

Reliability of PV + BESS

Lead: Erik Stensrud Marstein, Institute for Energy Technology (IFE)

Contributors: IFE (NO), Case Western Reserve University (US), Austrian Institute of Technology (AUT), RI.SE (SWE), Checkwatt (SWE), Ostshcweizer Fachhochschule (CHE), Zürcher Hochschule fur Angewendte Wissenschaften (CHE), University of Central Florida (US)

Elmia Solar, Jönköping, February 5th 2025

Technology Collaboration Programme

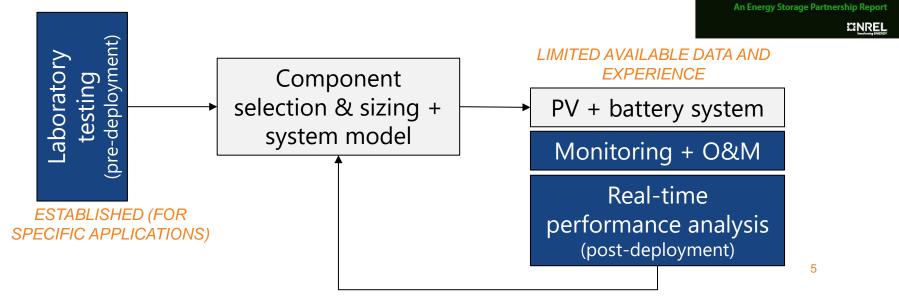
Agenda

- 1. Introduction
- 2. Battery Energy Storage Systems (BESS)
- 3. How and when do we ensure reliability?
- 4. Performance, degradation and lifetime
- 5. Case studies
- 6. Concluding remarks

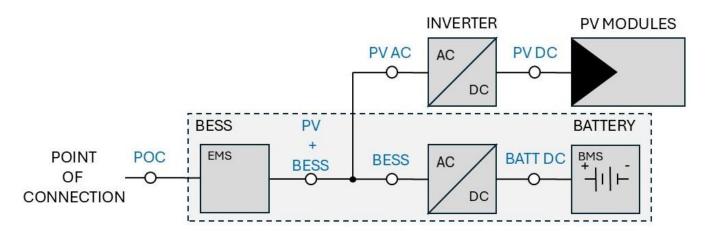
1. Introduction

- A rapidly increasing volume of PV + BESS in operation
- Large variety across multiple dimensions
 - Scales
 - Applications (= use cases and duty cycles)
 - Deployment environments
 - Technology (= components, design, software)
 - Criticality
- = large variety in performance, reliability and O&M requirements!

1. Introduction


Ġ

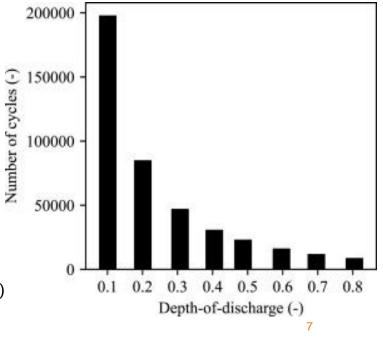
- A Report on the status of Reliability of PV + Storage is being prepared
 - IEA-PVPS Task 13 collaborative
 - International collaboration
- Table of contents:
 - 1. Introduction
 - 2. Review of battery technologies and use cases
 - 3. PV + BESS performance metrics
 - 4. Performance, degradation and lifetime
 - 5. Case studies
 - 6. Conclusions
- In the following, key learnings from this work will be discussed


1. Introduction

VPS

- Main focus of this work: performance analysis of fielded PV + BESS
 - Important basis already established for PV modules and inverters
 - Real-time analysis of available data time series from the PV + BESS
 - Added complexity: BESS performance and reliability depends on use case

Global Overview of Energy Storage Performance Test Protocols

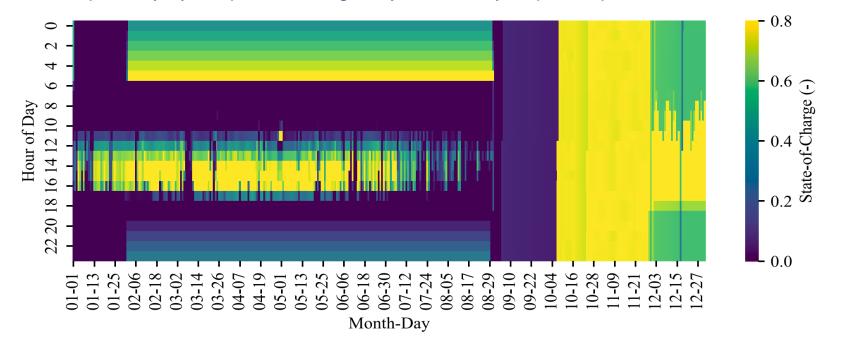


Data can be available for performance analysis throughout the BESS hierarchy. An example of an AC-coupled PV + BESS.

Parameter	Description	Unit
Time stamp	Time	S
Measured voltage	The voltage between battery terminals under operation	V
Measured current	The current between battery terminals under operation	А
SOC	The battery state of charge, given as percentage of maximum	%
Temperature	Measured ambient and/or battery temperature	°C

- Battery ageing strongly affected by the use case it is set up to perform!
- Ageing modeled as sum of two components:
 - Calendar ageing (L_{cal})
 - Assumed to depend on average SoC and $\rm T_{\rm c}$
 - Cyclic ageing (L_{cyc})
 - Calculated as the sum of all events
 - Models exist, more validation needed!

$$Q_{loss}^{total} = Q_{loss}^{cal}(t, SOC, T) + Q_{loss}^{cyc}(cycles, C - rate, T, SOC, DOD)$$



Fagerström et al, J. Energy Storage (2023)

VPS

• Example duty cycle: peak shifting in hybrid PV+hydropower plant

- Large variety in applications, use cases and duty cycles!
- Better validation of predictive ageing models needed!

VPS

	l	Use cases for PV + battery systems	
Time shifting	Peak shaving and time shifting	Avoid/reduce clipping losses Avoid/reduce curtailment losses Increase utilization of infrastructure Reduce energy costs of operation	Daily/few deep cycles
	Self-consumption and self-suffi- ciency	Maximize share of self-consumed PV power	Daily/few deep cycles
suc	Spot market	Energy arbitrage	Frequent cycles of vary- ing depth
r operau	Capacity market	Profitability based on ability to supply firm power (W _p) in accordance with con- tract (PPA)	Daily/few deep cycles with frequent smaller cor- rections
Market operations	Day ahead and in- tra-day bidding	Reduction of production forecast uncer- tainty Reduction/avoidance of imbalance fee	Variable
Kesillence	End user energy resilience	Energy resilience for end users Power back-up Black start capabilities	Few deep cycles
services	Capacity firming and smoothing	Capacity firming Smoothing Ramp rate control	Frequent shallow cycles (firming, smoothing), few deeper cycles (ramp rate control)
System services	Ancillary services	Provision of frequency reserves Provision of voltage support	Frequent fast and poten- tially deep cycles
OII-grid	Off-grid PV and appliances	Off-grid PV systems PV appliances	Large variation

9

- · Which parameters are important to monitor?
- Battery-specific PIs
 - 1. Capacity
 - 2. Power tolerance
 - 3. Internal resistance
 - 4. Energy round-trip efficiency
 - 5. Response time
 - 6. Self-discharge
- Use case-specific Pis
 - 1. Self-consumption
 - 2. Self-sufficiency
 - 3. Net profitability / Income
 - 4. Firmness (e.g. fraction of time at required capacity)

Ġ

RESIDENTIAL			
MEDIUM SIZE			
ΠΤΙΓΙΤΥ			
	PROJ. DEV.	EPC	OPERATIONAL PHASE

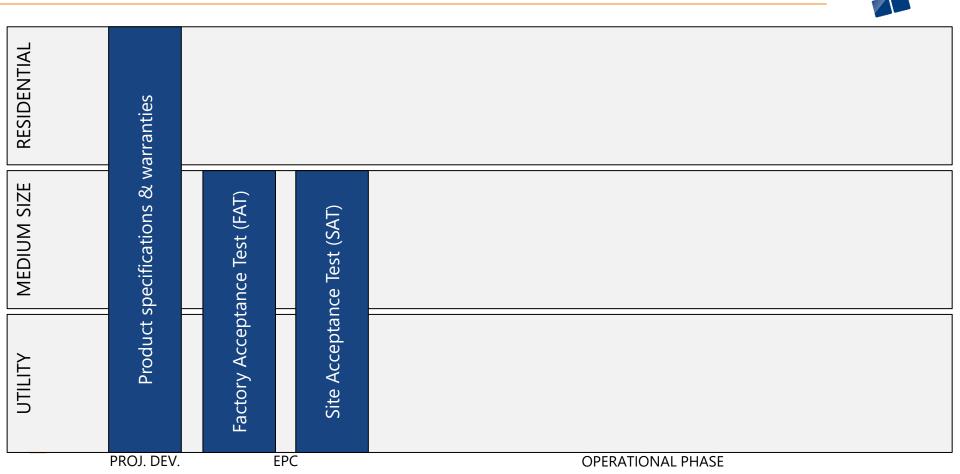
Parameter Standard discharge capacity

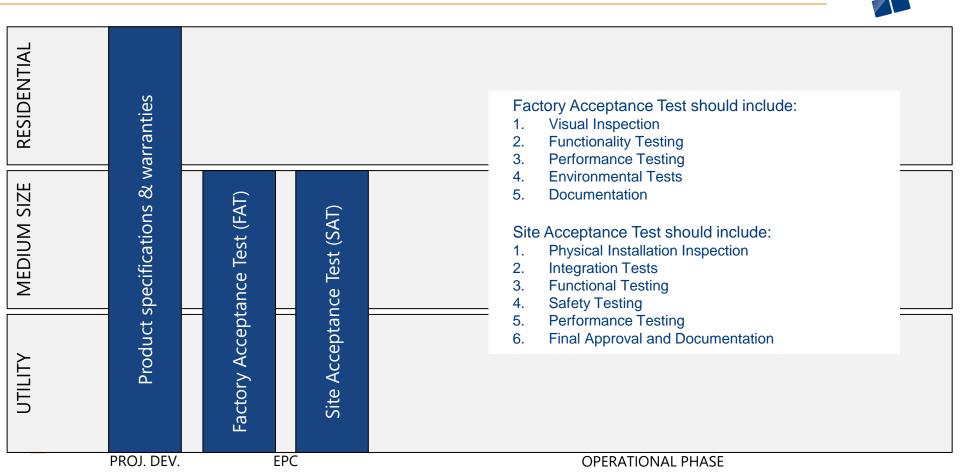
Unit	
Ah	
-	
V	
V	
A	
A	
kg	
m ³	
	Ah - V V A A kg

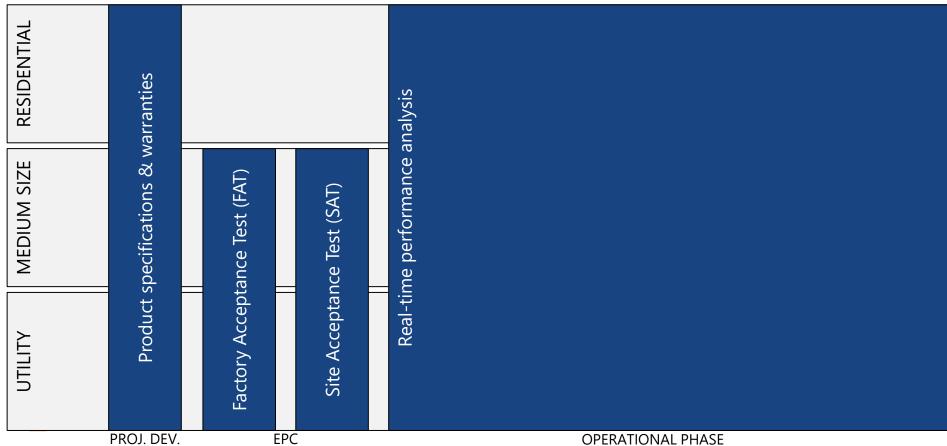
C-rate (charging/discharging)	The rate of which a battery can be charged/discharged	-
Cut-off voltage	The minimum voltage allowed by the battery	V
Max charge voltage	The voltage the battery is charged to at full capacity	V
Max continuous and/or pulse charge current	Recommended and maximum charge currents	A
Max continuous and/or pulse dis- charge current	Recommended and maximum discharge currents	A
Weight	Weight of battery	kg
Dimensions	Physical dimensions of battery	m ³
Operating temperature	Recommended temperature range for battery operation	°C
Storage temperature	Temperature ranges linked to calendar life	°C
Cycle life	The number of discharge-charge cycles before which the bat- tery fails a specific performance criterium	#cycles
Calendar life	The time before which the battery fails a specific performance criterium, often given for different storage temperatures	h

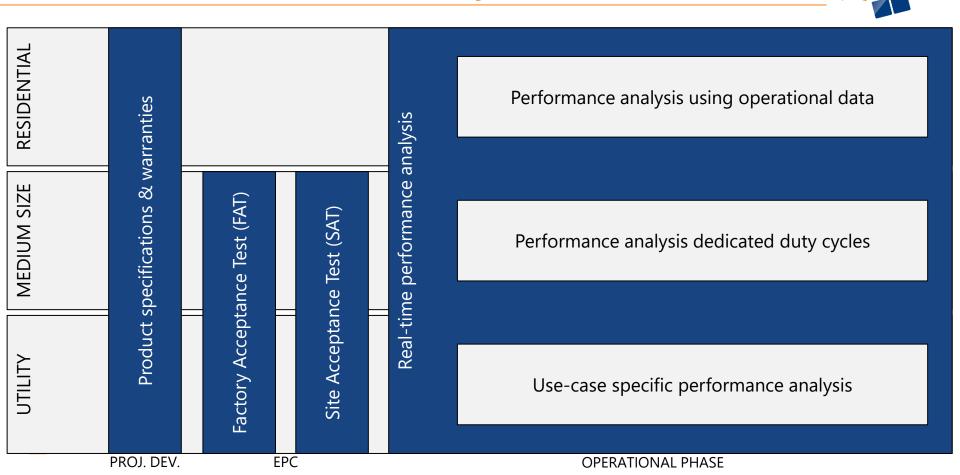
Available capacity

PROJ. DEV.

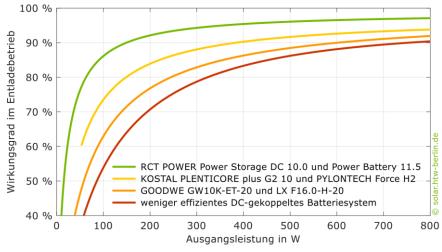

Product specifications & warranties


RESIDENTIAL


MEDIUM SIZE

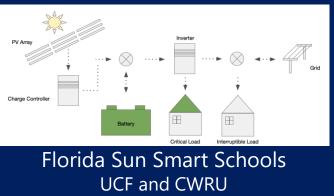

υτιμτγ

OPERATIONAL PHASE



4. Performance, degradation and lifetime

- Chapter on field performance characterization
- Example: residential systems in Germany
 - Battery performance and reliability
 - Inverter performance and reliability



BAT2AC efficiency at low power (HTW Berlin/AIT)

5. CASE STUDIES

Resilience / shelters

RI:SE villa RI:SE Self-consumption / self-sufficiency

Checkwatt Grid services / VPP operation

Kenhardt Scatec Capacity market operation

PVPS

Concluding remarks

- The installed capacity of PV + BESS is increasing rapidly
- Access to real-time information supporting O&M throughout the BESS lifetime is becoming increasingly important
- Predictive models for use case-specific BESS performance and reliability needed
- A field in rapid development
- Complexities
 - Large variation in technology, use case, scale and deployment environment
 - Added complexities: value stacking and change of use cases
 - Large variation in data formats and availability throughout the BESS hierarchy

Erik Stensrud Marstein eriksm@ife.no

