
their 𝑃𝑀𝑎𝑥 from the start of the charging sessions until their batteries are fully charged. The 
associated self-production ratio is denoted as ‘Uncontrolled Self-production ratio’ or 𝑆𝑃𝑢. 

Figure 1.4-3 displays a scatter plot with the self-production ratio SP on the Y-axis and the 
uncontrolled self-production ratio 𝑆𝑃𝑢 on the X-axis, computed for the same days. As the points 
are clearly above the line 𝑌 =  𝑋, this scatter plot clearly shows that the control algorithm 
globally increases the self-production ratio. A small (resp. great) difference between SP and 
𝑆𝑃𝑢 corresponds to a minor (resp. large) increase in the self-production ratio thanks to the 
control algorithm. 

The days associated with the red dots in Figure 1.4-3 were chosen according to their different 
locations on the plot (in the middle, in the upper right corner, and at the top left). Indeed, these 
red dots represent cases that will be outlined in the following paragraphs: 

• In the middle: low values for both 𝑆𝑃 and 𝑆𝑃𝑢 

• In the upper right corner: high values for both 𝑆𝑃 and 𝑆𝑃𝑢 

• At top left: high value for 𝑆𝑃 and low value for 𝑆𝑃𝑢 

 

Figure 1.4-3 Distribution of the self-production ratio in both controlling scenarios on a 

scatter plot (red dots correspond to days that will be described in the next 

paragraphs) 

1.4.3.2 Preliminary 2: Description of Figures 4-7 

Figure 1.4-4 to Figure 1.4-7 are partly made up of three curves related to PV production, as 

described in the subsection 1.4.2.7.4: 

• The blue curve corresponds to ‘ClearskyPower’. 

• The red curve represents the ‘CorrectedPowerForecast’, which is considered the 

available power. 

• The green curve represents the measured PV production, noted as ‘Power’. The 

measurement system of these data breaks down sometimes, as can be seen in Figure 

1.4-4 and Figure 1.4-7 (when the green line is flat or missing). 
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(a) 

 

(b) 

 
Figure 1.4-4 Results of October 19th, 2021: 

(a) Stacked energies without control. The self-production rate 𝑺𝑷𝒖  is equal to 34%;  

(b) stacked energies with control. The self-production rate 𝑺𝑷 is equal to 90% 

 

(a) 

 

(b) 

 

Figure 1.4-5 Results of January 6th, 2022:  

(a) Stacked energies without control. The self-production rate 𝑺𝑷𝒖  is equal to 34%;  

(b) stacked energies with control. The self-production rate 𝑺𝑷 is equal to 90% 
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(a) 

 

(b) 

 

Figure 1.4-6 Results of November 4th,2021: 

Stacked energies without control. The self-production rate 𝑺𝑷𝒖 is 83%; (b) stacked energies 

with control. The self-production rate 𝑺𝑷 is 97% 

(a) 

 

(b) 

 

Figure 1.4-7 Results of October 21st, 2021: 

(a) Stacked energies without control. The self-production rate 𝑺𝑷𝒖  is equal to 39%; (b) stacked 

energies with control. The self-production rate 𝑺𝑷 is equal to 60% 

1.4.3.3 The Control of Charge Increases Drastically the Self-Production Ratio   

Figure 1.4-4 represents the results obtained on October 19th, 2021. During this cloudy day, 17 

charges occurred, resulting in a total energy consumption of 141 kWh and a total PV production 

of 221 kWh. 

Figure 1.4-4 (a) shows that the charges, without any control, would have primarily taken place 

between 07:30 AM and 10:30 AM. he cumulative load curve is located above the red curve, 

indicating that the self-production rate is low (in this case, it is equal to 34%). In contrast, Figure 
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1.4-4 shows that the loads occurred mainly below the red curve, suggesting that the self-

production rate is high (here 90%). 

Figure 1.4-5 represents the results obtained on January 6th, 2022. On this particular sunny 

day, 15 charges occurred, resulting in a total energy consumption of 227 kWh and a forecast 

PV production of 551 kWh. On this day, the self-production rate increased from 31% to 93% 

thanks to the control algorithm. 

These results emphasize that charging control can significantly increase the self-production 

rate during both sunny and cloudy days. 

1.4.3.4 The Self-Production Rate Can Be High, Even without Control   

Figure 1.4-6 illustrates the results obtained on November 4th, 2021. During this sunny day, 

nine charges occurred, resulting in a total energy consumption of 165 kWh and total PV 

production of 715 kWh. On this particular day, both self-production rates, with and without 

control, were high (97% and 83%, respectively). This is because the charging sessions 

primarily start at the beginning of the working day, as explained in Section 1.4.2.3. Thus, most 

of the charging sessions take place in the morning, when PV production is increasing. This 

example emphasizes that the self-production rate may be high, regardless of control. 

1.4.3.5 The Self-Production Ratio May Be Relatively Low, Even with Control   

Figure 1.4-7 illustrates the results obtained on October 21st, 2021. During this sunny day, 19 

charges occurred, resulting in a total energy consumption of 214 kWh and a total PV production 

of 174 kWh. On this particular day, the self-production rates, with or without control, were 

relatively low (60% and 39%, respectively). This was due to two EV users (one Tesla Model S 

user and one ZOE user) who did not provide control over the charging of their EVs, charging 

their vehicles at high power, specifically 22 kW for both cars, early in the morning. Such results 

emphasize that user behaviour strongly influences the outcomes. 

1.4.4 Conclusions and Perspectives 

The experiments conducted at the CEA Cadarache site benefit from the city size of the 
research centre and from its roles as a CPO, eMSP, and DSO. They involve nearly 100 out of 
the 376 EV users and more than 40 different car models. The objectives of these experiments 
were to fully recharge the batteries of the users before their forecast departure times and to 
maximize the self-production rate of the system, which is composed of 24 charging points and 
part of the production from a PV plant. 

The first goal was reached, except in very few cases. The second goal was considered partially 
reached. Indeed, the self-production rates obtained with or without control were compared. 
The analysis showed that the charging control always increases this ratio. On some days, 
especially during grey days, the ratio drastically increased (sometimes gaining more than 60 
percentage points). However, there were several days, especially sunny ones, when the 
increase was rather low. It was also shown that, at times, the ratio remained low even with 
control. This is mostly due to users who do not give control over the charge of their EVs. One 
way to improve the ratio is to convince these users to change their minds. This could be 
accomplished, for example, by organizing ‘solar charging’ contests, by communicating 
intensively in the Cadarache centre about the obtained experimental results, or by offering a 
financial incentive. Another approach would be to enforce smart charging for all EVs, but the 
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risk is that it may reduce user satisfaction and involvement in the experiments. Such an option 
could be counterproductive because user involvement is mandatory to access key data such 
as the initial SOC and the forecast time of departure. 

As perspectives, the planning algorithm is intended to be improved in three main ways. First, 
the models that relate the value of the set points to the power withdrawn by the car will be 
enhanced, as suggested in [39]. These models are used during the allocation of the available 
power. In the current implementation of the algorithm, any error in the model translates into a 
loss of power. In other words, this loss of power is not allocated to other cars. To improve such 
models, it is expected that the number of charging points, users, and thus car models will 
increase. Additionally, there is a plan to monitor other physical variables useful for modeling, 
such as the state of charge (SOC) and battery temperature. Second, consideration will be 
given to turning the planning algorithm into an optimization problem and applying methods 
such as Mixed-Integer Linear Programming (MILP).  

Finally, the retrieved data could serve as a basis for defining other Key Performance Indicators, 
such as the state of health of car batteries, the occupancy rate of each charging station, or the 
amount of power not extracted from the grid due to charging control. This latter measure could 
be used to quantify the economic benefit of EV solar charging. The satisfaction of users is also 
a key issue that could be estimated, especially when users are fully involved and accustomed 
to providing their charging preferences at the beginning of the charging sessions. In the long 
term, an assessment of the EV's capability to provide flexibility services to the electricity 
network and an estimation of the benefits for the grid are also planned.  
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1.5 Solar park-ride parking for electric vehicles: case study in Lisbon
  

Solar parking lots combine the generation of clean solar energy with electric mobility. In 

particular, park-and-ride sites close to public transport connections, which allow commuters to 

head to the city Centre for the day, are particularly suited for solar charging since the vehicles 

are parked for most of the day—when solar power is available—and long enough to reduce 

the need for high-power fast charging. 

This section presents updated modeling results for a PV-powered parking lot near a suburban 

train station on the outskirts of Lisbon, Portugal, using real parking occupancy data for a full 

year. Different charging strategies are explored, both with and without local energy storage. 

Results highlight the relative mismatch between peak solar power and peak demand, as well 

as excess solar generation during weekends, which challenge the economic returns on the 

investment, but do not exceed a payback time of 9 years. Smart charging or battery storage 

increases self-consumption rates; however, at current prices, they lead to lower returns than 

simpler energy management. High electricity price scenarios could lead to payback times of 

about 5 years, primarily due to the contribution of the higher price of electricity sold to vehicle 

owners5. 

1.5.1 Introduction  

The transition to electric mobility is accelerating, with electric vehicles (EVs) representing an 

increasing share of the vehicles sold in many geographies in 2021 [1] and predicted to reach 

25% of all vehicles before 2030 [2]. The large-scale uptake of EVs brings new challenges, as 

drivers will not always be able to charge their vehicles at home or at work. One possible 

solution for urban contexts is solar-powered parking lots, which offer many benefits, including 

low CO2 emissions, power generation, and a low impact on the grid, thus allowing for faster 

deployment and shading [3]. The combination of solar power and EV charging is particularly 

suitable for park-and-ride lots, where most cars are parked for long periods during the day, 

allowing for smart controlled charging. 

Solar-powered parking lots are already being deployed commercially in many cities around the 

world [4], although mostly at small scales and in controlled environments. In this report, we 

explore the feasibility of a large-scale solar parking lot at a park-and-ride site on the grounds 

of a suburban train station near the city of Lisbon. This work is based on a prior preliminary 

study [5], with refined technical and economic analysis and updated cost inputs. 

1.5.2 Description of the case study 

For this study, the commuter parking lot at the train station located in Almada (38,66°N, 

9,18°W), approximately 15 km from Lisbon, Portugal, is utilized. The hourly occupation data 

 

 

5 This section is based on the contribution of the Portuguese partners:  

Guilherme Gaspar, Raquel Figueiredo, Pedro Nunes and Miguel C. Brito 

Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.  
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for the car park was obtained for 2014. The parking site is open every day from 07:00 AM to 

12:00 PM and has a capacity of 694 vehicles. 

The overall system design includes: (i) PV system; (ii) EV chargers; (iii) stationary batteries; 

(iv) electric grid; (v) train station facilities; and (vi) central managing system. A schematic of 

the system is shown in Figure 1.5-1. The capital investment covers several components for 

the PV power plant, battery storage, and EV charging, as well as other costs, including labour, 

civil infrastructure, and management units. 

 

Figure 1.5-1 Schematic of the overall system, and how the different elements are 

interconnected. 

The scenarios considered are Scenario 1 (Reference), Scenario 2 (Battery), which includes 

energy storage, and Scenario 3 (Smart), which considers smart charging. The different 

components are summarized in Table 1.5-1, according to the scenario.  



Task 17 PV and Transport – PV-Powered Electric Vehicle Charging Stations 

88 

Table 1.5-1 Main elements that are part of the proposed solar carport for EVs, which 

varies according to the scenario. 

Scenario Reference Battery Smart 

PV 

Modules × × × 

Inverter × × × 

Infrastructures × × × 

Balance of plant (BOP) × × × 

Others (installation, transportation, etc.) × × × 

EV charging 

Charger × × × 

Pedestal × × × 

Remote management system   × 

Infrastructures × × × 

Others (installation, transportation, etc.) × × × 

Storage 

Batteries  ×  

Battery management system   ×  

Bi-directional inverter  ×  

Infrastructures  ×  

Others (installation, transportation, etc.)  ×  

 

The PV installation was designed to ensure minimal modules mutual shadowing, allowing for 

an installation of 991,8 kWp according to [5]. Power losses due to inverters, cables, and other 

electronics were assumed to be 14%. The hourly PV system energy output was simulated 

using PVGIS [6], corresponding to yearly and daily energy production of 1 474 MWh and 4 038 

kWh, respectively. Considering a yearly degradation rate of 0,8% [7], this PV plant produces 

about 3 330 kWh/day in 25 years of operation. 

EV chargers of different powers (3, 7 and 22 kW) were incorporated, assuming equal fractions. 

It is assumed that cars only charge enough energy to meet the daily needs corresponding to 

an average driving distance of 35 km [8]. Assuming an average EV energy consumption of 

0,194 kWh/km [9], and an EV charger efficiency of 10,6% (AC/DC level 2 type) [10], the energy 

needs are about 7,6 kWh. Hence, charging always take less than 3 hours unless a controlled 

charging scenario is considered. The number of chargers to be installed corresponds to the 

maximum hourly occupation of the park, i.e. 694 chargers, which then results in carport daily 

energy needs of 2 916 kWh. 

Figure 1.5-2 (a) and (b) show the occupancy and solar power generation, respectively. 

Generally, there is a good match between the two variables, except for weekends, holidays, 

and the summer vacation period, when occupancy rates decrease significantly, as the train 

station is mostly used by commuters and is therefore strongly correlated to working hours. 
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(a) (b) 

 

Figure 1.5-2 a) Occupancy rate and b) solar energy generation at the park-ride parking 

lot. 

For the reference case scenario, without storage or smart charging, the charging of EVs occurs 

immediately upon arrival, leading to excess demand in the late morning (when, in general, 

most cars are charging and solar power has not yet reached peak power) and excess 

generation in the afternoon (when, in general, most vehicles are already fully charged), as 

shown in Figure 1.5-3(a). The distribution of the number of hours at a certain net energy (using 

bins of 50 kWh) is shown in Figure 1.5-3 (b). The hours corresponding to zero net energy (i.e., 

the white area in the energy demand map) are not considered in this distribution. It can be 

observed that although the larger number of hours corresponds to positive net energy, a 

considerable number of slots still require energy imports from the grid. 

(a) (b) 

 

Figure 1.5-3 a) Energy demand, and b) histogram, for reference case, without batteries 

or smart charging. Vertical axis of b) is in logarithmic scale. 

Some of the excess solar generation may be used to satisfy demand by introducing a level of 

battery storage, allowing for the shift of some of the solar-generated energy to hours of higher 

demand. This strategy is explored here as scenario 2 (Battery). To avoid oversizing the battery 

bank, which is the most expensive component of the system (per unit of energy), unlike the 

approach of Figueredo et al [5], the sizing of the battery capacity is designed to store only the 

extra PV energy generated each morning, if available. It stores just enough energy to suppress 

the net energy demand during the rest of the day, while its capacity calculations do not consider 

weekends and bank holidays to prevent battery oversizing. 

The storage capacity was obtained based on the summer daily average (118 kWh), updated 

with an average 96% DOD (Depth of Discharge) resulting from a total of 1,750 yearly cycles 

needed for 12,5 years [11]. Additional capacity was considered to ensure that all energy in the 

morning could be shifted, resulting in a total capacity of 325 kWh. This result corresponds to 

an average DOD of 36% during the first year of operation, ensuring that the batteries 

experience shallow discharge throughout their lifetime. Since the assumed battery round-trip 

efficiency is 95%, the final battery bank size should be equivalent to 342 kWh. Therefore, 
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Figure 1.5-4(a) shows a slight update compared to the reference case scenario, indicating that 

no considerable reduction in energy imports is achieved. The histogram in Figure 1.5-4 (b) 

includes the additional zero net energy hours obtained with battery storage when compared to 

the reference scenario, highlighting the differences. The reduction is only significant during 

summertime, when the sun rises a couple of hours earlier than the opening of the park, allowing 

the battery to charge until carport consumption begins to increase considerably (generally after 

09:00 AM). The amount of charged energy is clearly limited in reducing energy imports, 

particularly during winter, when battery charging is diminished. 

(a) (b) 

 

Figure 1.5-4 a) Energy demand, and b) corresponding histogram, for battery case. 

Vertical axis of b) is in logarithmic scale, and the red line represents the reference case. 

An alternative strategy is the use of smart charging (scenario 3), set to maximize the use of 

PV energy by taking advantage of the long parking periods in these types of parking sites (the 

average parking period is 12 hours). The smart charging strategy follows the PV generation 

profile whenever possible, delaying excess charging needs to the afternoon period before 

sunset, when feasible. The energy demand is shown in Figure 1.5-5, where it can be observed 

that, with this strategy, excess demand is successfully shifted to peak generation hours, 

significantly reducing the need for imports from the grid to charge the parked vehicles. As 

shown in Figure 1.5-4(b), the histogram of Figure 1.5-5 (b) is also updated with the additional 

zero net energy hours achieved with this scenario, confirming that energy imports are clearly 

reduced. 

(a) (b) 

 

Figure 1.5-5 a) Energy demand, and b) corresponding histogram, for smart charging 

case. Vertical axis of b) is in logarithmic scale, and the red line represents the 

reference case. 

1.5.3 Economic analysis 

Table 1.5-2 summarizes the cost of the different components for the considered layouts. The 

prices of PV plant components were obtained from [12]. Current costs related to the EV 
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chargers (Level 2) and associated components are mostly sourced from [13]. Prices 

associated with the storage system are inspired by [14] and [15], and the replacement 

predictions (taking place in 2033) are from [16]. Civil infrastructure prices are based on 

information collected locally, while other expenses related to installation, transportation, and 

more were assumed to be 1/6 of the total investment associated with technology and 

infrastructure. 

Table 1.5-2 Price of the main elements that make the proposed solar carport for EVs. 

PV (€/kWp)  
EV chargers 

(€/charger) 
 Storage (€/kWh)  

Modules 200 Charger 619 Batteries 113 

Inverter 30 Pedestal 206 
Batteries 

replacement 
19 

Infrastructures 200 Infrastructures 170 
Battery management 

system 
14 

Balance of plant 

(BOP) 
170 

Others (installation, 

transportation, etc..) 
165 Bi-directional inverter 54 

Others (installation, 

transportation, etc..) 
100 

Remote 

management system 
50/year Infrastructures 57 

    
Others (installation, 

transportation, etc..) 
40 

 

Modelling includes the cost of electricity purchased from the grid, which is assumed to be equal 

to the price of excess solar electricity fed to the grid or used in the train station (both assumed 

0,072 €/kWh or, for a high electricity cost scenario, 0,144 €/kWh). These assumptions consider 

that the train station owns and operates the parking lot or, if the parking lot is managed by a 

third party, that a net metering scheme is in place. Additionally, modelling considers an end-

of-life value of electronic equipment assumed to be 10% of the initial investment. Electricity 

charged to vehicle owners is set at 0,25 €/kWh, while for the high electricity cost scenario, it is 

set at 0,35 €/kWh. 

All scenarios include operational and maintenance costs corresponding to 1% of the initial 

investment in the parking lot, as well as management costs, assumed to be 5% of the annual 

revenues. 

The economic results are shown in Figure 1.5-6. It can be observed that for the reference case, 

the payback time is about 7 years, well below the lifetime of the system (i.e., 25 years). 
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Figure 1.5-6 Payback time for baseline economic modelling (blue) and high electricity 

price conditions (red) for the studied strategies: reference, battery and smart 

charging. 

The alternative strategies that optimize energy demand, whether using batteries or smart 

charging, lead to higher costs and payback times, primarily due to extra expenses associated 

with the battery bank and the energy management system.  

In a high electricity price scenario, payback times decrease to 4-5 years, indicating minor 

differences among the scenarios and highlighting that the price of electricity charged to vehicle 

owners plays a major role in the economic viability of the park-and-ride parking lot. Among the 

strategies, smart charging remains the least favourable in terms of payback but shows the 

highest decrease when compared to the original scenarios. This is because smart charging 

makes the parking lot less susceptible to grid price fluctuations, as low electricity imports are 

expected. 

1.5.4 Model limitations 

The modeling exercise reported in this work implicitly assumes that occupancy patterns will 

not change throughout the operational lifetime of the project. Furthermore, the charging 

required per vehicle is set to the mean travel distance; however, in a commercial 

implementation, it could vary significantly between vehicles, with some potentially charging to 

full battery and others not charging at all, introducing wide uncertainty into daily energy needs. 

It should also be noted that the Battery and Smart scenarios assume perfect knowledge of 

both occupancy and solar generation for the day ahead. Therefore, in a practical 

implementation, detailed forecasting and skilled optimization would be required. 

1.5.5 Conclusions 

This work presents a technical and economic analysis of a PV-powered parking lot near a 

suburban train station close to Lisbon, Portugal, using real occupancy data for a full year. 

Electricity peak demand and peak PV generation showed a significant mismatch, resulting in 

economic constraints for the project. Three scenarios were considered: Reference (without 

batteries), Storage (with batteries), and Smart (smart charging), with the latter contributing to 

a significant reduction in electricity imports from the grid. However, both the Battery and Smart 

scenarios require additional forecasting and optimization. 

The payback time of the project exceeds 7 years, well below the project's lifetime (i.e., 25 

years). A scenario with a high electricity price leads to faster payback times, highlighting the 

sensitivity of the project's economics to the price of electricity charged to EVs. 
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1.5.6 Supplementary information 

PV module, inverter, balance of plant, and infrastructure prices were obtained from [12], while 

installation, transportation, and other related costs were assumed to be 1/6 of the total PV 

investment. 

Lithium-ion battery price was assumed to be 113 €/kWh [14], with the battery management 

system costing 1/8 of the installed battery price and the bi-directional inverter accounting for 

48% of the same price [15]. The cost of the battery infrastructure is 50% of the battery price, 

partially shared with the PV plant. Other costs amount to 1/6 of the total storage system 

investment. 

The commercial battery used in the simulation is an NMC-type LG Chem stationary battery 

model RESU10, with relevant technical parameters such as total energy (i.e., 9,8 kWh) entered 

into the simulation. Given that the final battery bank size corresponds to 342 kWh, 35 of these 

batteries are needed for the current project. Battery replacements are considered after 12 

years, before their capacity decreases to below 80% of the initial capacity, according to the life 

cycle vs. DOD model. Battery price predictions for 2033 are based on the multifactor learning 

curve model of Penisa et al. for NMC Lithium-Ion battery packs [16]. Thus, a battery price of 

€19/kWh is predicted for the mentioned year, assuming that this is the only element replaced 

and that no significant additional labour is needed. 

Level 2 EV chargers are considered in the current model together with pedestal kits, each of 

them holding 2 chargers. Thus, each charger costs 619 € [13] and the pedestal 206 €/charger 

[13]. The electric and civil infrastructures for EV chargers correspond to 100 €/m. It is assumed 

that only 3/4 of such length is effectively used for parking sites interconnection. Considering 

that a European compact car width is 2,5 m, it results in an investment of 170 €/charger of 

additional infrastructures. In addition, 1/6 of the total investment in EV chargers is for other 

expenses. In case smart charging is considered, a remote management system yearly license 

price of 50 €/charger must be included.  
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1.6 Global Cost and Carbon Impact Assessment Methodology for 
Electric Vehicles’ PV-Powered Charging Station  

This section6 highlights a methodology to assess the global cost and the carbon impact of 

photovoltaic charging stations (PVCS) based on a life cycle analysis taken into consideration 

technical, economic and environmental constraints. The proposed methodology is detailed 

through two tasks. The first one is the calculation of the global cost of the PVCS under 30 

years of lifespan. The second task is dedicated to the assessment of the global carbon impact 

of the PVCS, in addition to the different actions proposed to reduce the carbon impact 

compared to a charging station based only on the power grid. 

1.6.1 Introduction 

Electric vehicles (EVs) have been presented for several years as a promising solution to 

reduce the carbon impact of the transport sector. The latter is the main emitter of CO2 in France 

with 42% of total greenhouse gases (GHG) emissions, and the second emitter in the world and 

in the European Union with 24% and 28% of total emissions in 2018, respectively [1]. As road 

transport represents more than 80% of these emissions, it is remarkable that it is a priority axis 

for reducing GHG emissions in order to reduce the negative impact of humans on the planet 

and its ecosystems. However, the environmental impact of EVs is still far from neutral. In 

addition to the manufacturing processes for its highly emitting components, the environmental 

impact of these vehicles depends largely on the source of the electricity that allows them to 

operate. In order to limit GHG emissions related to the usage of EVs, it therefore seems 

advantageous to provide them with the most environmentally friendly electricity, which leads 

to turning to renewable energy sources, as photovoltaic (PV) [2]. EVs charging stations based 

on PV installations seem able to respond optimally to this challenge. However, while EVs do 

not directly emit CO2 when in motion, they do indirectly emit CO2 during their conception, 

maintenance, and recycling. Likewise, PV-powered charging stations (PVCS) do not emit CO2 

when they produce electricity, but it is possible to estimate their GHG emissions considering 

their conception, maintenance, and recycling processes. The GHG emissions of the PVCS 

require an estimation methodology. There are environmental analysis methodologies such as 

the single-criteria “Bilan Carbone®” analysis developed by ADEME and then taken up by the 

Bilan Carbone association [3], the simplified carbon assessment developed by the energy 

regulatory commission [4], Ecoinvent database [5], ISO 14040/44 life cycle assessment (LCA) 

[6], as well as tools for their implementation. Despite the importance of this topic, most research 

works have focused on maximizing the portion of PV production in the recharge of the EVs to 

minimize GHG emission from energy production [7][8]. 

Hence, research work emphases on estimating the carbon impact related to EVs and PV 

installations. In [9], a feasibility study was conducted on EV charging based on PVCS, which 

reduces CO2 emissions and the overload on the local power grid. The study was carried out in 

several countries and the results demonstrate that countries with high irradiation (Australia and 

Brazil) are more likely to exploit the PV infrastructures to charge EVs. However, this analysis 

of CO2 emissions is limited to the operational phase of PVCS, where the manufacturing and 

 

 

6 This section is based on the following publication: Y. Krim, M. Sechilariu, F. Locment, A. Alchami, 

“Global Cost and Carbon Impact Assessment Methodology for Electric Vehicles’ PV-Powered Charging 

Station”, Applied Sciences, vol. 12, no. 9, p. 4115, Apr. 2022, http://dx.doi.org/10.3390/app12094115   

http://dx.doi.org/10.3390/app12094115
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end-of-life phases are excluded. Thus, total CO2 emissions are determined by adding the 

carbon impact of power given by PV to EV, stationary storage to EV, and EV to grid. In [10], a 

model for designing and optimizing a charging station based on PV panels and stationary 

storage for EVs was established. The study demonstrates an environmental benefit through 

CO2 savings estimates, but it also includes a cost analysis. However, this work involves only 

electric light mobility, and does not have a detailed CO2 estimation model; the embodied 

emissions, due to the manufacturing of the PV system components, were not considered. In 

[11], the environmental impact evaluation was discussed in term of CO2 emissions integrated 

into the green energy systems. It also emphasizes the environmental benefits estimation of 

their implementation in the power supply of EVs’ charging stations compared to the power grid.  

Carbon emission assessment methodologies based on LCA were developed in [12] to 

compare the carbon impact of an EV (Tesla Model 3) and a hydrogen fuel cell vehicle (Toyota 

MIRAI). According to the results presented, there is a great need for transparency regarding 

the relevant information on the product carbon impact methodology adopted by the car 

manufacturers to allow the comparison of the emissions of their vehicles. This work excludes 

the examination of reports on the carbon impact for vehicles powered by renewable energy 

sources. Through LCA, the carbon impact of a battery EV and an internal combustion engine 

vehicle are calculated and compared under a nationwide electricity mix in China [13]. For 

provinces with a high share of electricity based on coal, the development of battery EVs should 

be encouraged. In [14], a statistical model that relates charging station infrastructure and other 

potential factors such as the adoption rate of rechargeable EVs in 58 counties in California 

was developed, where the life-cycle petroleum use, costs, and emissions, of light vehicles is 

studied. A modeling and comparison of two case studies from Los Angeles, California, and 

Detroit, Michigan for the two cities’ current energy mix in 2017 was carried out [15]. LCA 

evaluation was presented in this study to measure the impact of climatic temperatures and 

different regional energy mix on both electric and conventional vehicles. The results 

demonstrate that low temperatures increase GHG emissions and lead to inefficient battery 

charging. 

This paper [16] focuses on the United Kingdom’s EVs’ charging strategy toward the goals of 

2030 and 2040, i.e., vehicle-to-grid or smart charging. This study results are lower CO2 

emission, higher integration of renewable energy sources, and more positive impact on the 

power grid. Hybrid EVs are found to be the most energy-efficient option, while EVs are found 

to be the least carbon-intensive vehicle option. However, the scope of this study is limited to 

the carbon impact of the EVs’ charging strategy. 

In addition to the study of CO2 emissions from PVCS, an estimation of the global cost was 

discussed in the literature over the lifetime of an installation. Optimal technical sizing of the PV 

system and stationary storage systems for recharging EVs is critical to ensure their economic 

feasibility, which corresponds to sizing system components with minimum cost. In [17], an 

analysis of the technical and economic performances of autonomous PVCS associated with 

stationary battery storage is discussed using the HOMER software. In [18], an optimal 

configuration of PVCS is discussed economically and technically with several solar irradiation 

in Vietnam. The results of the study demonstrate that the irradiation is a crucial factor in 

choosing to install and invest in a PVCS. A sizing optimization of a PVCS with stationary 

storage is proposed in [19] for fast EV charging. The optimization method allows the cost of 

the charging station to be minimized, including the maintenance and investment costs of the 

PV and the storage system. A problem of sizing the EVs’ charging station, i.e., decisions on 

the number and types of chargers, was resolved in [20] due to an optimization framework that 

reduces the investment cost of the operators’ charging stations, subject to reaching a certain 

quality of service for their customers (EV owners). 
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Through the aforementioned literature review, it can be noticed that some problems have not 

been addressed by the existing investigations:  

• The previously cited references have not discussed the carbon impact of a PVCS, or 

the LCA is not included (estimation of the carbon emission from the manufacturing 

phase to the disposal of each element of the infrastructure).  

• In most works, the cost of building, allowing the creation and the coverage of parking 

places, is not included in the total cost, as well as the replacement cost of the charging 

terminals.  

• It is not moderate to estimate the global cost of the PVCS and its carbon impact 

separately.  

• Lack of approaches to reduce the CO2 emissions. 

In this paper, a methodology for estimating the global cost and the carbon impact of a PVCS 

for EVs is detailed, with an improvement strategy in order to reduce the global carbon impact. 

The PVCS includes PV sources, charging terminals, stationary storage, and connection with 

the public grid. Therefore, this work brings the following improvements by providing: 

• A calculation methodology of the global cost of the PVCS, including the costs of 

investment, maintenance, exploitation, and externalities, to offer to the decision-maker 

a choice of infrastructure compatible with his spatial and budgetary constraints.  

• Concretely, a definition of a methodology for calculating the carbon impact of a PVCS 

by defining an equation, making it possible to calculate the carbon impact of each 

subsystem composing the PVCS, in order to assess their usefulness compared to the 

grid-powered charging station (PGCS), using the LCA method based on the ISO 

14,067 standard. The carbon impact estimation offers to the decision-maker a choice 

of infrastructure compatible with his ecological constraint. In addition, it is committed to 

researching the most relevant carbon emission coefficient, making it possible to better 

assess the carbon impact of the components of each subsystem. 

• An identification of the levers of action, i.e., components that strongly influence the 

global carbon impact of PVCS, and on which it would be possible to act to reduce the 

carbon impact of such infrastructures. This reduction solution of the carbon impact is 

based on new data and recycled materials for the most emitting elements of CO2. 

A numerical application of the proposed calculation methodology of the global cost and carbon 

impact for a case study of an installation of the PV parking shade, located in the Innovation 

Centre of the Université de Technologie de Compiègne, has been discussed in the end of this 

paper, to validate the methodology and the proposed carbon impact reduction solutions. A 

comparison of the result with an EV charging station, similar but powered exclusively by the 

power grid, is proposed. 

The rest of the paper is structured as follows: Section 1.6.2 describes the methodology for 

calculating the global cost of the PVCS, Section 1.6.3 shows the methodology for calculating 

the carbon impact of the PVCS, Section 1.6.4 depicts a numerical application and assessment 

of the global cost and the carbon impact of PVCS versus PGCS, and finally, Section 1.6.5 

concludes this work and opens new perspectives. 
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1.6.2 Calculation Methodology of the PVCS Global Cost  

In this section, the cost aspect of the PVCS is deepened. The purpose is to be able to provide 

the global cost of the PVCS, including the costs of investment 𝐶𝑖, exploitation 𝐶𝑒𝑥𝑝  , 

maintenance 𝐶𝑚𝑎𝑖𝑛𝑡, and externalities 𝐸𝑥𝑡 . This calculation methodology is detailed over a 30-

year analysis period, as the average lifespan of a PV panel is 30 years. Then, the global cost    

is expressed in (1.6-1): 

𝐶𝑔 = 𝐶𝑖 + 𝐶𝑒𝑥𝑝 + 𝐶𝑚𝑎𝑖𝑛𝑡 + 𝐸𝑥𝑡  (1.6-1)  

1.6.2.1 Investment Cost 

The total investment cost Ci for a PVCS is calculated as follows: 

𝐶𝑖 = 𝐶𝑃𝑉𝑖𝑛𝑣𝑒𝑠𝑡
+ 𝐶𝑏𝑎𝑡𝑖𝑛𝑣𝑒𝑠𝑡

+ 𝐶𝑡𝑒𝑟𝑖𝑛𝑣𝑒𝑠𝑡
+ 𝐶𝑖𝑛𝑓𝑟𝑎𝑖𝑛𝑣𝑒𝑠𝑡

  (1.6-2) 

Where  𝐶𝑃𝑉𝑖𝑛𝑣𝑒𝑠𝑡
 ,  𝐶𝑏𝑎𝑡𝑖𝑛𝑣𝑒𝑠𝑡

, 𝐶𝑡𝑒𝑟𝑖𝑛𝑣𝑒𝑠𝑡
  , and  𝐶𝑖𝑛𝑓𝑟𝑎𝑖𝑛𝑣𝑒𝑠𝑡

  are the investment costs (€) of PV 

system, stationary battery, terminals, and infrastructure, respectively. 

Thus, the total investment cost of the PVCS is obtained by adding the investment costs related 

to the entire energy chain and those of the infrastructure. 

1.6.2.1.1 Energy Chain 

The energy chain corresponds to all the components of the PVCS, allowing the production and 

distribution of electrical energy. These components are: 

• PV system (PV panels, inverter, connection wiring, installation, and construction costs); 

• Stationary storage and lithium-ion technology; 

• Charging terminals. 

The investment cost of these different components is estimated following the values recovered 

from the technical sheets [21] and from the Batiprix costing French database [22] specific to 

building and public works. 

a) PV System 

The investment cost of the PV system 𝐶𝑃𝑉𝑖𝑛𝑣𝑒𝑠𝑡
  includes the PV purchase cost 𝐶𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑃𝑉

 and 

the cost of workforce 𝐶𝑤𝑓𝑃𝑉
. The workforce cost of the component corresponds to the expenses 

generated by its installation. This cost includes the PV panels, the inverter, and the connection 

wiring. 𝐶𝑃𝑉𝑖𝑛𝑣𝑒𝑠𝑡
 is calculated as follows: 

𝐶𝑃𝑉𝑖𝑛𝑣𝑒𝑠𝑡
= (𝐶𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑃𝑉

 + 𝐶𝑤𝑓𝑃𝑉
) × 𝑥 × 𝑦   (1.6-3) 

where  𝑥 is the cost coefficient and 𝑦 is the sales price. 

The purchase cost of the PV system is calculated as follows: 

𝐶𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑃𝑉
= 𝑁𝑃𝑉  × 𝐶𝑃𝑉𝑢𝑛

  (1.6-4) 

where 𝐶𝑃𝑉𝑢𝑛
  is the unit purchase cost for a PV system for one PV panel in €/unit and 𝑁𝑃𝑉  is 

the number of PV panels of the PVCS. 
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Finally, the workforce cost of the PV system is calculated as follows: 

𝐶𝑤𝑓𝑃𝑉
= 𝐴𝑃𝑉  × 𝐶𝑖𝑚𝑝𝑝𝑣𝑢𝑛

  (1.6-5) 

where 𝐶𝑖𝑚𝑝𝑝𝑣𝑢𝑛
 is the unit cost of the implementation of the PV system in €/m2 and 𝐴𝑃𝑉  is the 

area of the PV panels. 

b) Stationary Storage  

The investment cost of the stationary batteries’ storage 𝐶𝑏𝑎𝑡𝑖𝑛𝑣𝑒𝑠𝑡
 includes the batteries’ 

purchase cost 𝐶𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑏𝑎𝑡
  as well as the cost of workforce to install the batteries 𝐶𝑤𝑓𝑏𝑎𝑡

. Thus, 

the investment cost of storage batteries is calculated as follows: 

𝐶𝑏𝑎𝑡𝑖𝑛𝑣𝑒𝑠𝑡
= (𝐶𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑏𝑎𝑡

+ 𝐶𝑤𝑓𝑏𝑎𝑡
) × 𝑥 × 𝑦   (1.6-6) 

The costs 𝐶𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑏𝑎𝑡
  and 𝐶𝑤𝑓𝑏𝑎𝑡

  are expressed as follows: 

{
𝐶𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑏𝑎𝑡

= 𝐶 × 𝐶𝑏𝑎𝑡𝑢𝑛
 

𝐶𝑤𝑓𝑃𝑉
= 𝑁𝑏𝑎𝑡  × 𝐶𝑏𝑎𝑡𝑤𝑓𝑢𝑛

   
(1.6-7) 

where  𝐶𝑏𝑎𝑡𝑢𝑛
  is the unit cost of the batteries in €/kWh excluding tax, 𝐶𝑏𝑎𝑡𝑤𝑓𝑢𝑛

 is the unit cost 

of the installation of the battery in €/battery, 𝐶   is the total capacity of the stationary batteries’ 

storage installed in the PVCS in kWh, and  𝑁𝑏𝑎𝑡 is the number of batteries. 

c) Charging Terminal 

The investment cost of the charging terminals  𝐶𝑡𝑒𝑟𝑖𝑛𝑣𝑒𝑠𝑡
 includes the cost of fast terminals 

𝐶𝑡𝑒𝑟,𝑓𝑎𝑠𝑡 𝑖𝑛𝑣𝑒𝑠𝑡
 and the cost of slow terminals 𝐶𝑡𝑒𝑟,𝑠𝑙𝑜𝑤 𝑖𝑛𝑣𝑒𝑠𝑡

. Thus, the investment cost of charging 

terminals is calculated as follows: 

𝐶𝑡𝑒𝑟𝑖𝑛𝑣𝑒𝑠𝑡
= 𝐶𝑡𝑒𝑟,𝑓𝑎𝑠𝑡 𝑖𝑛𝑣𝑒𝑠𝑡

+  𝐶𝑡𝑒𝑟,𝑠𝑙𝑜𝑤 𝑖𝑛𝑣𝑒𝑠𝑡
   (1.6-8) 

with 

{
𝐶𝑡𝑒𝑟,𝑓𝑎𝑠𝑡 𝑖𝑛𝑣𝑒𝑠𝑡

= 𝑁𝑡𝑒𝑟,𝑓𝑎𝑠𝑡  × 𝐶𝑡𝑒𝑟,𝑓𝑎𝑠𝑡 𝑢𝑛
 

𝐶𝑡𝑒𝑟,𝑠𝑙𝑜𝑤 𝑖𝑛𝑣𝑒𝑠𝑡
= 𝑁𝑡𝑒𝑟,𝑠𝑙𝑜𝑤  × 𝐶𝑡𝑒𝑟,𝑠𝑙𝑜𝑤 𝑢𝑛

  
(1.6-9) 

where 𝐶𝑡𝑒𝑟,𝑓𝑎𝑠𝑡 𝑢𝑛
  and  𝐶𝑡𝑒𝑟,𝑠𝑙𝑜𝑤 𝑢𝑛

 are the unit cost of the fast and slow charging terminal, 

respectively.  𝑁𝑡𝑒𝑟,𝑓𝑎𝑠𝑡 and  𝑁𝑡𝑒𝑟,𝑠𝑙𝑜𝑤 are the number of fast and slow charging terminals, 

respectively. 

1.6.2.1.2 Infrastructure 

The infrastructure corresponds to all the components of the PVCS, allowing the parking of 

vehicles as well as the installation of the energy chain. These components are:  

• The reinforced concrete (RC); 

• Steel, in the case of a shade PV installation typology.  

RC allows the creation of parking places, and the steel is the material of the shade covering 

the parking places. Thus, the investment cost of the infrastructure 𝐶𝑖𝑛𝑓𝑟𝑎𝑖𝑛𝑣𝑒𝑠𝑡
   is calculated 

as a function of the cost of the RC 𝐶𝑖𝑛𝑓𝑟𝑎𝑟𝑐
  and the cost of the steel  𝐶𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑒𝑒𝑙

 , as follows: 
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𝐶𝑖𝑛𝑓𝑟𝑎𝑖𝑛𝑣𝑒𝑠𝑡
= 𝐶𝑖𝑛𝑓𝑟𝑎𝑟𝑐

+ 𝐶𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑒𝑒𝑙
   (1.6-10) 

The cost of steel  𝐶𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑒𝑒𝑙
  is calculated according to the total mass of steel 𝑀𝑡𝑜𝑡 and the unit 

cost of steel 𝐶𝑠𝑡𝑒𝑒𝑙𝑢𝑛
  in €/kg as follows: 

𝐶𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑒𝑒𝑙
= 𝑀𝑡𝑜𝑡 × 𝐶𝑠𝑡𝑒𝑒𝑙𝑢𝑛

= (𝑁𝑝𝑝  × 𝑀𝑠𝑡𝑒𝑒𝑙) × 𝐶𝑠𝑡𝑒𝑒𝑙𝑢𝑛
    (1.6-11) 

where 𝑀𝑠𝑡𝑒𝑒𝑙  is the mass of steel unit to make a parking place in kg/place, and 𝑁𝑝𝑝   is the 

number of parking spaces. 

The cost of the RC  𝐶𝑖𝑛𝑓𝑟𝑎𝑟𝑐
  is calculated as a function of the unit cost of RC  𝐶𝑟𝑐𝑢𝑛

 in €/m3 

and the total volume of RC 𝑉𝐵𝐴 as follows: 

𝐶𝑖𝑛𝑓𝑟𝑎𝑟𝑐
= 𝑉𝑡𝑜𝑡 × 𝐶𝑟𝑐𝑢𝑛

= (𝑁𝑝𝑝  × 𝑉𝐵𝐴) ×  𝐶𝑟𝑐𝑢𝑛
    (1.6-12) 

where  𝑉𝐵𝐴 is the volume of the RC for the parking space in m3. 

As observed previously, the ISO 15686 standard adds, to these investment costs, 

maintenance costs. 

1.6.2.2 Maintenance Costs 

Maintenance costs are the total costs of the workforce and material necessarily incurred and 

other associated costs incurred to maintain an infrastructure or its parts in a condition enabling 

it to perform its required functions.  

For a PVCS, there are two maintenance costs:  

• Replacement cost: end-of-life components of the PVCS must be renewed; 

• Maintenance cost: cleaning and verification must be carried out on the components of 

the PVCS at a certain frequency. 

1.6.2.2.1 Replacement Cost  

The replacement cost corresponds to the expenses incurred for the renewal of components 

reaching the end of their life. Since the analysis period is 30 years, the aging of the concrete 

and steel infrastructure, or of the building on which the system is deposited, is not considered. 

The components to be replaced concern the PVCS energy chain, such as charging terminals, 

stationary batteries, and inverters. These elements must be replaced because their lifespan is 

shorter than the analysis period (30 years). At the end of this period, a new investment must 

be made by the owner of the PVCS.  

The cost quantified below corresponds to the redemption prices of the various components 

and includes the purchase and the installation of the material, excluding taxes.  

a) PV Panels 

A lifespan of 30 years is considered for the PV panels. This lifespan is thus estimated because 

the manufacturer’s warranty states that the efficiency of the panels will be greater than 80% of 

the initial efficiency after 25 years. The assumption was therefore made that the panels are 

generally still usable 5 years after the end of this warranty. Since the overall cost analysis 

period is 30 years, there will be no replacement cost for the PV panels. 

b) Inverter 
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It is considered that one inverter is installed on the PVCS. An inverter has an average lifespan 

of 15 years [23]. As the analyzed period is 30 years, a replacement will be necessary for this 

component. The replacement number of the inverter 𝑟𝑖𝑛𝑣 can be calculated using equation 

(1.6-13) according to the analysis period in years (𝑞 =  30 𝑦𝑒𝑎𝑟𝑠) and the lifespan of the 

inverter 𝑞𝑖𝑛𝑣 : 

𝑟𝑖𝑛𝑣 =  
𝑞

𝑞𝑖𝑛𝑣
− 1  (1.6-13) 

Then, to obtain the replacement cost of the inverter 𝐶𝑟𝑒𝑝𝑙𝑖𝑛𝑣
 , the following equation will be 

used: 

𝐶𝑟𝑒𝑝𝑙𝑖𝑛𝑣
=  𝐶𝑟𝑒𝑝𝑙𝑖𝑛𝑣𝑢𝑛

× 𝑃𝑝 × 𝑟𝑖𝑛𝑣   (1.6-14) 

where 𝐶𝑟𝑒𝑝𝑙𝑖𝑛𝑣𝑢𝑛
is the unit replacement cost of the inverter in €/kWp and 𝑃𝑝  is the total installed 

power in kWp. 𝐶𝑟𝑒𝑝𝑙𝑖𝑛𝑣𝑢𝑛
 includes the purchase of materials and the manpower of the 

installation of the inverter. 

c) Stationary Storage 

The replacement cost of the stationary storage installed on the PVCS is estimated in this 

section. With a lifespan  𝑞𝑏𝑎𝑡  of 10 years and during 30 years as the analysis period, two 

replacements will be necessary for the stationary batteries. The number of replacements 𝑟𝑏𝑎𝑡  

of the batteries can be expressed using the equation below: 

𝑟𝑏𝑎𝑡 =  
𝑞

𝑞𝑏𝑎𝑡
− 1  (1.6-15) 

To obtain the replacement cost of the battery, the following equation will be used: 

𝐶𝑟𝑒𝑝𝑙𝑏𝑎𝑡
=  𝐶𝑟𝑒𝑝𝑙𝑏𝑎𝑡𝑢𝑛

× 𝐶 × 𝑟𝑏𝑎𝑡   (1.6-16) 

where 𝐶𝑟𝑒𝑝𝑙𝑏𝑎𝑡𝑢𝑛
  is the unit replacement cost of the lithium-ion battery in €/kWh, including the 

purchase of materials and the manpower of the installation. 

d) Charging Terminals  

In this section, the method used to calculate the cost of replacing the charging terminals 

installed on the PVCS is detailed. As a reminder, two types of charging terminals are 

considered: the fast terminals placed on the ground and delivering a maximum power of 22 

kW, and the slow terminals, which are suspended on a wall or pole and deliver a maximum 

power of 2,3 kW.  

Since there is no information about the lifespan of the charging terminals (this technology is 

very recent), a change every 10 years is considered for both types of charging terminals.  

As the analysis period is 30 years, two replacements will be necessary for these components. 

This value can be calculated using equation (1.6-17), where the lifespan of the charging 

terminal  𝑞𝑡𝑒𝑟 is 10 years: 

𝑟𝑡𝑒𝑟 =  
𝑞

𝑞𝑡𝑒𝑟
− 1  (1.6-17) 

Then, to obtain the replacement cost of the charging terminals of 2,3 kW and 22 kW, the 

following equations will be used: 

{
𝐶𝑟𝑒𝑝𝑙𝑡𝑒𝑟𝑠𝑙𝑜𝑤

= 𝐶𝑡𝑒𝑟,𝑠𝑙𝑜𝑤 𝑢𝑛
 × 𝑁𝑡𝑒𝑟,𝑠𝑙𝑜𝑤 𝑢𝑛

× 𝑟𝑡𝑒𝑟

𝐶𝑟𝑒𝑝𝑙𝑡𝑒𝑟𝑓𝑎𝑠𝑡
= 𝐶𝑡𝑒𝑟,𝑓𝑎𝑠𝑡 𝑢𝑛

 × 𝑁𝑡𝑒𝑟,𝑓𝑎𝑠𝑡 𝑢𝑛
×  𝑟𝑡𝑒𝑟

  
(1.6-18) 
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Where 𝐶𝑟𝑒𝑝𝑙𝑡𝑒𝑟𝑠𝑙𝑜𝑤
  and 𝐶𝑟𝑒𝑝𝑙𝑡𝑒𝑟𝑓𝑎𝑠𝑡

  are the replacement costs of slow and fast charging 

terminals, respectively (€), including the purchase of materials and the manpower of the 

installation;  𝐶𝑡𝑒𝑟,𝑠𝑙𝑜𝑤 𝑢𝑛
 and 𝐶𝑡𝑒𝑟,𝑓𝑎𝑠𝑡 𝑢𝑛

  are the unit cost of the slow and fast charging terminal, 

respectively (€); and  𝑁𝑡𝑒𝑟,𝑠𝑙𝑜𝑤 𝑢𝑛
 and 𝑁𝑡𝑒𝑟,𝑓𝑎𝑠𝑡 𝑢𝑛

 are the number of slow and fast charging 

terminals, respectively. From the previous calculations, it is possible to obtain the total 

replacement cost   of the structural components during the analysis period, as shown in the 

following equation: 

𝐶𝑟𝑒𝑝 = 𝐶𝑟𝑒𝑝𝑙𝑖𝑛𝑣
+  𝐶𝑟𝑒𝑝𝑙𝑏𝑎𝑡

+ 𝐶𝑟𝑒𝑝𝑙𝑡𝑒𝑟𝑠𝑙𝑜𝑤
+ 𝐶𝑟𝑒𝑝𝑙𝑡𝑒𝑟𝑓𝑎𝑠𝑡

    (1.6-19) 

In addition to the replacement cost, there are maintenance costs. 

1.6.2.2.2 Maintenance Cost  

The maintenance cost is the expense of services, such as cleaning and checking PVCS 

components.  

a) PV System Maintenance 

The PV system consists of the PV panels as well as the inverter. The maintenance services 

are diverse, varied, and consist mainly of the visual inspection of PV panels, checking and 

dusting of inverters, inspection of DC boxes and cables, cleaning of panels or recording of 

production data. According to [24], for large power installations, the maintenance cost of the 

PV system is estimated between 3 and 5 €/kWp. For medium PV power installations, between 

36 and 500 kWp, it is estimated between 5 and 8 €/kWp. For small power installations (< 

36kWp), the PV system maintenance cost is estimated between 250 and 500 €/year. 

b) Maintenance of Charging Terminals  

The total maintenance cost of terminals is defined by the following equation: 

𝐶𝑚𝑎𝑖𝑛𝑡𝑡𝑒𝑟
=  𝐶𝑚𝑎𝑖𝑛𝑡𝑡𝑒𝑟𝑠𝑙𝑜𝑤

+ 𝐶𝑚𝑎𝑖𝑛𝑡𝑡𝑒𝑟𝑓𝑎𝑠𝑡
  (1.6-20) 

Finally, the maintenance cost formula, during the analysis period 𝑞, is therefore obtained: 

𝐶𝑚𝑎𝑖𝑛𝑡 = (𝐶𝑚𝑎𝑖𝑛𝑡𝑡𝑒𝑟
+  𝐶𝑚𝑎𝑖𝑛𝑡𝑝𝑣,𝑖𝑛𝑣 

)  × 𝑞   (1.6-21) 

In addition to these maintenance costs, there are exploitation costs. 

1.6.2.3 Exploitation Costs  

Exploitation costs include bills for consumed energy to operate an infrastructure as well as 

money spent on insurance. The cost of the consumed energy is considered zero in the case 

of a PVCS because this energy comes from the PV panels. However, it is recommended to 

have insurance that covers civil liability and damage caused by this type of infrastructure. 

These types of insurance costs, per year, are between 0,5 and 0,8% of the cost of the 

implementation work of the PVCS [25]. By taking the maximum estimation, the following 

equation is obtained: 

𝐶𝑎𝑠𝑠 = 0,0065 × 𝐶𝑖𝑚𝑝 × 𝑞  (1.6-22) 

where  𝐶𝑎𝑠𝑠 is the cost of insurance in €, 𝐶𝑖𝑚𝑝  is the cost of the implementation work of a PVCS 

in €,  𝑞 is the lifespan of PV panels in years, and the 0,0065 factor is calculated by the average 

between 0,5% and 0,8%.  
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The following section presents a method of calculating externalities, completing the approach 

of the global cost. 

1.6.2.4 Externalities 

According to ISO 15686-5, externalities are the quantifiable costs or benefits that arise when 

actions taken by organizations or individuals affect stakeholders other than themselves. 

Regarding PVCS, the externalities are the benefits provided by selling electricity and green 

certificates.  

a) Gain by Selling Electricity  

A PVCS produces electricity that will then be sold. It can be partly resold directly during its 

production, if the PV panels produce at the same time a user charges its vehicle. Electricity 

from PV panels may be also sold indirectly, when stationary storage ensure the charge of a 

vehicle. Finally, in the case of surplus production, the energy produced by the PV panels can 

be sold when it is injected into the power grid. In this study, the selling price of electricity for 

PV panels is the same whether it is sold for the EV charge or for the power grid injection. The 

gain of the electricity sale over a 30-year lifespan is defined as follows: 

𝐺𝑟 = 𝑇 × 𝐸𝑎 × 𝑞  (1.6-23) 

where 𝑇  is the electricity purchase price in €/kWh, 𝐸𝑎   is the energy produced annually, and  

𝑞is the lifespan of PV panels in years. 

b) Gain by Sale of Green Certificates 

𝐺𝑐𝑣 = 𝐸𝑎 × 10−3 × 𝐶𝑘𝑒𝑐𝑜 × 𝐶𝑣 × 𝑞  (1.6-24) 

where  𝐺𝑐𝑣 is the gain from the sale of green certificates in €, 𝐶𝑘𝑒𝑐𝑜 is the keco coefficient, 𝐶𝑣  

is the selling price of the green certificate, and  𝑞 is the lifespan of the PV panels in years. 

1.6.3 Calculation Methodology of the PVCS Carbon Impact 

It seems important, before launching into the massive use of PVCS-type infrastructures, to 

evaluate their global carbon impact to assess their utility relative to an EV charging station 

supplied only by the power grid. A methodology to quantify this impact was therefore detailed 

using the LCA method based on the ISO 14067 standard [25][26]. 

1.6.3.1 GHG Assessment Methodology 

In order to assess the carbon impact of the PVCS, a method for calculating the GHG emission 

has been implemented. Based on the Bilan Carbone Association and a Massive Open Online 

Course (MOOC) organized by Avenir Climatique [27], a calculation method for assessing the 

carbon impact of PVCS has been established. These databases are used to collect the carbon 

emission coefficients associated with each emission element of the initially considered PVCS.  

The first step of this method is to define a study perimeter that sets the carbon emission limits 

that will be considered. Once this perimeter has been defined, the second step is to fill a data 

collection matrix, which contains the carbon emission coefficients associated with each 

emission element. These carbon emission coefficients are based on several references, 

including the “Ecoinvent” database [5], the study of national renewable energy laboratory in 

the LCA harmonization project [28], and the study presented in [29], in order to reduce the total 
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carbon impact of the PVCS. The quantification of these carbon emission coefficients is studied 

in the carbon impact of a product defined in ISO 14067, and studied as part of this project. 

Based on these carbon emission coefficients, it is then possible to assess the carbon impacts 

of the different sub-systems that made up the PVCS, such as, the PV system, the stationary 

storage, the charging terminals, the infrastructure related to the structure of the PVCS, and 

finally the electricity from the power grid, supplied in addition to that produced by the PV 

system. The sum of these carbon impacts constitutes the global carbon impact of the PVCS, 

based on the LCA approach over 30 years. 

1.6.3.2 Presentation of the Study Perimeter 

To carry out the GHG balance, it is first necessary to define the global perimeter of the study, 

in order to set a limit for the emissions to be considered. In accordance with ISO 14067, the 

definition of the boundaries of the system shall include all carbon emissions that may contribute 

significantly to the PVCS carbon impact.  

Next, the global overview of the study methodology is defined by all of the GHG emitting steps 

involved in the manufacturing, transportation, maintenance, and even recycling of the various 

components required for PVCS to function properly. Thus, the chosen global overview is 

shown in the diagram depicted in Figure 1.6-1. 

 

Figure 1.6-1 Perimeter of study 

Therefore, this perimeter considers the manufacturing and the end-of-life treatment of the 

components that made up the PV infrastructure, such as the charging terminals and the 

batteries. For the shaded-type PVCS, the materials needed to construct the immobilization 

related to the infrastructure are also considered. The carbon impact of work related to the 

installation, maintenance, and repair of the PV system and charging terminals is also 

considered. Finally, the carbon impact of electricity provided by the power grid is also included 

in the study perimeter. 

1.6.3.2.1 Carbon Impact of the PV System  

To calculate the carbon impacts of the PV system components, a methodology using the LCA 

method is detailed. As depicted in Figure 1.6-1, the total carbon impact of the PV system 

includes the carbon impact of the manufacturing of the PV system components, the installation 

and uninstallation of the PV system, and the use and maintenance.  
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In this study, the environmental assessment is applied according to the PV system category. 

The product category is the group of products with equivalent functionality. These are PV 

systems connected to a public low voltage, medium voltage, or high voltage power grid. These 

categories differ according to the maximum power of the PV system, the voltage range, and 

the installation of the system. They vary between product category 1 and product category 3b.  

The type of PV panels selected for the global overview of this study is the monocrystalline 

silicon panel, the most prevalent technology in France. The carbon emissions coefficient of the 

PV system  𝐶𝑂2𝑃𝑉𝑠𝑦𝑠𝑡
 (kgCO2,eq/kWh) is calculated using the following general equation: 

𝐶𝑂2𝑃𝑉𝑠𝑦𝑠𝑡
=  

𝐼𝑚𝑝𝑃𝑉𝑠𝑦𝑠𝑡

𝐸𝑃𝑉𝑠𝑦𝑠𝑡

  (1.6-25) 

where 𝐸𝑃𝑉𝑠𝑦𝑠𝑡
   is the energy produced by PV installation (kWh) during the analysis period. 

The carbon impact of the PV system 𝐼𝑚𝑝𝑃𝑉𝑠𝑦𝑠𝑡
  is the sum of the carbon impacts of the PV 

system components 𝐼𝑚𝑝𝑃𝑉𝑖𝑛𝑓𝑟𝑎
 , construction site 𝐼𝑚𝑝𝑠𝑖𝑡𝑒, and maintenance 𝐼𝑚𝑝𝑚𝑎𝑖𝑛𝑡 in 

kgCO2,eq,as shown in equation (1.6-26):  

𝐼𝑚𝑝𝑃𝑉𝑠𝑦𝑠𝑡
= 𝐼𝑚𝑝𝑃𝑉𝑖𝑛𝑓𝑟𝑎

+  𝐼𝑚𝑝𝑠𝑖𝑡𝑒 +   𝐼𝑚𝑝𝑚𝑎𝑖𝑛𝑡   (1.6-26) 

Each of these three carbon impacts is calculated in the same way. The equations evaluating 

these carbon impacts are shown below. 

The 𝐼𝑚𝑝𝑃𝑉𝑖𝑛𝑓𝑟𝑎
 is calculated as follows: 

𝐼𝑚𝑝𝑃𝑉𝑖𝑛𝑓𝑟𝑎
= 𝐼𝑚𝑝𝑃𝑉𝑝𝑎𝑛𝑒𝑙𝑠

+ 𝐼𝑚𝑝𝑖𝑛𝑣 + 𝐼𝑚𝑝𝑠𝑢𝑝𝑝𝑜𝑟𝑡 + 𝐼𝑚𝑝𝑒𝑙𝑒𝑐𝑐𝑛𝑥
   

= 𝐶𝑂2𝑃𝑉𝑝𝑎𝑛𝑒𝑙𝑠
× 𝑃𝑝 + (𝐶𝑂2𝑖𝑛𝑣𝑎

× 𝑃𝑖𝑛𝑣 + 𝐶𝑂2𝑖𝑛𝑣𝑏
) + 𝐶𝑂2𝑠𝑢𝑝𝑝𝑜𝑟𝑡

× 𝐴𝑃𝑉 + 𝐶𝑂2𝑒𝑙𝑒𝑐𝑐𝑛𝑥
 × 𝑃𝑝   

(1.6-27) 

Where 𝐼𝑚𝑝𝑃𝑉𝑝𝑎𝑛𝑒𝑙𝑠
 ,𝐼𝑚𝑝𝑖𝑛𝑣 ,𝐼𝑚𝑝𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ,and 𝐼𝑚𝑝𝑒𝑙𝑒𝑐𝑐𝑛𝑥

  are the carbon impacts of the PV 

panels, the inverter, the support, and the electric connections, respectively (kgCO2,eq), 

𝐶𝑂2𝑃𝑉𝑝𝑎𝑛𝑒𝑙𝑠
  is the carbon emission coefficient of PV panels (kgCO2,eq/kWp), 𝐶𝑂2𝑖𝑛𝑣𝑎

 is the 

carbon emission coefficients of inverter a (kgCO2,eq/kVA),  𝐶𝑂2𝑖𝑛𝑣𝑏
is the carbon emission 

coefficients of inverter b (kgCO2,eq), 𝐶𝑂2𝑠𝑢𝑝𝑝𝑜𝑟𝑡
 is the carbon emission coefficient of the support 

(kgCO2,eq/m2), 𝐶𝑂2𝑒𝑙𝑒𝑐 𝑐𝑛𝑥
   is the carbon emission coefficient of the electric connections 

(kgCO2,eq/kWp), 𝑃𝑝 is the peak power of the PV installation in kWp, 𝑃𝑖𝑛𝑣 is the power of inverters 

in kVA, and 𝐴𝑃𝑉 is the area of PV panels in m2. 

The assessment of the carbon impact of the site (installation and uninstallation) of the PV 

system is provided by equation (1.6-28) : 

𝐼𝑚𝑝𝑠𝑖𝑡𝑒  = 𝐼𝑚𝑝𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 + 𝐼𝑚𝑝𝑢𝑛𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 = (𝐶𝑂2𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛
+   𝐶𝑂2𝑢𝑛𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛

) × 𝑃𝑝    (1.6-28) 

where 𝐼𝑚𝑝𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛  and 𝐼𝑚𝑝𝑢𝑛𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛  are the carbon impacts of installation and uninstallation 

of the PV system in kgCO2,eq respectively, 𝐶𝑂2𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛
 and 𝐶𝑂2𝑢𝑛𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛

 are the carbon 

emission coefficients of installation and uninstallation of the PV system (kgCO2,eq /kWp). 

The maintenance carbon impact of the PV system 𝐼𝑚𝑝𝑚𝑎𝑖𝑛𝑡 is calculated according to the 

following equation: 
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𝐼𝑚𝑝𝑚𝑎𝑖𝑛𝑡 = 𝐼𝑚𝑝𝑐𝑙𝑒𝑎𝑛 + 𝐼𝑚𝑝𝑎𝑔𝑡 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡
= 𝐶𝑂2𝑐𝑙𝑒𝑎𝑛

× 𝐴𝑃𝑉 + 𝐶𝑂2𝑎𝑔𝑡 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡
 × 𝑑 × 𝑞   (1.6-29) 

Where 𝐼𝑚𝑝𝑐𝑙𝑒𝑎𝑛  and 𝐼𝑚𝑝𝑎𝑔𝑡𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡
are the carbon impacts of PV cleaning and transporting 

maintenance agents to the PV system in kgCO2,eq, respectively, 𝐶𝑂2𝑐𝑙𝑒𝑎𝑛
 is the carbon emission 

coefficient for cleaning PV panels in kgCO2,eq/m2, 𝐶𝑂2𝑎𝑔𝑡 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡
 is the carbon emission 

coefficient of transporting maintenance agents to the PV system in kgCO2,eq/km,   𝐴𝑃𝑉 is the 

area of PV panels in m2, 𝑑  is the annual distance traveled by maintenance agents in km/year, 

and 𝑞  is the lifespan of PV panels in years. 

1.6.3.2.2 Carbon Impact of Stationary Lithium-Ion Batteries Storage  

To obtain the carbon emission coefficient for Lithium-Ion batteries 𝐶𝑂2𝐿𝑖𝑏𝑎𝑡𝑡
 (kgCO2,eq/kWh), it 

only remains to sum the manufacturing carbon emission coefficient 𝐶𝑂2𝐿𝑖𝑏𝑎𝑡𝑡𝑚𝑎𝑛𝑓𝑢
  with the 

recycling one 𝐶𝑂2𝐿𝑖𝑏𝑎𝑡𝑡𝑟𝑒𝑐𝑦
 . There are two recycling approaches, by hydrometallurgy and by 

pyrometallurgy. Therefore, this carbon emission coefficient was defined in the following 

equation: 

𝐶𝑂2𝐿𝑖𝑏𝑎𝑡𝑡
=  𝐶𝑂2𝐿𝑖𝑏𝑎𝑡𝑡𝑚𝑎𝑛𝑓𝑢

+  𝐶𝑂2𝐿𝑖𝑏𝑎𝑡𝑡𝑟𝑒𝑐𝑦
    (1.6-30) 

 

Since the carbon assessment is carried out over a period of 30 years and the life of the 

stationary batteries is equal to 10 years, it will be necessary to multiply this carbon emission 

coefficient by three to obtain the carbon impact of stationary batteries over 30 years. In fact, 

there will be three battery generations over the analysis period, the initial generation, and two 

replacement generations. 

Thus, the carbon impact 𝐼𝑚𝑝𝐿𝑖𝑏𝑎𝑡𝑡
 of the stationary batteries installed in the PVCS is defined 

in (1.6-31) : 

𝐼𝑚𝑝𝐿𝑖𝑏𝑎𝑡𝑡
=  𝐶𝑂2𝐿𝑖𝑏𝑎𝑡𝑡

 × 𝐶 × (𝑟𝑏𝑎𝑡 + 1)   (1.6-31) 

where 𝑟𝑏𝑎𝑡  is the number of replacements of the batteries. 

1.6.3.2.3 Carbon Impact of Charging Terminals  

The carbon impact of charging terminals depends on their installation type: grounded or 

suspended. 

a) Carbon Impact of Suspended Charging Terminal  

For the suspended charging terminals, the carbon impact will be based on the model of the 

EVLink Wallbox Plus [30]. The environmental profile of this product, provided by its 

manufacturer Schneider Electric, presents the LCA realized on the following lifecycle phases: 

Materials and Manufacturing (M), Distribution (D), Installation (I), Usage (U), and End of life 

(E). Therefore, the carbon emission coefficient associated with the suspended charging 

terminal 𝐶𝑂2𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑𝐶𝑇
 is obtained by the equation below: 

𝐶𝑂2𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 𝐶𝑇
=  𝐶𝑂2𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑𝐶𝑇𝑀

+  𝐶𝑂2𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 𝐶𝑇𝐷

+  𝐶𝑂2𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 𝐶𝑇𝐼

+  𝐶𝑂2𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑𝐶𝑇𝑈

   (1.6-32) 
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where   𝐶𝑂2𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑𝐶𝑇𝑀

, 𝐶𝑂2𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑𝐶𝑇𝐷

 ,𝐶𝑂2𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑𝐶𝑇𝐼

 , and 𝐶𝑂2𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑𝐶𝑇𝑈

    are the 

carbon emission coefficients of Manufacturing (M), Distribution (D), Installation (I), and End of 

life (E), respectively (kgCO2,eq/unit).  

In addition, the carbon impact of the maintenance 𝐼𝑚𝑝𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 𝐶𝑇𝑚𝑎𝑖𝑛𝑡
of these charging terminals 

must be taken into account, which can be calculated as indicated in equation (1.6-33), 

according to the carbon emission coefficient for transporting maintenance agents to the 

terminals in kgCO2,eq/km  , the annual average distance traveled by maintenance agents in 

km/year 𝑑, and the considered analysis period, 𝑞. 

𝐼𝑚𝑝𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑𝐶𝑇𝑚𝑎𝑖𝑛𝑡
 = 𝐶𝑂2𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑𝐶𝑇𝑚𝑎𝑖𝑛𝑡

× 𝑑 × 𝑞    (1.6-33) 

Thus, the carbon impact  𝐼𝑚𝑝𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 𝐶𝑇
  of the suspended charging terminals of the PVCS is 

obtained based on equation (1.6-34) : 

𝐼𝑚𝑝𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑𝐶𝑇
= 𝐶𝑂2𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 𝐶𝑇

 × 𝑁𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑𝐶𝑇
× (𝑟𝑡𝑒𝑟 + 1) + 𝐼𝑚𝑝𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 𝐶𝑇𝑚𝑎𝑖𝑛𝑡

   (1.6-34) 

where 𝑁𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑𝐶𝑇
 is the number of suspended charging terminals, and 𝑟𝑡𝑒𝑟is the number of 

replacements of the terminals. 

b) Carbon Impact of Grounded Charging Terminal  

Next comes the estimation of the carbon impact of the grounded charging terminals. The 

carbon coefficient will be detailed according to the EVLink City mode [31]. Unlike the 

suspended charging terminal, the environmental profile of this grounded charging terminal is 

not provided by its manufacturer. It is assumed, therefore, that the composition of the latter is 

proportionally identical to that of the suspended charging terminal. The mass of the terminals 

and the emission coefficient of a suspended charging terminal make it possible to estimate the 

emission coefficient of the grounded charging terminal 𝐶𝑂2𝑔𝑟𝑜𝑢𝑛𝑑𝑒𝑑𝐶𝑇
(kgCO2,eq/charging 

terminal) as follows: 

𝐶𝑂2𝑔𝑟𝑜𝑢𝑛𝑑𝑒𝑑𝐶𝑇
=  

𝐶𝑂2𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑𝐶𝑇
 ×𝑚𝑔𝑟𝑜𝑢𝑛𝑑𝑒𝑑𝐶𝑇

𝑚𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑𝐶𝑇

  (1.6-35) 

where  𝑚𝑔𝑟𝑜𝑢𝑛𝑑𝑒𝑑𝐶𝑇
and 𝑚𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑𝐶𝑇

 are the mass of the grounded and suspended terminals, 

respectively (kg). 

In addition, to calculate the carbon impact of the grounded charging terminal, the carbon impact 

of the civil engineering 𝐼𝑚𝑝𝑐𝑖𝑣𝑖𝑙𝑒𝑛𝑔𝑖
 must also be considered, as given in equation (1.6-36). 

This carbon impact will only be considered for the first generation of grounded terminals. The 

civil engineering necessary to install of the grounded terminals is considered as reusable 

during terminal replacements. 

𝐼𝑚𝑝𝑐𝑖𝑣𝑖𝑙𝑒𝑛𝑔𝑖
= 𝑉𝑅𝐶 × 𝐶𝑂2𝑅𝐶  ×  𝜌𝐶 × 𝑁𝑔𝑟𝑜𝑢𝑛𝑑𝑒𝑑𝐶𝑇

  (1.6-36) 

where 𝑉𝑅𝐶 is the volume of RC required for the foundation of the grounded charging terminals 

in m3, 𝜌𝐶 is the density of concrete in kg/m3,  𝐶𝑂2𝑅𝐶   is the RC carbon emission coefficient in 

kgCO2,eq/ton, and 𝑁𝑔𝑟𝑜𝑢𝑛𝑑𝑒𝑑𝐶𝑇
 is the number of suspended charging terminals. 

For maintenance, the same equation is intended as for the suspended terminal.  
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Finally, the carbon impact 𝐼𝑚𝑝𝑔𝑟𝑜𝑢𝑛𝑑𝑒𝑑𝐶𝑇
  (kgCO2,eq) of the grounded charging terminals in the 

PVCS is defined by the following equation: 

𝐼𝑚𝑝𝑔𝑟𝑜𝑢𝑛𝑑𝑒𝑑𝐶𝑇
= 𝐶𝑂2𝑔𝑟𝑜𝑢𝑛𝑑𝑒𝑑𝐶𝑇

 × 𝑁𝑔𝑟𝑜𝑢𝑛𝑑𝑒𝑑𝐶𝑇
× (𝑟𝑡𝑒𝑟 + 1) + 𝐼𝑚𝑝𝑔𝑟𝑜𝑢𝑛𝑑𝑒𝑑𝐶𝑇𝑚𝑎𝑖𝑛𝑡

+   𝐼𝑚𝑝𝑐𝑖𝑣𝑖𝑙𝑒𝑛𝑔𝑖
    (1.6-37) 

𝑟𝑡𝑒𝑟 is the number of replacements of the terminals. 

1.6.3.2.4 Carbon Impact of the PVCS Infrastructure 

The carbon impact of the PVCS infrastructure 𝐼𝑚𝑝𝑖𝑛𝑓𝑟𝑎 is presented by the carbon impact of 

the car parking shades. In order to obtain the desired quantities of materials used for 

construction of the car parking shades, the volume 𝑉𝑅𝐶  of necessary RC for these foundations 

in m3 is required. This volume is expressed in the equation below: 

𝑉𝑅𝐶 = 𝐿𝑓𝑜𝑛𝑑𝑎𝑡𝑖𝑜𝑛 × 𝑊𝑓𝑜𝑛𝑑𝑎𝑡𝑖𝑜𝑛  × 𝐻𝑓𝑜𝑛𝑑𝑎𝑡𝑖𝑜𝑛 × 𝑁𝑝𝑜𝑙𝑒𝑠  (1.6-38) 

where 𝑁𝑝𝑜𝑙𝑒𝑠   is the number of poles, and 𝐿𝑓𝑜𝑛𝑑𝑎𝑡𝑖𝑜𝑛, 𝑊𝑓𝑜𝑛𝑑𝑎𝑡𝑖𝑜𝑛, and 𝐻𝑓𝑜𝑛𝑑𝑎𝑡𝑖𝑜𝑛   are the length, 

width, and the height of the RC foundation in m. 

The carbon impact 𝐼𝑚𝑝𝑅𝐶 𝑓𝑜𝑛𝑑𝑎𝑡𝑖𝑜𝑛
  of the RC for the foundations of 𝑁𝑝𝑐 car parking shades is 

calculated according to the following equation: 

𝐼𝑚𝑝𝑅𝐶 𝑓𝑜𝑛𝑑𝑎𝑡𝑖𝑜𝑛
= 𝐶𝑂2𝑅𝐶 ×  𝜌𝐶 × 𝑉𝑅𝐶 × 𝑁𝑝𝑐  (1.6-39) 

where 𝐶𝑂2𝑅𝐶 is the carbon emission coefficient of RC in kgCO2,eq/m3.  

The calculation of the carbon impact 𝐼𝑚𝑝_𝑠𝑡𝑒𝑒𝑙  of steel in the metal structure of a shade unit 

is expressed by equation (1.6-40): 

𝐼𝑚𝑝𝑠𝑡𝑒𝑒𝑙 = 𝑚𝑠𝑡𝑒𝑒𝑙 × 𝐶𝑂2𝑠𝑡𝑒𝑒𝑙  (1.6-40) 

where 𝑚𝑠𝑡𝑒𝑒𝑙  is the mass of steel of a shade unit in tons and 𝐶𝑂2𝑠𝑡𝑒𝑒𝑙 is the steel carbon 

emission coefficient in kgCO2,eq/ton.  

Thus, the carbon impact 𝐼𝑚𝑝𝑁𝑝𝑐𝑠ℎ𝑎𝑑𝑒𝑠
 (kgCO2,eq) for a shade with 𝑁𝑝𝑐 parking places is 

calculated by  as a function of the carbon impact of the RC used for the foundation of the 

shades units 𝐼𝑚𝑝𝑅𝐶 𝑓𝑜𝑛𝑑𝑎𝑡𝑖𝑜𝑛
 and the carbon impact of the steel contained in the shades units 

𝐼𝑚𝑝𝑠𝑡𝑒𝑒𝑙 : 

𝐼𝑚𝑝𝑁𝑝𝑐𝑠ℎ𝑎𝑑𝑒𝑠
 =  𝐼𝑚𝑝𝑅𝐶 𝑓𝑜𝑛𝑑𝑎𝑡𝑖𝑜𝑛

+ 𝐼𝑚𝑝𝑠𝑡𝑒𝑒𝑙     (1.6-41) 

Finally, according to the obtained results, it is possible to calculate the carbon emissions 

coefficient for one parking place 𝐶𝑂2𝑠ℎ𝑎𝑑𝑒  and 𝐼𝑚𝑝𝑖𝑛𝑓𝑟𝑎  : 

{
𝐶𝑂2𝑠ℎ𝑎𝑑𝑒 =  

𝐼𝑚𝑝𝑁𝑝𝑐𝑠ℎ𝑎𝑑𝑒𝑠

𝑚
 

𝐼𝑚𝑝𝑖𝑛𝑓𝑟𝑎 =  𝐶𝑂2𝑠ℎ𝑎𝑑𝑒  × 𝑁𝑝𝑝

  
(1.6-42) 

1.6.3.2.5 Carbon Impact of Electricity Provided by the Power Grid  

The carbon emission coefficient of the power grid depends on the electricity production 

method. It represents the average emissions emitted during a year depending on the 
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composition of the energy mix of primary energy. The entire electricity production process is 

considered. The main primary energies used are nuclear, hydraulic, coal, gas, etc.[32].  

Each production mode has an associated carbon emission coefficient. The carbon emission 

coefficient of the power grid is calculated in proportion to the amount of electricity used for 

each type multiplied by its own emission coefficient. In France, the carbon emission coefficient 

𝐶𝑂2𝑃𝐺  of the French energy mix is 59 gCO2,eq/kWh. It should be noted that the carbon emission 

coefficient of the French power grid is particularly low, as most electricity is nuclear power with 

a carbon emission coefficient of only 0,006 kgCO2,eq/kWh. 

Therefore, the carbon impact 𝐼𝑚𝑝𝑃𝐺  (kgCO2,eq) of the electrical energy provided by the power 

grid is expressed in the equation below: 

𝐼𝑚𝑝𝑃𝐺 =  𝐶𝑂2𝑃𝐺   × 𝐸𝑃𝐺    (1.6-43) 

where 𝐸𝑃𝐺  is the energy provided by the power grid in kWh. 

Now, it is possible to assess the global carbon impact of PVCS, given as the sum of the carbon 

impacts of the different sub-systems constituting them, as expressed in the following equation: 

𝐼𝑚𝑝𝑃𝑉𝐶𝑆 = 𝐼𝑚𝑝𝑃𝑉𝑠𝑦𝑠𝑡
+ 𝐼𝑚𝑝𝐿𝑖𝑏𝑎𝑡𝑡

+ 𝐼𝑚𝑝
𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑𝐶𝑇

+  𝐼𝑚𝑝
𝑔𝑟𝑜𝑢𝑛𝑑𝑒𝑑𝐶𝑇

+ 𝐼𝑚𝑝
𝑖𝑛𝑓𝑟𝑎

+ 𝐼𝑚𝑝
𝑃𝐺

 (1.6-44) 

1.6.4 Results and Analyses of the Numerical Application of Global Cost and 
Carbon Impact of the PVCS 

The carbon impacts and costs of PVCS various components allow realizing environmental and 

financial reports over 30 years. Here is a calculation example and assessment of these reports 

for a PVCS, with the following characteristics: shade type PVCS covering five parking places 

for EVs, equipped with 22 kWh stationary battery storage capacity and recycled by 

pyrometallurgy, 28 kWp as peak power of 70 panels installed on a surface of 124 m2. The 

infrastructure is located in Compiègne, the north of France, with an average annual irradiation 

of 1 309,11kWh/m2. The installed inverter’s power is assumed to be 90% of the PV’s peak 

power. Based on the PVGIS website, the electricity produced and used by the PVCS during 

the 30 years is estimated at 1,257 GWh, where 307,476 MWh are provided by the public grid. 

The occupancy rate of the charging terminals is distributed by a time slot of 2 h, as follows: 

• Between 08:00 AM and 10:00 AM: two EVs at 2,3 kW; 

• Between 10:00 AM and 12:00 PM: one EV at 22 kW, four EVs at 2,3 kW; 

• Between 12:00 PM and 02:00 PM: two EVs at 2,3 kW; 

• Between 02:00 PM and 04:00 PM: one EV at 22 kW, four EVs at 2,3 kW;  

• Between 04:00 PM and 06:00 PM: one EV at 22 kW, three EVs at 2,3 kW. 

1.6.4.1 Results of the Numerical Application of the Global Cost of the PVCS 

As depicted in Figure 1.6-2, the PVCS investment cost is calculated and displayed in the form 

of a pie chart. The total investment cost is calculated as a function of the capacity of the 

stationary storage, the number of PV panels, and the number of charging terminals.  
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Figure 1.6-2 Distribution of the investment cost of the PVCS 

As depicted in Figure 1.6-3 (a),(b), the exploitation and maintenance costs are then calculated 

and displayed in the form of pie charts, respectively.  

(a) 

 

(b) 

 
Figure 1.6-3 (a) Maintenance cost, (b) exploitation cost 

The vision from an economic point of view is then global; the stockholders are aware of the 

excepted cost magnitude orders over the next 30 years.  

It should be noted that each cost, maintenance, or exploitation is multiplied by 30 to obtain a 

balance over 30 years, except the costs related to the investment of the PVCS. 

Then, to address the economic part of the PVCS over 30 years, a two-sided approach has 

been adopted. The first, in the form of a pie chart, provides a direct overview of the various 

costs (investment, maintenance, and exploitation) and their distribution (Figure 1.6-4 (a)). The 

second, in the form of a curve over time, provides an annual view of the cost to be invested 

(Figure 1.6-4 (b)). The maintenance cost presents the most important part in the global cost. 

(a) 

 

(b) 

 
Figure 1.6-4 The 30-year financial report: (a) Distribution of the global cost; (b) 

evolution of the global cost 
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1.6.4.2 Results of the Numerical Application of the PVCS Carbon Impact  

In this example, the assessment of the PVCS carbon impact is calculated using PV panels 

with a carbon emission coefficient of 40 gCO2,eq/kWh, according to the NREL laboratory in the 

context of the LCA harmonization project [28]. Numerical applications of formulas give: 

𝐼𝑚𝑝𝑃𝑉𝑖𝑛𝑓𝑟𝑎
= 48 546 𝑘𝑔𝐶𝑂2,𝑒𝑞  

𝐼𝑚𝑝𝑠𝑖𝑡𝑒 = 2 𝑘𝑔𝐶𝑂2,𝑒𝑞  

𝐼𝑚𝑝𝑚𝑎𝑖𝑛𝑡 = 447 𝑘𝑔𝐶𝑂2,𝑒𝑞   

(1.6-45) 

The carbon impact of this PV system is therefore: 

𝐼𝑚𝑝𝑃𝑉𝑠𝑦𝑠𝑡
= 48 995 𝑘𝑔𝐶𝑂2,𝑒𝑞    (1.6-46) 

In addition to this carbon impact, there is also the impact of batteries, charging terminals, 

infrastructure related to the shade, and electricity provided by the power grid. As summarized 

in Table 1.6-1, the numerical application provides a value of 𝐼𝑚𝑝𝑃𝑉𝐶𝑆 = 85 961 𝑘𝑔𝐶𝑂2,𝑒𝑞  as 

the total carbon impact of the PVCS. Compared to the amount of power that PVCS supplies 

from the PV system and the power grid in the analysis period, this carbon impact is equivalent 

to an global emission coefficient of the PVCS of 0,068 kgCO2,eq/kWh. 

Table 1.6-1 Summary table of the carbon impact of each component of the initially 

considered PVCS. 

PVCS   𝐼𝑚𝑝 (𝑘𝑔𝐶𝑂2,𝑒𝑞) 

PV system 

PV system components 

PV panels 37 996 

Inverter 1 501 

Support 7 087 

Wiring 1 962 

Site 
Installation 1 

Uninstallation 1 

Maintenance 
Cleaning 23 

Servicing 424 

Charging terminals 
Maintenance  1 023 

Fabrication  1 095 

Lithium-Ion battery   5 869 

Infrastructure   15 439 

Public grid   13 540 

Total   85 961 

 

It is interesting to compare the carbon impact of the PVCS with the carbon impact of PGCS. 

This station therefore provides the same quantity of electricity over 30 years as the PVCS, and 
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also includes the same number of charging terminals. Thus, its carbon impact 𝐼𝑚𝑝𝑃𝐺𝐶𝑆 can be 

calculated using this equation: 

𝐼𝑚𝑝𝑃𝐺𝐶𝑆 = 𝐼𝑚𝑝𝐶𝑇 + 𝐼𝑚𝑝𝑃𝐺  (1.6-47) 

where 𝐼𝑚𝑝𝐶𝑇  and 𝐼𝑚𝑝𝑃𝐺   are the carbon impact of the charging terminals and the public grid, 

respectively. The numerical application gives that the carbon impact for this PGCS is equal to 

𝐼𝑚𝑝𝑃𝐺𝐶𝑆 = 77 436 𝑘𝑔𝐶𝑂2,𝑒𝑞. The comparison of these two carbon impacts is given by 

calculating the variation rate. 

𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =  
𝐼𝑚𝑝𝑃𝑉𝐶𝑆−𝐼𝑚𝑝𝑃𝐺𝐶𝑆

𝐼𝑚𝑝𝑃𝐺𝐶𝑆
  (1.6-48) 

In this example, the numerical application indicates that the carbon impact of the PVCS is 11% 

higher than that of the PGCS. Once the carbon impact of the PVCS is established, it is 

necessary to estimate the action levers allowing one to reduce the carbon impact of the 

system. 

1.6.4.3 Analyses of Action Levers to Reduce the Carbon Impact of the PVCS 

To identify the action levers required to reduce the carbon impact, the most emitting positions 

within the PVCS have been identified. It is then necessary to determine these levers. Once 

these levers are determined, it is sufficient to reduce their carbon emission coefficient or their 

carbon impact. This reduction relies on recycled materials and newer data. Once the 

component’s carbon impact is reduced, the new carbon impact of the PVCS is compared to 

that of the initially considered PVCS and PGCS, to show the gains obtained.  

According to the chart pie shown in Figure 1.6-5, the most impactful element, in terms of carbon 

impact, is the PV system, which emits 57% of the total carbon impact of the PVCS. The second 

most impacting element is infrastructure, which emits 18%.  

 

Figure 1.6-5 Distribution of the impact carbon of the PVCS 

The power grid is not considered for estimating action levers that reduce carbon impacts. 

Therefore, the other components of the PVCS are considered to determine the levers of action. 

Figure 1.6-6 shows the distribution of the carbon impact of the PVCS without the power grid.  

Without considering the carbon impact of the power grid, the most impactful element in terms 

of carbon impact is the PV system, which emits 68% of the PVCS carbon impact. 
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Figure 1.6-6 Distribution of carbon impact of the PVCS without considering the power 

grid 

Since the PV system is made up of many other components, it is then necessary to determine 

which components emit the most which within the system. As shown in Figure 1.6-7 the PV 

panels are the most impactful elements in term of carbon impact. Their carbon impact is about 

78%. 

 

Figure 1.6-7 Distribution of carbon impact of the PV system 

Indeed, the PV panels’ manufacturing is the most energy-intensive step. For example, a large 

quantity of energy is used to convert silica sand into high purity silicon. The main action lever 

in order to reduce the carbon impact is then the PV panels, thereby reducing the impact of the 

PV system, and therefore of the PVCS. According to the aforementioned analysis, the PV 

panels and infrastructure will be considered.  

The carbon impact of new PV panels decreased sharply over the years, due to the use of less 

carbon emitting processes and materials during manufacture, and their improved efficiency.  

In this study, the values of emission coefficients used to calculate the carbon impact of the 

considered PVCS came from the Ecoinvent database and the study carried out by NREL in 

the LCA harmonization project [29], which explains an emission coefficient of 0,04 

kgCO2,eq/kWh for PV panels. 

Thus, in order to calculate the reduction of the carbon impact, the emission coefficient of the 

PV panels will be changed. In this framework, the reduction of the carbon impact of PVCS is 

analyzed according to five scenarios. 

1.6.4.3.1 Scenario 1: Reduction of the Emission Coefficient of the PV Panels from 40 
gCO2,eq/kWh to 25 gCO2,eq/kWh 

By taking PV panels with a carbon emission coefficient of 25 gCO2,eq/kWh, the carbon impact 

of the panels drops from 37 996 kgCO2,eq to 23 748 kgCO2,eq. As depicted in Figure 1.6-8, the 
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carbon impact of the PVCS drops from 85 961 kgCO2,eq approximately to 71 713 kgCO2,eq, a 

decrease of 17,2% compared to the initially considered charging station. 

 

Figure 1.6-8 Result of scenario 1 

In addition, knowing that the carbon impact of a PGCS is around 77 436 kgCO2,eq, then over 

30 years, the variation rate becomes −7,4%, which means that the carbon impact of the PVCS 

is lower than the PGCS’ one. 

1.6.4.3.2 Scenario 2: Reduction of the PV Panels’ Emission Coefficient to 25 gCO2,eq and the 
Infrastructure Is Based on Recycled Materials 

In addition to the PV panels, it is possible to reduce the carbon impact of the infrastructure by 

using recycled materials. The constituent materials of the infrastructure are steel and the 

concrete. For concrete, RC from wastes will be used, which will prevent some emissions from 

the use of new concrete. For steel, the metal structure will be made of recycled steel. Thus, 

the carbon impact of the immobilization drops from 15 439 kgCO2,eq to 8 616 kgCO2,eq. For the 

emission coefficient of the PV panels, scenario 1 is considered.  

Thus, for these values, the carbon impact of the PVCS decreases from 85 961 kgCO2,eq to 64 

890 kgCO2,eq, approximately 24,5% reduction compared to the initially considered 

infrastructure (Figure 1.6-9).Thus, over 30 years, the carbon impact of a PGCS is 16,2% higher 

than PVCS that contains PV panels with an emission coefficient of 25 gCO2,eq/kWh and 

recycled infrastructure.  

 

Figure 1.6-9 Result of scenario 2 

1.6.4.3.3 Scenario 3: Reduction of the PV Panels Emission Coefficient to 12 gCO2,eq/kWh  

A study published in 2017 [29] demonstrates that the carbon emission factor of PV modules in 

2050 will vary between 35 and 12 gCO2,eq/kWh.  

By taking PV panels with a carbon emission coefficient of 12 gCO2,eq/kWh, the carbon impact 

of the panels drops from 37 996 kgCO2,eq to 11 399 kgCO2,eq. 
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As depicted in Figure 1.6-10, the carbon impact of the PVCS decreases from 85 961 kgCO2,eq 

to 59 364 kgCO2,eq, a 31% reduction compared to the initially considered charging station. 

In comparison with the PGCS, the variation rate becomes −23,3%, which means that the 

carbon impact of the PVCS is lower than the PGCS’ one. 

 

Figure 1.6-10 Result of scenario 3 

1.6.4.3.4 Scenario 4: Combination of Scenario 3 and an Infrastructure Based on Recycled 
Materials  

As presented in Figure 1.6-11, the carbon impact of the PVCS with a recycled infrastructure 

and PV panels with the emission coefficient of 12 gCO2,eq/kWh is approximately 52 541 

kgCO2,eq, a decrease of 38,9% compared to the carbon impact of the initially considered PVCS. 

In comparison with the PGCS, the variation rate becomes −32,1%, which means that the 

carbon impact of the PVCS is lower than the carbon impact of the PGCS. 

 

Figure 1.6-11 Result of scenario 4 

1.6.4.3.5 Scenario 5: Reduction of the PV Panels Emission Coefficient to 10 gCO2,eq/kWh 
and an Infrastructure Based on Recycled Materials  

In this scenario, consideration is given to PV panels produced locally in France [33], with a low 

emission coefficient of 10 gCO2,eq/kWh. The use of these panels, combined with recycled 

materials, will reduce the carbon impact of the PVCS by 40,4% compared to the initial PVCS. 

Additionally, there will be a significant decrease of 33,9% compared to the PGCS (Figure 

1.6-12). 
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Figure 1.6-12 Result of scenario 5 

1.6.4.4 Discussion 

The environmental benefits of the PVCS are assessed as the function of the energy mix of 

each country. The carbon impact of each country depends mainly on the thermal power plants, 

nuclear energy distribution, and the capacity of the renewable energies. For example, in 

France, with the high nuclear energy use, the charging infrastructure based only on the power 

grid has a lower carbon impact than the PVCS initially considered in this study. Each country 

displays its coefficient without giving details concerning the life cycle of each category of power 

plant. Thus, in this study, the developed methodology offers, with more details, to the decision 

maker a choice of infrastructure compatible with his spatial, ecological, and budgetary 

constraints. 

Similar works have been published by other researchers. In [18], an optimal configuration of 

PVCS for EVs has been analyzed technically and economically under different conditions of 

solar irradiation in Vietnam. However, the cost of building, allowing the creation and the 

coverage of parking places, is not included in the total cost, as well as the replacement cost of 

the charging terminals. In [34], a technical, environmental, and financial analysis of the 

feasibility of PVCS associated with a stationary battery storage for EVs (EV) located in China 

and the United States has been discussed, using the estimation of the energy balance, annual 

costs, and CO2 emissions. However, the carbon impact from the manufacturing phase until the 

disposal of each element of the PVCS is not included in the CO2 estimation, as well as there 

being a lack of actions to reduce this emission. 

In this context, this work details the entire methodology followed for the calculation of the global 

cost and the carbon impact of the PVCS, as well as the different actions to reduce it. 

According to the aforementioned analysis, the PV system is the most impacting element of 

CO2, which emits 57% of the total carbon impact of the PVCS. On this basis, four scenarios 

have been suggested to reduce the PVCS carbon impact using recent data. Each scenario 

presented in the previous sections was able to reduce the carbon impact of PVCS compared 

to the initially considered charging station and PGCS.  

Each scenario presented in the previous sections was able to reduce the carbon impact of 

PVCS compared to the initially considered charging station and PGCS. 

Thus, scenario 5 presents the lowest carbon impact, combining a carbon emission coefficient 

of 10,61 gCO2,eq/kWh for PV panels produced locally and an infrastructure based on recycled 

materials. The variation rate of each scenario compared to the charging station only grid-

connected is summarized in Figure 1.6-13. 
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Figure 1.6-13 Variation rate for the different scenarios 

Thus, the analysis of action levers demonstrates that despite a very carbon-free French energy 

mix, it is possible to have a lower carbon impact of PVCS than PGCS. PV technologies are 

evolving very quickly. Thus, for recent PV panels with a greatly reduced emission coefficient 

and produced in country with low energy mix, the carbon impact of the PVCS will be also 

greatly reduced. 

Figure 1.6-14 depicts the carbon impact of the PVCS compared with the PGCS in different 

countries [35][36][37].The calculated carbon emission coefficient of the initially considered 

PVCS of 68 gCO2,eq/kWh is lower than the PGCS based on the energy mix of different 

countries, with the exception of that of France, because the French energetic mix is very low. 

 

Figure 1.6-14 Comparison of the carbon emission coefficient of PVCS with the PGCS 

in different countries 

Scenario 5 makes the carbon emission coefficient of PVCS becomes 40,7 gCO2,eq/kWh lower 

than the energy mix of different countries, even that of France. 

1.6.5 Conclusions 

Electric mobility and PVCS installation are positioned as solutions to the dynamic issues linked 

to environmental challenges. The purpose of this work is to disseminate through the 

development of methodology based on LCA to calculate the global cost of this type of 

installation, and to quantify the savings of the carbon impact of the PVCS. Thus, estimating 

the global cost will provide a clearer view of the financial impact of this type of installation over 

the 30-year lifespan. Moreover, the PVCS carbon impact estimation provides an approach to 

quantify the environmental impact of this type of installation by quantifying the pollution of the 

installation in the CO2 equivalent.  

According to the results obtained, the carbon impact of the PV system is largely responsible 

for the global carbon impact of the PVCS. Thus, the impact of using more recent data of the 
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PV panels’ carbon emission coefficient and recycled materials on the global carbon impact of 

the PVCS is analyzed in this paper. For recent PV panels with 10 gCO2,eq/kWh and an 

infrastructure with recycled materials, the carbon impact of the PVCS is 34% lower than the 

carbon impact of the PGCS. In this scenario, the carbon emission coefficient of the PVCS 

becomes 40,7 gCO2,eq/kWh lower than the energy mix of different countries.  

The carbon emission coefficient of the studied PVCS is compared to than that of PGCS in 

several countries; where the carbon emission coefficient different from one country to another, 

it depends mainly on the thermal power plants, the distribution of the nuclear energy, and the 

capacity of the renewable energy’s installations. However, each country displays its coefficient 

without giving details concerning the life cycle of each category of power plant. This represents 

a limit for constructing a precise comparison framework. In addition, difficulties are 

encountered in collecting recent data based on the evolution of technologies related to PVCS 

and defining a calculation methodology of the global cost and the carbon impact, which 

presents a concern with the proposed methodology.  

As future works, it would be possible to resume and deepen the calculation of the carbon 

emissions of each subsystem of the PVCS based on any more recent data, by deepening the 

analysis method based on the life cycle using second-life batteries, and also, by completing 

the methodology of the global cost by providing updated prices and rectifying the evolution of 

technologies related to PVCS. 
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2 SOCIETAL IMPACT AND SOCIAL ACCEPTANCE OF PVCS 
AND NEW SERVICES 

Electric vehicles (EVs) appear to be one of the possible solutions for limiting greenhouse gas 

emissions from the transportation sector. Hence, the transport sector must be redesigned to 

facilitate the installation of EV charging stations powered by renewable energy from 

photovoltaic (PV) panels. Described as a new innovation, the social acceptability of these PV-

powered charging stations should be studied alongside the technical aspects, aiming to 

improve the project and increase public awareness. 

The goal of the present chapter is to determine whether this innovative energy system is 

socially accepted and to analyze the concept's limitations from a public perspective through a 

study conducted in 2022 by one of the French contributors. Social acceptability revealed a very 

promising outlook for electromobility coupled with renewable energies. Regarding social 

acceptance, the study shows that the majority of those polled are eager to use PV-powered 

charging stations and the new associated services, such as vehicle-to-grid (V2G) and vehicle-

to-home (V2H); however, this acceptance is conditional on a number of users’ needs and 

constraints.  

  



Task 17 PV and Transport – PV-Powered Electric Vehicle Charging Stations 

122 

2.1 Case study in France: new survey on the social acceptance of 
PVCS and associated new services   

The purpose of this study7 is to assess the acceptability of IIREVs and their new associated 

services, such as smart charging and bidirectional energy transfer, through a study conducted 

in 2022 by the Université de Technologie de Compiègne. The study was carried out on a city 

scale and involved a large number of stakeholders. Hence, it aims to analyze the concept’s 

limitations from a public point of view and highlights the evolution of people’s mindsets over 

the years by comparing it with a similar survey conducted in 2018. 

2.1.1 Introduction  

The Paris Agreement, adopted by 196 parties at COP 21, is an international treaty on climate 

change. Its goal is to limit global warming to less than 2°C [1]. To reach this long-term goal, 

countries aim to reduce global greenhouse gas emissions as soon as possible to achieve 

carbon neutrality by the mid-21th century. Low-carbon solutions and new markets have 

emerged, particularly in the power and transportation sectors, which account for 41% and 24% 

of CO2 emissions, respectively [2]. In this context, the shift to low-carbon mobility requires the 

deployment of electric vehicles (EVs), whose emissions depend on their manufacturing 

processes and the energy sources that operate them [3]. In fact, in the worst-case scenario, 

an EV with a battery produced in China and driven in Poland still emits 37% less CO2 than a 

gasoline vehicle [4].  

However, the growth in EVs implies an increase in power demand, and the public grid would 

not be able to meet this demand without involving fossil fuel-based power plants, leading to 

higher CO2 emissions. To address this issue, integrating renewable energy sources, such as 

photovoltaic (PV) could reduce electricity consumption and grid power peaks while ensuring 

EVs charging [5] with a significant proportion of PV energy. The power generated by PV 

sources cannot directly feed the EVs due to their intermittent nature. Therefore, the most 

effective solution for recharging EVs is a microgrid, which combines renewable sources, 

stationary storage devices, loads, and connection to the public grid [6]. The microgrid also 

includes a user-machine interface [7] that enables data collection via a communication system 

and transfers it to an optimization algorithm to ensure real-time power management [8]. 

Additionally, the installation of such intelligent EV charging infrastructures (IIREVs) based on 

microgrids is expected to allow users to charge their vehicles during the day without limitation. 

Nonetheless, social acceptability and acceptance are central to many debates surrounding 

energy projects, particularly in urban areas.  

 

 

 

7 This section is based on the following publication: A. Alchami, N. Darene, M. Sechilariu, and F. 

Locment, “Social Acceptability and Acceptance of Photovoltaic Powered Charging Stations”, in Colloque 

InterUT Systèmes sûrs et durables, Feb 2023. https://hal.science/hal-04011818    

https://hal.science/hal-04011818
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Social acceptability is the result of a collective or critical analysis of a new technological object, 

project, plan, or policy that considers the moral issues arising from its introduction. This 

collective critical analysis may be positive or negative, but it represents only an opinion at a 

given moment, which may evolve over time. Social acceptability can be described but not 

quantified, and can be achieved at all territorial levels (local, regional, or national) [9][10]. 

Social acceptance is defined as the respondents' attitudes, including their behavioural 

responses, and refers to whether a new technology is highly accepted, weakly accepted, 

simply tolerated, or clearly not accepted by a community. Since the opinions of stakeholders 

are not included in these surveys, the final studies lack relevant empirical data for an in-depth 

ethical evaluation. Consequently, social acceptance surveys cannot encompass all morally 

relevant characteristics of risky technologies [9][10]. 

Hence, social acceptability and social acceptance are examined together to ensure both types 

of analysis are relevant to the assessment of risks. Ultimately, social acceptability and social 

acceptance are largely complementary. 

This paper first aims to present studies on the social acceptability and acceptance of IIREVs 

and the new associated services in urban areas. To facilitate and guide both the qualitative 

and quantitative surveys, a study on the societal impact of IIREVs was carried out at the outset. 

The study then highlights the evolution of public opinion over the years by comparing the 

results with those of a similar survey conducted in 2018 [11]. In summary, the social 

acceptability study, defined as a prospective judgment on future implementation, focuses on 

three main questions: 

• What primary goals should be accomplished before IIREVs implantation? 

• How will city dwellers react to the structures’ presence in urban areas?  

• How will stakeholders react to this innovation, and how will users change their habits 

to take advantage of these stations? 

The rest of the paper is structured as follows. Section 2.1.2 describes IIREVs, primarily 

powered by PV sources, while Sections 2.1.3 and 2.1.5 discuss their societal acceptability and 

social acceptance, respectively. Improvement plans based on the survey results are presented 

in Section 2.1.5. Conclusions and perspectives are provided in Section 2.1.6. 

2.1.2 Intelligent Evs Charging stations powered by PV  

The IIREVs, based on PV energy and connected to a nearby building or home, and their 

interactions are represented in Figure 2.1-1. The microgrid integrates PV panels, stationary 

storage, and a public grid connection, all managed by a smart control system that ensures the 

power management and energy distribution between the IIREVs, the public grid, the EVs, and 

nearby buildings [12]. The IIREVs not only provide green energy to the EVs but may also 

supply power to the public grid and buildings according to demand. The priority is to charge 

EVs with PV energy, with any excess PV power being used to charge stationary storage, 

supply nearby buildings (I2H, infrastructure-to-home), or inject power into the utility grid. This 

is done based on an optimization algorithm that considers several factors, such as the state of 
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charge of the stationary storage, grid conditions, weather forecasts, and energy market costs 

[8]. Additionally, assuming the EV battery is a flexible load and considering the user’s needs, 

the energy management system can shift the charging period to provide the EV with a 

significant amount of PV power while avoiding grid power consumption during peak hours. 

 

Figure 2.1-1 IIREVs and its interactions 

 

On the other hand, the EV battery is seen as an energy reservoir and can be discharged, within 

a set limit, either into the grid through the V2G operation mode or into the building through the 

V2H operation mode [13]. 

Figure 2.1-2 illustrates the possibilities of energy management [14]. The goal is to maximize 

the use of energy from the PV system while minimizing the total energy cost. 

 

 

Figure 2.1-2 Energy management for IIREVs 

The V2G services could help the power grid regulate frequency, smooth peaks of consumption, 

and maintain nominal voltage [13]. Meanwhile, V2H services could smooth consumption peaks 

at the building level and supply electricity during power cut-offs. Although various works 

discuss the potential of employing V2G for ancillary services, the V2G strategy has not yet 

been implemented in real life, except at some test sites. 

The implementation of IIREVs is quite challenging since economic, social, and environmental 

factors must be considered. Thus, several studies are necessary before implementation. 

These studies should consider all factors, from irradiation, location, power limitations, and 

financial constraints to environmental issues like carbon emissions [15]. However, some 

questions arise: to what degree will users accept these services, and what challenges stand 

in the way of their development? 
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2.1.3 Social Acceptability of IIREVs 

The realization of the social acceptability study follows two phases [9]: societal impact and 

qualitative survey. These are also the preliminary studies for the acceptance study, referred to 

as the quantitative survey. In the first step, the societal impact study defines the product 

IIREVs, the market, and the actors [16]. In the second step, the qualitative survey, conducted 

with a limited sample of respondents, reveals their reflections on the IIREVs. This section 

presents these two studies.  

2.1.3.1 Societal Impact  

The implementation of IIREVs and their V2G/V2H services will impact society and the mobility 

of its citizens. This marketing and societal impact study defines the IIREVs project, its market, 

and its stakeholders to reveal their reflections on this innovation and characterize their 

expectations and requirements. For IIREVs, two innovations can be distinguished: charging 

with PV energy and the V2G/V2H services. These are defined as ‘technology push’ (i.e., users 

will be encouraged to recharge their EVs) and ‘market pull’ (i.e., innovations developed in 

response to identified market needs). Indeed, IIREVs connect, directly or indirectly, multiple 

stakeholders in these innovations: 

• Active stakeholders: suppliers, productors, constructors, assemblers, design firms, 

holders; 

• Utility grid: energy suppliers, energy distributors, network managers; 

• City and state services: local authorities, municipal services, private and public 

agencies devoted to energy transition; 

• Users: EV users, future users, buildings owners, private companies with PV-powered 

charging stations; 

• Others: maintenance agencies. 

The societal impact study identified a list of expectations and obstacles at each stakeholder 

level related to the implementation of IIREVs: 

• Socio-economic: The high cost of EVs discourages users from choosing this option. 

However, it’s important to note that EVs are considered a long-term investment, and a 

full charge with electricity is cheaper than refuelling a combustion vehicle with fuel. 

• Political: New policies encourage the development of cleaner transportation modes to 

minimize dependence on petroleum and limit its environmental impact. Polluting 

vehicles face fines, and new government incentives are available for the purchase of 

EVs. 

• Technological: New technologies are being developed to overcome the main obstacles 

regarding PV efficiency and EV battery lifespan. 

• Environmental: The low environmental impact of EVs and IIREVs encourages their sale 

and the use of PV energy. 

2.1.3.2 Qualitative survey  

The purpose of a qualitative survey, which consists of open-ended questions, is to allow 

respondents to fully and freely express themselves. This survey will generate new 
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hypotheses that will aid in constructing the subsequent quantitative survey, specifically the 

acceptance study. In fact, the qualitative survey enables the examination of how these 

stakeholders will react to the innovation, including how existing users may change their 

habits and how future users will respond. Therefore, it is important to use familiar words 

and avoid technical language, adjusting the vocabulary to suit each person's background. 

The methodology used for collecting information is based on three criteria: age, socio-

professional categories, and type of vehicle. A total of 55 stakeholders were interviewed: 

3 from institutions, 7 from private companies, and 45 users, whose vehicle types are shown 

in Figure 2.1-3 compared to the 2018 study. 

 

Figure 2.1-3 Type of vehicle of respondents 

The questions were broken up into three separate sections: a general introduction to the 

project; a section on PV energy; and a section on the related V2G and V2H systems. Finally, 

a section with specific questions for professionals and institutions was introduced. This 

distinction was important insofar as the institutions could provide more details on the 

installation and management of infrastructure according to their activities. 

Following the qualitative interviews, the participants seemed to easily understand the project 

and found it attractive after its presentation. It was noted that what appealed to them the most 

was the ecological aspect, especially when mentioning the use of green energy and the sharing 

and optimization of electricity. Despite the high number of positive opinions, some found this 

utopian project financially and socially unfeasible due to the significant and premature changes 

in habits required at this stage of electromobility development. This analysis of the feedback 

highlighted the needs and expectations of future users of IIREVs, which will be developed in 

the quantitative survey. 

2.1.4 Social Acceptance of IIREVs: Quantitative survey 

The quantitative survey aims to gather substantial feedback on IIREVs and associated 

services. The marketing and social approaches (societal impact) and the results of the 

qualitative survey were examined to identify the key considerations for formalizing the 

quantitative survey. These main points include travel habits, obstacles to electromobility 

development, the impact of ecology, expectations regarding IIREVs, IIREV locations, IIREV 

ownership, partial EV discharge, PV energy recharge, and the existence of parking shades in 

urban areas. 

The quantitative survey was conducted by creating a multiple-choice questionnaire and 

distributing it to a large number of participants. Its objective is to confirm certain common 

beliefs and assess the acceptability of a potential change in habits. The survey closely 

resembles one carried out in 2018 [11], which evaluated changes in opinions regarding this 

subject over the previous four years. It includes an introduction to the topic to facilitate 
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understanding of IIREVs, followed by 33 closed-ended questions divided into distinct thematic 

sections: information about the respondent and their travel habits; a section about IIREVs and 

the discharge/charge system; a section concerning the use of PV energy; and a final section 

on attractions and obstacles. 

The distribution of the questionnaire is crucial as it characterizes the sample. It was necessary 

to vary the sources of diffusion to represent the diversity of the population's profile, rather than 

focusing solely on the entourage of students and teachers. This was achieved through the 

following means of communication: the survey team's personal network, the Université de 

Technologie de Compiègne’s Facebook group, the Facebook group of the city of Compiègne, 

and the distribution of a QR code in common places. Within 30 days, 864 responses from 

different categories were collected. 

2.1.4.1 Profiles of the respondents 

Figure 2.1-4 shows that all age groups are represented. However, the proportion of individuals 

aged 15 to 25 differs from France's actual age distribution. This overrepresentation is due to 

the survey being distributed via social networks, where the online format was not suitable for 

people over 60. Note that this overrepresentation is not a significant issue, as young people 

will be directly affected by this innovation in the upcoming years.  

 

Figure 2.1-4 Age repartition of the respondents 

Comparing this data with 2018 data published in [11], it can be seen that the percentage of 

adults has increased, which will influence the socio-professional distribution of the respondents 

(Figure 2.1-5), and, consequently, the mean mode of transport (Figure 2.1-6). 

Figure 2.1-5 presents a strong representation of students and staff, likely due to the project’s 

network. The high representation of staff and the absence of workers and agriculturalists can 

be attributed to the fact that purchasing a vehicle is often constrained by each person's social 

status. 
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Figure 2.1-5 Socio - professional 

distribution of the respondents 

 

Figure 2.1-6 Mean of travel 

Combustion and hybrid vehicles remain the most reliable and practical means of transportation 

for commuting to work or for leisure. In fact, 58% prefer them. When combining this criterion 

with the respondents' place of residence, it is noted that most of them reside in rural areas and 

small cities. However, the share of public transport has increased significantly since 2018 [11], 

from around 21% to 30,44%. Of this 30,44%, 75% of respondents live in medium-sized or large 

cities where car traffic is complicated. The percentage of people who cycle to work has nearly 

doubled since 2018 [11], from 9% to 16,2%. This can be explained not only by ecological 

awareness but also by the COVID-19 pandemic impact. Thus, this could be an indicator of how 

flexible the French people are to changing their mobility habits. 

The answers to the last question in this section concerning the main obstacles that prevent 

each person from purchasing an EV are represented in Figure 2.1-7. 

 

Figure 2.1-7 Mains obstacles to the acquisition of an EV 

The results are not surprising because the autonomy of the vehicle, its cost compared to a 

conventional vehicle, and the lack of charging stations had already been identified a few years 

earlier. Users are still hesitant about the possibility of making long journeys with an EV without 

having to stop for a long time to recharge the battery. In fact, the environmental issue has 

increased from 20% in 2018 to 31,48% in 2022, and the questionees are now more aware 

regarding the ecology. 
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2.1.4.2 Generalities on IIREVs: discharge/charge  

This section of the quantitative study examines public perceptions of IIREVs and related 

services for discharge and charging systems, such as V2G and V2H. It focuses on the 

conditions that would enable users to accept the idea of regularly discharging and recharging 

their vehicles. At the same time, it considers the profit they would like to gain from the 

discharge. 

The locations, availability, and charging modes of the charging terminals are the main 

expectations regarding their characteristics. It is interesting to note that their percentages are 

comparable, at around 59%. However, for older individuals, ease of use is critical, whereas for 

younger individuals, fast charging is essential. Subsequently, the respondents mentioned their 

preferred locations for charging terminals (Figure 2.1-8), with the workplace being the most 

prevalent.  

 

Figure 2.1-8 IIREVs location preference 

Indeed, EVs are generally parked all day; this aligns with the use of IIREVs with slow charging 

to maximize the utilization of PV energy. The place of residence ranks second, followed by 

highway stops. It is worth noting that the results are very similar to those obtained in 2018 [11]. 

However, some users express concerns about the installation of IIREVs in city centres (26% 

in 2018) [11]; they do not want massive installations in large cities, as this could discourage 

the use of public transport, cycling, or walking. 

The question of whether to approve the discharge was raised twice in the survey to assess 

acceptability with and without certain information. The first instance occurred at the beginning 

of this section, and the second occurred after a few questions regarding the discharge 

conditions, compensations, etc. Initially, 78% of the respondents answered ‘Yes’ or ‘Yes, but 

under certain conditions,’ with a significant majority (62% of the total respondents) selecting 

‘Yes, but under certain conditions.’ In contrast, 22% showed complete refusal (Figure 2.1-9(a)). 

However, some respondents changed their minds after subsequent questions regarding 

compensation and profits; 83% answered ‘Yes,’ while 17% answered ‘No’ (Figure 2.1-9 (b)). 
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(a) (b) 

Figure 2.1-9 (a) Acceptability of the discharge initially (b) Acceptability of the 

discharge after several questions) 

In fact, half of the drivers who accept V2G/V2H would be willing to discharge their vehicles as 

long as there are no additional costs, and only 31% would like to financially benefit from 

V2G/V2H. Therefore, the primary motivation is not necessarily financial. However, only 4% 

clearly accept the discharge without any conditions. 

The next question concerned the desired compensation as a contribution to their energy 

shares. Not everyone wishes to benefit equally from the V2G/V2H services. With 60% of the 

votes, a deduction on the electricity bill ranked first. This is a very logical option since it involves 

electricity discharged from the EV's battery. Additionally, it would simplify automatic 

compensation via bank transfers. Free parking came in second with 52% of the votes; citizens 

always seek out services that are becoming increasingly rare and expensive in urban areas. 

Financial compensation and tax deductions ranked third and fourth, at 39% and 33%, 

respectively.  

Another question addressed the desire to know the destination of the battery energy, with 65% 

indicating interest. This suggests that such information could encourage and motivate EV 

users to share their electricity.  

In conclusion, respondents are generally tolerant of V2G/V2H services, but users must still be 

assured they can leave with the minimum amount of required energy. It is sufficient to keep 

them informed about important information via an interface and, above all, to obtain their 

consent in advance. 

2.1.4.3 Integration of PV energy and shades structures  

The last part of the questionnaire concerns PV energy and shading structures, which are 

essential to the operation of IIREVs. An image of the STELLA platform (Smart Transport and 

Energy Living Lab) at the Université de Technologie de Compiègne, shown in Figure 2.1-2, 

precedes the questions to help visualize this type of structure.  

Three-quarters of the respondents believe that the use of renewable energy sources influences 

their opinion of the acceptability of IIREVs, and 95% of people support charging EVs with PV 

energy. This proportion is significantly higher than in the qualitative survey, where the results 

on this question were more varied. During the qualitative interviews, the barriers identified 

regarding PV panels included low efficiency and intermittent production.  
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However, the results in Figure 2.1-10 confirm the hypotheses, as efficiency ranks first with 48% 

of the votes. Although the yield of PV systems is relatively low (around 20%), this technology 

is recognized as a viable alternative to fossil fuels and remains more advantageous. Second, 

the recycling of photovoltaic modules poses an obstacle. Currently, 90% of panels are 

recyclable, but misinformation circulating among the public leads them to perceive PV 

recycling as a problem. Pollution during the production of PV systems ranks third, with 39% of 

the votes. 

 

Figure 2.1-10 Main obstacles to the use of PV panels 

Regarding the installation of car parking shade structures with photovoltaic (PV) sources, the 
first question gathered general opinions on the use of these structures. Ninety-five percent do 
not view their use as an obstacle to the project's success. The minority considers this 
infrastructure problematic for aesthetic reasons; among them, 81% would support the 
implementation of innovative integrated renewable energy vehicles (IIREVs) if asked about 
their preferences in advance. 

To satisfy future users, it was important to ask respondents about the main locations that would 
concern them regarding the integration of a car parking shed. The results are presented in 
Figure 2.1-11, where half of the respondents do not identify any significant issues with the 
installation of shade structures. For the other half, tourist areas, agricultural zones, city centres, 
and residential neighbourhoods are the most disruptive locations for this type of infrastructure. 
Conversely, cinemas, stadiums, highway gas stations, supermarkets, shopping malls, and 
workplaces do not pose any issues for the installation of these IIREVs. 

 

Figure 2.1-11 Disturbing places for the establishment of shade structures 
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Otherwise, older people are more reluctant to install these car shades at their residences. It 

should be noted that, when compared to the 2018 study, these locations were cited in nearly 

the same order and with approximately the same percentage (Figure 2.1-12). 

 

 

Figure 2.1-12 Places for the establishment of shade structures 

2.1.4.4 General comprehension 

The results of the quantitative survey show that the project has been evaluated since 2018, 

and the IIREVs are well accepted socially by the respondents. Notably, 78% of respondents 

are in favour of the V2G/V2H discharge process, and 95% have no objection to their EV being 

recharged by PV. Additionally, 95% support the installation of shading structures for placing 

PV panels. EV users appear to be interested in EV discharge and PV energy use: 75% accept 

discharging while parked and recharging later during low consumption periods in return for 

financial compensation.  

Those interested in V2G/V2H services do not want to incur additional costs when using such 

infrastructure, while some view it as a way to earn money or profit by sharing their energy. 

Furthermore, nearly three-quarters of respondents believe that public authorities should own 

the IIREVs and be responsible for their implementation and maintenance.  

Lastly, respondents expressed a preference for a user-friendly graphical interface, as they 

want to stay updated on two main pieces of information: the vehicle's autonomy and the state 

of charge of their battery. Other data, such as remaining charging time and operational history, 

are considered less important. They desire as much detail as possible from the interactive 

pages, provided they remain simple to use. 

2.1.5 Project limitations and improvements  

This final section focuses on understanding the subject and its limitations. As seen in Figure 

2.1-13, only 9,73% of respondents still believe there are no boundaries to the development of 

IIREVs in France, while 35,62% find the investments and costs associated with developing, 

installing, and maintaining these facilities to be too high. Therefore, these factors constitute the 

most significant limitations of the project. It is difficult for the population to imagine the benefits 

of these structures, given the significant changes in habits that their implementation would 

necessitate. In fact, when compared to the 2018 study, the importance of these limitations 

appears to have decreased by 15%. The low efficiency of PV modules and the ecological 

concerns also seem to be limitations of the project, as indirect pollution occurs during the 

manufacturing process of PV cells and EV batteries. Approximately 30% also highlight the low 
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impact of IIREVs if they are deployed on a small scale, and 25,34% fear that the 

charge/discharge process could affect the lifespan of their EV batteries.  

 

Figure 2.1-13 Project's Limitations 

A general question about the project’s complexity allows for evaluating whether participants 

have correctly understood the topic. The more they understand, the more valuable their 

answers will be for the study. In 2022, the project was easier to comprehend, with 80% of 

respondents answering ‘yes,’ and the data indicate greater confidence in the survey results. 

For the development of IIREVs, it is noted that addressing certain weaknesses is necessary 

to enhance social acceptability. Establishing a sustainable business model that aligns the 

charging price and benefits of V2G/V2H services with users' needs is essential. Once this 

business model has been established among IIREV owners, network operators, and users, it 

is crucial to implement a communication plan to promote electromobility and inform individuals 

about related new technologies. Finally, users require an appropriate interface to simplify their 

operations and control their EV batteries. The suggested activities are intriguing and could 

become the focus of new research aimed at customizing IIREVs to meet actual demands. 

2.1.6 Conclusions and perspectives  

This paper directly questioned the population to assess their tendencies and formulate certain 

hypotheses regarding the current acceptability of electromobility, IIREVs, and associated 

services. It was shown that 80% of the population is in favour of using PV energy and would 

like to highlight its environmental impact. Regarding V2G/V2H services, respondents indicated 

they are willing to share their energy under certain conditions and in exchange for financial 

compensation. It can also be observed that there is a higher level of acceptability for IIREVs 

when the general public is surveyed before the installation of these infrastructures. The 

researchers' work and the analysis of this survey will inform new studies to test their relevance 

and feasibility. 
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3 CONCLUSIONS AND FUTURE WORKS 

The integration of EVs with PV energy systems presents both significant challenges and 

remarkable opportunities for modern energy management. As global adoption of EVs 

accelerates, it becomes imperative to manage the rising demand for electricity, particularly 

during peak hours. The incorporation of PV energy systems emerges as a promising solution, 

enabling the generation of clean, renewable energy to charge EVs while reducing reliance on 

fossil fuels. 

Analysis indicates that, while well-developed infrastructure can accommodate the energy 

consumption of EVs, peak power demand remains a critical concern. Under optimal conditions, 

EV charging could account for over 18.5% of total installed capacity, underscoring the urgent 

necessity for effective charging control measures and peak demand management strategies 

to alleviate stress on the grid. 

The introduction of a HSi for PVCS marks a pivotal advancement in energy management. This 

interface facilitates real-time monitoring of EV load patterns and renewable energy 

consumption, yielding valuable insights into grid dynamics and enhancing the sustainability of 

EV charging operations. Future efforts will focus on validating data collection methods through 

experimental testing, which is expected to further refine the management of charging sessions. 

Moreover, the comparison MILP optimization with the storage priority algorithm showcases the 

efficacy of the proposed supervisory control system in integrating EVs with the smart grid. 

These findings illustrate that real-time data-driven optimization of EV charging significantly 

enhances energy distribution, particularly when accommodating various charging speeds and 

grid interactions. 

Experiments conducted at the CEA Cadarache site reveal the complexities involved in aligning 

user demands with system objectives. Although the goal of fully recharging EV batteries was 

largely achieved, maximizing self-production rates remains a challenge due to varying levels 

of user participation. Engaging users through initiatives such as 'solar charging' contests could 

foster acceptance of controlled charging, while further refining the planning algorithm to 

accommodate diverse user behaviours will be essential for optimizing energy distribution. 

An economic analysis of a PV-powered parking facility near Lisbon highlights a notable 

mismatch between peak electricity demand and PV generation, raising questions about the 

project's viability. While smart charging reduces dependence on grid power, the payback 

period exceeds seven years. Future studies should examine how fluctuations in electricity 

prices influence the economic feasibility of similar projects and develop targeted strategies to 

enhance profitability. 

Regarding the necessity of evaluating the environmental and financial impacts of PVCS, 

adopting a LCA approach reveals the substantial carbon footprint associated with PV systems, 

advocating for the use of recycled materials and innovative technologies to mitigate emissions. 

Future investigations should aim to refine LCA methodologies and update them with current 

data to enhance the accuracy of carbon impact estimations. 

Finally, survey results indicate that 80% of the public supports the utilization of PV energy, 

reflecting a robust willingness to engage with sustainable energy practices, particularly in 

relation to V2G and V2H services. This favourable public sentiment presents substantial 

opportunities for promoting electromobility and related services. To capitalize on this support 

effectively, further studies should explore the feasibility of proposed infrastructures and 

investigate financial incentives that could bolster public acceptance. 
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The next technical report for the subtask 2 will focus on:  

• Optimal sizing and optimal energy management; 

• Empirical sizing: case study of an industrial site in France; 

• Energy management for EV Solar Hub from Netherlands; 

• PVCS with Energy Cost Optimization via V2G; 

• Experimental validation and analyze of experimental results; 

• Requirement for Fast Solar EV Charging in Australia; 

• Case Studies on e-Bus Fleet Charged from PVCS in Australia; 

• Modeling of e-Bus Charging Process; 

• Business Models Derived from Energy and Economic Simulations on a Business Park. 
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