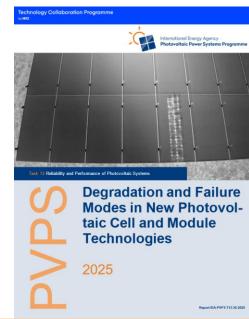


Failure in current PV systems and their relevance to find them

Marc Köntges

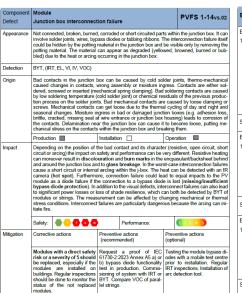

Hamelin, GER, 23rd Oct. 25, Task13 WS Characterization of Photovoltaic Systems

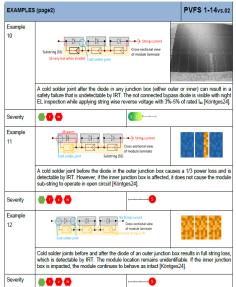
Degradation and Failure Modes in New PV Technologies

Introduction

- Literature, test results and current field experience are collected to access weaknesses of new module technologies such as TOPCON and HJT.
- For perovskite-based PV technologies, a comprehensive literature is conducted to identify all degradation pathways that need to be addressed for reliable use in PV applications.
- If available mitigation strategies are identified.

This report overviews currently know degradation modes and failures and their mitigations


Report IEA-PVPS T13-30:2025, February 2025


Photovoltaic Failure Fact Sheets (PVFS) 2025

Praxis and field-oriented information for PV planners, installers, investors, inspectors, consultant or insurance companies.

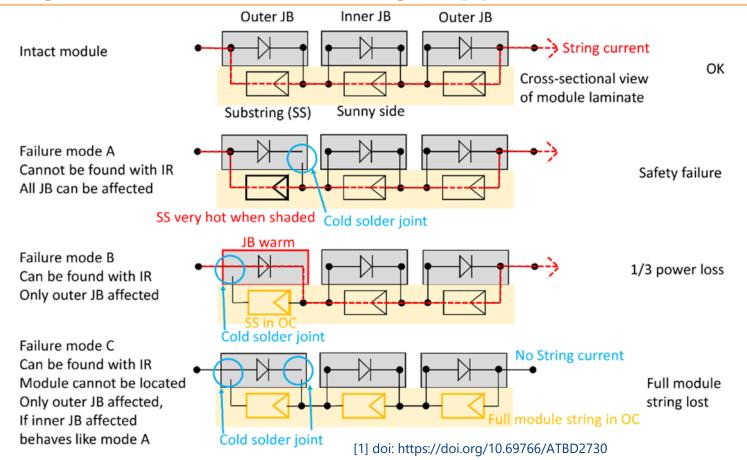
- > COMPONENT
- > DEFECT
- ➤ APPEARANCE
- > DETECTION
- > ORIGIN
- > IMPACT
- > MITIGATION
- > EXAMPLES

The original PV failure fact sheets (PVFS 2021) were reviewed to include failures occurring in new module technologies and its impact in the field:

- Spontaneous thin glass breakage
- PID-p in bifacial modules
 - Cold solder joints in new generation junction boxes
- Cracking and delamination in new backsheet materials
- Cell-cracking in MBB/multi-wire or shingled modules

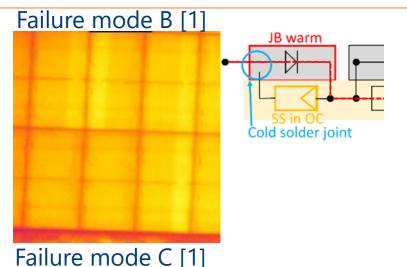
The PVFS introduces main failures, how to detect and mitigate them, and provides information on their impact on safety and power generation, together with practical examples.

Degradation and Failure Modes in New PV Technologies


- Impact of Innovation on Degradation: Cell cracking issues are mitigated by multi-wire technology. LeTID is addressed by gallium-doped wafers and improved manufacturing.
- **Potential-Induced Degradation** mechanisms can be reduced through targeted tests and adjustments at cell, module, and system level. UV irradiation during testing minimize degradation in specific cell types like TOPCon and will be added in upcoming standard.
- **UV-Induced Degradation** occurs in some PV modules, but is manageable by using UV-stable designs and encapsulation materials. However, further research is required.
- Encapsulation Material Challenges: The degradation of polymer materials is still a major problem. New tests combining stresses like UV, humidity, and temperature are required.
- **Thin Glass Durability**: Thin glass in modern modules has shown in some cases high breakage rates, necessitating multiple-module testing under real installation conditions.
- **Junction Box Reliability**: Faulty bypass diode connections pose a safety and performance risk. It is recommended to implement tests during production and in affected installations.

But what is important to characterize in the Field?

SAN


What junction box failure may happen?

Which detection methods exist?

andre mode e [1]

Cold solder joint

Failure mode B and C

- Use standard TG inspection
- Homogenious silightly hotter substrings together with hot junction box → failure mode B
- Full string is not active in TG inspection
 → failure mode C
 Visula inspection needed
 Signal transmission method

Which detection methods exist?

Failure mode A¹

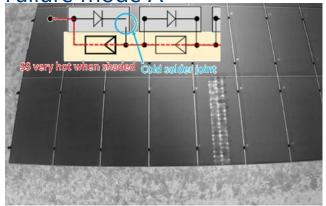
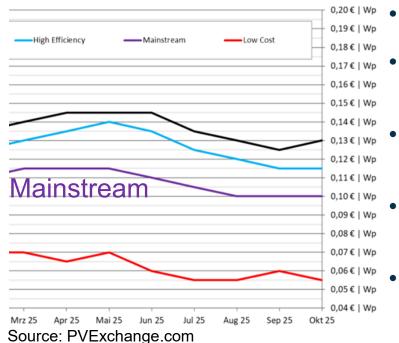


Image: photovoltaikbuero Ternus & Diehl GbR

- Failure mode A
- Reverse voltage at 3-5% of lsc in the night applied to module strings, you should get << 50 V
- Across a cell string without BPD a voltage of 15...25 V x 20...24 (cells) = 300...600 V drops
- Search for heated strings with thermographic camera in the night
- Up to two open circuit bypass diodes per string are detectable with a 1000 V power source

¹doi: https://doi.org/10.69766/ATBD2730

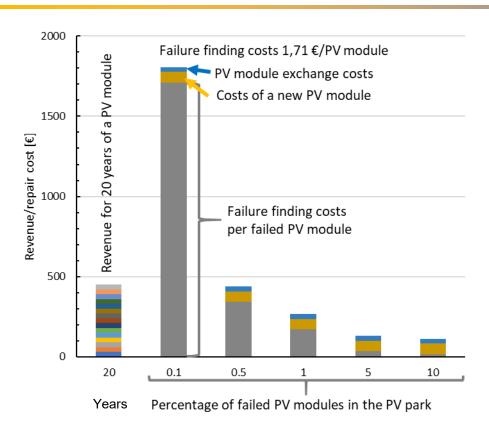
Glass breakage


- Thin glass (1.6-2.0 mm) breakage¹, often rear glass²
- Can cause isolation fault, loss of mechanical integrity and arcing (fire)
- Some times high failure rates (10% and more²)
- Difficult to find with Visual Inspection (VI)
- High detection speed and reliable detection needed

¹R. Rüther, "Make PV modules as cheap as possible, but not cheaper," PV Magazine International. [Online]. Available: https://www.pv-magazine.com/2024/01/03/make-pv-modules-as-cheap-as-possible-but-not-cheaper/

² M. Braga, G. X. A. Pinto, A. M. Pires, A. H. Zamboni, L. R. Nascimento, and R. Rüther, Universidade Federal de Santa Catarina, Florianópolis-SC, Brazil, https://scorecard.pvel.com/mechanical-stress-sequence/

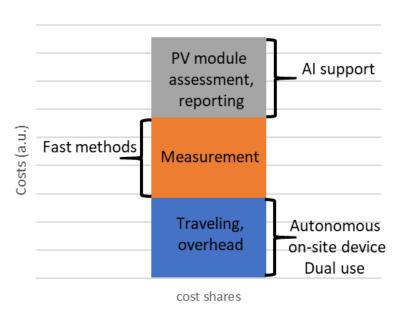
Cost structure of module replacement


- 0,10 €/Wp module costs¹: 600 Wp PV module => 60 €
- Average yield per Wp and year: 1 kWh/Wp/a,
 0,05 €/kWh² => 0,05 €/a/Wp => 30 €/a/module
- Assembly costs for replacing modules ~ 30 € => 0,05 €/Wp (e.g. warranty case)
- A 100% failed PV module pays for replacement in ~1 year if replaced under warranty
- A module with 10% power loss will pay for replacement in approx. 10 years if replaced under warranty

¹https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/ErneuerbareEnergien/EEG_Foerderung/start.html

²https://www.pv-magazine.de/2025/10/14/photovoltaik-markt-quo-vadis/

Is finding failures financially worthwhile?



- Calculation based on assuming 100% power loss of defect PV module
- Typically only some PV modules have a high power loss
- For low defect rates in the system finding defects is not cost effective
- Failure finding is mainly for safety
- Find defects at system start
- Or better in the planning phase

Cost structure & cost reduction of PV module characterisation ==== ISFH

- Al analysis of measurement results can reduce assessment and reporting cost
- But: needs regular updates for new PV technologies
- No open access training dataset available for VI
- New methods must increase measurement speed
- Autonomous on site devices can reduce traveling costs. On site devices must be cheap and must have low maintenance.
- Dual use with green cutting/cleaning/theft protection may reduce traveling costs either.

Cost structure for measurement tools

 Tools with limited periods of use must have low investment costs and development costs in order to be economical (e.g. TG)

Knowledge to increase periods of application time can also decrease over all costs

 Tools with unrestricted application periods and high analysis speed can have higher investment costs and development costs

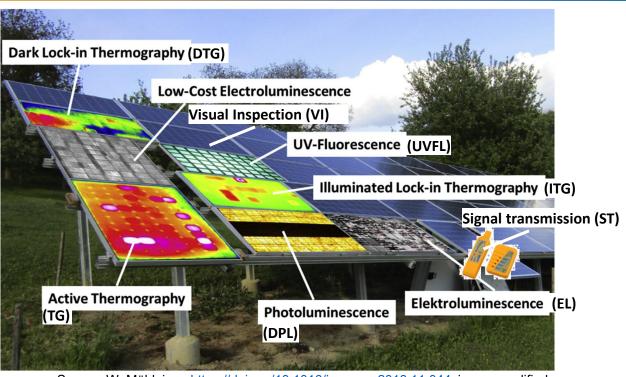
```
Throughput
```

Tools must be able to reliably find relevant high power loss and safety failure to be economical

What methods are available?

600-1000 W/m² necessary

TG, ITG, DPL


Sun shine independent

EL, UVFL, VI, ST, ISO

No opening of the circuit

UVFL, VI, TG, (DPL)

And many others ...

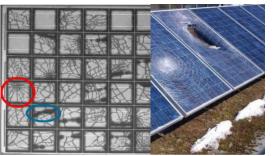
Source: W. Mühleisen https://doi.org/10.1016/j.renene.2018.11.044, image modified.

Finding faults during construction acceptance

- Find faults on the first day of construction
 Time with greatest fault finding value, as faults can be avoided for the following work
- Typical construction faults: screw connection NIO, wiring NIO, broken plugs, plug crimping NIO, rack imprecise, scratches/holes in back foils, cell cracks due to rough handling.
- Most defects can be found by VIS and EL/DPL
- Due to cost structure VIS and TG are mostly used for acceptance + regular inspection

Image: https://www.maz-online.de/Lokales/Havelland/Nauen/Nauen-Vattenfall-will-Hybrid-

Image: https://www.pv-magazine.de/2021/10/06/gp-joule-beginnt-bau-von-90-megawatt-solarpark-in-ehemaligem-braunkohlegebiet/


Finding failure for insurance claims

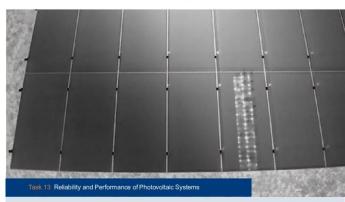
- Different cost structure, as fault finding, material and working time is financed by insurer
- It is worthwhile for park operators to find almost all faults
- Typical faults and methods are:
- Hail damage (VIS, EL, UVFL, DPL)
- Snow damage (VIS, EL, UVFL, DPL)
- Storm damage (VIS, EL, UVFL, DPL)
- Water damage (VIS, ISO)
- Theft (VIS)

Source: https://www.wral.com/falling-ice-damages-cbc-solar-array/13396686/

Conclusion

- During acceptance test highest detail of inspection should be done.
 But no more cell crack counting!
- Repeat inspection and occasion related inspection must detect only "high power loss & safety failure" (if no insurance case)
- Automated (AI) evaluation of inspection data has a high cost reduction potential
- Combination of regular work (green cutting/cleaning/theft protection) with inspection is possibly cost effective
- Autonomous on site inspection tools recover costs if their total cost are lower than regular traveling cost and if they need nearly no inspection/repair for it self.
- We need to detect lost bypass diodes, glass breakage and isolation faults faster&cheaper

Technology Collaboration Programme


New TASK13 phase starts in 2026. Contact me if you want to be part of it!

Thank you for your attention

Marc Köntges

Marc.Koentges@ISFH.de

2VPS

Degradation and Failure Modes in New Photovoltaic Cell and Module Technologies 2025

Report IEA-PVPS T13-30:2025