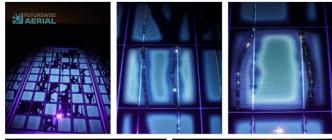

Why PV inspections matter (and will matter more)

- PV capacity is scaling fast and diversifying
- Diverse new applications (bifacial, xyz-PV, trackers) = diverse failure modes & conditions
- Monitoring data alone can't "see" component-level fault
- Small cell/module faults can cascade to string losses Early detection = Prevention
- Inspections provide spatial and physical context
- Labour-driven O&M costs dominate many portfolios; reducing truck-rolls and improving triage gives direct ROI.

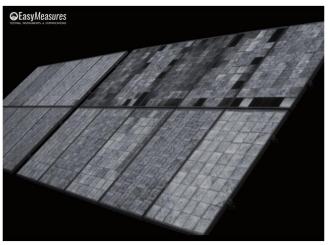
Combining SOTA monitoring + targeted inspections gives the lowest-cost O&M strategy: data tells you when & where (?) to look, inspections tell you what's wrong and where.

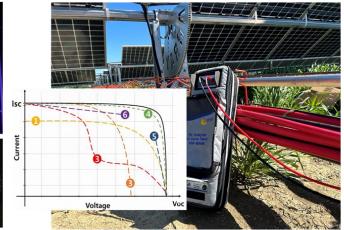

Taxonomy (in a nutshell)

Drone thermal (IR)

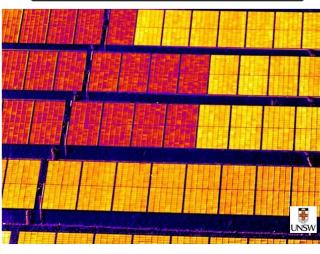
- Rapid fleet-level thermal mapping.
- Finds hotspots, connection/DC faults, PID.

UV Fluorescence (UVFL)




- Degraded encapsulants, moisture ingress.
- BOM inconsistencies

Electroluminescence (EL)


- Cell-level defects: microcracks, solder issues.
- Traditionally night/back-powered.

IV tracing

- PV output losses at string/module level.
- Ground-truthing → IV patterns

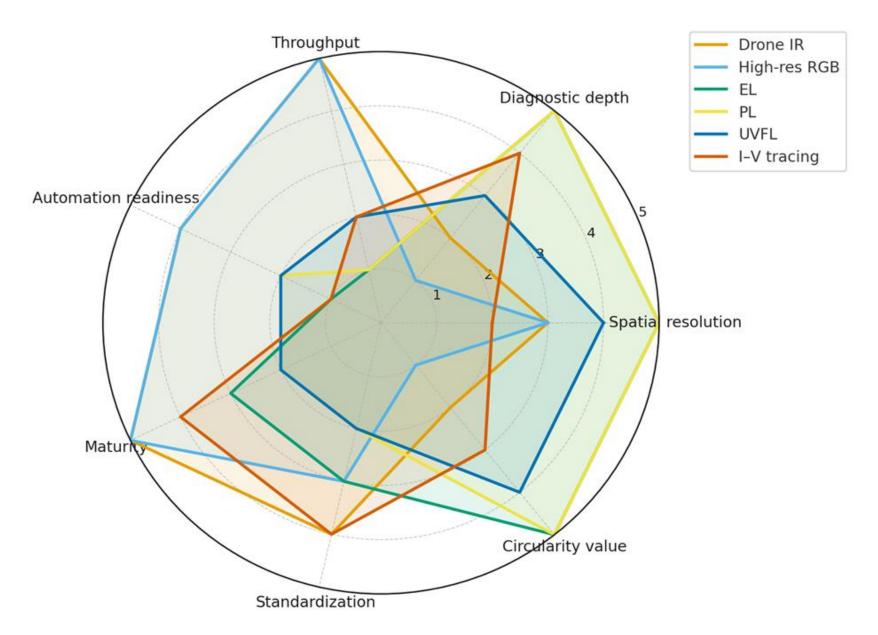
Photoluminescence (PL)

- Cell-level defects.
- Similar to EL but fieldable daytime methods emerging.

High-res. RGB / Visual

- Ground-truthing of (visible) faults, incl. mechanical/physical damage.
- Tell soiling/shading vs "real" faults.

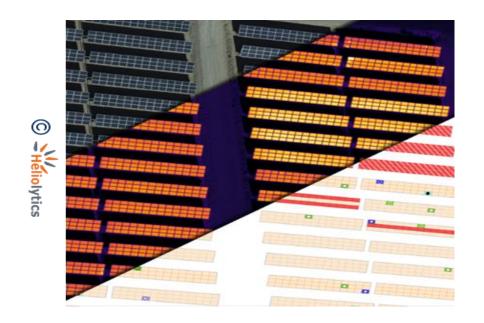
How inspection resources add up



Inspection method	Typical cost (€ / MW inspected)	Time effort (h / MW)	Instrumentation / Main equipment CAPEX (typical)	Typical deliverable
Drone IR imaging	€450 – 650	0.4 - 0.8	Radiometric thermal camera + drone €6k – 17k	Thermal orthomosaic, hotspot classification, string-level fault map Preliminary reuse triage
Drone high-res RGB (visual) imaging	€250 – 400	0.3 – 0.6	Drone with high-res RGB camera €3k – 12k	Visual orthophoto, soiling/shading, vegetation/mounting anomalies
Field EL / PL imaging	€1 500 - 2 500	2 – 4	Fieldable EL/PL setup (camera, excitation) €25k – 40k	Cell-level defects (slow, higher cost) Advanced reuse triage
UVFL imaging	€700 - 1 200	> 4 *	UV source + camera(s) €4k - 13k	Component-level aging and inconsistencies, moisture paths
Field I–V tracing / sampling	€900 – 1 400	> 4 *	IV tracer + load bank €3k - 15k	Quantitative power loss per module/string
Manual / visual (truck-roll)	€400 – 800 / visit	> 4 *	Vehicle(s) + labor + tools	On-site validation, visual inspection, fixes (where applicable)

^{*} variable, depending on sample

Comparative landscape



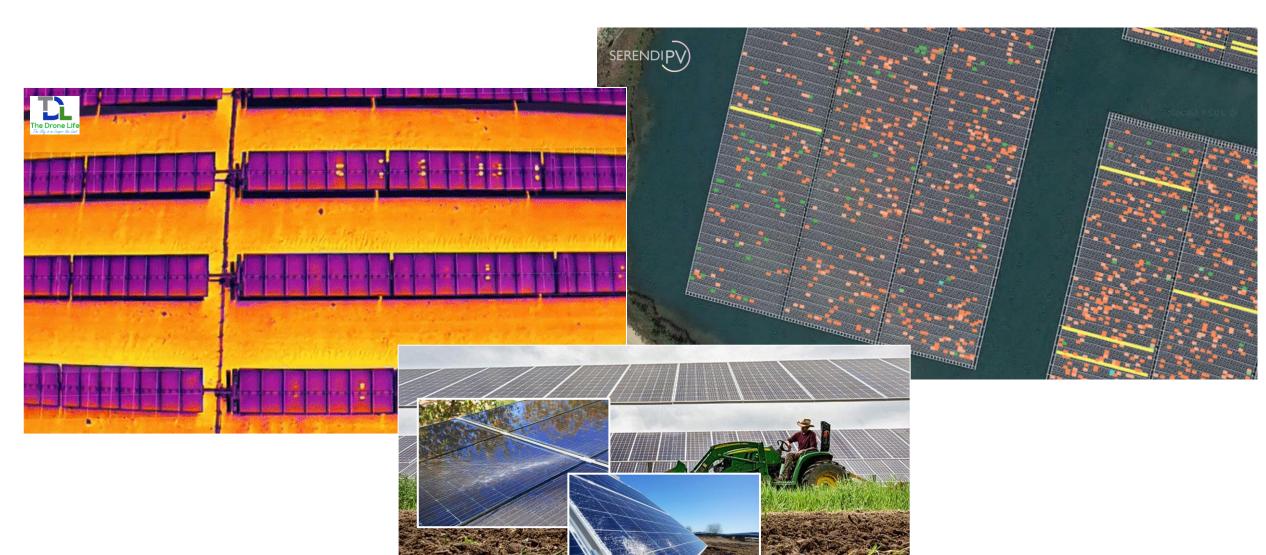
Bottlenecks: Data, Al and workflows

- ML models are limited by small / biased datasets, inconsistent labels and sensor domain shifts.
- Operators need explainable predictions and uncertainty (confidence) not only binary flags.
- Multimodal fusion (IR + RGB + EL + I-V + metadata) is powerful but still immature in production.

Inspection challenges in new PV applications

- Access & corrosion issues; mooring/floaters : new inspection targets.
- Very high dependence on remote sensing needs and multi-/interdisciplinary experts.

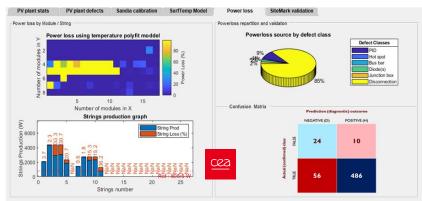
- Rear-side variability and access
- Dynamic thermal signatures complicate automatic detection.
- Field experience feedback: TS/standardization needs update


- Access & occlusions (plants, rooftop obstacles)
- Safety constraints / dependence on experts.
- New microclimatic stressors = new fault signatures?

Inspection challenges in new PV applications

Inspections supporting circular economy for PV

 Diagnostics-enabled triage: IV+automated IR-PL/EL/UVFL classify modules for reuse, repair, or recycling on-site.


digital **Product Passport**: each module carries its inspection record

trusted 2nd-life certification

- Link with SRIA vision & KPIs (2035):
- ≥ 50 % of decommissioned modules reused / repaired
- ≥ 10 years second-life operation

Full traceability via interoperable inspection data standards

Al Agents — Transforming Inspections and O&M

Today:

Al already automates image-based diagnostics (IR, EL, PL), achieving ~80-90 % fault classification accuracy and accelerating inspection analytics.

Next Step:

- Al agents evolve from classification to autonomous action linking monitoring, inspection, and maintenance scheduling into a single, adaptive workflow.
- Conversational assistants interpret inspection data ("String 12B shows likely PID 8 % loss, replace 3 modules") and enable explainable, data-driven O&M.

Vision 2035:

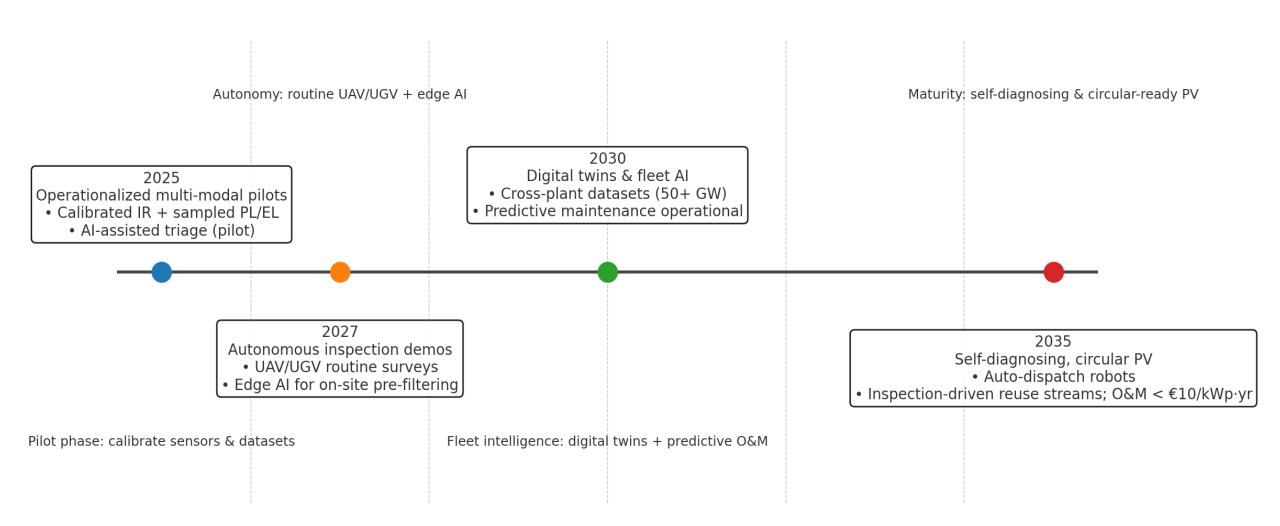
"Self-aware" PV plants where digital twins and AI continuously diagnose, plan, and dispatch maintenance robots — meeting SRIA targets of

- ≥ 95 % automated fault accuracy
- Autonomous inspection throughput ≥ 6 MW · h⁻¹
 CPN (O&M + soft costs) < €10 / kWp·yr

Concrete advances we need

Need

- 1. Update IR normative (TS) framework
- 2. Faster, field-ready PL/EL workflows
- 3. Open, multimodal benchmark datasets
- 4. Explainable AI with uncertainty scoring
- 5. Standards for field EL/PL/UV & reuse scoring
- 6. Autonomous inspection platforms (esp. for FPV, rooftops, harsh sites)


Impact

- 1. Address faults in emerging PV technologies and applications
- 2. Cell-level insights without prohibitive cost or downtime.
- 3. Robust ML models and cross-vendor comparability.
- 4. Auditable, prioritized maintenance actions.
- 5. Build market trust and enable secondlife trade.
- 6. Safer, repeatable operations.

Roadmap towards 2035

Example RDI and pilots/demos pipeline

■ 0-12 months

- Evolve and re-engineer models/software prototypes;
- Build open multimodal datasets (anonymized).

1-3 years:

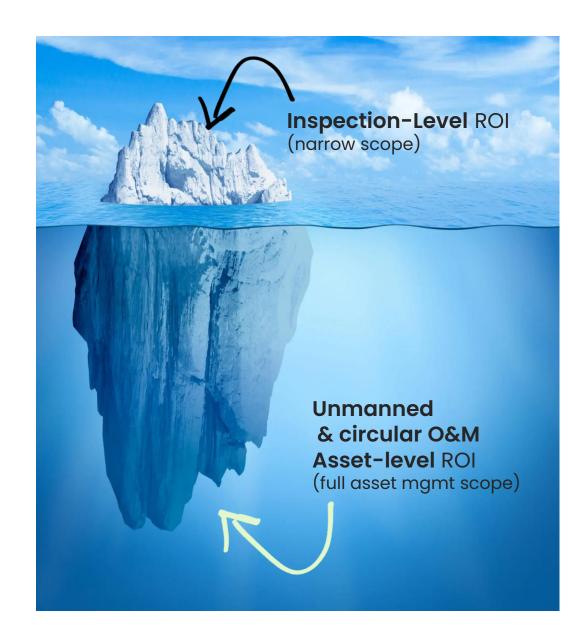
- Run of 2 pilots to pair IR+RGB+PL with targeted I-V verification;
- Deploy field multispectral imaging demos and digital twins;
- Integrate explainable AI into workflows, incl. PV reuse triage.

■ <u>3-5 years:</u>

- Upscale fieldable "complete" inspection platforms;
- Mature reuse-scoring standards;
- Scalable autonomous inspectors.

Financial impact of improved inspections: reality check

Parameter	Symbol / Unit	Typical / Example	Notes
PV plant size	P _n	100 MWp	utility-scale
Annual O&M baseline cost	C_0	€ 8 / kWp·yr → € 800 k / yr	Europe-specific
Baseline inspection type	_	Manual + handheld IR	legacy practice
Improved inspection	_	Drone IR + sample PL + AI analytics	advanced pilot
Baseline truck-roll rate	Ro	0.6 / MW·yr	~60 visits / yr total
Avg. truck-roll cost	C_{t}	€ 700 / visit	labour, travel, admin
Energy loss per undetected fault	Lo	0.3 % / yr	typical undetected degradation
Energy price	P_{e}	€ 60 / MWh	wholesale average (Europe-specific)
Inspection cost – baseline	C_{i0}	€ 350 / MW	manual + IR
Inspection cost – new	C_{i^1}	€ 550 / MW	drone + Al proc.
Fault detection improvement	Δf	+45 %	faster + more precise
Avoided truck-roll rate	ΔR	40 %	via targeted interventions


Metric	Formula / Definition	Example (100 MW)	Comment
Baseline O&M cost	$C_0 \times P_n$	€ 800 000 / yr	reference value
Baseline truck-roll cost	$R_0 \times P_n \times C_t$	€ 42 000 / yr	current reactive maintenance
Baseline energy loss	$L_0 \times (1600 \text{ MWh/MW}) \times P_e$	€ 28 800 / yr	undetected yield loss
New inspection cost	$C_{i1} \times P_n$	€ 55 000 / yr	
Avoided truck-roll savings	$\Delta R \times R_0 \times P_n \times C_t$	€ 16 800 / yr	
Recovered energy value	$\Delta f \times L_0 \times yield \times P_e$	€ 12 960 / yr	
Total annual benefit	_	€ 29 760 / yr	
Extra inspection cost	$(C_{i^1} - C_{i^0}) \times P_n$	€ 20 000 / yr	
Net gain (1st year)	benefit - extra cost	+€9760/yr	modest positive ROI (~50 %)
Payback horizon	_	< 2 years (with scaling)	automation → -20 % cost/yr

Financial impact of improved inspections: reality check

eck	

Scope	What's Added Beyond Inspections	Typical Annual Savings (100 MW)	Mechanisms
Inspection Upgrade	Drone multi +AI vs. standard IR	€ 10 k – € 30 k	Fewer truck-rolls, faster fault detection
Predictive Maintenance Integration	Analytics + failure models + scheduling	€ 250 k – € 500 k	Reduced unplanned maintenance, optimized cleaning
Fully automated O&M Ecosystem	Al agents, digital twin, smart dispatch		+0.5-1.5 % yield, 15-30 % O&M reduction
Full Lifecycle Asset Mgmt.	Circularity, EoL triage, reuse logistics	> € 500 k	Improved asset lifetime value, lower replacement capex

Sources - References

- Seel, Joachim, et al. *U.S. Utility-Scale Solar: 2025 Data Update. Lawrence Berkeley National Laboratory, 2025, emp.lbl.gov/utility-scale-solar
- Abdulla, Hind, et al. "Photovoltaic Systems Operation and Maintenance: A Review and Future Directions." Renewable and Sustainable Energy Reviews, vol. 195, May 2024, p. 114342. https://doi.org/10.1016/j.rser.2024.114342
- M Vuković et al 2024 Prog. Energy 6 032001, DOI 10.1088/2516-1083/ad4250
- Aghaei, M., et al. "Autonomous Intelligent Monitoring of Photovoltaic Systems: An In-Depth Multidisciplinary Review." Progress in Photovoltaics: Research and Applications, vol. 33, no. 3, 2025, pp. 381-409. Wiley Online Library, https://doi.org/10.1002/pip.3789
- Enbar, Nadav, et al. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing. Electric Power Research Institute, 2015.
- Hermann, W., et al. *Qualification of Photovoltaic (PV) Power Plants using Mobile Test Equipment: Report IEA-PVPS T13-24:2021*. International Energy Agency Photovoltaic Power Systems Programme, 2021.
- H2020 SERENDI-PV, serendipv.eu/
- H2020 TRUST-PV, trust-pv.eu/
- © 2025 Raptor Maps. Global Solar Report: 2025 Edition, The State of PV Performance.
- Huawei. Global PV Trends: Report 2020. Huawei, June 2020, www.pv-magazine.com/wp-content/uploads/2020/06/HuaweiSE2020-web-1.pdf
- Koester, L., et al. "Review of Photovoltaic Module Degradation, Field Inspection Techniques and Techno-Economic Assessment." Renewable and Sustainable Energy Reviews, vol. 165, 2022, p. 112616. ScienceDirect, https://doi.org/10.1016/j.rser.2022.112616
- Lindig, Sascha, et al. "Towards the Development of an Optimized Decision Support System for the PV Industry: A Comprehensive Statistical and Economical Assessment of over 35,000 O&M Tickets." Progress in Photovoltaics: Research and Applications, vol. 31, no. 3, 2023, pp. 219–33. Wiley Online Library, https://doi.org/10.1002/pip.3637
- Oviedo Hernandez, G., et al. "Trends and Innovations in Photovoltaic Operations and Maintenance." Progress in Energy, vol. 4, no. 4, Oct. 2022, p. 042002. IOPscience, https://doi.org/10.1088/2516-1083/ac8f2b
- End-of-life Management: Best Practice Guidelines. SolarPower Europe, 2024.
- Operation & Maintenance Best Practice Guidelines. Version 6.0, SolarPower Europe, 2025.
- Tsanakas, I. A., et al. "Toward Reuse-Ready PV: A Perspective on Recent Advances, Practices, and Future Challenges." Advanced Energy and Sustainability Research, 2024, https://doi.org/10.1002/aesr.202400237
- Walker, Andy, et al. Model of Operation-and-Maintenance Costs for Photovoltaic Systems. National Renewable Energy Laboratory, 2020. NREL, www.nrel.gov/docs/fy20osti/74840.pdf
- Bommes, Lukas, et al. "Computer Vision Tool for Detection, Mapping, and Fault Classification of Photovoltaics Modules in Aerial IR Videos." Progress in Photovoltaics: Research and Applications, vol. 29, no. 10, 2021, pp. 1150-1161. Wiley Online Library, https://doi.org/10.1002/pip.3448
- Tsanakas, John A., et al. "Faults and Infrared Thermographic Diagnosis in Operating c-Si Photovoltaic Modules: A Review of Research and Future Challenges." Renewable and Sustainable Energy Reviews, vol. 62, Sept. 2016, pp. 695-709. https://doi.org/10.1016/j.rser.2016.04.079
- Tsanakas, John Ioannis A., and Philippe Marechal. "Decoding Pixels: A Modular Software Prototype for Cognitive Image-Based Diagnostics of PV Plants." EPJ Photovoltaics, vol. 16, 2025, p. 24, https://doi.org/10.1051/epjpv/2025013
- ETIP PV. (2024). Strategic research and innovation agenda 2.0: Towards a climate-neutral Europe by 2050. European Technology and Innovation Platform for Photovoltaics. https://etip-pv.eu/wp-content/uploads/2024/04/ETIP-PV_SRIA-2.0_Final.pdf
- IEC TS 62446-3 (2017)

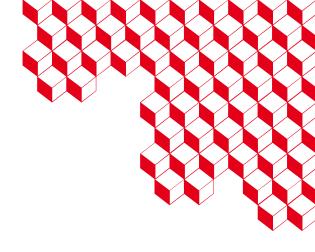
WE INTERUPT THIS PROGRAM FOR A COMMERCIAL BREAK

Buckle up – time to refresh your French!

April 23rd - 24th, 2026

INES – National Institute for Solar Energy Le Bourget-du-Lac, France

host:



Thank you • Vielen dank

loannis Tsanakas ioannis.tsanakas@cea.fr

