

Agrivoltaics Action Group

Global Development and Future Outlook of Agrivoltaics

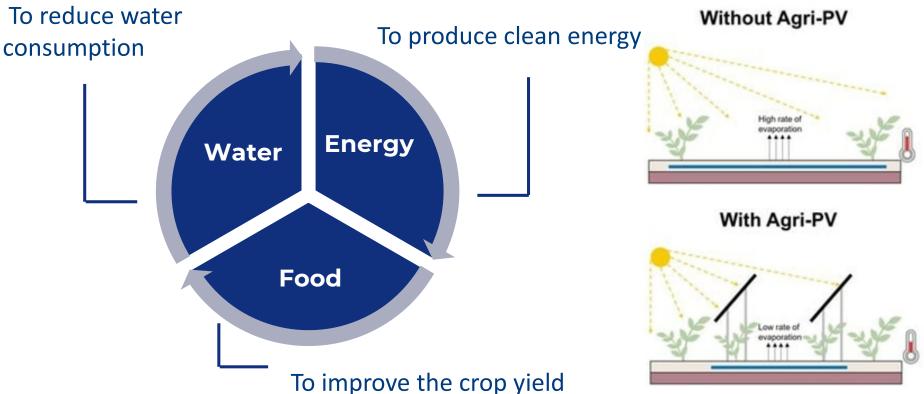
Parallel event at the 42nd European Photovoltaic Solar Energy Conference and Exhibition | Bilbao | Spain 24.09.2025

Agrivoltaics from a research perspective

Cristina Cornaro | University of Rome Tor Vergata | Italy

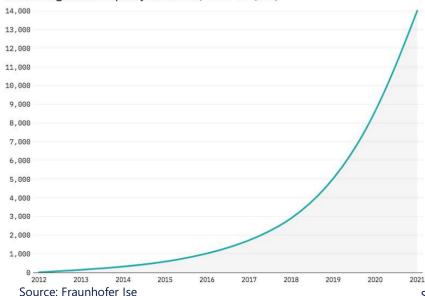
Technology Collaboration Programme by Iea

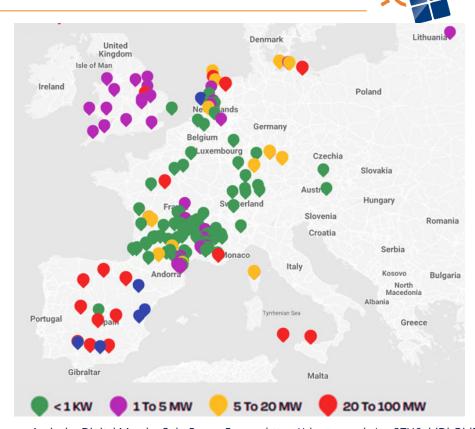
Agrivoltaics concept



Agri-Photovoltaics (Agri-PV) consists in the simultaneous use of land for both solar photovoltaic power generation and agricultural production.

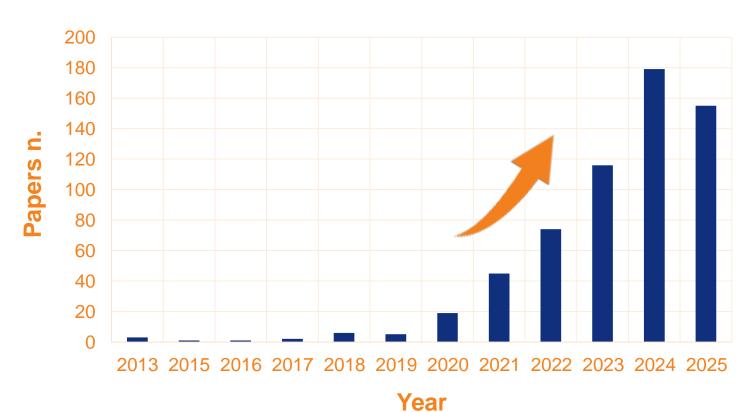
Agrivoltaics concept




Mehta, K.; Shah, M.J.; Zörner, W. Agri-PV (Agrivoltaics) in Developing Countries: Advancing Sustainable Farming to Address the Water–Energy–Food Nexus. *Energies* **2024**, 12, 4440. https://doi.org/10.3390/en17174440

Agrivoltaics trend

Installed agrivoltaic capacity worldwide, 2012-21 (MW)


 $Source: Agrisolar\ Digital\ Map\ by\ SolarPower\ Europe\ https://share.google/me3TU6gldDhOidEMvalue and the property of the$

[1] Goetzberger, A.P., & Zastrow, A. (1982). On the coexistence of solar-energy conversion and plant cultivation. https://doi.org/10.1080/01425918208909875

Research in Agrivoltaics

Keywords: agriPV, agrivoltaic/s, agrisolar, agrisolar power plant, agriphotovoltaic/s

Key aspects of Research

 Beneficial Microclimates: how solar panel shading can create a more favorable environment for certain crops

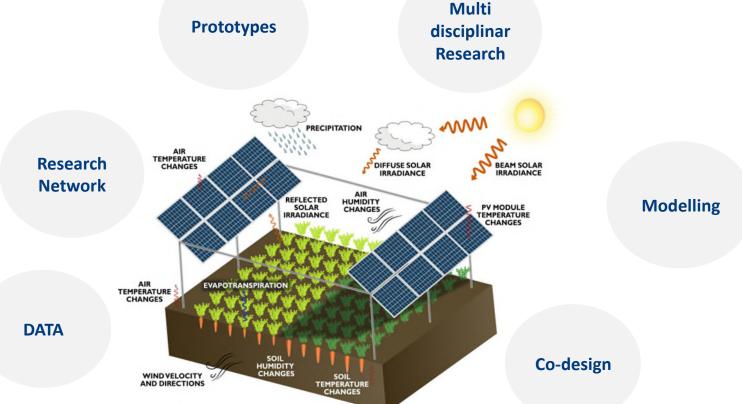
 Crop & Livestock Benefits: which crops and livestock thrive under these conditions, shading for sensitive crops, improving conditions for pollinator habitats and grazing.

 Technical Integration: designing specialized elevated or spaced-out PV panels, algorithms to optimize light and energy.

Key aspects of Research

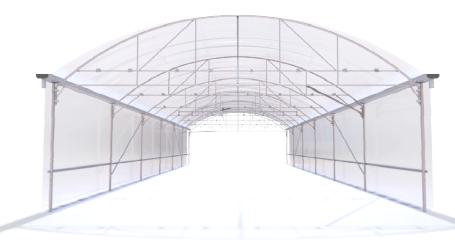
 Economic & Social Opportunities: how AgriPV systems can create new revenue streams for farmers

• Sustainability & Environmental Benefits: how AgriPV can contribute to broader sustainability goals by reducing the need for pesticides and heavy machinery and promoting biodiversity.



 Policy & Framework Development: developing clear definitions, guidelines, and policies to support its growth and integration into existing socio-technical systems.

What is needed?


Sebastian Zainali, Silvia Ma Lu, Álvaro Fernández-Solas, Alejandro Cruz-Escabias, Eduardo F. Fernández, Tekai Eddine Khalil Zidane, Erlend Hustad Honningdalsnes, Magnus Moe Nygård, Jonathan Leloux, Matthew Berwind, Max Trommsdorff, Stefano Amaducci, Shiva Gorjian, Pietro Elia Campana, Modelling, simulation, and optimisation of agrivoltaic systems a comprehensive review, Applied Energy, Volume 386, 2025, https://doi.org/10.1016/j.apenergy.2025.125558.

REGACE project

Responsive tracking PV system in the greenhouse driven by a PLC controller that changes the tracking angle according to the plants' needs. A system using CO2 enrichment increases crop production in low light conditions optimizing electricity production of the bifacial PV panels in the tracking system.

REGACE pilots

REGACE G

Italian prototype

di Enea

Anzio

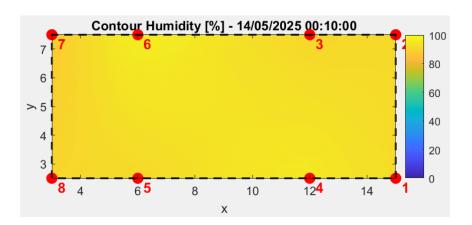
Latina

Sabaudia

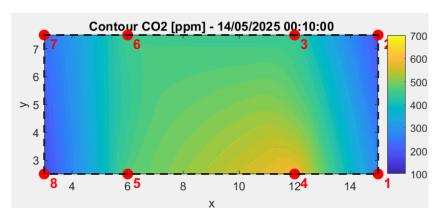
San Felice Circeo

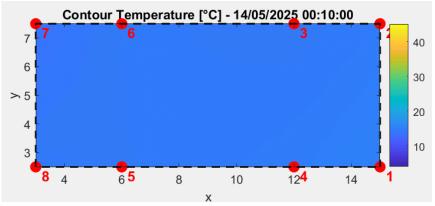
Terracina

Sperlonga

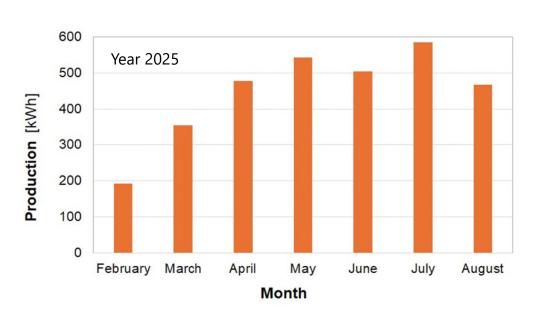

Fattoria Solidale del Circeo


Pontinia (LT) – Italy (41°23'44.9"N 13°08'57.7"E)


Microclimate



PV production

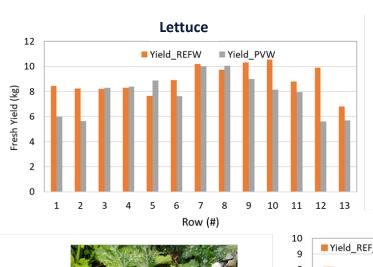


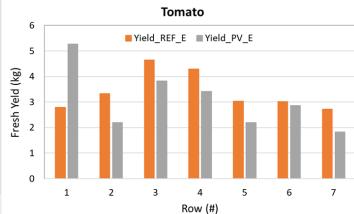
System of BFPV modules with single-axis tracking

Panels n. 64

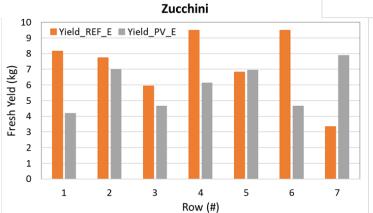
Single module Pn: 75 W

System Pn: 4.8 kW





Crop production



14

Conclusions and future outlooks

 Agrivoltaics can become a cornerstone of the energy transition and agricultural resilience if supported by policies, innovation, and collaboration among stakeholders, research and industry.

 Projects such as the REGACE project demonstrates how synergistic approaches can improve the knowledge and understanding of both agricultural output and energy performance.

 The Agrivoltaics Action Group can contribute by fostering collaboration and facilitating the exchange of knowledge among researchers, industry, and stakeholders

Conclusions and future outlooks

Looking ahead, the following actions will be crucial for AgriPV development:

- Develop and scale demonstration prototypes and real-world case studies to validate concepts.
- •Strengthen multidisciplinary research, integrating agronomic, energy, economic, and social perspectives.
- •Enhance data collection and open sharing to enable more accurate modelling and simulation tools.
- Promote co-design with farmers to ensure solutions are practical, effective, and widely adopted.
- •Expand research networks and European collaborations to shape supportive policies, standards, and guidelines.

Ester lab group

Cristina Cornaro **Full Professor** Fisica Tecnica Ambientale

Beatrice Bartolucci Research fellow **BEACON**

Luca Rosati Research fellow REGACE

Federico Andreozzi

PhD student Rome Technopole

REGACE partners

https://regaceproject.com

Funded by the European Union under Grant Agreement No 101096056. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.

www.iea-pvps.org

