

International Energy Agency
Photovoltaic Power Systems Programme

Photovoltaic Failure Fact Sheets (PVFS) 2025

What is IEA PVPS TCP?

The International Energy Agency (IEA), founded in 1974, is an autonomous body within the framework of the Organization for Economic Cooperation and Development (OECD). The Technology Collaboration Programme (TCP) was created with a belief that the future of energy security and sustainability starts with global collaboration. The programme is made up of 6.000 experts across government, academia, and industry dedicated to advancing common research and the application of specific energy technologies.

The IEA Photovoltaic Power Systems Programme (IEA PVPS) is one of the TCP's within the IEA and was established in 1993. The mission of the programme is to "enhance the international collaborative efforts which facilitate the role of photovoltaic solar energy as a cornerstone in the transition to sustainable energy systems." In order to achieve this, the Programme's participants have undertaken a variety of joint research projects in PV power systems applications. The overall programme is headed by an Executive Committee, comprised of one delegate from each country or organisation member, which designates distinct 'Tasks,' that may be research projects or activity areas.

The IEA PVPS participating countries are Australia, Austria, Belgium, Canada, China, Denmark, Finland, France, Germany, India, Israel, Italy, Japan, Korea, Malaysia, Morocco, the Netherlands, Norway, Portugal, South Africa, Spain, Sweden, Switzerland, Thailand, Türkiye, and the United States of America. The European Commission, Solar Energy Research Institute of Singapore and Solar Power Europe are also members.

Visit us at: www.iea-pvps.org

What is IEA PVPS Task 13?

Within the framework of IEA PVPS, Task 13 aims to provide support to market actors working to improve the operation, the reliability and the quality of PV components and systems. Operational data from PV systems in different climate zones compiled within the project will help provide the basis for estimates of the current situation regarding PV reliability and performance.

The general setting of Task 13 provides a common platform to summarize and report on technical aspects affecting the quality, performance, reliability and lifetime of PV systems in a wide variety of environments and applications. By working together across national boundaries we can all take advantage of research and experience from each member country and combine and integrate this knowledge into valuable summaries of best practices and methods for ensuring PV systems perform at their optimum and continue to provide competitive return on investment.

Task 13 has so far managed to create the right framework for the calculations of various parameters that can give an indication of the quality of PV components and systems. The framework is now there and can be used by the industry who has expressed appreciation towards the results included in the high-quality reports.

The IEA PVPS countries participating in Task 13 are Australia, Austria, Belgium, Canada, Chile, China, Denmark, Finland, France, Germany, Israel, Italy, Japan, the Netherlands, Norway, Spain, Sweden, Switzerland, Thailand, the United States of America, and the Solar Energy Research Institute of Singapore.

DISCLAIMER

The IEA PVPS TCP is organised under the auspices of the International Energy Agency (IEA) but is functionally and legally autonomous. Views, findings and publications of the IEA PVPS TCP do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries.

COVER PICTURE

Infrared image of an energised module string at night. One module has a not connected bypass diode. Thanks to photovoltaikbuero Ternus & Diehl GbR for the permission to use the image.

ISBN 978-3-907281-71-0: Task 13 Report: PV Failure Fact Sheets (PVFS) - Review 2025

AUTHORS

Main Contributors to PVFS Review 2025

Gabi Friesen, SUPSI, Switzerland Marc Köntges, ISFH, Germany Jay Lin, PV Guider Gernot Oreski, PCCL, Austria Gabriele C. Eder, OFI, Austria Peter Hacke, NREL, USA Paul Gebhardt, Fraunhofer ISE, Germany Ebra Özkalay, SUPSI, Switzerland Christof Bucher, BFH, Switzerland Mauro Caccivio, SUPSI, Switzerland Romain Couderc, CEA, France Sergiu Viorel Spataru, DTU, Denmark

Editors

Gabi Friesen, SUPSI, Switzerland Jay Lin, PV Guider Ulrike Jahn, Fraunhofer CSP, Germany

TABLE OF CONTENTS

Ack	nowle	dgements5	;				
1	1 Introduction						
	1.1	PVFS structure	5				
	1.2	Example PVFS: Front delamination9)				
	1.3	List of PVFS 12)				
Ref	erenc	es13	3				
ANN	NEX (I	PV FAILURE FACT SHEETS)	;				

ACKNOWLEDGEMENTS

This report is supported by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) under contract no. 03EE1120A, 03EE1120B and 03EE1120C, the Swiss Federal Office of Energy (SFOE) under the contract no. SI/502398-01, the Austrian Federal Ministry for Climate Action, Environment, Energy and Mobility (BMK), the Danish Energy Technology Development and Demonstration Programme (EUDP), project number 134-22016, "IEA PVPS Task13 - Reliability and performance of photovoltaic systems", and the Austrian Research Agency (FFG) under contract no. FO999908094_05102023_160512119.

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308 in the project 38263 "R&D to Ensure a Scientific Basis of Qualification Tests and Standards," funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government.

1 INTRODUCTION

The photovoltaic failure fact sheets (PVFS) summarise some of the most important aspects of single failures. The target audience of these PVFSs are PV planners, installers, investors, independent experts and insurance companies, and anyone interested in a brief description of failures with examples, an estimation of risks and suggestions of how to intervene or prevent these failures.

The failure sheets are not intended to provide an in-depth exploration of the theoretical background of PV failures and their detection. Instead, they aim to summarize the key points outlined in the various IEA PVPS Task 13 technical reports [Herz22, Köntges14, Köntges16, Köntges17, Schill21, Jahn18, Herrmann21] and reference documents [Sinclair17, Packard12, Eder19, Moser17, Yang19, Walsh20, Petter11, India18, India13, PVSurvey19, DuPont20] that were used to prepare the PVFSs listed in Table 2. These failure sheets are specific to the component where the failure occurs.

The PVFS have been reviewed in 2024 to include latest PV module failures observed in the field and discussed in more detail in a technical IEA PVPS Task 13 report [Köntges25].

1.1 PVFS structure

The format of the PVFS is based on the failure description presented within the H2020 Solar Bankability project [SolBank20]. A rating system for the estimation of the severity of a failure is used here which simplifies the approach proposed within the IEA PVPS Task 13 [Köntges14] by implementing the rating system proposed by the Sinclairs [Sinclair17]. The correlation between the different failures is highlighted in the text by using bold characters. Each PVFS is structured into 1 to 3 pages. The first page is a descriptive page, whereas the remaining pages contain examples composed of a picture, a legend and an estimation about its severity. The first page is structured as follows:

Component

The PV system components are divided into:

- (1) PV module (including junction box)
- (2) Cables and interconnectors (at module, string and combiner box level)
- (3) Mounting (structure, clamps and screws)
- (4) Inverter

Defect

Short name describing the failure/defect.

Appearance

Description of how the defect looks like.

Detection

Description of methods which can be used to detect the failure. Detection methods in brackets lists secondary methods, which do not detect the failure with absolute certainty or which can be used in addition to other methods. Following abbreviations are used:

Abbreviation	Detection methods	
VI	Visual inspection	
IRT	Infrared thermography	
EL	Electroluminescence	
IV	Daylight I-V measurement	
UV	UV fluorescence	
STM	Signal transmission method	
MON	Data monitoring	
dIV	Dark I-V measurement	
BYT*	Bypass diode testing	
VOC	V _{oc} measurement	
INS	Insulation testing	

Table 1: Abbreviations of detection methods.

*useful background information

https://photovoltaikbuero.de/en/pv-know-how-blog-en/checking-bypass-diodes-on-solar-panels-part-1/ https://www.hioki.com/euro-en/products/pv/solar-panel/id_6647 https://emazus.com/euro-en/product.st/

https://emazys.com/pv-module-test/

Origin

Description of the failure and its main causes and origin (1. Material and production, 2. Transport and installation, 3. Operation and maintenance).

Impact

Description of the impact on the safety, performance and reliability of the component and system and its severity. For every failure, a range of possible ratings is given, one for the safety and one for the performance.

A failure is defined as a safety failure when it endangers somebody who is applying or working with PV modules or simply passing the PV modules. Three categories are defined in Figure 1.

Safety category	Description
	Failure has no effect on safety.
f e m	Failure may cause a fire (f), electrical shock (e) or a physical dan- ger (m) if a follow-up failure and/or a second failure occurs.
f e m	Failure can directly cause a fire (f), electrical shock (e) or a physical danger (m).

Figure 1: Safety categories.

A failure is defined as a performance failure when it impacts the performance and/or reliability of a system. Five categories are defined in Figure 2. They go from 1 (low severity) to 5 (high severity).

Performance category	Description
	The defect has no direct effect on performance.
	The defect has a minor impact on performance.
	The defect has a moderate impact on performance.
	The defect has a high impact on performance.
	The defect has a catastrophic impact on performance.

For each category, the expected loss is estimated on the component level and if no mitigation measure is implemented. It can range from no power degradation (0%), over power degradation below detection limit (<2-3%), power degradation within warranty (<0.7-1%/year) and power degradation out warranty (>0.7-1%/year) to catastrophic power degradation (>3%/year).

Mitigation

Description of the corrective actions to be done on a short and medium term when detecting a failure and preventive actions to be implemented to avoid the failure from the beginning. Preventive actions are separated into recommended actions, representing the minimum requirement for small residential systems and optional actions for large scale systems.

The general rule for intervention in case of a failure is: All components with a direct safety risk or a performance severity of 5, highlighted in red, should be replaced or repaired. Regular inspections should be performed to monitor the status of the not replaced or repaired components.

1.2 Example PVFS: Front delamination

The delamination of the encapsulant **FS1-3: Front delamination** is used here as an example to explain the FS structure and rating system.

Component	PVFS 1-3vs.01							
Defect Appearance	Front delamination Any local separation of the layers between (i) the front glass and the encapsulant or (ii) the cell and the encapsulant, visible as bubbles or as bright, milky area/s. It may appear continuous or in spots. The position and size of the delamination or bubble depends on the origin and progress of the failure.							
Detection	VI, (INS)							
Origin	mised for linking of improper of the ra stresses,	esion between the gla: many reasons. Typic EVA, too short lamin cleaning of the glass w material) or enviro UV). Delamination i more frequent and se	ally, it is ca ation times , incompati onmental fa is generally	too high pressu bility of EVA with actors (e.g. then of followed by mo	nufactu ure in th h solde rmal st oisture	iring prod ne lamina pring flux, resses, ingress	cess (e.g. poor cross ator, contaminations, , inadequate storage external mechanical	
	Production Installation Operation				n 🔲			
Impact	Delamination or bubbles do not automatically pose a safety issue, but they can result in re- duced insulation of the component and increased safety risk when they form a continuous path between electric circuit and the edge due to possible water ingress. Moisture in the mod- ule will decrease performance due to an increase of series resistance, affect long term relia- bility and in some cases also the structural integrity of the module. Moreover, delamination at interfaces in the optical path will result in additional optical reflection and subsequent decrease in current. This can be the origin of current mismatch. If the mismatch is significant, it will trigger the bypass diode and cause further power loss. The inverter might also shut down due to leakage current's leading to a further performance loss. Manufacturing related delamination issues often affects a relevant percentage of modules within the same production batch and consequentially has a big impact on system performance.							
	Safety:	🖷 😳 😳 💽		Performance:	1 2	3 4 5		
Mitigation	Corrective actions		Preventive actions (recommended)		-	Preventiv optional)	ve actions)	
	risk or a s be replace tions show tor the s placed m dividual modules lation and	with a direct safety severity of 5 should ced. Regular inspec- uld be done to moni- tatus of the not re- odules. In case of in- module testing all which failed the insu- d/or wet-leakage test e replaced.	certification fault dete	lidity of IEC 61 on and BOM, gro ction by inverte ices at all time.	ound h erorti c	ieat), pr ions (e.g	d testing (e.g. damp re-shipment inspec- g. cross linking level regular visual system ns.	

Figure 3: First page of PVFS example with general information.

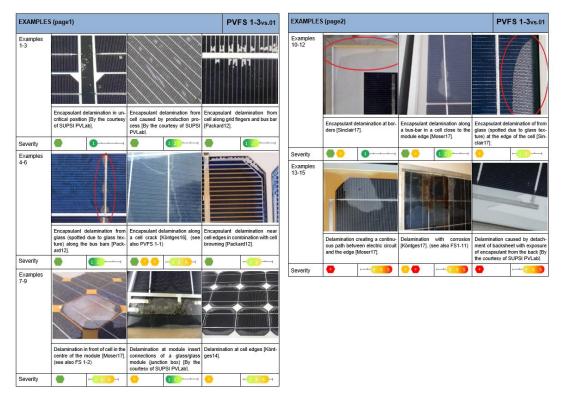


Figure 4: Remaining pages of a PVFS contain examples composed of a picture, a legend, and an estimation about its severity.

The first section of the sheet describes the **appearance** or how to recognise a specific failure and which **detection** methods are available. Delamination is generally easily detectable by visual inspection (VI) of the modules from the front. Insulation measurements (INS) can give a hint of a severe delamination, but it is not the first method to detect an early delamination, reason why it is put in brackets.

The second section describes the **origin** or in which phase of the lifetime of a PV system the failure occurs and what the main causes are. Delamination problems have its origin mainly in the quality of the raw material, the manufacturing process and/or the environmental factors to which the modules are exposed during its operational lifetime. Transport and installation do not generate any delamination problems.

The third section describes the **impact** the failure has on the safety and performance of the component and PV system. Below the general description the severity rating according to Figure 1 and Figure 2 is given. The severity rating in the first page gives the full range of possible ratings observable in the field and how the failure can evolve over the whole lifetime of a PV system. The rating in the examples gives instead a snapshot of the gravity of the failure for a specific case at a certain time. The pictures are taken from literature or case studies and give only a partial picture of the situation and are used to explain the potential levels of impact here.

The delamination of the potting material does not automatically pose a **safety risk.** It is therefore often rated as not critical (see example 1.3.1-1.3.7, 1.3.10 and 13.11 in Annex 1), but depending on the propagation of the failure it can develop into a more severe safety failure. When creating a continuous path between the electric circuit and the edge of the module (see

example 1.3.13-1.3.15), delamination can lead to electric leakage currents with a direct risk of electrical shock or the risk can occur later, due to the progress of the delamination and/or the ingress of moisture. This is particularly the case when the original delamination is close to the edge of the module or the junction box, or if it is going over a very extended area (see example 1.3.8-1.3.12). The **performance loss risk** for modules with delamination problems ranges from 1 to 5. Very small delamination areas on top of a cell or outside the cell area and not combined with other failures, are classified as having no impact (1) or a minor power loss typically below the detection limit (2), if the failure is not increasing over time (see example 1.3.1-1.3.4, 1.3.8, 1.3.10 and 1.3.11). The severity is in the range of (2-4) when the delamination area is getting larger (see example 1.3.7 and 1.3.9) or if it is occurring in combination with follow-up failures like moisture ingress (see example 1.3.14) or an insulation failure (see example 1.3.13). It increases also when occurring in combination with a second failure like discoloration (yellowing or browning) of the encapsulant or backsheet (see example 1.3.6, 1.3.7, 1.3.13), or cell cracking (see example 1.3.5). A catastrophic performance loss of (5) is reached when the cell mismatch is so large that one or more bypass diodes could be activated (see example 1.3.13 and 1.3.14).

The last section describes the **mitigation** measures. In case of delamination, all modules that no longer guarantee the electrical safety or insulation resistance or have an active bypass diode, have to be replaced. Not replaced modules with minor delamination have to be monitored by regular visual inspections and ground fault detection. Basic preventive measures consist in selecting certified and tested products only. In case of large-scale systems regular system inspection is recommended.

1.3 List of PVFS

Table 2: List of PV Failure Fact Sheets.

No	Component	Failure name
1-1	PV module	Cell cracks
1-2	PV module	Discolouration of encapsulant or backsheet
1-3	PV module	Front delamination
1-4	PV module	Backsheet delamination
1-5	PV module	Backsheet cracking
1-6	PV module	Backsheet chalking (whitening)
1-7	PV module	Burn marks
1-8	PV module	Glass breakage
1-9	PV module	Cell interconnection failure
1-10	PV module	Potential induced degradation
1-11	PV module	Metallisation discolouration/corrosion
1-12	PV module	Glass corrosion or abrasion
1-13	PV module	Defect or detached junction box
1-14	PV module	Junction box interconnection failure
1-15	PV module	Missing or insufficient bypass diode protection
1-16	PV module	Not conform power rating
1-17	PV module	Light induced degradation in c-Si modules
1-18	PV module	Insulation failure
1-19	PV module	Hot spot (thermal patterns)
1-20	PV module	Soiling
2-1	Cable and Interconnector	DC connector mismatch
2-2	Cable and Interconnector	Defect DC connector/cable
2-3	Cable and Interconnector	Insulation failure
2-4	Cable and Interconnector	Thermal damage in combiner box
3-1	Mounting	Bad module clamping
3-2	Mounting	Inappropriate/defect mounting structure
3-3	Mounting	Module shading
4-1	Inverter	Overheating (temperature derating)
4-2	Inverter	Incorrect installation
4-3	Inverter	Complete failure (not operating)

The list does not pretend to be exhaustive or updated. The complete list with all PVFS

REFERENCES

[DuPont20] DuPont global PV reliability, 2020 Field analysis, Dupont, <u>https://www.dupont.com/news/20200512-2020-global-pv-reliability-report.html</u>, last access Nov 2024.

[Eder19] G.C. Eder et al., "Error analysis of aged modules with cracked polyamide backsheets," *Solar Energy Materials & Solar Cells*, Vol. 203, December 2019.

[Herrmann21] W. Herrmann, G. C. Eder, B. Farnung, G. Friesen, M. Köntges, B. Kubicek, O. Kunz, H. Liu, D. Parlevliet, I. Tsanakas and J. Vedde, Qualification of Photovoltaic (PV) Power Plants using Mobile Test Equipment, Report IEA-PVPS T13-24: ISBN 978-3-907281-12-3, 2021.

[Herz22] M. Herz, G. Friesen, U. Jahn, M. Köntges, S. Lindig, D. Moser, IEA PVPS Task 13: Performance, Operation and Reliability of Photovoltaic Systems - Quantification of Technical Risks in PV Power systems, Report IEA-PVPS T13-23:2022: ISBN 978-3-907281-11-6, 2022.

[India13] Y.R. Golive et al., "All-India India Survey of Photovoltaic Module Degradation: 2013," Mumbai, India, 2013.

[India18] R. Dubey et al., "All-India India Survey of Photovoltaic Module Degradation: 2013," Mumbai, India, 2018.

[Jahn18] U. Jahn, M. Herz, M. Köntges, D. Parlevliet, M. Paggi, I. Tsanakas, J. S. Stein, K. A. Berger, S. Ranti, R. H. French, M. Richter and T. Tanahashi, "Review on Infrared and Electroluminescence Imaging for PV Field Applications", Report IEA-PVPS T13-10:2018: ISBN 978-3-906042-53-4, 2018.

[Köntges14] M. Köntges, S. Kurtz, C. Packard, U. Jahn, K. A. Berger, K. Kato, T. Friesen, H. Liu, M. Van Iseghem, J. Wohlgemuth, D. Miller, M. Kempe, P. Hacke, F. Reil, N. Bogdanski, W. Herrmann, C. Buerhop Lutz and G. Friesen, Review of Failures of Photovoltaic Modules, Report IEA-PVPS T13-01: ISBN 978-3-906042-16-9, 2014.

[Köntges16] M. Köntges et al., "Mean Degradation rates in PV systems for various kinds of PV module failures," in Proc. 32nd Eur. *Photovolt. Sol. Energy Conf. (EUPVSEC)*, 2016, pp. 1435 - 1443.

[Köntges17] M. Köntges, G. Oreski, U. Jahn, M. Herz, P. Hacke, K. A. Weiss, G. Razongles, M. Paggi, D. Parlevliet, T. Tanahashi and R. H. French, Assessment of Photovoltaic Module Failures in the Field, Report IEA-PVPS T13-09: ISBN 978-3-906042-54-1, 2017.

[Köntges25] M. Köntges, J. Lin, A. Virtuani, G. Eder, J. Zhu, G. Oreski, P. Hacke, J.S. Stein, L. Bruckman, P. Gebhardt, D. Barrit, M. Rasmussen, I. Martin, K.O. Davis, G. Cattaneo, B. Hoex, Z. Hameiri, E. Özkalay, "Degradation and Failure Modes in Pholtovoltaic Cell and Module Technologies", Report IEA-PVPS T13-29:2025: ISBN 978-3-907281-71-0, 2025.

[Mahmood2024] A. Mahmood, R. Santamaria, T.r Kari, P.B. Poulsen, S.V. Spataru, "Diagnosing Potential Induced Degradation in Crystalline Silicon Photovoltaic Modules", in Proc. 41st Eur. *Photovolt. Sol. Energy Conf. (EUPVSEC)*, 2024.

[Moser17]D. Moser et al., "Report on technical risks in PV project development and PV
operation,"https://www.tuv.com/content-media-files/master-

<u>content/services/products/p06-solar/solar-downloadpage/solar-bankability_d1.1_d2.1_tech-</u> <u>nical-risks-in-pv-projects.pdf</u>, last access Nov 2024.

[Schill21] C. Schill, D. Parlevliet, A. Anderson, B. Stridh, L. Burnham, C. Baldus-Jeursen, L. Micheli, E. Urrejola, E. Whitney and G. Mathiak, Soiling Losses – Impact on the Performance of Photovoltaic Power Plants, Report IEA-PVPS T13-21: ISBN 978-3-907281-09-3, 2021.

[Sinclair17] K. Sinclair, M. Sinclair, "Silicon solar module visual inspection guide: Catalogue of Defects to be used as a Screening Tool", https://www.engineeringforchange.org/wp-content/uploads/2017/09/Solar-PV-Product-Visual-Inspection-Guide.pdf. last access Nov 2024.

[SolBank20] "Solar Bankability project website," accessed: 2020-04-28. [Online]. Available: http://www.solarbankability.org/home.html.

[Packard12] C. Packard, J. Wohlgemuth, S. Kurtz, "Development of a Visual Inspection Data Collection Tool for Evaluation of Fielded PV Module Condition," Technical Report NREL/TP-5200-56154 August 2012, https://www.nrel.gov/docs/fy12osti/56154.pdf.

[Petter11] K. Petter et al., "Long Term Stability of Solar Modules Made from Compensated SoG-Si or UMG-Si," *Energy Procedia*, Volume 8, page 365-370, 2011.

[PVFS21] https://iea-pvps.org/research-tasks/performance-operation-and-reliability-of-photovoltaic-systems/documents/ follow link to "PV Failure Fact Sheets", last access Aug 2021.

[PVSurvey19] https://iea-pvps.org/research-tasks/performance-operation-and-reliability-of-photovoltaic-systems/documents/, follow link "Explanation of the PV-System Survey sheet" Version:21 October 2019, last access 04 March 2021.

[Walsh20] T.M. Walsh et al., "Singapore Modules - Optimised PV Modules for the Tropics," *Energy Procedia*, Volume 15, page 388-395, 2020.

[Yang19] H.E. Yang, R.H. French and L.S. Bruckman, "Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules," ISBN 978-0-12-811545-9, 2019.

ANNEX (PV FAILURE FACT SHEETS)

Component	Module	PVFS 1-1 vs.02						
Defect	Cell cracks							
Appearance	Cell cracks are cracks in the silicon substrate of the photovoltaic cells. Most of the cell cracks cannot be seen by the naked eye. Only large cracks or where the backsheet is visible through the cracks can be seen. Cell cracks can be easily detected through imaging techniques like electroluminescence or UV fluorescence. Cell cracks can have different lengths and orientations (crack patterns). Small cell cracks (micro-cracks) become visible by eye when they form snail tracks or when photobleaching or delamination takes place along the cracks. A snail track is a discoloration of the silver paste of the front metallisation of solar cells which occurs typically 3 months to 1 year after installation of the PV modules. Affected metal fingers on cells may be silver, yellow or brown in appearance, this effect can also be seen on cell edges. Photobleaching is a counteracting effect to the yellowing of the encapsulant and it occurs along the cracks and the borders of the cells. Sometimes delamination along cracks is visible as small bubbles along the cell cracks.							
Detection	EL, UV (IRT, VI, IV)							
Origin	Cell cracks can have origin in all lifetime phases of a PV module: production, transport, instal- lation and operation. In production, cell cracks can occur during wafer, cell and module manu- facturing. Especially the stringing and soldering process of the solar cells can damage the cells. Furthermore the cutting of full cells to half or multiple cut cells can lead to cracking at the cutting cell edge. After production, major sources for cell cracks are the packaging and transport of the modules, and the installation. After installation, external forces like hail, heavy snow weight or strong wind may result in cell cracks. Once cell cracks are present, further mechanical and thermomechanical stresses can lead to the propagation of the cracks into longer and wider cracks. Some crack patterns can give indications on the origin of the failure, but the final cause of cell breakage is not always easy to identify. A repetitive crack pattern can be for example caused by a production failure, whereas PV modules showing dendritic crack patterns have been probably exposed to heavy mechanical loads. Snail tracks can be found in a great variety of solar modules, but not in all. The combination of different materials (encapsulant and back sheets) with UV radiation and temperature plays an important role in the creation of snail tracks.							
	Production	Installation	Operation					
Impact	Cell cracking does not necessarily lead to a failure of the module. The presence of a crack o any size that does not, or likely will not through its propagation, remove more than 10% of tha cell's area from the electrical circuit can be considered to have limited to no impact on the per formance. Even if each cell in a 60 full-cell module is cracked, but do not lead to a separated cell area, the power loss of the module is typically below 2.5 % of the nominal power. Compared to former ribbon based modules with 2 to 4 cell interconnect ribbons, more recent multi wire/bus bar solar modules demonstrates much lower power losses due to cell cracks. For multi wire PERC modules 0.2% power loss per dendritic like cracked half-cell is typical. In cold and snow climate zones cell cracks seem to have a more pronounced impact. Here relatively high mean degradation rates of up to 7%/y can be found for full cell modules. Besides the risk of powe loss there is a risk of hot spots and burn marks due to inactive cell parts. Snail tracks are reported to have no influence on the performance of the PV module.							
	Safety:							
Mitigation	Corrective actions	Preventive actions (recommended)	Preventive actions (optional)					
	Modules with a direct safety risk or a severity of 5 should be replaced. Regular inspec- tions should be done to moni- tor the status of the not re- placed modules.	Adequate transport proce- dures, installation and clean- ing by trained personal, in case of higher snow or hail risk use of therefore certified modules. Multiwire modules mitigate degradation risk.	Request EL pictures from pro- duction, pre-shipment or ware- house inspection, EL images with mobile laboratory before or during installation, regular EL inspection or after sever weather conditions.					

- I

EXAMPLES	(page1)				PV	FS 1-1vs.02
Examples 1-3						
	Cell chipping. A v is missing from cell, but does r lized region [Kör	the edge of the not enter metal-	Large crack at cell corner visible by eye - small portion of the cell (<10%) is no longer electrically connected [Köntges14].		Cell crack with snail track. No iso- lation of any cell part. The propa- gation could isolate a cell area >10% [Köntges14].	
Severity				H2		+2
Examples 4-6						
	Cell cracks visib bleaching effect. mistaken for sna ges14].	This may not be		s with extensive /A browning and [Yang19].	isolates more th	cell cracks which an 10% of the cell courtesy of TUV
Severity	f e		f e	⊢2345	f e	⊢234⊣
Examples 7-9	Snail track exam		Snail track exam			s with snail tracks
Severity	fe		fe		[Köntges14].	

L.

EXAMPLES	6 (page2)		PVFS 1-1 vs.02
Examples 10-12			
	Zoom of snail track with delami- nation [Yang19].	Zoom of snail track with brow fingers [Sinclair17].	wned Zoom of snail track with delamina- tion [By the courtesy of SUPSI PVLab].
Severity			
Examples 13-15	Cell crack with EVA delamination [By the courtesy of TUV Rhein-	Typical EL picture of a cell of caused by hail [By the course	crack rtesy pact of soldering machine [By the
Severity	land]. (see also PVFS 1-3)	of TUV Rheinland].	courtesy of SUPSI PVLab].
Examples 16-17	Typical EL picture of cell cracks c neous mechanical load (X-crack breakage [Köntges14].	pattern) also without glass	Cell cracks in a module with shingled so- lar cells [By the courtesy of Aerial Inspec- tion].
Severity			

- I

EXAMPLE	S (page3)	PVFS 1-1 vs.02
Example 18	a) b) b) b) a) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) b) <	per ones after transportation
Severity		

Component	Module DV/ES 1.2						
Defect	Discolouration of encapsu	lant or backsheet		PVFS 1-2vs.02			
Appearance	The degradation of the encapsulation or backsheet materials is becoming visible as a light yellow to dark brown discolouration. Colour can be next to or above the cells, along the busbars or cell interconnects or on the back or front side of the backsheet. Often discolouration is inhomogeneous and follows spatial patterns depending on the type of module construction. Typically, for glass/backsheet modules the encapsulant discolouration occurs in the central region of the cells with wide clear encapsulant areas, or "frames" around the cell edges. Discolouration of the backsheet can be observed at the module edges of between neighbouring solar cells. For glass/glass module constructions the encapsulant discolouration is mostly spatially uniform but can also show patterns of clearer areas over some cells. In glass/backsheet modules the location of these patterns generally correlates with cell cracks . In some cases, the discolouration is more pronounced in one or more cells of the module.						
Detection	VI, (IV, IRT)						
Origin	In the past, yellowing or browning was mostly associated with the degradation of the mostly used encapsulant ethylene vinyl acetate (EVA) but this problem was greatly solved by improved stabilisation of the polymer with additives, including UV absorbers and thermal stabilizers. If the choice of additives and/or their concentrations are inadequate, or the lamination process is inadequate or incomplete, the encapsulation material may discolour over time. The root cause of backsheet discolouration is either degradation of the cell side layer of the backsheet or caused by reactions of inter-diffusing additives at the encapsulant backsheet interface. The patterns of discolouration observed in the field can be very complex because of the diffusion of oxygen or the products of reaction, such as acetic acid, generated when heat and UV light interact with EVA. The presence of oxygen leads to the so-called photobleaching effect which creates a ring of transparent EVA around the perimeter of a cell or a cell crack. The case of single cells which are far darker than the adjacent cells, implies that the most discoloured cell was at higher temperature than the surrounding cells, perhaps because of						
	differences between the cells c Production	Installation	Operatio				
Impact	Discoloration is a sign that the polymeric compounds within the module started to degrade. This type of degradation is predominantly considered to be first an aesthetic issue before a decrease of module current and power production is detected. Typically, mean yearly degradation rates due to yellowing are about 0.5%/a and may reach up to 1%/a in hot and humid or moderate climates. While it is uncommon for EVA discolouration to induce other failures within the cell, it may correlate to: high temperatures in the field, the generation of acetic acid and concomitant corrosion and embrittlement . Unless discolouration is very severe and localized at a single cell, where it could cause a substring bypass-diode to turn on, the discolouration of EVA does not present any direct safety issues. More critical is the discolouration of UV sensitive backsheets that in dependence of the used backsheet materials can be a precursor to a loss of mechanical properties (elastic behaviour) and cracking of backsheet due to thermomechanical stresses.						
	Safety:	Performance:	2 3	3			
Mitigation	Corrective actions	Preventive actions (recommended)	Preventi (optiona	ive actions I)			
	Modules with a direct safety risk or a severity of 5 should be replaced. Regular inspec- tions should be done to moni- tor the status of the not re- placed modules.	Check validity of IEC 61218 certification and BOM.	For area request test star	system inspections as with harsh climate, modules pass higher ndards, like double or C 61215 test condi-			

Т

EXAMPLES	6 (page1)				PVF	S 1-2 vs.02
Examples 1-3						
		EVA in the cen- photobleaching ntges14].	Slightly browned EVA in the cen- tre of the cell with photobleaching at the edges [India18].		Yellowed backs side [Sinclair17]	heet from the in-
Severity		H <mark>2</mark> 1		⊢231		1 2
Examples 4-6						
		ion at cell edges, nd over gridlines nclair17].	Dark discoloura zation [Sinclair1	tion over metali- 7].	Backsheet air [Sinclair17].	side yellowing
Severity		-23		H 2 3 - 4 - 1	e	1 2
Examples 7-9						
		ned much faster due to local heat-	Yellowed backsl side [By the cou	heet from the in- rtesy of PCLL].		ne backsheet in th cracked back- by hot cell
Severity				1 2	f m e	⊢2345

L.

Component Defect		alamination				P	VFS 1-3vs.01
Appearance	Any local cell and t ous or in	separation of the lay he encapsulant, visib spots. The position ar of the failure.	le as bubbl	es or as bright,	milky a	area/s. It ma	ay appear continu-
Detection	VI, (INS)						
Origin	mised for linking of improper of the ra stresses,	esion between the glas many reasons. Typic EVA, too short lamin cleaning of the glass w material) or enviro UV). Delamination is more frequent and se	ally, it is ca ation times , incompation nmental fa is generally	too high pressu bility of EVA with actors (e.g. ther followed by mo	nufact ure in t h solde mal s oisture	uring proces the laminato ering flux, ir tresses, ex e ingress ar	ss (e.g. poor cross or, contaminations, nadequate storage tternal mechanical
	Productio	n	Installatio	n 🗌		Operation	
	duced in path betw ule will de bility and interfaces in curren trigger the to leakag issues of	tion or bubbles do no sulation of the comp veen electric circuit ar ecrease performance in some cases also the s in the optical path wi t. This can be the or e bypass diode and ca e current's leading to ten affects a relevant entially has a big impa	oonent and doug to an the structura ll result in a igin of curra ause furthe a further percentag	increased safet due to possible increase of serie al integrity of the idditional optical rent mismatch. I r power loss. The erformance loss. e of modules with	y risk water s resi modu reflect f the le inve Manu thin th	when they ingress. Mo istance, affe ule. Moreove tion and sub mismatch is erter might a ifacturing re	form a continuous oisture in the mod- ect long term relia- er, delamination at osequent decrease s significant, it will also shut down due dated delamination
	Safety:			Performance:	1 2	3 4 5	
Mitigation	Correctiv	e actions	Preventiv (recomme			Preventive (optional)	actions
	risk or a severity of 5 should ce be replaced. Regular inspec- fa		certification fault dete other dev	lidity of IEC 61 on and BOM, gro ction by inverte ices at all time.	ound er or	heat), pre- tions (e.g.	esting (e.g. damp shipment inspec- cross linking level gular visual system

EXAMPLES	(page1)				PVI	FS 1-3vs.01
Examples 1-3		elamination in un- [By the courtesy ab].	cell caused by	elamination from production pro- purtesy of SUPSI		elamination from
Severity		1		1 2		1 2
Examples 4-6	glass (spotted	elamination from due to glass tex- bus bars [Pack-	a cell crack [H	Köntges16]. (see		nbination with cell
Severity		1 2		⊢ <u>234</u> ⊣		-23
Examples 7-9		front of cell in the nodule [Moser17].	connections o	at module insert f a glass/glass on box) [By the PSI PVLab].	Delamination at ges14].	cell edges [Könt-
Severity		⊢234⊣	e	1 2 + - + - +	e	

Т

EXAMPLES	i (page2)				PVF	FS 1-3 vs.01
Examples 10-12						
	Encapsulant de ders [Sinclair17	elamination at bor- 7].		elamination along cell close to the Aoser17].	glass (spotted o	amination of from due to glass tex- e of the cell [Sin-
Severity	•	1	e	1 2 +++	e	-231
Examples 13-15						
		reating a continu- een electric circuit Moser17].	Delamination [Köntges17]. (s	with corrosion ee also FS1-11)	ment of backshe	used by detach- eet with exposure rom the back [By SUPSI PVLab].
Severity	e	<u>⊢</u> 4 5	e	<u>⊢</u> <u>3</u> 4 5	e	

Component Defect		et delamination				Р	VFS 1-4vs.01
Appearance	backsheet tion). The worst case	separation of the po and the rest of the r backsheet may appo e, one or more layers o the cause and prog	nodule, or ear wavy, v s may peel	within the multile with locally limite off. The position	ayer ba ed bum	acksheet (= ps, bubble	internal delamina- s or ripples. In the
Detection	VI, (INS)						
Origin	market. Wi layer) inter degradatic one or mo the backsh from a lack the delami from differ (material in UV and mo frequent a	There are many different forms and compositions of polymeric multilayer backsheets on the narket. With laminated backsheets (polymeric layers adhered to each other by a thin adhesive ayer) internal delamination can appear: the multiple layers may delaminate upon adhesive legradation, which may lead to local delamination of two subsequent layers or a peel-off of one or more layers. Co-extruded backsheet are prone to internal lamination. Delamination of the backsheet from the encapsulant can appear with all types of backsheets and originates rom a lack of adhesion between the backsheet are (i) thermo-mechanical stress originating rom differing CTE of the individual polymeric layers, (ii) chemical reactions at the interfaces material incompatibility) or deteriorated interfacial bonding as a result of the attack from heat, JV and moisture or (iii) external mechanical stress applied on the module. Therefore, it is more requent and severe under hot and humid conditions. Delamination can be also caused by an nsufficient lamination process e.g. too short lamination times.					
	Production		Installatio	n 🗌	C	Operation	
Impact	an immedi the heat co is not furth minimal. H edge of a r provide a co to the press serious sa putting me cause a co	ation occurs forming iate safety issue. The onduction/dissipation her mechanically cra lowever, if delamina module there would be direct pathway for liquisence of dew. That ca fety concern. Simila echanical stress on onnection failure to a litage. In multilayer be	at area wo in through the icked or ex- ition of the be more se uid water to an provide rly, delami live compo	uld likely operat the backsheet is conded, the per- backsheet occu- rious safety cond o enter the modu- a direct electrica nation near a ju- ponents with the co- iode and possib	e at slig disturbe rformar urs nea cerns. E lle durir al pathy nction I danger ly resul	ghtly high ed. But as nce and s ar a junctic Delaminati ng a rainst way to grou box can c of breaka It in an un	er temperatures as long as the bubble afety concerns are on box, or near the on at the edge may orm, or in response und creating a very ause its loosening, age. A break might mitigated arc at full
	Safety:			Performance:	1 2	3 4 -	
Mitigation	Corrective	actions	Preventiv (recomme			Preventive optional)	actions
	risk or a s be replace tions shou tor the sta placed mo dividual r modules w	with a direct safety everity of 5 should ed. Regular inspec- ld be done to moni- atus of the not re- dules. In case of in- nodule testing all which failed the insu- for wet-leakage test replaced.	certification and BOM. Ground fault detection by in- verter or other devices at all time.		Regular sy	stem inspections.	

EXAMPLES	(page1)					PVFS 1-4 vs.01
Examples 1-3						
	Multiple bubbles and edge of the l ges16].	s in the centre backsheet [Könt-		e of vapour bar- ninium foil [Könt-		al bubble + wavy delam- Köntges14].
Severity	•	⊢234⊣	<u>e</u>	1234	•	
Examples 4-5			***			
	Backsheet delar rect exposure of the courtesy of S	encapsulant [By		top layer without apsulant [By the SI PVLab].		
Severity	f e	-234-1		1 2 3		

- I

Component Defect	Module Backsheet cracking				PVFS 1-5 vs.02		
Appearance	Any damage of the backsheet The location and extent of the cracked area may be localized areas (e.g. long or between th	Any damage of the backsheet (surface or whole stack) that is visible as crack, burst or scratch. The location and extent of the cracks depend on the cause and progression of the failure. The cracked area may be localized (e.g bursted bubble, scratch), extend along specific module areas (e.g. long or between the cells, along the busbars) or extend over large or the full area of the module (e.g embrittled surface). The crack can be very deep and affect the back sheet					
Detection	VI, (INS)						
Origin	thermal stress, external mecha with the multimaterial composi- lation (local cuts, scratches). If followed by moisture ingress a humid conditions. The use of material combinations (backsh failures. Discolouration and s	The degradation of the backsheet can be caused by environmental factors like UV-irradiation, hermal stress, external mechanical stress or by internal stress (e.g. thermomechanical stress with the multimaterial composite PV-module) or incorrect handling during transport and instal- ation (local cuts, scratches). Deep backsheet cracking (whole backsheet stack split) is often ollowed by moisture ingress and corrosion . This is more frequent and severe under hot and numid conditions. The use of low-quality material (e.g. low UV resistance) or incompatible material combinations (backsheet ↔ encapsulant) causes most of the premature degradation ailures. Discolouration and strong chalking can be precursors for backsheet cracking. Deep cracks or bursted bubbles can be the result of local hotspots/burn marks that split or break he backsheet.					
	Production	Installatio	n 📃	Operat	ion 🔲		
Impact	A broken backsheet can caus potential ground fault. On the lo into the module which induces case of deep cracks reaching promised and safety is not any	ong-term, p further fail the active	ower degradation ures (e.g. corrosion part of the cells,	due to the on, delamin	penetration of moisture ation) can occur. In the		
	Safety:		Performance:	1234	5		
Mitigation	Corrective actions	Preventiv (recomm		Prever (option	itive actions al)		
	Modules with a direct safety risk or a severity of 5 should be replaced. Regular inspec- tions should be done to moni- tor the status of the not re- placed modules. In case of in- dividual module testing all modules which failed the insu- lation and/or wet-leakage test should be replaced.	verter or other devices at all time, check validity of IEC 61215 certification and BOM, visual inspection before in- stallation.			r system inspections. ition of arc detection		

EXAMPLE	S (page1)		PVFS 1-5 vs.02
Examples 1-3			
	Cracked backsheet in combina- tion with yellowing under a hot cell [Eder19].	Squared cracks beneath cell in- terspaces [Eder19].	Cracking between cells [Pack- ard12].
Severity	f m e + 2 3 4 5		f m e +2 3 4 5
Examples 4-6			
	Longitudinal cracks located un- der bus bars [Eder19].	Backsheet cracking [DuPont20].	Backsheet cracking [DuPont20].
Severity	f m e + 2 3 4 5	f m e + 2 3 4 5	f m e + 2 3 4 5
Examples 7-8	Localized superficial damage [Köntges17].	Deep scratch on backsheet [By the courtesy of TUV Rheinland].	PVDF outer layer cracking [By the courtesy of PCCL].
Severity	f e m 1		f e m -2 3 4 5

- I

Component Defect		Module Backsheet chalking (whitening) PVFS 1-6vs.01					FS 1-6 vs.01
Appearance		wder is detectable on to over the backsheet. In nce.					
Detection	VI						
Origin	layer con	is caused by the pho taining inorganic pign UV blocker.		•	• •		
	Productio	on 📃	Installatio	n 🗌	Oper	ation	
Impact	an ongoin to the de sheet cr a capsulan	does not affect modu ng degradation of the gradation-induced red acking and insulation t/active PV-parts can so on the performanc	backsheet duction of l n failures lead to co	and a precursor JV protection, m can occur. Enha	for severe fore seriou anced mois	backsho s failure ture diff	eet cracking. Due es, such as back- usion into the en-
	Safety:	•		Performance:	1		
Mitigation	Correctiv	Corrective actions Preventive actions (recommended) Preventive actions (optional)				ctions	
	Regular inspections should be done to monitor the pro- gress of the observed failure. Ground fault detection by in- verter or other devices at all time.			ılar syst	em inspections.		

EXAMPLES	(page1)		PVF	5 1-6 vs.01
Examples 1-2				
	Finger with white powder [By the courtesy of TUV Rheinland].	 a module with e courtesy of TUV		
Severity		1		

- I

Component Defect	Module Burn marks				PVFS 1-7 vs.01	
Appearance	Burn marks are visible with th lead to bubbling or melting of the backsheet. Burn marks o inspection with an IR camera i not be visible by IR inspection	the polyme on the back if the back o	ric encapsulant, heet may be not of the module is	and/or gla visible fro not access	ss breakage or a hole in om the front requiring an sible. They may however	
Detection	VI, IRT, (EL)					
Origin	errors (e.g weak solder bonds, rors, metal particles) and/or t back-sheet) in combination w cuited bypass diodes , revers tion, heavy snow loads, a ligh shading during long-term PV s tion parts to break. Burn marks	The defect is associated with parts of the module that became very hot because of production errors (e.g weak solder bonds, ribbon breakage, incomplete cell edge isolation, alignment er- ors, metal particles) and/or transportation/handling errors (e.g, cracked cells, damaged pack-sheet) in combination with one or more operational factors (e.g. shadowing, open cir- suited bypass diodes , reverse current flows). Physical stress during PV module transporta- on, heavy snow loads, a lightning strike, thermal cycling, and/or hot spots by partial cell hading during long-term PV system operation forces mechanical weak(ended) cell/connec- on parts to break. Burn marks occur for example when a reverse current flow causes heating hat further localizes the current flow, leading to a thermal runaway effect and the associated				
	Production	Installation	n 📃	Oper	ation	
Impact	Burn marks on interconnection cal interconnections are provid output. If all solder bonds for of blocked and an electric arc cal and the system operates at his severely compromised. Such a around. If there is a question a ment of the module, an infrared quickly identify whether the a stopped in that part of the circu- not be over 30 K. At this stage this hot spot cell does not incr on the solar cell level are unde is in open-circuit, the current is the encapsulation.	ed, a failed one cell bre n result if th igh voltage. an arc can c about wheth d image unc area is cont uit. Temper safety risk rease to mo r normal co	solder bond may ak, then the curr ne current cannot Performance, re cause a fire if ther ner the existence der illuminated an tinuing to be ho rature difference may still be not so ore than around an nditions not prob	have negl ent flow in t be bypas eliability ar re happen of the bur d/or partia t and/or w between n so high bed 100 °C. Als lematic, bu	igible effect on the power that string is completely sed by the bypass diode nd safety are likely to be to be flammable material n mark requires replace- lly shaded conditions will whether current flow has reighbouring cells should cause the temperature of so edge isolation faults at when the bypass diode	
	Safety:	m	Performance:	1234	5	
Mitigation	Corrective actions	Preventive (recomme		Preve (optic	entive actions onal)	
	Modules with a direct safety risk or a severity of 5 should be replaced. Regular inspec- tions should be done to moni- tor the status of the not re- placed modules.Visual inspection before in- stallation, commissioning of system with IRT.Regular system inspections.				lar system inspections.	

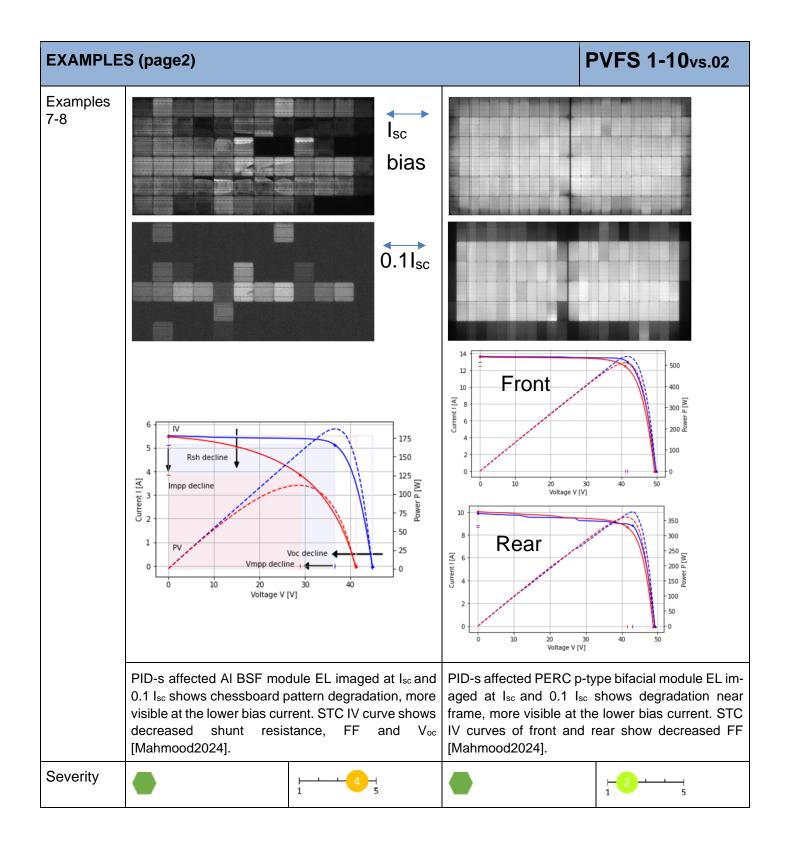
EXAMPLES	(page1)		PVFS 1-7 vs.01
Examples 1-3			
	Burn mark at the backsheet with cracked backsheet [Sinclair17].	Burn marks at the backsheet due to heating along a busbar [Könt-ges14].	Burn mark associated with over- heating along the metallic inter- connection (without back-sheet damage) [Köntges14].
Severity		f e m 3 4 5	
Examples 4-6			
		narks caused by open-circuited by- ch conditions (due to shading or	Burn marks caused by defect bypass diodes or an intercon- nect failure in the junc. box [Köntges14].
Severity	f e m	<u>⊢−−−345</u>	f e m 3 4 5
Examples 7-9			
	Burn mark with broken glass caused by poor bussing ribbon soldering [Yang19]. (see also PVFS 1-8 and PVFS 1-8)	Burn mark due to intrinsic shunt- ing caused by error in manufac- turing process [Yang19].	Burn mark due to intrinsic shunting caused by error in manufacturing process [Yang19].
Severity	f e m 3 4 5		

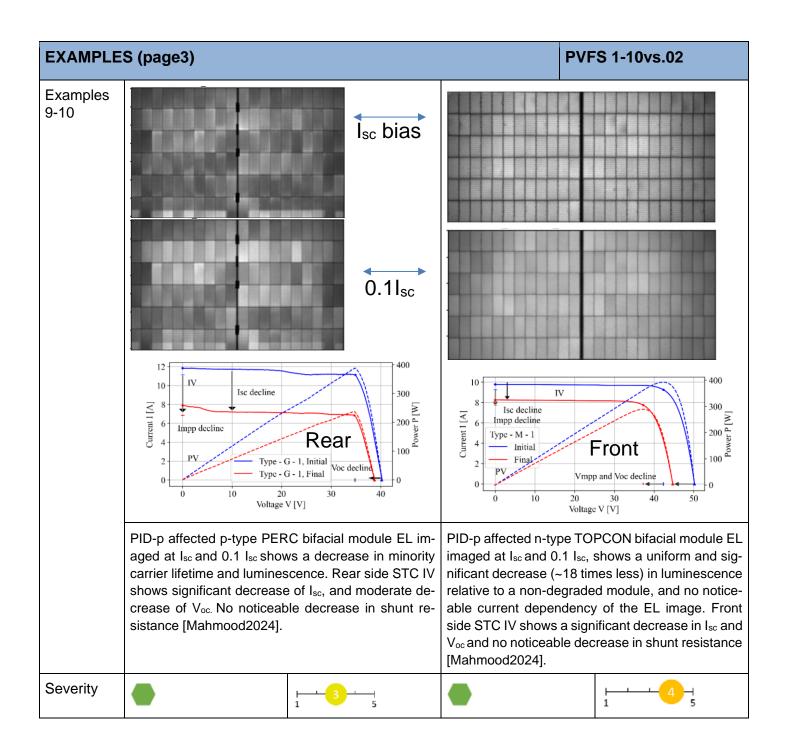
Component	Module		DV/50 4 0				
Defect	Glass breakage		PVFS 1-8 vs.02				
Appearance	depending on the type of glass tempered glass will shatter in pieces. Heat-strengthened glass	Glass is cracked locally or over the full area of the module. Glass breakage looks different depending on the type of glass and the origin of the glass breakage. Thermally toughened or tempered glass will shatter into small pieces, whereas annealed glass breaks into larger pieces. Heat-strengthened glass stays in between. Cracks occurring on the rear glass of glass/glass modules are more difficult to see by eye especially in the case of thin heat-strengthened glass.					
Detection	VI, (IRT)						
Origin	Glass breakages of the front glass can be caused by heavy impacts such as hail or stones or other extreme mechanical stress onto the module frame due to external stresses or bad mounting or internal stress due to high temperatures originating from hot-spots or arcing . Annealed glass can break due to thermal gradients or stress induced by the lamination process or cleaning of the modules. A relatively frequent failure in the field is glass breakage of frameless PV modules and glass/glass modules. In particular bifacial modules with thin glasses with a thickness of 2 mm to 1.6 mm, are more sensitive to glass breakage. This is due to the fact that thin glass cannot be fully tempered like 3 mm thick glass, reducing the surface resistance against stress, impacts and scratches. Very often the cracking of thin glass starts on the rear glass. The origin is not fully understood. In some cases the origin is in the preparation of the cutting edges or the drilling of the holes for the connection to the junction box. At the planning and installation stage failure occurs due to either (a) poor clamp geometry for the module, e.g. sharp edges, (b) too short and too narrow clamps or (c) the positions, kind or number of the clamps on the module not being chosen in accordance with the manufacturer's manual. The second origin which induces glass breakage could be excessively tightened screws during the mounting phase or torsion of the module, not respecting requirements for planarity. The glass of some PV modules may also break due to vibrations and shocks occurring during transportation or handling. Another reason for glass breakage comes from impact stresses on the glass edge. Sometimes vandalism or damages by animals occurs (e.g. ani-						
	Production	or birds dropping stones or othe Installation	Operation				
Impact	Module mechanical integrity is compromised when the glass is broken. Over time glass break age leads to loss of performance due to cell and electrical circuit corrosion caused by the penetration of oxygen and water vapour into the PV module. Shattering of tempered glas usually also breaks the cells reducing the power of the module and increasing the risk of ho spots and arcs. Mechanical and electrical safety is thus compromised. Firstly, the insulation of the modules is no longer guaranteed, in particular in wet conditions and ground fault and in verter shutdown can occur. Secondly, glass breakage causes hot spots, which lead to over heating of the module and possible fire injection. A module with a completely broken glas lead to current and power reductions in the whole string.						
	Safety:	Performance: 1	2 3 4 5				
Mitigation	Corrective actions	Preventive actions (recommended)	Preventive actions (optional)				
	All damaged modules have to be replaced. In case of known origin, the error must be rectified. Regular visual in- spections are recommended in case of unknown causes not related to external impact.						

EXAMPLES	PVF	PVFS 1-8 vs.02				
Examples 1-3						
	Chipped glass [Packard12].	at the corner	Glass breakage interconnect ribbo manufacturing p courtesy of SUPS	ons due to weak rocess [By the	Glass breakage of tempered glass induced by a hot-spot [By the courtesy of SUPSI PVLab].	
Severity		1	f m e m	-23	f e m	<u>⊢345</u>
Examples 4-6						
	_	caused by too öntges14]. (see	_			e caused due to sign [Köntges17]. 53-1)
Severity	f m e m		f m e m	H 2 3 4 H	f m e m	
Examples 7-9	Glass breakage through high temperature gradient and not		Glass breakage of tempered glass induced by burn mark		Breakage of [Köntges17].	tempered glass
	tempered glass [Köntges14].	[Köntges17]. (see and PVFS 1-9)	e also PVFS 1-7		
Severity	f e m	⊢345		<u>⊢</u> 4 5		<u>⊢</u> 4 5

Т

EXAMPLE	S (page2)	PVFS 1-8 vs.02	
Examples 10-12			
	Direct lightning stroke [Könt- ges16].		Hail damage [By the courtesy of SUPSI PVLab].
Severity		f e m + 5	
Examples 13-15			
	Broken thin (<=2 mm) rear glass. Long (many dcm) crack lines without splitting the crack with no clear crack start.	Glass breakage on the rear side of a bifacial module caused by insufficient spacing between modules (thermal expansion of module frame is not considered).	
Severity			


Component Defect	Module Cell interconn	oction failur		PVFS 1-9vs.02					
Delect	Cell interconnection failure								
Appearance	Weak or broken interconnection of cells or substrings is not easy to be seen by the naked eye. The failure can be identified as dark region in the electroluminescence image where the failed interconnect would not be collecting carriers and result in a hot spot in the infrared image. In a progressed stage burn marks and glass breakage can occur. A short-circuited cell is also difficult to recognize with naked eye, while it appears as dark cell in the EL image. For parallel connected substrings the substring with short-circuited cell ap- pears brighter in an EL image and slightly warmer in IRT than other substrings in parallel connection.								
Detection	EL, IRT, STM, (VI)								
Origin	Typically, it is caused by the manufacturing process (e.g. poor soldering, misplacement of ribbons, too intense deformation of the ribbon kink, narrow distance between the cells, incorrect conductive glue application) followed by thermomechanical stress or repetitive wind load caused by the outdoor operating environment. Electrochemical corrosion can be another cause for the degradation of interconnections. Short circuited cell occurs when the interconnection ribbon or conductive glue connects the front and rear sides of a cell.								
	Production		Installatio	n 🗌	Operat	ion			
Impact	Poor interconnections (soldering bonds) lead to an increase of contact resistance, higher power dissipation and localized heating. Broken connections are often associated with power loss, but if redundant electrical interconnections are available, a failed connection may have negligible effect on the power output. Safety risk may be not so high until the temperature of the induced hot spot does not increase to more than around 100 °C. If all busbars of a cell are interrupted, then the current flow in that string is completely blocked and an electric arc can result if the current is not bypassed by the bypass diode and the system operates at high voltage. The safety risk depends on the durability of this bypass diode. A bypass diode, which is continuously active over days can be damaged and pass into open-circuit or short circuit state. As a result of an open circuited diode , the current goes through the failed cell string and generates heat at the disconnected position. Very high temperatures or an electric arc may cause fire, expose the electrical conducting parts to the user and destroy the mechanical integrity of the module. For series connected cells in a module only the power of the short-circuited cell(s) is/are lost. The impact of short-circuited cells in a parallel connection has to be assessed in detail, but it is lower than the power of cells equivalent to the number of parallel connected cell times maximum number of short-circuited cells.								
	Safety:	f e m f		Performance:	1234	5			
Mitigation	Corrective actions		Preventive actions (recommended)			Preventive actions (optional)			
	Modules with a direct safety risk or a severity of 5 should be replaced. Regular inspec- tions should be done to moni- tor the status of the not re- placed modules.		Check proof of factory inspec- tion according to IEC 62941. Commissioning of system with IRT.		11. samplir tem module site.	pment inspection or ng EL inspection when as arrive the installation r system inspections.			


- I

EXAMPLES	(page1)				PVF	S 1-9 vs.02
Examples 1-3			Disconnected			
	Zoom of a brok nect [Yang19].	en cell intercon-	-	odule with 3 cells ed inter-connect s14].	Disconnected of with delamination	cell interconnect n [Köntges17].
Severity	f e	-234-1	f e	⊢234⊣	f e	
Examples 4-6		interconnection		of atring inter	Mirce are which	occur if the con-
	ribbon [Sinclair1		connect leading	to burn mark and ang19]. (see also	ductive glue on	the string inter- insufficient con-
Severity	e f	1 2	f e m	<u>⊢</u> <u>-</u>	f	⊢234⊣
Examples 7-9						
	cuited shingled or rectly applied c	age of short cir- cells due to incor- onductive adhe- ourtesy of Remy ol].				
Severity		H 2 + + + +				

Component							PVFS 1-10vs.02
Defect	Potentia	I induced degrada	tion (PID)			
Appearance	of c (corre and some be detect atory, wh and is me PID-s is a where th causes a under low being har of PID in ing on the	nting) and p (polarization) -type PID are not optically visible; however advanced stages prosion) or d (delamination) -type PID are visible. PID causes a progressive power loss me PID modes may also manifest in discoloration and hot spots over time. PID-s can ected through IRT imaging of operational PV modules in direct sunlight or in the labor-where PID appears as warmer cells close to the bottom frame or patchwork patterns, more significant in PV modules positioned close to one of the poles of the PV string. Is also detectable by EL imaging, especially under low current bias (1/10 rated current), the affected cells closer to the module frame show reduced luminescence. PID-s a decreased shunt resistance, FF, and V _{oc} in the IV curve, and is more noticeable ow light. PID-p shows a decrease of luminescence and no low current bias dependency, harder to detect with EL images. IV measurements can be used to confirm the presence in combination with IRT or EL. PID-p causes a decrease in I _{sc} and V _{oc} , typically originat-the rear side of p-type-base cell modules (PERC) and the front of those using n-type PERT, TOPCon, IBC).					
Detection	IV, EL, IR	RT, (MON)					
Origin	PID is a degradation mode induced by a high voltage stress with respect to ground. The oc- currence of this failure depends on the magnitude of the voltage (number of serially connected PV modules per string) and the polarity of the electrical field build-up between the fram- ing/glass surface and the solar cells. The last depends on the inverter typology (transformer), the grounding concept, and cell technology. Modules with p-type cells degrade in negative polarity strings whereas modules with n-type cells in strings with positive polarity. The degra- dation is accelerated by elevated temperature, humidity, rain (surface wetting), condensation and soiling. PID-p is caused by the build-up of surface charges on the cells, which results in a current loss. PID-s is induced by leakage currents coming from the displacement of Na+ ions from the module's front or rear glass and through the encapsulation material. The flow of Na+ ions creates shunts in the cells. For both PID types, module and cell design has a fundamental influence if and how much a module is affected by PID. There are modules on the market that					ber of serially connected -up between the fram- typology (transformer), Ils degrade in negative tive polarity. The degra- wetting), condensation cells, which results in a splacement of Na+ ions haterial. The flow of Na+ esign has a fundamental	
	Productic	n	Installatio	n 🔲		Opera	tion
Impact	Yield losses of 20 percent and more within 1 year were observed in the past. Due to its strophic performance loss, PID bears a high economic risk. PID-s is to some extent a revel ble polarization type and can therefore be partially reversed or stopped when detected in However, if detected too late, it can lead to irreversible power loss. The PID-p effect can instead a significant reduction of I _{sc} , V _{oc} and power. PID-p is thought to be fully regene by reversing the polarity of the bias potential. In some cases, material degradation of the ules through corrosion and delamination occurs associated with excessive leakage cu Up to now, safety problems directly related to the PID have not been reported, but hot and corrosion caused by the strong cell mismatch may cause such safety issues.				b some extent a reversi- d when detected in time. The PID-p effect causes to be fully regenerated degradation of the mod- essive leakage current. reported, but hot spots		
	Safety:			Performance:	⊢2	3 4	5
Mitigation	Correctiv	e actions	Preventive actions (recom- mended))-	Prever (optior	ntive actions nal)
Recovery of early-stage PID is possible by placing mod- ules in non-sensitive polarity strings, applying a reverse voltage. More advanced PID cannot be fully recovered.			62804-1 are PID. Optional	less	PID-se strings ground with a	g the modules in non- ensitive DC voltage with one terminal ded using an inverter transformer or invert- th anti-PID features.	

EXAMPLES	6 (page1)			PVFS 1-10vs.02
Examples 1-2		55 65		22 22
	Strings with PID-s, detecte ges14].	ed with IR thermography [Könt-	Dark IR thermoo affected by PID-	graphy at Isc for a module s [Köntges14].
Severity		⊢2345		⊢2345
Examples 3-4	PV-	PV+		
	Strings with PID-s, detected	d with EL imaging [Köntges14].		ence image made at Isc affected by PID-s [Könt-
Severity		⊢2345		⊢ 2 3 4 5
Examples 5-6	Current A	1'000 W/m² MPP (STC): 22.2 W 200 W/m² MPP (200): 1.6 W (-63.6%) 10 20 30 40 50 Voltage [V]		
		power loss of 89%, left: EL at the same module at 1000 and	14%. top: EL at	nodule with power loss of $1.5 \times I_{sc}$. bottom: EL of the 0.2 x I_{sc} [Herrmann21].
Severity		<u> </u>		<u>⊢</u>

Т

Component Defect	Module Metallisation discolouration	on/corros	ion		PVFS 1-11 vs.01	
Appearance	visible as a light yellow to dark on the material combinations of products that may appear pow tinge. The defect occurs typic cell/string interconnect ribbons lamination and discolouratio certain circumstances corrosio of the EL images can here high	rosion of the cell metallisation and the interconnections is getting k brown to black discolouration of the electrical parts. Depending corrosion is furthermore noticeable by the presence of galvanic owdery, white, light gray, and/or have a yellow, blue, or green bically at the solder bonds, on the cell gridlines/fingers or the ns. It is very often observed together with other failures like de- ion of the encapsulant and sometimes with burn marks . Under ion is more visible near cell edges. Dark areas at the cell borders ghlight the diffusion of moisture through the rear side of the mod- e cells and the subsequent front side cell corrosion starting from				
Detection	VI, (EL, IV)					
Origin	The corrosion/oxidation of the in the encapsulant, as e.g. ace EVA or remaining crosslinker (lisation and the cell interconner process leads together with th can be caused by a poor man lamination process; imperfection sion resistance of tin-based co and/or encapsulant materials). monia, salt, humidity, temperat under hot and humid climates be also related to non-corrosiv flux residues on the ribbon.	tic acid, a peroxides) ct. The ing e oxygen t ufacturing ons in cell s ating of cc Environm ure). For th or in agric	degradation prod Acetic acid has ress of moisture to a further acce process (e.g res soldering) or the opper ribbons, hi ental factors can hese reasons, co ulture or maritim	duct of the a corrosiv caused by eleration of sidual cross choice of p gh water p n accelerat prrosion is r e environn	mostly used encapsulant e effect on the cell metal- an ongoing delamination the corrosion. Corrosion slinker due to a too short poor materials (low corro- ermeability of back sheet te the corrosion (e.g am- more frequent and severe nents. Discolouration can	
	Production	Installatio	n 🗌	Oper	ration	
Impact	The metallisation, and/or interce therefore losses in module per metallisation discolouration with issue. Locally increased series significant, it can trigger the by Safety:	formance. hout corros resistance	The power loss i sion. The defect of leads to current	is less pror does not au mismatch.	nounced for modules with utomatically pose a safety If the mismatch is getting	
Mitianation		Dreventiv				
Mitigation	Corrective action	Preventiv (recomme			entive actions onal)	
	Modules with a direct safety risk or a severity of 5 should be replaced. Regular inspec- tions should be done to moni- tor the status of the not re- placed modules.	Check validity of IEC 61215 certification and BOM.		215 Regu	ular system inspections.	

EXAMPLES	S (page1)				PVF	S 1-11 vs.01
Examples 1-3						
		due to corrosion itive flux residues		due to corrosion By the courtesy of	String inter [Köntges17]	connect corrosion.
Severity		1				1 2
Examples 4-6						
	Cell intercor [Köntges17].	nnect corrosion		ight Ag finger oxi- ears in the field	burn marks busbars, an	lation/corrosion and on the Ag fingers, ad interconnects of er 25 years [Yang19].
Severity		1 2		+2+	•	
Examples 7-9						
		n as red, green colouration in the nect [Yang19].		on and delamina- e [By the courtesy ab].		module showing de- nd subsequent cor- ges17].
Severity	ee	⊢2345	e	<u>⊢</u>	e e	<u>⊢</u> 4 5

Component Defect	Module Glass corrosion or abrasion PVFS 1-12vs.01						
Appearance	The degradation of the glass front layer is getting visible as a homogenous or heterogeneous change in colour and transparency of the glass. The affected glass surface can appear hazy or milky and in some cases also rougher compared to the non-degraded module/module area. Increased susceptibility to soling could be observed.						
Detection	VI, (IV)						
Origin	To optimise the efficiency and appearance of a PV module most manufacturers apply some anti-reflective coatings (ARC), anti-soiling coatings (ASC) or multilayer coatings on the front of their modules. 1-3% more power can be obtained by these techniques respect to module with uncoated glass. Corrosion or abrasion of these layers can however, reduce or vanish the effectiveness of these coatings. Glass corrosion is caused by atmospheric humidity in combination with gases or particles present in the atmosphere (e.g. pollutants, salt, ammonia) and the glass. It happens for example when water (dew) dissolves some of the sodium ions from the top of the soda lime glass, leading to the production of an alkali base that can then corrode the glass silicate. Glass abrasion or corrosion can be also caused by inappropriate cleaning techniques (mechanical removal techniques, inappropriate cleaning agents) which damage or removes the coatings. Abrasion occurs mostly in the desert, due to the combination of wind, sand and dust which causes abrasion and frosting of the glass surface.						
	Production	Installatio	n 🗌	Oper	ation		
Impact	Corrosion or abrasion of the gl a power loss. The power loss i except in the case where the s can be observed. Operating ar	s generally soiling susc	limited to a few ceptibility is signi	percent ar ficantly inc	nd is saturating over time reased and larger losses		
	Safety:		Performance:	⊢234			
Mitigation	Corrective actions	Preventiv (recomme		Preve (optic	entive actions onal)		
	Modules with a direct safety risk or a severity of 5 should be replaced. Depends on the level of performance loss. For extreme environments (e.g. near to mines, cement facto- ries), evaluate cost-effective- ness of replacing modules with lost yield.	I certification and BOM, appro- priate component selection in function of intended applica- tion.			lar system inspections.		

EXAMPLES	(page1)		PVFS 1-12 vs.01
Examples 1-3	Zoom of module with hazy glass (homogenous discoloration) due to surface corrosion [India13].	Zoom of module with hazy glass (heterogenous discoloration) due to surface corrosion [Petter11].	Hazy glass due to glass corro- sion close to frame [India18].
Severity			
Examples 4-5		nono-Si back-contact module after	Glass corrosion [Köntges16].
	damp heat 90/90 testing [Walsh2	0]. 	
Severity			

Component Defect	Module Defect or detached junction box PVFS 1-13vs.0						
Appearance	The junction box housing and lid appears either defect (weathered, brittle, cracked, warped, melted or burned) and/or detached (open or loose lid, shifted or detached junction box from backsheet). The sealant/adhesive material with which the junction box is attached to the backsheet can be weathered or appear as yellowed. The sealing components/material around the wire entrance or the lid can be damaged (squeezed, broken, brittle) or completely missing.						
Detection	VI						
Origin	Junction box detachment results from poor fixing of the junction box to the backsheet or use of low quality adhesive. Acrylic or PE Foam tapes were used as junction box attachment ma- terial in early years, but they frequently loss stickiness at low temperature and result in de- tachment. Use of inadequate IP rating junction box may cause water intrusion and subsequent failure. Opened or badly closed j-boxes may due to poor manufacturing process or air pres- sure caused by high temperature for boxes with no exhaust path. Delamination near a junction box can cause it to become loose. Improper handling or mounting of the modules can be also the cause of damages the j-box, like pulling modules up on the cables before mounting, or missing cable fixing or usage of too short cabling to interconnect modules to a string, causing frequent or permanent mechanical stress on the j-boxes.						
	Production	Installatio	on 🔲	Opera	ation		
Impact	A defect or detached junction I nections, leading to performan quent initiation of fire. Furthern contacts within the junction box electrical components.	nce losses more, a loc	and increasing risk on ose junction box is put	of elect	rical arcing and subse- nechanical stress on the		
	Safety:		Performance:	(1 2 3 4 5		
Mitigation	Corrective actions	Preventiv (recomm	re actions nended)	Preventive actions (optional)			
	Modules with a direct safety risk or a severity of 5 should be replaced or repaired. Regular inspections should be done to monitor the status of the not replaced modules.	Check validity of IEC 61215 certification and BOM. Ground fault detection by in- verter or other devices at all time.		Ũ	lar system inspections. lation of arc detection		

EXAMPLES	(page1)				PVF	5 1-13 vs.01
Examples 1-3	6					
	Poorly bonded the backsheet	l junction box on [Köntges14].	Open junction [Yang19].	box in the field	Detached jund backsheet [By SUPSI PVLab].	tion box from the courtesy of
Severity	f e	1	• • • • • • • • • • • • • • • • • • •	12345	<u> </u>	12345
Examples 4-5	Loft: Missing i					e stroip rolive of
		unction box lid se nction box sealing		sion of contacts.	-	r strain relive of improper cable
Severity	f e		12345		f e	12345
Examples 6-7	Melted junction tesy of TUV Rh	box [By the cour- neinland].	corroded cont	box caused by acts within the		
			junction box [B TUV Rheinland	y the courtesy of].		
Severity	f e	·	f e	<u>⊢ ' 1 5</u>		

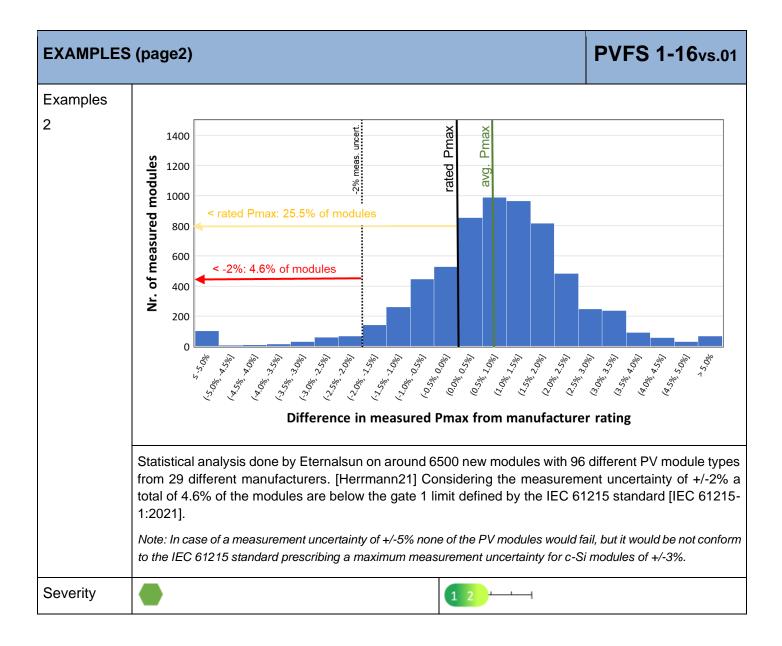
Component Defect	Module Junction box interconnect	tion failur	e		PVFS 1-14 vs.02	
Appearance	Not connected, broken, burned, corroded or short circuited parts within the junction box. It can involve solder joints, wires, bypass diodes or tabbing ribbons. The interconnection failure itself could be hidden by the potting material in the junction box and be visible only by removing the potting material. The material can appear as degraded (yellowed, browned, burned or bubbled) due to the heat or arcing occurring in the junction box.					
Detection	BYT, (IRT, EL, VI, IV, VOC)					
Origin	Bad contacts in the junction box can be caused by cold solder joints, thermo-mechanical caused changes in contacts, wrong assembly or moisture ingress. Contacts are either soldered, screwed or inserted (mechanical spring clamping). Bad soldering contacts are caused by low soldering temperature (cold solder joint) or chemical residuals of the previous production process on the solder joints. Bad mechanical contacts are caused by loose clamping or screws. Mechanical contacts can get loose due to the thermal cycling of day and night and seasonal changes. Moisture ingress in bad or damaged junction boxes (e.g. adhesion loss, brittle, cracked, missing seal at wire entrance or junction box housing) leads to corrosion of the contacts. Delamination near the junction box can cause it to become loose, putting mechanical stress on the contacts within the junction box and breaking them.					
	Production	Installatio	n 🗌	Opera	ation	
Impact	Depending on the position of the circuit or arcing) the impact on can moreover result in discolor and around the junction box and cause a short circuit or internation camera (hot spot). Furthermore module as a diode failure if the bypass diode protection). In a to significant power losses or lamodules or strings. The means stress conditions. Interconnect triate fire.	safety and puration ar d to glass al arcing w bre, connect addition to oss of shad surement c	performance can be with the breakage . In the work ithin the j-box. The his ction failure could lead ion to a bypass diod the visual defects, interestilience, which can be affected by characteristic or the structure of the could be affected by characteristic or the structure of the could be affected by characteristic or the could be affected by the could by the could by the could be affected by the could by th	very dif encpa st-case eat car ad to e e is los erconn an bot an bot	ferent. Resistive heating sulant/backsheet behind interconnection failures be detected with an IR equal impacts to the PV st (missing/insufficient ect failures can also lead h be detected by BYT of g mechanical or thermal	
	Safety:		Performance:	(12345	
Mitigation	Corrective actions	Preventiv (recomm		Preventive actions (optional)		
	Modules with a direct safety risk or a severity of 5 should be replaced, especially if the modules are installed on buildings. Regular inspections should be done to monitor the status of the not replaced modules.	Request a proof of IEC 61730-2:2023 Annex A5 a) or b) bypass diode functionality test in production. Commis- sioning of system with IRT or BYT. Compare VOC of paral- lel strings.		odes prior IRT in	ng the module bypass di- with a mobile test centre to installation. Regular ispections. Installation of etection tool.	

EXAMPLES	6 (page1)				PVF	S 1-14vs.01
Examples 1-3						
	Junction box v [Köntges14].	vith poor wiring	Detached tabbir bad soldering [K	ng ribbon due to öntges14].	Corrosion failur soaking of the [Yang19].	e due to water IP65 rated Jbox
Severity	ſ	<u> </u>	f	<u> </u>	(⊢ <u>2345</u>
Examples 4-6		2160				
	Jbox failure due connection [Yan	e to poor electric g19].		e screw connec- with browning of].	sing ribbon to	of module bus- the Jbox connec- pad with minor ttant [Yang19].
Severity	f e m	<u>⊢</u> 3 4 5	(f)	⊢2345	F	⊢ <u>2345</u>
Examples 7-9					Art Sol 1	302.4
	interconnect lea	e to the poor Jbox ding to light dis- urn mark on front (ang19].	interconnect le	e to the poor Jbox ading to burn lass breakage		hotspot Jbox due ic connection in-
Severity	f e m	<u>⊢ • 3 4 5</u>	f e m	<u>⊢</u> <u>3</u> 4 5	f e m	<u>⊢ • 3 4 5</u>

EXAMPLES	(page2)		PVFS 1-14 vs.02
Example 10	Substring (SS) SS very hot when shaded Cold solder joint	String current Cross-sectional view of module laminate	
	A cold solder joint after the diode in any juresult in a safety failure that is undetectable with night EL inspection while applying strin courtesy of Ternus & Diehl GbR].	by IRT. The not connect	ted bypass diode is visible
Severity			
Example 11		••• String current ross-sectional view f module laminate	
	A cold solder joint before the diode in the detectable by IRT. However, if the inner jun sub-string to operate in open circuit [Köntge	nction box is affected, it d	•
Severity	f e m	<u>, , , , , , , , , , , , , , , , , , , </u>	
Example 12		ring current Cross-sectional view of module laminate alle string in OC	
	Cold solder joints before and after the diod which is detectable by IRT. The module lo box is impacted, the module continues to b	cation remains unidentif	iable. If the inner junction
Severity	f e m	<u>, , , , , , , , , , , , , , , , , , , </u>	

Component Defect	ModulePVFS 1-15vs.02Missing or insufficient bypass diode protection						
Appearance	Missing, dis	sconnected, inverte	d, damage	d, open circuited	l or short	circuited	bypass diode.
Detection	BYT, (IV, IF	RT, EL, VI, VOC)					
Origin	voltages du the diodes working co partial shac PV module stress. Two Short circu box, it is m lightning str ing, it is no not resisting	Bypass diodes fail either because they are undersized or because they are exposed to high roltages due to lightning strikes or other high voltage events. In addition to these two reasons, he diodes have a certain ppm of failure rate, that is the nature of the component. For diodes vorking constantly at high temperatures this failure rate increases. This can be the case, if partial shading is frequently present. Typically, Schottky diodes are used as bypass diodes in PV modules, but they are very susceptible to static high voltage discharges and mechanical tress. Two main failure modes are observed with bypass diodes: open circuit or short circuit. Short circuit condition occurs when the bypass diode is physically shortened in the junction box, it is mounted the wrong way around or when it has been exposed to high voltages like ghtning strikes or static electricity. Open circuit condition occurs when a diode is simply missing, it is not properly connected, a strong current damaged the diode, or it is undersized and not resisting to a continuous current flow. Short circuit failures are reported to be more frequent han open circuit failures. However, open circuit failures are normally not detected.					
	Production		Installatio	n 🗌	Ор	eration	
Impact	lowed cell r shading on the bypass cell and ma fire. This fa circuited by of the mod during open failures sor the junction	des are used to ave everse bias voltage the PV module. In t diode and a cell ca ay evolve hotspots illure is difficult to b pass diode will con ule. A short-circuite ration. Also it causes netimes cause the jun rrent may follow.	of the sola he case of in be rever that may c e detected atinuously I ed module s mismatch junction bo	r cells and to red an open circuite sed with a highe cause browning until the modul ower the voltage leads to inhomo n losses in the ca ox to deform or e	uce the p d diode n er voltage , burn m e is expo e and the ogeneous ase of pa even burr	ower loss o current than it is a rks or, i sed to the reby the s heating rallel strin at due to l	a caused by partial is flowing through a designed for the in the worst case, ese risks. A short power production of individual cells ngs. Bypass diode heat dissipated in
	Safety:			Performance:	1 2 3	4 5	
Mitigation	Corrective actions		Preventiv (recomme		-	Preventive actions (optional)	
	risk or a se be replac the modu on buildin spections s monitor the	odules with a direct safety sk or a severity of 5 should e replaced, especially if e modules are installed n buildings. Regular in- bections should be done to onitor the status of the not placed modules.			a) or ode ality pric mis- IR1 T or arc	es with a or to ins	module bypass di- mobile test centre tallation. Regular ons. Installation of n tool.

EXAMPLE	S (page1)		PVFS 1-15 vs.02
Example 1	Diode SC	String current	
	A short circuited bypass diode causeS a 1/3 pow	ver loss and i	is detectable by IRT [Köntges25].
Severity		5	
Example 2	Diode OC Outer JB Inner JB Outer JB	String current	
	An open circuited bypass diode causes a safety	failure that is	undetectable by IRT [Köntges25].
Severity		12	


Component Defect	Module Not conform power rating PVFS 1-16vs.0							
Appearance	The STC output power of a brand new module is below a specified tolerance limit or the min- imum nameplate output power is not clearly specified by the manufacturer.							
Detection	IV, (MON)							
Origin	pends on the product variability ment uncertainty. The quality of applied in production for the r product variability. The deviat sources of uncertainty, for exa- ature, calibration of the solar si equipment, connectors and cal has to take into account any te 17). This means that after a fir to be within the rated power to performing the STC performant have to be stabilised accordin specific test requirements are pending on the technology, a n verification of power ratings. For	eviations of the measured power of a single module respect to the name plate power de- ends on the product variability, manufacturing quality, the labelling policy and the measure- ent uncertainty. The quality of cells (e.g. LID susceptibility) together with the binning method oplied in production for the reduction of mismatch losses, has a significant impact on the roduct variability. The deviations in the measurement in the factory comes from several purces of uncertainty, for example the environment temperature, measured module temper- cure, calibration of the solar simulation, maintenance of the reference module, measurement quipment, connectors and cables. According to the international standards, the power rating as to take into account any technology related initial degradation effects (for c-Si see FS 1- 7). This means that after a first exposure to light the output power of a new module has still be within the rated power tolerance. The measurement uncertainty of the test laboratory erforming the STC performance test has therefore to be taken into account. The modules ave to be stabilised according the procedure described in IEC 61215-2:2021. Technology becific test requirements are described in IEC 61215-1-4:2021. De- ending on the technology, a maximum allowable measurement uncertainty is defined for the erification of power ratings. For c-Si modules it is specified as 3%. A PV module is considered be conform to the IEC61215 standard, when following criterion (gate 1) is fulfilled:						
	P _{max} (Lab) ·	$\left(1 + \frac{\frac{1.65}{2} m_1 [\%]}{100}\right) \ge P_{\max}(N)$	$P) \cdot \left(1 - \frac{ t }{2}\right)$	$\left(\frac{1}{100}\right)$				
	P_{max} (Lab): measured maximum STC P_{max} (NP): minimum rated nameplate	power of each module in stabilized to power of each module without rate		on tolerances				
	m ₁ : measurement uncertainty	, in % of laboratory for P_{max} (expand	led combine	d uncertainty (k = 2)				
	t ₁ : manufacturer's rated low	er production tolerance in % for P_{ma}	x					
	The minimum nameplate power nameplate or data sheet value the nameplate value, the modu stated on the nameplate or the value on the nameplate or da uncertainty components are sp	es. If the $P_{max}(NP)$ derived frough the considered to be n datasheet, then $t_1 = 0$. If the to ta sheet (for example, if multiple)	om the dat ot conforn plerance is tiple toler	asheet is different from n. If the tolerance is not s not reduced to a single ances or measurement				
	Production	Installation	Opera	tion				
Impact	A non-conform STC power rati safety issue, but it has a negat incorrect estimation of the insta tions and investor expectations	tive impact on the lifetime energy alled STC power has a direct i	ergy yield	and financial return. An				
	Safety:	Performance:	1 2 3					
Mitigation	Corrective actions	Preventive actions (recommended)	Prever (optior	ntive actions nal)				
	Confirm underperformance through an accredited PV test laboratory. Claim for missing power.	endent third party test- samples at factory gate arrival on site. Signa- f a contractual agree-						

EXAMPLES (page1)

PVFS 1-16vs.01

Examples Product Z series Product Z300W 1 Electrical Data at STC 300 W Maximum power (Pmax) $\begin{array}{|c|c|c|c|c|} \hline Peak \text{ power watts } \pm 3 \ \% \ - \ P_{\max}(W) \\ \hline Maximum \text{ power voltage } - \ V_{\min}(V) \\ \hline \end{array}$ 300 305 310 ±3 % 37.2 37.5 Maximum power voltage (Vmp) 37 37 V P_{max} (NP) = 300 W; t_1 = 3 % V_{oc} (NP) = 45,9 V; t_2 = 5 % I_{sc} (NP) = 8,9 A; t_3 = 5 % a) Maximum power current (I_{mp}) (A) 8,2 8,27 Maximum power current (Imp) 8,1 8,1 A Open circuit voltage^a - V_{oc} (V) 45.9 45,9 45,9 Open circuit voltage^a (V_{oc}) 45,9 V Short circuit current^a - I_{sc} (A) 8.9 8.92 8.98 Short circuit current^a (I_{sc}) 8.9 A Module efficiency - $\eta_{\rm m}$ (%) 14,2 14,4 14 Maximum DC system voltage 1 000 V $a \pm 5 \% / -0 \%$ tolerance on I_{sc} and V_{oc} a +5 % / -0 % tolerance Product X series Electrical Data at STC Product X300W Maximum power (P_{max}) 296 to Peak power watts^a - P_{max} (W) 296 to 301 to 306 to P_{max} (NP) = 296 W; t_1 = 0 % V_{oc} (NP) = 45,9 V; t_2 = 4 % I_{sc} (NP) = 8,9 A; t_3 = 4 % 300 W 305 310 300 Maximum power voltage (Vmp) Maximum power voltage - V_{mp}(V) 37 V 37 37.2 37.5 b) Maximum power current (Imp) 8.1 A Maximum power current (Imp) (A) 8.1 8.2 8.27 Open circuit voltage^a - V_{oc} (V) 45,9 45,9 45,9 If t_1 is not specified, it is Open circuit voltage^a (V_{∞}) 45.9 V Short circuit current^a - I_{sc} (A) 8,9 8,92 8,98 taken to be 0. Short circuit current^a (I_{ac}) 8.9 A Maximum DC system voltage 1 000 V Module efficiency - $\eta_{\rm m}$ (%) 14 14,2 14,4 ^a ±4 % production tolerance ±4 % production tolerance Product Y series Product Y300W Electrical Data at STC Maximum power (P_{max}) 300 W Peak power watts - Pmax (W) 300 305 310 $_{ax}$ (NP) = 300 W; $t_1 = 0 \%$ $_{ax}$ (NP) = 45,9 V; $t_2 = 2 \%$ P., ±3 % / -0 -0 / +3 -0 / +3 -0 / +3 Power output tolerance (%) V_{oc} (NP) = 45,9 V; t_2 = 2 9 I_{sc} (NP) = 8,9 A; t_3 = 2 % Maximum power voltage (V_{mp}) 37 V Maximum power voltage - V (V) 37 37,2 37,5 c) Maximum power current (Imp) 8,1 A Maximum power current (I_{mp}) (A) 8.2 8.27 8.1 t₂ is not reduced to a single Open circuit voltage a,b (V) 45.9 V Open circuit voltage ^{a, b} - V_{oc} (V) 45,9 45,9 45,9 value. Thus, the smaller Short circuit current a,b (Isc) Short circuit current a, b - I_{sc} (A) 8.9 A 8.9 8,92 8,98 value is chosen. The same Maximum DC system voltage 1 000 V situation exists for t_3 . Module efficiency - η_m (%) 14 14,2 14,4 a ±2 % measurement uncertainty ^a ±2 % measurement uncertainty $^{\rm b}$ ±10 % tolerance on $I_{\rm sc}$ and $V_{\rm o}$ ^b ±10 % tolerance on I_{sc} and V_{oc} Product T series Product T300W Electrical Data at STC Maximum power (P 300 W Peak power watts^a - P_{max} (W) Power selection $(\pm 5 \text{ W})$ 300 310 Maximum power voltage (Vmp) 37 V Maximum power voltage - Vmp (V) 37 37.5 Fails to meet requirements d) 8,1 8,27 Maximum power current (Imp) Maximum power current (Imp) (A) 8,1 A of IEC 61215-1 5.2.2. Lower edge of power bin is Open circuit voltage (V_{α}) 45.9 V Open circuit voltage^a - V_{oc}(V) 45,9 45,9 295 W on nameplate, but Short circuit current (I 89A Short circuit current^a - I_{sc} (A) 8,9 8,98 is 300 W on datasheet. Maximum DC system voltage 1 000 V Module efficiency - $\eta_{\rm m}$ (%) 14 14.4 ± 3 % tolerance on $P_{\rm max}$, $I_{\rm sc}$, $V_{\rm oc}$ ^a ±3 % tolerance on P_{max} , I_{sc} , V_{oc} Example of a hypothetical conform (a-c) name plate and datasheet values with on the right the accord. IEC 61215-1:2021 derived rated values and tolerances in comparison to a hypothetical example of a not conform STC rating (d) [IEC 61215-1:2021]. NA Severity

Т

Т

Component Defect	Module Light ind	duced degradatior	n in c-Si n	nodules (LID/L	_eTID)	PVFS 1-17 vs.02		
Appearance	Light induced degradation in crystalline silicon modules is recognisable mainly as a drop in STC output power, but also short circuit current and open circuit voltage, within the initial life- time of a PV system. It isn't correlated with any visual defect or other failure modes. Increasing non-uniformity of electroluminescence images (patchwork pattern) can in some cases high- light an ongoing degradation process.							
Detection	IV, (EL, II	RT)						
Origin	Two different light induced degradation effects are known: LID (light induced degradation) and LeTID (light and elevated temperature induced degradation). Both degradation modes occur at cell level, but the physical mechanism staying behind them are different. The first is related to the concentration of boron and oxygen in the cells, whereas the second one is probably correlated to the concentration of hydrogen in the cell, but the mechanisms are still not fully understood. Mainly p-type boron-doped multi and mono crystalline silicon modules are affected. Gallium-doped and high-efficiency cell technologies that use n-type wafers, such as not type PERC, HJT, or n-PERT seem to be much less or not at all concerned by these two degradation effects. LID occurs only within the first days of exposure to the sun and is limited to 1-3%, whereas LeTID is in a more severe and long-term light induced degradation mechanism. LeTID was observed for the first time with the introduction of PERC modules on the market. The degradation can reach up to 10% and sum-up with the LID loss. It occurs only at elevated temperatures above 50°C. The speed with which the degradation occurs depends on the average module temperature and is therefore strongly site dependent. The time frame in which it occurs is in the order of magnitude of years. Once the full degradation is reached the modules can regenerate, recovering the lost power. This process is however very slow and also climate-dependent. The lost power may even not recover over the typically expected 25-year lifetime of a module. There exist approaches of accelerated regeneration of LeTID-sensitive modules in the field, but they are typically costly and not very user-friendly. Over the last years most manufacturers adapted their cell production process to stabilise the cells in-line.							
	Productic		Installatio		-			
Impact	LID or LETID causes no safety problems, but it has a negative impact on the lifetime energy yield and financial return. An under-estimation of the initial degradation has a direct impact on the energy yield predictions and investor expectations. LID is less critical for the investors, because it is generally less severe and it is taken into account by the manufacturers when labelling the modules and defining the first year warranty, whereas a high LeTID degradation rate and the difficulty to predict the trend over time is much more critical for manufacturers warranties and system owners. The sensitivity of PV modules to LeTID can be tested in the laboratory.							
	Safety:			Performance:	-23-4			
Mitigation	Correctiv	e actions	Preventiv (recomme		Prev (optic	entive actions onal)		
	•	underperformance in accredited PV test y. Claim for missing	PV test ify the use of LeTID stable power loss for realistic est					

Component Defect	Module Insulation failure			PVFS 1-18vs.01				
Appearance	A module with bad insulation between its current carrying parts and the frame (or the outside world) are not directly visible by eye. An unequivocally detection is only possible through a measurement of the insulation resistance of the module under dry (≥40 Mohm/m ²) or better humid/wet conditions. It can be sometimes deduced by the presence of visual defects which can potentially lead to insulation problems. Under certain circumstances like after a rain fall or in the early morning when the PV modules are covered by dew, this kind of defect is detected by the inverter (low insulation fault) or the inverter is switching off when the resistance value falls below a certain limit.							
Detection	INS, (MON)							
Origin	Insulation failures can have different causes. It can occur in the design/production phase of a module, due to solar cells too closely positioned to the frame or to material weaknesses like the use of inadequate encapsulation or backsheet materials or a poor lamination process. In the installation phase it can be caused by mechanical damages of the module, whereas in the operational phase it is generally caused by catastrophic events or due to a delamination process close to the edge of the module or water ingress or condensation in the junction box. Modules with failed or skipped insulation test in production due to an insufficient quality assurance could be also the origin of the problem. Various module failures are at the origin of an insulation failure: backsheet and encapsulant delamination, backsheet damages, burn marks, glass breakage.							
	Production	Installation	Opera	ation				
Impact	A low insulation resistance at r inverter failure occurs. The pre a safety hazard exposing perso parts of the string or frame can measuring instruments.	sence of an electrical le	akage current t shock hazard	o the frame can become . Touching non-insulated				
	Safety:	Performanc	e: 1 2 3 4	5				
Mitigation	Corrective actions	Preventive actions (recommended)	Preve (optio	entive actions nal)				
	Modules with a direct safety risk or a severity of 5 should be replaced. Regular inspec- tions should be done to moni- tor the status of the not re- placed modules. In case of in- dividual module testing all modules which failed the insu- lation and/or wet-leakage test should be replaced.	d certification and BOM, com- missioning of system with - IRT, ground fault detection by - inverter or other devices at all - time.						

Component Defect		(thermal patterns	;)			PVFS 1-19vs.02			
Appearance	deviates fr such as e. lead to irro breakage progress c	A hot spot is a thermal abnormality such as a local overheating or a thermal pattern which deviates from the normal behaviour of a module. It can be detected only by imaging techniques such as e.g. infrared thermography (IRT). Hot spots are not visible by the naked eye until they lead to irreversible hot spot damages like e.g. local yellowing, burn marks, glass or cell breakage . The position, size, intensity and pattern of the hot spot/s depends on the origin and progress of the failure, but also under which conditions the module is operating (shading, load and irradiance level).							
Detection	IRT, (VI)								
Origin	cells (see PVFS 1-0 induced do mismatch, operating curs, the a which can cell(s) can sulant and diodes are	A hot spot can be triggered by various factors, including (i) previous failures, like damaged cells (see PVFS 1-01), glass breakage (see PVFS 1-08), poor electrical connections (see PVFS 1-09 and 1-14), insufficient bypass diode protection (see PVFS 1-15) and potential- nduced degradation (PID) (see PVFS 1-10), (ii) production-related issues, like severe cell inismatch, low-quality solar cells, or poor module manufacturing processes, or (iii) non-ideal operating conditions like shading or soiling (see PVFS 1-20). When shading condition oc- curs, the affected cell or group of cells is forced into reverse bias, causing it to dissipate power, which can lead to overheating. If the power dissipation is high or localised, the reverse biased cell(s) can overheat, potentially resulting in melting of solder joints, deterioration of the encap- pulant and/or backsheet, and even glass breakage. To reduce the effects of hot spots, bypass liodes are connected in parallel with cells. Properly designed and functioning bypass diodes are power in reducing hot spot damages from occurring.							
	Productior	ו 🔲	Installatio	n		Operation			
Impact	in cell sort modules u insignificat nently acti module. The PV modul heating. M ages or to be further may indica PVFS 1-14 accelerate ules aren ²⁷ maintenar resulting in	ting and PV module isually do not indicat int power loss. Power ivated and conseque he impact on system es are affected. Sev lodule safety can be a fire. Temperature controlled to preven ate damaged bypass 4 and 1-15). Differen ed degradation of poly t replaced, temperat ince can also lead to b	production te quality i reduction ently the co performan vere losses compromi differences t temperat diodes or ces over 2 ymer mater ure differe nigh tempe such case	a, thermal abnorn ssues. Most mo becomes signifi ell string is cut o ice is only notice is can occur if Pl ised when overh s of 10 K to 20 K ture increases d junction box fail 20 K (at approxin rials and loss of in nces may rise fue ratures due to b is, it may be chal	malitie dules cant v off fro able i D is eating (at ap uring ures, nately nsula urther ird dr	loss. Due to normal tolerances es under 10% of the inspected with a single hot cell have an when a bypass diode is perma- m power production of the PV n its energy yield when multiple the origin of the abnormal cell g leads to critical module dam- oproximately 800 W/m ²) should PV system operation, as they posing direct safety risks (see v 800 W/m ²) are critical, risking tion properties. If affected mod- c. Lack of regular cleaning and oppings or power mismatches, ng to identify whether the cause			
	Safety:	N/A	ſ	Performance:	N/	Ά			
Mitigation	Corrective	actions			Preventive actions (optional)				
	Modules with a direct safety risk or a severity of 5 should be replaced or repaired. If more than 10% modules show thermal abnormalities, the reason for that behaviour should be evaluated and cor- rective actions implemented.			ioning of sys or BYT.	stem	Regular system inspections (i.e. IRT).			

EXAMPLES (pa	PVF	S 1-19vs.02			
Pattern	Description	Origin	Performance	Remarks	Safety
Example 1	One module warmer than others	Module could be open circuited - not connected to the system	Module normally fully functional,	Check wiring	
Example 2	One sub-string of serially connected cells is warmer than others in the mod- ule	Open circuited sub- string - Disconnection in junction box or sub- string	Sub-string power lost, reduction of <i>V</i> oc	May have burned spot at the module. Replace PV mod- ule.	
Example 3	One substring over- heated with irregu- lar pattern	Short circuited by- pass diode or short- circuited substring	Sub-string power lost, reduction of V _{oc}	Replace module	f
Example 4	A single cell ap- pears warmer, while there are mul- tiple warmer cells with an irregular pattern in the paral- lel-connected sub- string.	Shaded or defected cell (bypass diode activation)	Power decrease not necessarily perma- nent, e.g. shadow- ing leaf or lichen	Visual inspection needed, cleaning (cell mismatch).	
Example 5	Single cells are warmer, not any pattern (patchwork pattern) is recog- nized	Whole module is short circuited - All bypass diodes short circuited - Array wiring failure	Module power dras- tically reduced (al- most zero), strong reduction of V _{oc}	Check wiring (see PVFS 1-15)	
Example 6	Single cells are warmer, lower parts and close to frame hotter than upper and middle parts.	Massive shunts caused by potential induced degrada- tion (PID) and/or polarization	Module power and <i>FF</i> redu- ced. Low light per- formance more af- fected than at STC	Change array grounding condi- tions. Recovery by reverse voltage (see PVFS 1-10)	
Example 7	One cell clearly warmer than the others	- Low <i>I_{sc}</i> perfor- mance of cell - Shaded or de- fected cell	Power decrease not necessarily perma- nent, e.g. shadow- ing leaf or lichen	Visual inspection needed, cleaning (cell mismatch) (see also PVFS 1- 1, 1-3, 3-3)	
Example 8	Part of a cell is warmer	 Low <i>Isc</i> performance of cell Shaded or defected cell Disconnected string interconnect 	Power decrease not necessarily perma- nent, e.g. shadow- ing leaf or lichen, <i>FF</i> reduction	Visual inspection needed, cleaning (cell mismatch). Re- place PV module (see also PVFS 1- 1, 1-7, 1-9)	f

EXAMPLES (p	PVF	S 1-19vs.02				
Pattern	Description	Origin	Performance	Remarks		Safety
Example 9	Point heating	- Formation of mi- cro-arc in the inter- connection circuit - Junction break- down at cell caused by shading	Power reduction	Crack det ter detaile inspectior cell possi Replace F (see also 1, 1-7, 1-5	ed visual n of the ble. PV module PVFS 1-	ſ
Example 10	Sub-string part re- markably hotter than others when equally shaded	Sub-string with missing or open-cir- cuit bypass diode	Massive <i>I</i> _{sc} and power reduction when part of this sub-string is shaded	May caus fire hazar hot spot is sub-string (see also 15, 3-3)	d when s in this g	
Reviewed typica	I IR image patterns	s observed in outdo	bor measurements	s [Köntges	s14].	I

Component Defect	Module Soiling					PVFS 1-20 vs.01		
Appearance	Soiling is visible as a deposition of dust, dirt or other contaminants on the surface of a PV module. The deposition can be uniform or non-uniform and vary in thickness. Due to the presence of hot-spots caused by non-uniform soiling, it can be also seen through IRT imaging.							
Detection	VI, (IRT, MON)							
Origin	Soiling of PV modules can have various origins such as dust accumulation, air pollution, bird droppings or growth of moss, lichens or algae. It can be due to natural sources, as sand in desert areas, seasonal pollen or volcanic emissions, or due to human activities, as near mining, industry, high ways, railways, urban or agricultural surroundings. The soiling level and its persistence over time depends on the exposure time, the chemical composition and particle size as well as the local climate conditions. Whereas rainfalls and wind can lead to a natural cleaning of modules, humidity can have a contrary effect by increasing adhesion and cementation of dust on the module. The module design (e.g glass coating, frame, distance of cells from the edge), the orientation (e.g tilt angle, azimuth, landscape/portrait) and mounting conditions (e.g clamps, height above ground, stringing) of the modules plays an important role. Typically soiling increases as tilt angles decreases. The direction of the wind or obstacles can influence the soiling process, leading to non-uniform patterns on system and module level.							
	Production		Installat	ion 📃	C	Dperation		
Impact	the solar cells, with a c it is reversible when the yield and financial retu- periods and dust, extri- cleaned. In temperate between 0% to 4%. In straints of the natural angle) much higher los losses which further in permanently damage a (PID), soiling can furth by cleaning the modul appropriate to the type ability). The cleaning s wind or dew can have a in reducing soiling and the type of soiling pre	consequent e module i urn. Soilin reme soilin regions wi case of sp cleaning of sses can b noreases the a PV module er acceler les or prevo of soiling a schedule st a natural c d stretch the sent on the the coating	tial perfo s cleane g is a si ng losse th year-r pecific so effect du pe obser ne powe ule. In m ate the o venting e and site s hould tak leaning e systen g. Moreo	rmance drop. So d, but it has a ne te-specific issue s of up to 25%/ ound rain, the an iling sources (e.g e to unfavourab ved. Non-uniforr r loss and to hot odules affected ongoing degrada excessive soiling specific condition the into account the effect at no cost. Ing frequency, but n and if adequat ver, it has to be of res.	biling is gative . In ari a are i nnual s g. railwa le mou n soilin c-spots by pot e tion eff . The c nat natu Anti-so it only i e clear	amount of light that reaches a not a real module failure, as impact on the lifetime energy id regions with seasonal dry reported, if modules are not soiling losses typically ranges ay, farming, etc.) and/or con- unting conditions (e.g low tilt ng leads to current mismatch which in extreme cases can ential induced degradation fect. Soiling can be mitigated cleaning approach has to be accessibility and water avail- ural agents, such as rain-falls, iling coatings (ASC) can help if the coating is adequate for hing processes are followed, ered that some ASC can also		
	Safety:			Performance:	⊢2	3 4 5		
Mitigation	Corrective actions			ive actions mended)		Preventive actions optional)		
	recommended when nue lost because of th energy production is hi	ning by qualified persons is mmended when the reve- lost because of the missed gy production is higher than cleaning cost. A best time to						

EXAMPLES	6 (page1)				PVFS	5 1-20 vs.01
Examples 1-3						
	ideal conditions	oiling, which in is self-cleaning y the courtesy of	rail way station	soiling caused by [By the courtesy b].	low inclination a	iling caused by nd close mount- the courtesy of
Severity		⊢ <mark>2</mark> 1		<u>⊢</u> <u>+</u> 34		+23++-1
Examples 4-6						
		on the edge of a ed with edge soil-		n a system in the [By the courtesy	dominant wind d	demonstrating lirection on a test a desert [By the FhG].
Severity	••	⊢231		H		H 3 4 H
Examples 7	Heavy biofilm ges16].	soiling [Könt-				
Severity						

Component Defect		and Interconnector nector mismatch	rs			PVFS 2-1 vs.01		
Appearance		tion of male and fen ating) between modul				nanufacturers or types		
Detection	VI, (IRT)							
Origin	it is poss advertise duced wa rials (che gaskets where ex	There is yet no standard for PV connectors prescribing dimensions and tolerances. Therefore, it is possible to find very similar-looking and even apparently fitting connectors on the market, advertised as 'compatible'. Slight differences in the design of the connector can lead to reduced water and vapour tightness. Problems may also occur due to incompatibilities of materials (chemical incompatibility or different thermal expansion parameters) of the metal contact, gaskets or sealings. Most of the time the mismatch of connectors occurs at the string end where extension cables are used or when connecting an inverter or a string combiner box, which has been delivered with incompatible connectors.						
	Productio	on 🔲	Installatio	n	Opera	tion		
Impact	risk of los TR 6322 arcing a flow throu only over humid we verter or positione materials spected o or even i	ss of performance and 5:2019]. The consequend in the worth case a ugh the connection at r time with increasing eather conditions misr a ground fault. The fire d and are close to flar . Often connectors ar during normal visual in	defects will ences are a fire . One all. The pi contact re matching c e risk is fur nmable ma re at least spections (ion with the	hich cause hazar e.g. contact corr of the most con roblems do not n esistance and/or onnectors can al ther increased w aterial such as wo partly installed a (e.g. within profile e unclear compa	ds for huma rosion, burn nmon failure hanifest the degradation so lead to a hen the con boden roof b t position w es, undernea tibility issue	ignificantly increase the n and environment [IEC nt connectors, electrical es is that no current will mselves right away, but n of the connector/s. At n partial failure of the in- nectors are not properly eams or heat-insulation here they cannot be in- th roof parallel modules , the interconnection of		
	Safety:	f e		Performance:	1234	5		
Mitigation	Correctiv	e actions	Preventiv (recomme		Prever (optior	ntive actions nal)		
	ors should be replaced. ule/inverter spec sheets for inverters are delivered the type/manufacturer of con- nector, only connectors from sion of spare connectors the same manufacturer and string cables with content of the same manufacturer and string cabl					that both modules and ers are delivered with ame connectors. Provi- f spare connectors and cables with connectors same type as the mod- nnectors.		

EXAMPLES	6 (page1)		PVFS 2-1 vs.01
Examples 1-2			
	Connectors (male of female) are of different brand or type and ob viously do not match [Moser17].		
Severity			
Examples 3-5	6000		
	Corroded connector due to cross mating [By the courtesy o Stäubli].	f mating [By the courtesy of r	Burned connector due to cross- mating [By the courtesy of Stäubli].
Severity			
Examples 6-7	Different body mouldings Different body mouldings Different cable gland nuts	Red 'O' ring Black	'O' ring Logo 'TUV' Logo MC4 brand
	Different types of connectors red ferent body mouldings and cable guide].		connectors recognisable by dif- ogos [ESV guide].
Severity		f	

Т

Component	Cables and Interconnector	rs	PVFS 2-2 vs.01						
Defect	Defect DC connector/cable	9	T VI O Z-ZVS.01						
Appearance	Opened connectors can demo	appear as melted, burned, brittl Instrate corrosion. Affected convision of the state of a thermography check	nnectors show very often over-						
Detection	VI, (IRT)								
Origin	nents (DC connector mismate the connectors are either not in tion, exposure to rain or pollute connectors are not fixed correc allowing the connector to dry co use of low quality material in p quate selection of components ble glands, inadequate IP class the cables in the installation ph cables close to connections,	One of the major causes of damaged connectors are the combination of incompatible compo- ents (DC connector mismatch), a low quality connector or a bad installation. In the last case the connectors are either not installed according the instructions (e.g. bad crimping or connec- on, exposure to rain or polluted before installation, installation of damaged connectors) or the connectors are not fixed correctly exposing them over longer times to humidity or dirt without llowing the connector to dry completely. In case of damaged cables the major causes are the se of low quality material in production (e.g. insulation material or cupper wires), an inade- uate selection of components within the design phase (e.g. undersized cables, too large ca- le glands, inadequate IP classification or UV protection) or an improper handling or fixing of the cables in the installation phase (e.g. cable routing over sharp or abrading edges, hanging ables close to connections, overly tight bending, missing or not correctly installed cable lands or exposure to direct UV radiation).							
	Production	Installation	Operation						
Impact	the whole string. The continuit can occur (low insulation fault losses. In the worst case dama tric arcs. In many cases, the c	y of the circuit isn't any more g s or inverter switch off), leadin aged cables or not well-connect connectors and cables are muc	Id may lead to the power loss of uaranteed and inverter failures g to partial or complete power ed connectors may cause elec- ch closer to flammable material in the PV module laminate, in-						
	Safety:	Performance: 1	2 3 4 5						
Mitigation	Corrective actions	Preventive actions (recom- mended)	Preventive actions (op- tional)						
	Components constituting a direct safety risk should be replaced. Regular inspections should be done to monitor the status of the not replaced components.	Protection of connectors and cables from humidity during installation. Use of adequate crimping tools. Installation should be done by trained personal.	agreement for maintenance of the warranty when connectors are substituted by the in-						

Examples 1-3 1-3 Image: Constant of the second		PVFS 2-2				LES (page1)			
ges17]. ges17]. Severity f Examples							Examples 1-3		
Examples	[Könt-		tor [Köntges17].	Cracked connec	ctor [Könt-	conne			
Examples 4-6	4 -1		+	f	2 3	н	f e	Severity	
	k	1						Examples 4-6	
Not fully inserted or interlocked connecter [Yang19].Melted connector [Köntges17].Cracked/disintegrated cable sulation [Köntges17].	Cracked/disintegrated cable in- sulation [Köntges17].		r [Köntges17].	Not fully inserted or interlocked connecter [Yang19].					
Severity 6 0 +23 6 0 + 4 5 6 6 + 3 4	4 5	i) 🚺 🕑 🖂 3	+4 5	f	2 3 4	н	f e	Severity	
Examples Image: Constraint of the second			ft) [PVSurvey19].	orrect crimping (le	ght) versus ce	mping (ri	Incorrect cri	Examples 7	
Severity			, <u>.</u>		<u>, / c. ouc o</u>		f e	Severity	

EXAMPLES	6 (page2)		PVFS 2-2 vs.01
Examples 8-10			
	Burned connector [Köntges17].	Corroded Cable [Köntges17].	Animal bite on cable [Könt- ges17].
Severity	f e -5		f f e 3 4 5

Component Defect	Cables and Interconnector Insulation failure	rs			PVFS 2-3 vs.01					
Appearance	sible through the measurement It can be sometimes deduced nectors. Under certain circums cables or connectors are expo	A bad isolation of cables is not always visible by eye. An unequivocally detection is only pos- sible through the measurement of the insulation resistance under dry or humid/wet conditions. It can be sometimes deduced by the presence of degraded or damaged cables and/or con- nectors. Under certain circumstances like after a rain fall or in the early morning when the cables or connectors are exposed to humidity, this kind of defect can lead to inverter failures (low insulation fault or inverter switch off).								
Detection	VI, (INS, MON)									
Origin		solation failures occurs as a result of a short-circuit. It is usually the result of a combination of numidity and damaged or degraded DC cables or connectors .								
	Production	Installatio	n 📃	Operat	ion 📃					
Impact	A low insulation resistance due to the cables or a connector does not lead to a performar loss itself, until an inverter failure occurs. An isolation fault can however cause potentially fa voltages in the conducting parts of the system potentially exposing persons to an electric sho hazard. Touching of non-insulated parts may cause severe injury, without the use of saf gear and safe measuring instruments. In the worst case damaged cables or connectors m cause electric arcs and initiate a fire.									
	Safety:		Performance:	⊢234	5					
Mitigation	Corrective actions	Preventiv (recomme		Preven (option	tive actions al)					
	Cables or connectors con- stituting a direct safety risk should be replaced. Regular inspections should be done to monitor the status of the not replaced components.	Ground fault detection by inverter or other devices at all time.		0	r system inspections.					

Component Defect		ables and Interconnectors hermal damage in combiner box						
Appearance		ppearing in the com maged parts can be f						
Detection	VI, IRT, (I	MON)						
Origin	(e.g unde	nermal damages in the combiner box can be due to the selection of inadequate components .g underrated fuses or fuse holders), a not proper connection of DC cables (e.g improper re torqueing, missing fuses) or a wrong wiring of the modules/strings in the field or on-roof.						
	Production Installation O					Operation		
Impact	This damage is caused by the excess heat generated in fuse holder and defect DC ors/cables. The partial or complete thermal damage of the combiner box leads to perform losses, electrical shock hazards and risk of fire. Actions must be taken immediately be personnel to prevent further damage.						ds to performance	
	Safety:	(f) (e) (m) (f) (e	m	Performance: 1 2 3 4 5		3 4 5		
Mitigation	Corrective	e actions	Preventive actions (recommended)			Preventive a optional)	actions	
	Replace the components with defect or abnormal tempera- ture.		Use IRT to check the compo- nents and connection to find poor connection or defect components.					

EXAMPLES	6 (page1)				1	F S 2-4 vs.01
Examples 1-3	Burned termina combiner box [T		Improper wire to a fire [Köntges16		Connection sh sion [TUV Rhe	ow signs of corro- inlandl.
Severity	f e m		f e m	<u> </u>	f e m	
Examples 4	Connecting term of burning, ha charred [TUV RH	ave melted or				
Severity						

Г

Component Defect	Mounting Bad module clamping	PVFS 3-1vs.01							
Appearance	Inadequate fastening or dam	age of the m	nodule or frame by	the clamp.					
Detection	VI								
Origin	not followed. Typical errors clamps for the selected m glass/glass modules, wrong short and too narrow clamps not being chosen in accorda	e installation instructions of the module and mounting structure from the manufacturer are followed. Typical errors at the planning and installation stage are: (a) use of inadequate mps for the selected module and/or mounting structure, e.g. sharp edges damaging ss/glass modules, wrong combination of clamps and modules or mounting structure (b) too ort and too narrow clamps or (c) the positions, kind or number of the clamps on the module being chosen in accordance with the manufacturer's manual. Other errors are too exces- ely or insufficiently tightened screws during the mounting phase.							
	Production	Installatio	on 📃	ion					
Impact	An improperly installed clamp compromises the integrity of the mounting system and the abilit of the module to stay in place under high wind or load conditions. The detachment of module can happen as series effect because the modules share the clamps with the module next to it. Once one module is detached, the clamp immediately loses fixing force on the next modul and result in series detachment. The detachment of the module/s from the mounting structur is posing a serious hazard to persons and the risk of damaging the rest of the system and/of the property in the vicinity of the installation site. Problems such as frame damage, glas breakage or cell cracks can occur compromising on the long term the performance and the electrical safety.								
	Safety:	m	Performance:	1234	5				
Mitigation	Corrective actions		Preventive actions (recommended)		Preventive actions (optional)				
	Modules with a safety ris or a severity of 5 should b replaced.	e (mounting clamps) a turer mo	compatible clam g structure/ module and follow manufa punting instruction cal wind and sn	es/ mountii ac- accredi ns. facade	of non-standard ng configurations by an ted test laboratory (eg. mounting), perform system inspections				

EXAMPLES	(page1)			PVF	FS 3-1 vs.01
Examples 1-3					
	Improper installat		Wrong combina and modules [M	Glass breakage caused by too tight screws [Herrmann21]. (see also PVFS 1-8)	
Severity		1		() () () () () () () () () ()	-234-1
Examples 4	Glass breakage				
	clamp design [also PVFS 1-8)	Moser17J. (see			
Severity	ſ m e m				

Component	Mounting	J								
Defect	Inapprop	riate/defect mour	nting stru	cture		PVFS 3-2 vs.01				
Appearance		Mechanical damages (e.g cracking, bending) or other visual defects (e.g. corrosion of frame or mounting holes) observable on the mounting structure.								
Detection	VI									
Origin	or snow lo structure d ditions), or conditions strength, to ities, is not propriate n vanisation, leading to a errors (e.g	pically, this failure occurs when the mounting structure is not designed to withstand the wind snow loads which are typical for the site in which the system is installed (e.g. mounting ructure does not comply with static calculations, underestimation of the environmental con- ions), or if the anchorage of the mounting structure to the ground or roof is weak (e.g. ground nditions are not considered sufficiently when choosing the mounting structure). The roof rength, to withstand the added load of the PV system and include allowance for O&M activ- es, is not verified. Another reason for the failure of a mounting structure is the use of inap- opriate materials (e.g use of corrosive materials in a corrosive environment, insufficient gal- nisation, poor quality material due to a bad or missing quality assurance in production), ading to a premature degradation or mechanical failure of the mounting structure. Installation rors (e.g. missing/non-original components, excessively or insufficiently tightened screws) n be the origin of a failure of the mounting structure.								
	Production		Installatio	n 📃	Operat	ion				
Impact	mounted o this leads t or ground, rest of the are to be e ules/strings junction b important f fixed on st generates	in it and in some cas to the detachment of or roof collapses, po system and/or the pr xpected, depending s, glass breakage, pox) and the time an for the installation wi eel structure, espec	es also the f single mo osing a ser operty in th on the dan cell cracl nd labour r th two diffe ially in hun which frequ	e substructure (e.g odules or the whol ious hazard to per ne vicinity of the in- nage on module le ks, back sheet d needed to repair t erent metals in cor nid or costal area uently happens ar	roof insulation of mounting sons and the stallation site vel (number amages , of he system. tact, for exa Direct cor bund the fa	ntegrity of the modules attion). In the worst case structure from the roof the risk of damaging the te. Performance losses or of disconnected mod- lamaged or detached Galvanic corrosion is ample aluminium frame tact of different metals stening screws. There- tostal area.				
	Safety:	(f) (e) (m)		Performance:	1234	5				
Mitigation	Corrective	actions	Preventiv (recomme		Prever (option	ntive actions al)				
Mounting structures with direct safety risk should b replaced or repaired.			Use only compatible mount- ing structures (ground/mount- ing structure/modules) and follow manufacturer mounting instructions. Check local load (conditions (wind, snow, other).		nt- nd ng ad (e.g. fa	Regular system inspections. Testing of non-standard mounting configurations by an accredited test laboratory (e.g. facade mounting), per- form regular system inspec- tions.				

EXAMPLES	6 (page1)					PVFS 3-2vs.01
Examples 1-3						
	Corrosion due to ges16].	salt water [Könt-	Cracks in mour to mechanical s ges16].			anal bends due to me- stress [Köntges16].
Severity	f e m	1 2	m	1	m	1
Examples 4-6						
	Bracket fractured mechanical stres			ounting structure v load conditions		ed mounting structure I wind conditions [In-
Severity	m	1	m	·····	m	<u>⊢ · _ · 5</u>

Component	Mounting					PVFS 3-3 vs.01			
Defect	Module shading					FVF3 3-3VS.01			
Appearance	Depending on the position performing a visual inspe- strings or by running sh change/move over the da	ection, or by ading simu	comparing m lations. The	nonitoring	data of u	inshaded and shaded			
Detection	VI, (MON, IRT)								
Origin	fluences the shading con- trees, antennas, poles, ch cables, or by self-shading can change over the lifeti construction elements. It	The choice of the mounting structure and the position in which the modules are mounted in- luences the shading conditions. Shading can be caused by different factors or obstacles e.g rees, antennas, poles, chimneys, satellite dishes, roof or façade protrusions, near buildings, cables, or by self-shading (inter array or row-to-row shading) or soiling. Shading conditions can change over the lifetime of a PV system due to growing vegetation, new constructions or construction elements. It can be distinguished between different types of shades: direct shades hindering the direct light to reach the module or diffuse shades.							
	Production	Instal	ation		Operati	on 🔲			
Impact	A cell or module which do lowers the performance of systems is between 1-5% façade systems. Due to se higher than the shaded ar mitigation measures like use of module-level power rithms, string control) or to back contact cells). Shadin prolonged shading can be glass breakage , arcing of resulting into higher degra the system planning phase ers and DC optimizers for shading conditions, but the caused by the MPLE devid diode and result in hot sp The choice of using them alternative to install them	f a PV syste o, but energ eries conne ea. The fina optimised s r electronic he use of s ng itself doe ad to follow or fire). It fun adation rate e, later it is u or individual he gain achi ce itself (low ot on the sh o only in the	m. Typically, f y losses up to ction of cells a loss depends ring and mod s (MLPEs), inv hading toleran s not pose a s -up failures (e ther can resul s. The right tin isually too late modules can eved by these rer efficiency), haded cell, wh	the cumula 20-30% c and module on the on- ule arrang verter char it module t safety issue a g burn n it in an acc ne to cons botentiall devices c and the sh ich increas shading oc	ative annu- can be ob- s, the pow- site impl- ements (acteristic echnolog e, but the narks , by celeration ider the in of MLPEs y increas lo not alw nading sti ses the ri- ccurs sho	ual shading loss of PV oserved for roof top or wer loss is significantly ementation or shading (landscape mounting), s (MPPT search algo- gies (e.g half-cut cells, e hot-spots caused by ypass diode failures, n of the aging process mpact of shading is at s such as micro-invert- se performance under vays exceeds the loss ill activates the bypass sk of reliability issues. ould be considered an			
	Safety:	m	Performa	nce: ⊣	234	5			
Mitigation	Corrective actions		ntive actions mmended)		Prevent (optiona	ive actions al)			
	Indirectly damaged n ules with a safety or se ity risk of 5 should be placed or repaired. Even trees or vegetation respo ble for the increased sha loss should be cut.	ver- ver-	A basic shading analysis (full year solar/shade data) is rec- ommended to identify areas and periods of major shading. Areas exposed to shading within the central part of the day or sunny season should be avoided or appropri- ate/cost-effective shading mit- igation measure should be im- plemented.		sis shou mates a system shading	ed shading loss analy- uld be done which esti- and compares different configurations and mitigation measures. regular system in- ns.			

EXAMPLES	6 (page1)				PVF	S 3-3 vs.01	
Examples 1-3							
	Shading by pole design: too close ing objects) [Jah	e to nearby shad-		bad planning or rwards build con- t. [Moser17].	Shading by tree with seasonal changes due to foliage [Moser17].		
Severity		⊢234⊣		<u> </u>		<u>⊢-</u> + <u>3</u> 4 <u></u> -1	
Examples 4-6							
	Missing mainte green roof [By co PVLab].	enance on flat ourtesy of SUPSI	Vertical shading module with 3 by courtesy of J.Lin	pass diodes [By		hading by balustrade [By cour- esy of J.Lin PV Guider].	
Severity	f e m	·····5				⊢234⊣	
Examples 7	chimney [By con	ding caused by urtesy of SUPSI					
Severity	PVLab].	<u>⊢</u> 3 4 5					
Corony							

Component Defect	Inverter Overheating	PVFS 4-1 vs.01				
Appearance	The inverter reduces its power or switches off to protect components from overheating (tem- perature derating). Inverters do not always deliver a corresponding status message "power reduction" or "derating". For this reason, it is recommended to check the inverter behaviour by determining and analysing performance curves (Power vs Irradiance).					
Detection	MON, (IV, IRT)					
Origin	Temperature derating of the inverter can occur for various reasons, e.g. improper installation of the inverter, fan failure, dust blocking heat dissipation or an incorrect programming of the inverters.					
	Production	Installatio	n 🔲	Operat	ion 🔲	
Impact	When the monitored components in the inverter reach the maximum operating temperature the inverter shifts its operating point to a lower power. During this process, power is reduct step-by-step. In the extreme case, the inverter switches off completely. As soon as the temperature of the threatened components falls below the critical value, the inverter returns to t optimal operating point. The partial or complete failure of the inverter leads to performan losses, which will get worse if the problem is not solved. In the worst case inverter will swit off. Inverter overheating do not affect module safety.					
	Safety:		Performance: 3 4		5	
Action	Corrective actions	Preventive actions (recommended)			Preventive actions (optional)	
	Once identified the origin of the temperature derating the failure should be repaired. The filters and in general heat dissipation path should be cleared of obstruction.	Follow the given installation procedure, use of adequate cooling technology, perform regular inspections of the ven- tilation units.		e ature m	ring of inverter temper-	

EXAMPLES	(page1)					PVFS 4-1vs.01
Examples 1-3	0 13-1	6		6/2/2014		
	Dust blocking he [By courtesy of T		A soiled air filter heating [By cour Rheinland].		rect exp	ion not appropriate (di- osition to sun) [By cour- ſUV Rheinland].
Severity		⊢ <u>+</u> , <u>3</u> , <u>+</u> ,		<u>⊢−−</u> ,3 <u>−</u> −−,1		<u>⊢</u> <u>+</u> <u>3</u> <u>+</u> <u>+</u>

- T

Component Defect	Inverter Incorrect installation PVFS 4-2vs.01						
Appearance	The inverter must be installed according to the installation instruction. A common failures is the installation near flammable, explosive, corrosive or humid sources. Also the minimum distances to bottom, top or to the sides are not always fulfilled. If the input cables are not fixed properly, increased temperatures can occur at the loose contact point which lead to lower performance or risk of fire. Inverters must always be accessible for operation and maintenance and properly secured to an appropriate base.						
Detection	VI (MON)						
Origin	Violating instruction manual, e.g. installed nearby flammable materials as wood or in direct sun light. Minimum distance to adjacent components not maintained.						
	Production	n 🔲	Installation		Operat	ion 🗌	
Impact	Incorrect installation of the inverter can cause danger to users and hazardous conditions and can result in overheating of the inverter. The use of the inverter in the presence of flammable vapours or gases can lead to explosions. The inverter housing can become very hot under operation. Follow the instruction to provide gaps from both sides and top for adequate cooling Direct sunlight on the inverters must be avoided. The inverter must be safely accessible to avoid accidents during maintenance work.						
	Safety:			Performance:	1234	5	
Action	Corrective actions		Preventive actions (recommended)			Preventive actions (optional)	
	Dismount the component and follow the installation proce- dure.		Follow the given installation procedure, use of adequate cooling technology, perform regular inspections of the ven- tilation units.		ite ature. m	ring of inverter temper-	

EXAMPLES	(page1)				PVFS	4-2 vs.01
Examples 1-3					ORA	8(5/2014
	Installation in dir courtesy of TUV		cessible for	ot or difficult ac- operation and By courtesy of	o low [By	, top or to the courtesy of
Severity		<u>⊢</u> +- <mark>,3</mark> -+1	e m	H 2	H	
Examples 4-5	Consider Powador					
	Housing not a courtesy of TUV			lammable mate- esy of SUPSI		
Severity		1	<u>_</u>	1		

Г

Component Defect	Inverter Not operating (complete	PVFS 4-3 vs.01			
Appearance	If the inverter does not work despite good production conditions, common problems are the lack of restart after grid faults or isolation faults . The inverter may show fault codes to help understanding the problem. This can be observed by checking the display or the data log of the monitoring system. Examples for hardware defects in the inverter are discoloured or burned cable interconnections or fuses. Damaged parts can be found by visual inspection or infrared thermography (IRT).				
Detection	MON, (VI, I-V, VOC)				
Origin	A complete failure of the inverter occurs due one or more malfunctions of single hardware or software component of the inverter or faults due to grounding issues, e.g. high humidity inside the inverter, or a firmware issue.				
	Production	Installation	Operatio	on 🗖	
Impact	The complete failure of the inverter leads to significant performance losses and immediat actions must be taken. When the restart does not work or the fault occurs recurrently the origi must be identified in most cases by a service team. Software issues can be solved by updatin the firmware for technical reasons or to update the system to new standards/grid technical requirements. While damaged hardware components of central inverters are usually repaired string inverter are replaced more often for economic reasons. Damaged hardware can caus fire and electric shock hazards and must be repaired by qualified personnel.				
	Safety:	Performance:		5	
Action	Corrective actions	Preventive actions (recommended)	Preventi (optional	ve actions I)	
	Restart the inverter. Replace the components with defect of abnormal temperature. Up date the software.	the components and connect			

EXAMPLE	S (page1)		PVFS 4-3 vs.01
Examples 1-3		0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	Insulation failure [TUV Rhein- land]	Not operating inverter [TUV Rheinland].	Damaged hardware component [Sinclair17].
Severity	e <u>345</u>		

