

IEA PVPS

How to deal with cold solder joints in JB of current module designs

Marc Köntges ISFH, Jay Lin PV Guider

DTU, Roskilde, DK, 29th – 30th April 25

Function of Bypass diode

- Bypassdiodes avoid local high breakthrough currents of solar cells in the case of shading
- Voltage at a shaded cell is below voltage of a substring
- Electric currents of cell strings and bypass diode add up to I_{mpp} of the inverter
- → The bypass diode limits the dissipating power to the maximum power of one module substring

What if there is no bypass diode?

- Shaded cell voltage gets negative: typically between -15 V...-25 V
- The maximum dissipating power can now be powered by the voltage of the full module string
- As we have -15 V... -25 V per cell we have at *I*_{mpp} ~10 A a power dissipation of 150-250 W per cell.
- → Cell temperature can rise above 150°C
- → Up to 600 V between cells in one substring

What is the origin?

Manufacturer faults

- Cold solder- unstable equipment temperature
- Rebounded ribbon- insufficient press during soldering
- Ribbon cut too short- human (or equipment) error
- EVA residual- short ribbon with too much EVA
- Layup dislocation- ribbon is too short to be well soldered

Poor internal QA

Ribbon length makes the difference

Conventional junction box

Junction box for butterfly module

EVA overflow has no influence

Rebounded ribbon

Short ribbon is stiffer and easy to rebound

https://photovoltaikbuero.de/pv-know-how-blog/ fehlerhafte-loetkontakte-an-fabrikneuen-photovoltaikmodulen/

- Press time for soldering must be adjusted properly
- Inspection of solder joint required

Ribbon cut too short

Normal length

Ribbons too short

• High precission required for ribbon length and positioning

EVA Residual

Short ribbon is easy to be covered by overflowed EVA

 Require stable proces without lamination material on ribbon

PVPS

It's very difficult to remove the EVA. And no one do it in the production !

Layup Dislocation

Layup dislocation makes one ribbon too short

One ribbon is too short

• High precission required for layup positioning

Which detection methods exist?

Failure mode B and C

- Use standard TG inspection
- Homogenious silightly hotter substrings together with hot junction box → failure mode B
- Full string is not active in TG inspection
 → failure mode C
 Visula inspection needed

S

Which detection methods exist?

Failure mode A [1]

Image: photovoltaikbuero Ternus & Diehl GbR

• Failure mode A

- Reverse current of 3-5% of Isc in the night applied to module strings, you should get << 50 V
- Across a cell string without BYD a voltage of 15...25 V x 20...24 (cells) = 300...600 V drops
- Search for heated strings with thermographic camera in the night
- Up to two open circuit bypass diodes per string are detectable with a 1000 V power source

[1] doi: https://doi.org/10.69766/ATBD2730

[2] R. Witteck, M. Siebert, S. Blankemeyer, H. Schulte-Huxel, and M. Köntges, "Three Bypass Diodes Architecture at the Limit," IEEE J. Photovoltaics, vol. 10, no. 6, pp. 1828–1838, Nov. 2020, doi: 10.1109/JPHOTOV.2020.3021348.

How many failure are probably in the system?

- Failure mode B is recognized in TG inspection
- Assuming there is a constant propability *p* for cold solder joints
- The distribution of the cold solder joints over the 6 contacts will be a binominal distribution
- Counting all visible mode B defects in TG can be translated to number of all actual defect modules

Defect solder	Defect modules	Actual defect
joints p [%]	in TG [%] mode B	modules [%]
0.1	0.2	0.6
0.2	0.4	1.2
0.5	1.0	3.0
1	2.0	5.9
2	4.0	11.4

What happens if a BPD is not connected properly?

Shading of the module may cause:

- High reverse voltage across cells -15 V \dots -25 V without bypass diode
- High reverse voltage may cause hot cells and local breakthrough of cells, often at the cell corners•
- High voltage difference between cells of one substring 300...600 V

Arc due to high voltage drop

in short distance

 High temperatur + high voltage may cause arcing between cells of one substring

What should we do to avoid the failure?

For 3 bypass diodes V_F x 3

- 1. In the factury the solder joint between cross connect ribbon and solderpad in the JB must be checked visual for "cold solder joints"
- 2. And during flash/EL testing apply a reverse voltage and the current through the bypass diodes should be in a certain current range (according to data sheet of the bypass diodes)
- This enables to identify high resistive contacts
- Alternative to 2. use method defined in IEC 61730-2:2023 Annex A5 a) or b) but not c)

What should we do if the failure is in my system?

- The failure mode B+C will be recognized in standard IR inspection
- If there is one mode B+C case one must check the whole system for failure mode A+B+C by the suggested methods or alternatives
- We expect ~3 times more defect moduls than # of mode B cases in IR inspection
- Cold solder joints get worse with time. Each year IR inspection should be done.
- Start with shaded system parts
- The inspection rate could be set to normal if no additional failure mode B or C is found any more

- If failure mode B and C is detected in your system do a 100% search for mode A
- Failure mode B result in at least 1/3 power loss and C in full lost string
- Actual defect modules are typically 3 times the failure mode B rate (for $p \le 1\%$)
- Failure mode A is costly to find
- All failure mode may result in a fire
- 100% inspection in the production is mandatory
- However, stock items still may have this failure

www.iea-pvps.org

New TASK13 phase starts in 2026. Contact me if you want to be part of it!

Thank you for your attention

Marc Köntges and Jay Lin Marc.Koentges@ISFH.de and Jay@pvguider.com

Technology Collaboration Programme

Degradation and Failure Modes in New Photovoltaic Cell and Module Technologies 2025

Report IEA-PVPS T13-30:2025