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What is IEA PVPS TCP?

The International Energy Agency (IEA), founded in 1974, is an autonomous body within the framework of the Organization
for Economic Cooperation and Development (OECD). The Technology Collaboration Programme (TCP) was created with
a belief that the future of energy security and sustainability starts with global collaboration. The programme is made up of
6.000 experts across government, academia, and industry dedicated to advancing common research and the application
of specific energy technologies.

The IEA Photovoltaic Power Systems Programme (IEA PVPS) is one of the TCP’s within the IEA and was established in
1993. The mission of the programme is to “enhance the international collaborative efforts which facilitate the role of
photovoltaic solar energy as a cornerstone in the transition to sustainable energy systems.” In order to achieve this, the
Programme’s participants have undertaken a variety of joint research projects in PV power systems applications. The
overall programme is headed by an Executive Committee, comprised of one delegate from each country or organisation
member, which designates distinct ‘Tasks,” that may be research projects or activity areas.

The 28 IEA PVPS participating countries are Australia, Austria, Belgium, Canada, China, Denmark, Finland, France,
Germany, India, Israel, ltaly, Japan, Korea, Lithuania, Malaysia, Morocco, the Netherlands, Norway, Portugal, South
Africa, Spain, Sweden, Switzerland, Thailand, Turkiye, the United Kingdom and the United States of America. The
European Commission, Solar Power Europe and the Solar Energy Research Institute of Singapore are also members.

Visit us at: www.iea-pvps.org

What is IEA PVPS Task 17?

The objective of Task 17 of the IEA Photovoltaic Power Systems Programme is to deploy PV in the transport, which will
contribute to reducing CO, emissions of the transport and enhancing PV market expansions. The results contribute to
clarifying the potential of utilization of PV in transport and to proposal on how to proceed toward realising the concepts.

Task 17’s scope includes PV-powered vehicles such as PLDVs (passenger light duty vehicles), LCVs (light commercial
vehicles), HDVs (heavy duty vehicles) and other vehicles, as well as PV applications for electric systems and
infrastructures, such as charging infrastructure with PV, battery and other power management systems.
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EXECUTIVE SUMMARY

Electric mobility is accelerating worldwide, increasing the demand for cleaner and more
sustainable charging solutions. Among the most promising options are photovoltaic (PV)-
powered charging stations (PVCS), which integrate solar energy production with electric
vehicle (EV) charging infrastructure. These systems are becoming increasingly common in
both urban and rural settings, reflecting a global shift toward renewable energy integration and
greater energy autonomy.

However, the effective deployment of PVCS involves more than simply installing solar panels
and chargers. Key challenges include the dimensioning of PV generation and storage systems
to meet local energy demands, the management of energy flows between the PV source, the
grid, and potential battery storage, and the control of EV charging to ensure system stability,
operational efficiency, and user satisfaction. Without proper coordination, PVCS may face
issues such as overloading, underutilization, or intermittent service availability.

Building on the initial IEA Task 17 Subtask 2 report—which examined the feasibility and
fundamental requirements of PVCS — and a second report that addressed technical solutions
and societal impacts, this third report advances the work further. It explores the deployment of
PVCS within microgrid-based architectures, the integration of smart energy management and
charging systems, and the incorporation of emerging services such as Vehicle-to-Grid (V2G)
and battery swapping. It also considers the specific requirements and challenges related to
charging electric buses with solar energy.

Effectively addressing these technical and operational aspects is essential to fully realize the
potential of PV-powered charging, ensuring not only environmental sustainability, but also
system reliability and economic viability.

A. Sizing for EV Workplace Charging Station

This goal is to maximize on-site solar energy for charging electric vehicles via a dedicated
control system. A modular sizing methodology was developed that separates the sizing
problem into four relationships, allowing business model, charging strategy, and demand
profile to vary independently, giving stakeholders flexibility to adapt the approach to different
real-world scenarios. Results show that aligning charging with PV generation can greatly
reduce infrastructure needs and costs. Workplace parking lots are especially suitable, as EV
demand often matches predictable daytime solar production.

B. PVCS: Sizing and Energy Cost Optimization

The optimal sizing and operation of PVCS in microgrid contexts involve complex trade-offs
among technical, economic, and environmental objectives. A multi-objective framework based
on MILP was developed to minimize both the levelized cost of energy (LCOE) and life cycle
emissions (LCE) over the station’s economic lifespan. Results show that while high solar
irradiation improves both LCOE and LCE, site-specific conditions (e.g., climate, energy
demand, grid availability) necessitate customized designs. The choice of PV and battery
technologies plays a crucial role in achieving balanced outcomes.

C. PVCS: Integration of Vehicle-to-Grid (V2G) Services

Since EVs are parked for extended periods, V2G services offer mutual benefits for grid
operators and EV owners. A MILP-based optimization algorithm was designed to schedule EV
battery charging and discharging, aiming to minimize energy costs while maximizing solar
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utilization. Simulations demonstrated that dynamic scheduling strategies outperform static
ones, yielding economic benefits without compromising driver requirements.

D. PVCS for Electric Buses

The deployment of electric buses in public transport highlights both their environmental
advantages and deployment challenges. A case study in Compiégne, France, evaluated the
impacts of various charging strategies — depot-only, terminal, and opportunity charging — on
grid performance and service reliability. The integration of PV generation was assessed for its
role in reducing emissions and grid stress. Results show significant trade-offs among
strategies, affecting battery sizing, operational flexibility, and infrastructure demands. Although
opportunity charging reduces battery size and energy consumption, it also imposes stress on
the grid and requires costly infrastructure. Seasonal variability also limits solar potential in
winter, reinforcing the need for energy storage.

KEY FINDINGS

A. Sizing for EV Workplace Charging Station:

e Using the Mean Power strategy instead of Plug and Charge halved (=50 %
reduction) the size of the required PV plant.

e Using the Solar Smart Charging strategy reduced the needed PV peak power to
about one-third compared to the basic Plug and Charge scenario.

e The modular approach means that once the four relationships are computed for a
“representative” site, other similar sites can be sized in hours instead of weeks—
this is valuable for a CPO managing many workplace charging stations.

A. PVCS Sizing and Energy Management:
o Off-grid setups require larger components to handle low-sun periods;

e Higher battery capacity is associated with lower LCE; more PV panels improve
LCOE;

e Economically optimal systems require higher initial investments, while
environmentally optimal setups lead to increased long-term replacement costs;

o Greater grid interaction improves both economic and environmental outcomes;

e In the French case study, 54% of energy was locally produced, with the rest
supplied primarily by the nuclear-dominated public grid.

B. V2G Integration:
e Small-scale V2G (e.g., residential) has limited impact but contributes to flexibility;

e Large-scale implementations (e.g., 100 EVs in a campus setting) provide better
returns and support grid services more effectively.

C. Electric Buses and PVCS:

o Electric Buses reduce tailpipe emissions and contribute to urban air quality
improvement;

e Depot-only charging: Simple, but leads to night-time grid peaks and larger battery
requirements;
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e Terminal + Depot charging: Reduces peak demand but needs more infrastructure;

o Opportunity charging: Cuts battery size by 83% and energy consumption by 9.4%,
but stresses the grid due to high-power demands;

e PV integration lowers CO, emissions and eases peak demand, especially during
high-use periods;

e Solar contribution is limited in winter, requiring battery storage for consistency.
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1 SIZING FOR EV WORKPLACE CHARGING STATION

Electrification of transportation and the rise of EVs are driving the need for smart, sustainable
charging infrastructure. Integrating PV into workplace charging stations offers a strategic
solution: solar energy can directly supply EV demand, reducing reliance on the grid and
enhancing environmental sustainability.

This study proposes a versatile and modular methodology to aid Charging Point Operators
(CPOs) in optimally sizing PVCS, particularly in workplace environments. Recognizing that a
CPO may oversee multiple sites, the authors emphasize an efficient workflow: sizing begins
with a representative station and extrapolates to others — transforming a process that might
take weeks into one executable in mere hours.

Their approach is grounded in an extensive empirical dataset from a research complex in
Southern France: over 32 000 charging events spanning six years, 350 unique EV users, and
80 charging points. The study examines three different charging strategies, coupled with a
business model aiming to maximize self-consumption of generated PV power.

By highlighting the synergy between solar generation and EV charging under real-world
conditions, this chapter aims to guide CPOs, energy planners, and policymakers in designing
efficient, solar-powered workplace charging infrastructure — paving the way for greener mobility
and optimized renewable energy use.

10
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1.1 An Empirical Study in France

PVCS are gaining traction due to the natural synergy between solar energy and electric
vehicles. This study introduces a flexible methodology to help CPOs size key components of
PVCS based on customizable factors like EV charging demand, strategy, and business model.
By first applying the method to a representative site, CPOs can significantly reduce the time
required to size additional stations. Applied to a real-world case in southern France with over
32 000 transactions, the results show that smart charging strategies, particularly Solar Smart
Charging, can dramatically reduce PV system size requirements’23.

1.1.1 Introduction

On 4 November 2022, the French Senate enacted legislation mandating that exterior parking
areas for light-duty vehicles exceeding 1 500 square meters allocate at least 50% of their
surface area to solar panels [1]. The French government has also introduced a series of
financial incentives to accelerate the transition towards a sustainable transportation sector,
covering both the purchase of electric vehicles and the installation of charging infrastructure.
These legal obligations and incentives collectively pave the way for the widespread adoption
of energy systems that integrate both photovoltaic (PV) and electric vehicle (EV) technologies.
Reviews of all possible interactions between these two technologies are provided in [2] — [5].

Among these possible interactions, large PV-powered charging stations (PVCS) for EV near
workplaces are considered to be one of the most promising use cases. From a technical
standpoint, in such scenarios, EV charging demand — which typically spans the entire working
day — is found to be nearly concurrent with PV production. Additionally, if the number of EVs
is sufficiently large, this demand becomes relatively predictable. As a result, the optimization
of PV energy use is a priori facilitated by these two factors. This use case is also recognized
as one of the simplest in terms of stakeholder interactions, allowing cooperation to be made
more feasible, as demonstrated by proven experiments described in [6] and, on a larger scale,
ten years later in [7]. Furthermore, when PVCS are made sufficiently large — both in terms of
PV capacity and the number of charging points — economies of scale are achieved. Finally,
when PV panels are installed as car park canopies, the user experience is enhanced (through
vehicle shading and EV charging services), and the energy transition is supported.

In the context of large PVCS, several technical and financial stakeholders interact [2]. A PVCS
with multiple charging points is managed by a Charging Point Operator (CPO). For simplicity,
it is assumed that the EV driver interacts directly with the CPO, although, in practice, a third-
party stakeholder known as the e — Mobility Service Provider may act as an intermediary. In
the vicinity of the PVCS, ground-mounted PV plants and/or solar carports are installed and
operated by a Photovoltaic Operator (PVO). To remain as generic as possible, the PVO and

' This chapter is based on the following publication: B. Robisson, V.-L. Ngo, L. Marchadier, M.-F. Bouaziz, and A. Mignonac, ‘PV
Sizing for EV Workplace Charging Stations — An Empirical Study in France’, Applied Sciences, vol. 13, no. 18, 2023,
https://doi.org/10.3390/app131810128.

2 The content has been adapted to suit the context of this document.

3 This work was supported by ADEME France, project PV2E_Mobility (grant number #1905C0043) and project T-IPV (grant
number #2308D0002) and by the French National Program “Programme d’Investissements d’Avenir-INES.2S” (grant number
ANR-10-IEED-0014-01).
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CPO are assumed to be separate legal entities. It is also considered that the PV plant and
charging stations are both connected to the distribution network, managed by the Distribution
System Operator (DSO), but each has its own connection point (i.e., separate power meters).
These power connections are used to serve a dual function: they supply electricity to the EV
stations when PV generation is insufficient and allow surplus PV energy to be injected into the
grid during periods of excess production.

Sizing PVCS at the earliest design stage is critical, especially for the CPO, as this will form the
basis for subsequent design phases. However, this step is particularly challenging. First, by
nature, the technical details of the final PVCS — such as the IT and power architecture and EV
charging control algorithms (if any) — are unknown. Thus, during the sizing phase, the designer
must select models that are not only approximate (i.e., lacking technical detail) but also
reflective of feasible and practical technical solutions. Second, data on EV demand (e.g.,
arrival/departure times and energy needed to charge EV batteries) over a significant time
horizon (at least six months to a year) is crucial for sizing the PVCS. However, such data is
often unavailable or of poor quality at this stage. Third, various potential business interactions
among stakeholders make the development of a generic sizing method particularly complex.

The objective of this study is to propose a method that addresses these challenges. First, the
simplified models of PVCS used in this work are based on over ten years of experience
analysing PV—-EV interactions at CEA. Notably, this research considers three different EV
charging strategies, the most complex of which has been validated with real users in two
separate locations [6],[7]. Second, the method is built around four relationships that can be
analyzed independently. One of these determines what proportion of EV annual consumption
is supplied by PV, based on the number of EVs, a charging strategy, and the size of the PV
plant. This relationship is derived from a large empirical dataset collected over more than six
years (from 1 June 2016 to 31 August 2022), involving 350 EV users and 80 charging points
at a workplace. Although calculating this relationship is resource-intensive, it can be reused
for PVCS in similar contexts (i.e., large workplace car parks). The reuse of such pre-
computations significantly reduces the time required to apply the method — from several days
to a few hours. This feature is especially valuable for a CPO responsible for sizing multiple
stations with comparable EV charging demands. Third, one of the four relationships, is specific
to a particular financial arrangement among stakeholders. This relationship can be easily
adapted to various business models without modifying the others. To the best of current
knowledge, the proposed method is unique in offering this combination of properties.

The remainder of the chapter is structured as follows: Section 1.1.2 reviews the state of the art
in this field and highlights the main contributions. Section 1.1.3 summarizes the proposed
methodology, including its context, input data, and variables. Section 1.1.4 details the
computation of the relationships between inputs and variables. These relationships pertain to
1.1.4.1 business models (i.e., stakeholders and their interactions), 1.1.4.2 EV consumption,
1.1.4.3 PV production and forecasting, and 1.1.4.4 charging strategies. Section 1.1.5 presents
numerical examples of the methodology, while Section 1.1.6 provides an overview of the
results and outlines the study's broader implications.

1.1.2 State of the Art

1.1.2.1 Research Positioning
There are four stages in the project development process of an energy system [8]:

e The first one is the “idea development.” It consists of “brainstorming and idea
generation activities to give the project a more rounded shape”;

12
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e The second one is the “concept development” which describes the scope of the
project (case descriptions, investment context, system and stakeholder overviews,
etc.). It also specifies the resources required and estimates key financial (such as
revenue stream, CAPEX, OPEX, etc.) and technical figures. Amongst them, the
size of the main components of the system is determined. For example, the sizing
of PVCS consists in determining one or all of the following quantities: the maximum
power that the PV plant may deliver (also called “peak power”), the number of
charging points (and possibly the maximum power that each of these charging
points may deliver), the number of EVs that may be charged on the PVCS, or the
capacity and the maximum power of the storage system. For such sizing studies,
EV demand (number of daily EVs and their arrival and departure time), users’
behaviour, and vehicles’ characteristics are the most imperative type of input data.
Other types of input data are also required, such as incentives, taxes, grid codes,
PV potential, etc. The concept development phase also determines the project
risks, its social and environmental impacts and its profitability;

e The third stage is called “business development” and outlines all the actions needed
to make “real” the system sketched during the previous phase. During this phase,
the system is first designed in detail and an operation plan to build it is provided;

e The last stage is dedicated to the project execution. This phase entails the
construction and installation of the final system, plus any other civil work needed
for the project operations.

The concept development phase typically comprises a prefeasibility study (PFS) and a
feasibility study (FS). As described in [8], “the PFS scans a series of options and determines
the best one in the set. The FS analyses in depth the best solution from the prefeasibility phase.
The PFS reduces the number of options that are chosen to proceed with a more detailed fs
and eventually with business development, ultimately saving time and money.”

The objective of this study is to propose a method for sizing PVCS during the early stages —
specifically, the PFS — of the concept development phase. As emphasized in [9], such sizing
is particularly crucial for the CPO, as it provides a strong foundation for the business
development stage. However, performing this sizing at such an early stage is a particularly
challenging task due to the limited availability and reliability of essential input data.

For example, key data required to size a PVCS is often unavailable or of low quality during the
PFS. To address this, EV demand can be synthesized from statistical distributions based on
experimental datasets [10]. However, due to daily and seasonal variability, these datasets
must span a substantial time horizon (at least six months to one year) to be meaningful.
Additionally, the technical specifications of the future power infrastructure, IT architecture, and
control system are generally not known at this stage.

In this context, the term “control system” refers to the set of algorithms — classified into
scheduling, clustering, and forecasting as in [11] — and the IT and power system interactions
that collectively aim to optimize PVCS operation according to financial, efficiency, or
environmental objectives [4]. Therefore, the concept development phase must employ
simplified models of these control systems that can reasonably predict the performance of the
final system while remaining sufficiently abstract to allow exploration of a wide range of design
alternatives [12].

The following section reviews the state of the art concerning sizing during the concept
development phase of energy systems that integrate at least both EVs and PV — whether in
the context of a microgrid or not. Notably, studies that focus solely on the design of control
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algorithms are excluded; readers can find such references in Table 1.1-1 of [9], under the
column “optimal control.”

1.1.2.2 Sizing PVCS at the Concept Development Step:

The study in [9] details the sizing of the main components of a system comprising a household,
a battery, a PV plant, and bidirectional EV chargers. It considers three EVs with identical
weekday parking schedules (08:00 A.M — 06:00 P.M). The authors integrate the sizing problem
into the optimal power management framework by treating component ratings as decision
variables in addition to the power profiles of the EVs and batteries. These variables include
battery energy storage (BES) capacity (kWh), BES and EV charger power ratings (kW), PV
system peak power (kW), and inverter power rating (kW). The power management strategy
aims to minimize total costs, including battery degradation, while accounting for network and
component constraints. These constraints enable the implementation of advanced business
models based on self-consumption, energy arbitrage, and frequency containment reserve
market participation. The optimization problem is formulated and implemented using the
Generic Algebraic Modeling System [13].

The authors in [14] propose an optimal sizing-control methodology for residential microgrids
where EVs are modelled as controllable loads. The microgrid includes PV, wind turbines (WT),
a bidirectional inverter, and a local BES. The optimization algorithm, based on Mixed Integer
Linear Programming (MILP), is solved using CPLEX [15] and aims to minimize the annual
electricity cost. Component sizes and the dispatched power profile serve as decision variables.
In this study, the number of EVs is fixed and thus not treated as a sizing parameter. EV mobility
data consist of deterministic behaviour for three EVs.

In [16], the authors identify the optimal sizes of PV, WT, and BES for a smart home microgrid
in a vehicle-to-home context. The energy management system minimizes annual electricity
costs using rule-based logic, while the sizing optimization employs the Particle Swarm
Optimization technique [17]. Meteorological and EV mobility data (for a single vehicle) are
synthetically generated using probabilistic distribution functions derived from existing datasets.

The authors in [18] investigate a workplace microgrid consisting of an EV charging station,
BES, and PV plant. The system is controlled using expert rules designed to minimize grid
interaction. The methodology determines the optimal PV tilt and BES size under two scenarios
and across eight charging profiles. Optimal values are obtained through a “parametric
analysis,” where parameters are tested within predefined ranges — for example, BES
capacities from 5 kWh to 75 kWh in 5 kWh increments.

In [12], the system includes a PV plant and bidirectional EV chargers. One scenario considers
a 2.64 MWp PV plant and 184 EVs. The charge/discharge control algorithm minimizes the
deviation between day-ahead PV production commitments and actual production. The
optimization is formulated as a linear problem with deterministic EV demand — vehicles are
assumed to be available from 09:00 A.M to 06:00 P.M. The study also analyses different EV —
to — PV ratios.

An economic study in [19] explores EV parking lots at workplaces equipped with PV in Ohio
and California. It assesses the financial viability of such systems under varying PV capacities
and economic assumptions. Vehicle mobility data (arrival and parking times) are statistically
simulated using probability distributions derived from empirical data at Ohio State University’s
parking garage. The analysis accounts for diverse incentives and tax deductions across
jurisdictions. MATLAB™ is used for EV demand and grid emissions modeling, while PV output
and financial analysis are performed using the System Advisor Model [20],[21]. A constant

14



~ C\
Task 17 PV and Transport — PV-Powered Charging Stations: Sizing, Optimization and Control

charging power of 6.6 kW is assumed. A follow-up study by the same authors introduces a
more advanced charging algorithm based on dynamic programming and optimization [22]. This
algorithm maximizes PV energy utilization and minimizes grid impact while fulfilling EV energy
needs. Parametric studies examine how various factors (PV size, installation cost, incentives,
electricity rates, parking fees) influence financial outcomes, especially payback time.

The methodology in [23] focuses on sizing the PV system, stationary battery, and transformer
in a PVCS microgrid. These component sizes, along with operational constraints, are included
in an optimization model aimed at minimizing total system costs. The initial state-of-charge of
EVs is modelled with a Gaussian distribution between 0.2 and 0.5. Other parameters, such as
EV battery capacities, number of daily EVs, and arrival times, are also generated using
Gaussian distributions. One numerical example considers a system with four 40 kW chargers,
a 300 kWp PV system, a 600-kWh battery, and a 200-kW transformer. The study concludes
that an optimal configuration with PV is more cost-effective than one without.

In [24], the authors present a simple, multi-phase methodology for sizing a microgrid
comprising a PV system, BES, and EV charging infrastructure. Implemented via a
customizable Excel tool, the method is designed for use by various stakeholders. Users can
adjust EV charging profiles, physical dimensions, and financial parameters to evaluate system
performance from different perspectives. The energy management strategy mirrors a realistic
deployment approach: grid energy is used when PV and BES outputs are insufficient; surplus
PV energy is stored or exported to the grid to avoid overloading and ensure high PV utilization.

The study in [25] examines PV and EV integration in an office building in southern Italy. One
EV is charged during working hours under four different driving needs (from 0 km/day to 120
km/day). Two charging modes are compared: uncontrolled AC charging and controlled DC
charging, which prioritizes the use of surplus PV energy. The analysis evaluates self-
consumption and self-production metrics across four PV capacities (4.5 kWp to 9 kWp) and
various charger sizes.

In [26], the authors analyze long-term EV — PV integration in a household over a ten-year
period, accounting for battery and PV aging. Scenarios vary based on annual driving distance
(10 000— 25 000 km/year), charging strategy (uncontrolled or basic controlled charging), and
PV system characteristics (location and size ranging from 2 kWp to 10 kWp). User profiles are
also considered: a "commuter" not home during workdays versus a "private user" who returns
home several times a day. EV charging profiles for these user types are synthesized from
statistics found in [27].

1.1.2.3 Synthesis

The authors in [2] propose classifying systems that integrate PV and EV based on three main
criteria:

e Spatial configuration: Systems may be deployed at different scales, including
households, buildings, charging stations, or broader territories. An extension of this
criterion is proposed by also considering the size of the PV plant and the number
of EV users;

e Technological environment: This refers to the various technological components
that are included in or added to the system. These components can include BES,
WT, Heating, Ventilation, and Air Conditioning systems, and network technologies
such as DC microgrids;

e Smart control strategy: Strategies are further categorized by their objectives, which
may be:
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o Economic, such as minimizing electricity costs or maximizing revenues;
o Energy-related, such as improving self-consumption or reducing grid impact;
o Environmental, such as lowering CO, emissions.

Additionally, the coordination method —i.e., the mathematical formulation of the strategy —is a
key distinction. These methods may include:

¢ Optimization methods (e.g., MILP);
e Heuristic methods (e.g., rule-based expert systems);
e Hybrid methods, which combine heuristic and optimization approaches.

As described in Section 1.1.2.1, prefeasibility studies are designed to explore a wide range of
potential solutions, while feasibility studies focus on evaluating the most promising ones in
greater detail. In practice, these phases differ primarily in terms of complexity, particularly
regarding the data required and the level of technical expertise involved. This expertise often
concerns the complexity of the charging schedule algorithms and the software used for
implementation. Heuristic methods are commonly employed during the prefeasibility phase,
while optimization methods are more typical in feasibility studies.

Table 1.1-1 summarizes the reviewed studies in Section 1.1.2.2 using the criteria mentioned
above, as well as additional dimensions: the targeted project development stage, EV fleet and
PV plant size, EV mobility data, sizing methods, and the variables/parameters being sized.

Table 1.1-1 Summary of literature review

91 [14] [16] [18] [12] [22] 23] [24] [25] [26] This work
Development  FS FS PFS PFS FS FS PFS PFS PFS PFS PFS
Stage
Spatial Household Residential Household cs (& cS (& CcS Office Household ~ CS
Configuration Microgrid
Fleet Size 3EVs Hundreds 1 EV 1EV Dozens to Dozens to Several Several 1 EV 1EV Dozens to
of EVs hundreds of EVs  hundreds of EVs  EVs EVs hundreds of EVs
PV Size Upto Hundreds Several Several Dozens to Dozens to Hundreds Several 45-9kWp  Several Dozens to
50 kWp kWp kWp kWp hundreds of kWp hundreds of kWp kWp kWp kWp hundreds of kWp
EV Mobility  Deterministic Deterministic Probabilistic  Deterministic Deterministic Probabilistic Probabilistic  User-defined  Deterministic Probabilistic Empirical
Data
Components PV, BES,EV PV, WT,BES PV, WT,.BES PV, BES PV.EV PV,EV PV, BES, PV, BES.EV Building, PV, PV,EV PV.EV
Charger Transformer HVAC, EV
Control Nonlinear MILP Rule-based Rule-based LP DP MILP Rule-based Rule-based Rule-based  Rule-based
Algorithm Optimization
Sizing Nonlinear MILP Optimization ~ Parametric Parametric Parametric MILP Parametric Parametric Parametric ~ Parametric
Algorithm Optimization PSO Analysis Analysis Analysis Analysis Analysis Analysis Analysis
Sized PV.BES.EV PV, WT, PV. WT. BES Ratings PV Ratings PV Ratings PV.BES.EV PV, BES PV.EV PV Ratings PV, #EV
Variables Charger BES sizes BES Ratings #EVs Transformer Charger Charger
Ratings Ratings Ratings Ratings
Tool GAMS CPLEX - - - Matlab, SAM - Customized ~ TRNSYS PVSOL Matlab

tool

Abbreviations: FS = Feasibility Study, PES = Prefeasibility Study, CS = Charging Station, HVAC= Heating, Ventilation, and Air Conditioning, MILP = Mixed Integer Linear Programming, LP = Linear

Programming, DP = Dynamic Programming, PSO = Particle Swarm Optimization, GAMS = Generic Algebraic Modeling System SAM = System Advisor Model.

1.1.2.4 Contribution

EV charging demand data is considered to be among the most important input parameters in
PFS and FS. More precisely, it is believed that, in order to obtain accurate results, this EV
charging demand must be as representative as possible of the use case under study. In
particular, it should reflect both the variability of EV users’ behaviour over an extended period
and the technical characteristics of the EVs and the charging infrastructure.

It is also believed that standard EV charging demand profiles can be defined to correspond to
typical scenarios, such as:
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o Workplace parking lots, where EVs remain plugged in during work hours;

o Shopping centres, where users arrive throughout the day and stay for a few hours;
o Residential areas, where users arrive in the evening and leave in the morning;

o Delivery fleets, where EVs arrive and depart at fixed times during the day.

The workplace parking lot use case is the focus of this study. Empirical data has been collected
over more than six years at an industrial and research complex in southern France. As detailed
in Section 1.1.4.2, the dataset is composed of over 32 000 charging transactions, 350 EV
users, more than 40 EV models, and 80 charging points. Based on the literature review and to
the best of current knowledge, this study is believed to be the first to describe a sizing
procedure based on such a large, real-world EV charging dataset.

Furthermore, the computational logic of the proposed methodology is structured around four
key relationships between input data and internal variables (defined in Section 1.1.3.3). Of
these, Relationship 4 — which links the self-production ratio to the production-to-consumption
ratio — is the most complex. To derive it, the designer must

e collect and process input data (mainly EV demand and PV production/forecast);
e perform simulations, and;
e aggregate the simulation results.

Relationship 1 connects energy price and self-production rate and can be readily adapted to
business models that aim to increase self-production. Relationships 2 and 3 are relatively easy
to compute.

Thus:

o When the PVCS designer assumes that EV charging demand follows a standard
profile, the pre-computed values of Relationship 4 can be reused. The designer
may also adjust Relationship 1 if a different business model is considered. In both
cases, the required effort is minimal (i.e., a few hours of work for a non-specialist);

e For specific or non-standard use cases, the pre-processed data provided in this
research cannot be reused. All four relationships must be recomputed. This enables
the most precise estimation of project performance but requires significantly more
effort. It is estimated that 3 to 4 weeks of work with solid programming skills are
needed.

In summary, the modular structure of the method allows business models to be modified
independently of other parameters, and intermediate results to be pre-computed. Once these
pre-computations are completed, the sizing procedure is made quick and straightforward. To
the best of current knowledge, no other method is known to possess such properties.

This approach is particularly useful, for example, for a CPO who needs to size multiple
charging stations with similar demand profiles. In that case, the CPO would compute the
relationships once, based on a representative charging station, and then reuse them —
especially Relationship 4 — to significantly accelerate the sizing of the remaining stations.
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1.1.3 Context and Methodology

1.1.3.1 Use-Case: CEA Cadarache EV Charging Infrastructure (EVCI) and PV Plant

The data collection took place at the Cadarache research centre of the French Alternative
Energies and Atomic Energy Commission (CEA, the French acronym for Commissariat a
I'Energie Atomique et aux Energies Alternatives), located near Aix-en-Provence. This research
centre has its own water, heating, lighting, and electricity distribution network, within which it
operates as the DSO. A private bus service is provided for employees to commute and to travel
between laboratories and canteens. A taxi service is also available for intra-site transportation.
Thus, the Cadarache centre can be seen as a privately-owned town with a population of
approximately 5 000, managed by the CEA.

The CEA also set up an Electric Vehicle Charging Infrastructure (EVCI) during the summer of
2016. It consists of 40 Diva-type terminals, produced and installed by G®Mobility, which was
acquired by TotalEnergies in 2018. Each Diva terminal includes two 22 kW AC charging points.
Each charging point is equipped with a Type 2 socket for mode 3 connections and a Type E
socket for mode 1 and 2 connections. These charging stations were installed either individually
or in groups of up to four Diva terminals, forming 30 charging stations spread throughout the
centre. Each station has an embedded loT gateway that communicates via 3G networks using
Open Charge Point Protocol (OCPP) commands. As soon as an EV is plugged in, it charges
atits nominal power. In other words, the EVCI enables vehicles to charge as rapidly as possible
from the moment they are connected. This charging strategy, referred to as the “Plug and
Charge” strategy in this work, is generally the default approach used by most commercial
charging points.

The CEA also conducts research at Cadarache in collaboration with INES on solar thermal
energy and PV. In particular, it tests and evaluates innovative PV systems (such as Tandem
Perovskite-Silicon PV, bifacial PV, and single- and dual-axis solar trackers) ranging in size
from individual modules to systems of several tens of kilowatts. The energy produced by this
equipment — aggregating up to 50 kWP — is injected into the CEA's private power network.
Furthermore, the CEA plans to install additional PV plants, either ground-mounted or building-
integrated, as well as PV solar canopies. In the latter case, these PV installations will be
designed for a self-consumption scheme, described in the following section.

1.1.3.2 Collective Self-Consumption Scheme

As explained in the introduction and visualized in Figure 1.1-1, the general case is considered,
in which the EVCI and the PV installation are managed by two separate entities, namely the
Charging Point Operator and PV Operator (CPO and PVO). The CPO has to manage the
charging of a certain number of EVs while utilizing the production from the PV plant,
characterized by a certain peak power, noted Pge"ak. It is also considered that an agreement
on the exchange of PV energy is established between them. Without loss of generality, this
agreement could be a partnership with a ‘third party’ called Legal Person (LP), or ‘Personne
Morale Organisatrice’ in French, according to the scheme called “collective self-consumption”
in France. This LP entity plays the role of a facilitator for the financial as well as power flows
between the CPO and the PVO. The CPO also contracts with an energy supplier (ESEV) that
provides supplementary energy to the charging stations when PV production is insufficient to
the EV charging consumption. In the meantime, the PVO also establishes a contract with
another energy supplier (ESPV), which extracts the surplus PV energy produced when there
is more PV production than EV consumption.
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Figure 1.1-1 Interactions of the EVCI’s stakeholders.

In this study, the power x is denoted P,. The energy of P, over a period 4, EZ is the integral of
this power over A: (Ef = fOA P.dt). The energy of the power P, calculated over a day, a month
and a year are noted E4, ET™ and E2, respectively. The energy of the power P, computed on
an arbitrary period is noted without a subscript, i.e., E, . The price per kWh that actor A pays
when he buys a given amount of energy from actor B is noted Prz_,4. It is important to note
that this price may also include other services, apart from the energy production fee itself, such
as transport, taxes and contributions.

With these notations (summarized in Table 1.1-2), the principle of this scheme, represented in
Figure 1.1-2, is the following:

Pey

PESEN‘w PSP ' PESPV

time

time

Figure 1.1-2 Principle of collective self-consumption scheme.

Table 1.1-2 Nomenclature of variables used in this study.

Symbol Explanation

Pry Power supplied for EV Charging (kW)

Ppy Power generated by PV (kW)

Pesey Power extracted from the grid to charge EV (kW)
Prspy Power injected to the grid from PV (kW)

Psp Power from PV for EV charging (kW)

ESy py esev.espv.sp  Integration of the corresponding powers over certain duration A (kWh)
Prpyo—_Espv Purchasing price of Egspy by ESPV (€/MWh)
Presev_cro Purchasing price for Egsgy by CPO (€/MWh)
Prip_cpro Purchasing price for Esp by CPO (€/MWh)
Prcpo Mean power price for the CPO (€/MWh)

e The PV power (Ppy) and the corresponding energy (Epy), produced by the PV plant
during the period, are visualized in the top left part of the figure;
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e The charging power (Pg,) and energy (Eg,) consumed by the EVs are represented
on the bottom left diagram;

e The CPO partially charges the EVs with the power P, (SP for Self-Production) such
that Psp = min(Ppy, Pgy). The CPO buys the associated energy, represented in
green and noted Esp to the LP at a price noted Pryp_cpo;

e The PVO, for his part, sells Esp to the LP at a price noted Prpyo_1p;

e The CPO also charges the EVs with the power Pggp, that complements Psp when
there is not enough solar power (i.e., such as Pgspy = max(Pgy — Ppy,0)). The CPO
buys the associated energy, represented in dark blue and noted E¢gy, to the power
supplier ESEV at a price noted Prysgy—cro;

e The PVO injects in the network the power Pgspy , if any, produced by the PV plant
but not consumed by the EVS (i.e., such as Pgspy = max(Ppy — Pgy,0)). The PVO
sells the associated energy, represented in pink and noted Egspy, to the power
supplier ESPV at a price Prpyo—_gspy-

In such a configuration, the local DSO is responsible for the virtual dispatch (“virtual” because
the dispatch is performed in front of the meter); the DSO measures Eg;, and Epy, from the power
meters of the EV charging point and the PV plants, respectively. The meters are read at a
frequency that depends on the market time step whose value depends on countries. The DSO
computes Pgspy, Pespyv, Esp based on the following logics and transfers these values to the LP,
ESPV and ESEV, respectively.

* Epspy = max(Epy — Egy,0);
*  Epsgy = max(Egy — Epy,0);

* Egp = min(Epy, Egy) .

1.1.3.3 Main Internal Variables

The ratio between the total PV production to the total EV, computed for an arbitrary period, is
termed Production-to-Consumption ratio (or PTC).
PTC = Epv (1.1-1)

Egy

The Self-Production Rate (SPR) and Self-Consumption Rate (SCR) are also considered, which
represent the proportion of total EV charging demand being supplied by the PV production and
the proportion of total PV production used for EV charging, respectively. These variables are,
for an arbitrary period, defined as follows:

SPR = =5E (1.1-2)
EEV

SCR = L& (1.1-3)
Epy

A period d; is considered during which the different prices are assumed to remain constant.
The duration of such a period depends on the pricing scheme; if the prices are flat, the period
is generally one year. On the contrary, if the prices are time-varying, the period is the market
time step. The annual energy cost and the Mean Power Price, Prgpo (€/MWh), which is the
effective price of electricity that the CPO has to pay for both electricity from the PV and the
electricity from the grid, are then calculated using equations (1.1-4) and (1.1-5).

a _ Year pdi di di di -
Costipo = Zai " Esp X Pr®p_cpo + Egsgy X Pr%gsgy — cpo (1.1-4)
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Costg -
Prepo = Ozgflpo (1.1-5)

1.1.3.4 Methodology Description

1.1.3.4.1 Inputs/Output Data
This section describes the input data required, depending on the elements that are to be sized:

e Given a target Prcpp (€/kWh) and a number of EV users, what should the PV peak
power be (kWp)?

e Given a PV peak power (kWp) and a number of EV users, what should the Pr¢po
be (€/kWh)?

e Given a PV peak power (kWp) and a target Pr.py, What should be the maximum
number of EV users?

The row name of Table 1.1-3 represents the targeted outputs, while the columns are the input
data. For example, in order to calculate the peak power of a PV plant (first line of the table), 8
out of 9 inputs (marked with an x symbol) must be collected. The CPO has to provide the price
of the power from the network (Prgsgy—cpo) @and from the PV plant (Prgspy—cpo); he also needs
its target of Mean Power price (Pr¢pp), obtain data about potential PV production (location of
the plant, orientation, tilt angle and possibly PV production and forecast profiles), the expected
number of EVs and their main characteristics (size and efficiency of the embedded charger,
capacity of the battery, etc.). He also needs a charging session history that contains, for each
session, the start date and the end date of the session. This history also has to contain the
energy withdrawn by the car during each session. The history also has to record the name of
the charging point and the user’s badge number. Lastly, the CPO has to obtain the relationship
between a badge and the EV model.

Table 1.1-3 Input and Output data.

Input Price Price PV Power Mean Power Price PV PV Peak Power #EV  #EVs Charging Session Badge/EV Model
Output Network Power  Prpspy_cpo Prepo Potential Pf’,’;"'" Users Characteristics  History

Presev—cro
Peak Power X X X X X X X X
Mean Power Price  x X X X X X X X
#EV users X X X X X X X X

1.1.3.4.2 Principles

In this section, the main principles of the methodology are briefly described through four
different relationships among various inputs, outputs, and variables, as illustrated in Figure
1.1-3. First, the energy exchange scheme between the CPO and the PVO needs to be
specified. This scheme is then used to derive a relationship between the SPR and the Mean
Power price (Pr¢po ), with different prices as inputs. This first relationship is described in Section
1.1.4.1.
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Figure 1.1-3 Computational procedure for EV and PV sizing.

The charging session history is then used to express the annual EV energy consumption as a
function of the number of EVs. This second relationship is then given in Section 1.1.4.2.

The yearly PV production is then estimated as a function of the PV peak power PP¢%*. This
production depends on the solar potential that varies with the location of the PV plant, its
orientation and its tilt angle. Section 1.1.4.3 will specify more details about this relationship.

Lastly, the PV production forecast profile is required, which is then combined with the charging
session history to reconstruct the corresponding charging power profiles based on a given
charging strategy. Based on these profiles and PV production profiles, the computation of the
SPR can be performed. In addition, it is also possible to compute the PTC. The relationship
between the SPR and PTC is an abacus (that can then be approximated using empirical
formulas as described in Appendix A?%), which is presented in Section 1.1.4.4.

The diagram in Figure 1.1-3 describes the computational logic flow for this methodology. The
black plain line boxes are inputs and the dotted ones are inputs or outputs. The red boxes
represent internal variables. Lastly, the bidirectional arrows represent the reciprocal
relationship between two quantities (if one is known, the other can be determined and vice
versa).

1.1.4 Relationships Necessary for the Application of the Method
1.1.4.1 Business Model

1.1.4.1.1 Hypothesis

It is considered in this study that Przspy = Prpyo—1p, this means that all revenues of the PVO
come with the same price, thus making its revenue independent of neither SPR nor SCR.
1.1.4.1.2 Relationship 1: Self-Production Rate versus Mean Power Price

The cost Costpp given in (1.1-4) can be rewritten by replacing Egsgy With Egsgy = Egy — Egp =
EEV _SPR XEEV - EEV X (1 _SPR)

“ https://doi.org/10.3390/app131810128.
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The Mean Power price, previously given in (1.1-5), is then obtained by dividing Equation (1.1-6)
by Egy, thus establishing a linear relationship between Prp, and SPR:

Prepo = Prgspv—cpo — SPR X (Prgsgy—cpo — PTcpo-1p) (1.1-7)

When Prgspy—_cpo > Prepo—1r, the Mean Power price for the CPO linearly decreases with the
increasing value of SPR. In other words, if electricity from the PV plant is more affordable then
from the grid, self-production has to be prioritized. When SPR = 0, Proppg = Egy X Prggsgy. This
means that when there is no PV available for EV charging, the Mean Power price is equivalent
to the price of the power from the grid. When SPR = 1, Pr¢cpg = Prepo—1p- This means that when
there is no power coming from the network, the Mean Power price is the price of the power
coming from the PV plant.

1.1.4.2 EV Consumption

1.1.4.2.1 Charging Periods

Data from 31 014 charging sessions were collected for more than 6 years, spanning from 1
June 2016 to 31 August 2022. Each charging session record contains the start and end time
stamps of the session (noted ST and ET, respectively), the identification number (ID) of the
charging point, the badge number of the user and the energy that has been supplied to the
EV. The transaction duration, ET — ST, is denoted TD.

Figure 1.1-4 illustrates the distributions of the start and end times of the dataset. It is observed
that the start time of the charging sessions is statistically concentrated around 08:00 A.M (start
of work hours), lunch time and early afternoon (after 04:00 P.M, when the business trips are
terminated). There are also three main periods during which the majority of the charging
sessions terminate. The first one is at 09:00 A.M when the service cars that have been
connected the day before are disconnected to be used for business trips, the second one is
after lunchtime and the last period is at the end of the working day (around 05:00 P.M) when
employees leave the centre. The average duration and energy consumption of each charging
session were 11.3 h and 17.22 kWh, respectively, and a total of 551 MWh of electricity was
consumed.

[ start transaction (h)| |
[l End transaction (h)

2500

= [hS]
(4] o
(=) [=]
o o

-
o
[=]
o

Number of transactions

500

5 10 15 20
Local time (h)

Figure 1.1-4 Histograms of start and end times of charging sessions.

1.1.4.2.2 EV Users and EV Fleet Compositions

The number of "active" and "delivered" badges is computed from the EVCI charging session
history. A badge is said to be “active” from the start of its first charging session until the end of
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its last recorded session. The status “inactive” will be given otherwise. A badge is said to be
“delivered” from its first connection to the ESEV. The number of active and delivered badges
per day is described in Figure 1.1-5, where it can be observed that 348 RFID badges were
delivered to EV (including PHEV) owners, with up to 200 active badges at the end of the
considered period. Between 2021 and 2022, the number of delivered badges increased
steadily by around 100 per year. At the end of the collection horizon, all the badges are inactive
due to the definition of an active badge (i.e., they are all inactive after their last connection). It
is also noted that there is a considerable amount of delivered inactive badges. This can be
attributed to the loss of badges or to the fact that the users left them permanently or they
stopped charging their EVs within the facility.
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Figure 1.1-5 Number of active and delivered badges.

1.1.4.2.3 EV Characteristics

Technical information regarding the vehicle corresponding to the badge was also recorded:
vehicle model and usage category (personal, internal taxi and service car). Amongst all the
delivered badges, 232 vehicles are attributed to employees’ personal vehicles, eighty-four
vehicles are for facility services and three Renault ZOE for internal taxi services. An additional
29 vehicles serving external companies are also among the considered EVs. In terms of car
models, there is a very clear predominance of Renault ZOE, which represents 38% of the fleet.
There are also, among others, 10% of Peugeot €208, 7% of Renault Twingo, 8% of Tesla
(Model + and Model S) and 5% of Nissan Leaf vehicles.

Primary characteristics of vehicles were also collected from publicly available sources, namely,
the nominal power of the on-board chargers (kW) and their battery capacity (kWh). Figure 1.1-6
displays the histogram of these nominal powers and battery capacities of the considered fleet.
It is observed that approximately 45%, 30% and 25% of EVs have nominal charging power at
22 kW, 11 kW and less than 11 kW, respectively. Additionally, it is observed that more than
half of the EVs have a battery capacity between 45 and 55 kWh.
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Figure 1.1-6 Histograms of vehicles’ (a) nominal charging power and (b) battery
capacity.
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1.1.4.2.4 Energy Consumption

The aggregated daily, weekly, monthly, quarterly, and annual energy delivered to the EVs has
been computed from the EV charging session history. Figure 1.1-7 demonstrates that the total
monthly energy consumption data can be classified into four groups over the entirety of the
data collection. The first period, called pre-COVID-19, started in June 2016 and terminated at
the beginning of the COVID-19 crisis. The second period corresponds to the first COVID-19
lockdown in France (March 2020 — April 2020), during which very little charging service was
used, leading to minimal electricity consumption. The third period (May 2020 to February 2022
has seen the introduction of the hybrid-working mode (i.e., normal onsite and work from home)
and, thus, resulted in charging patterns similar to that of the first period but with slightly lower
consumption. The last period of the considered horizon (March 2022 to August 2022) bears
an identical context to the first period since the facility has returned to the pre-COVID-19
working mode (work from home is still available but has been exercised negligibly). It can be
noticed that the electric consumption has increased significantly compared to the first and third
periods. This increase can be attributed to the rise in the number of active badges during this
period (as seen in Figure 1.1-5).
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Figure 1.1-7 Monthly energy consumption of the dataset.

1.1.4.2.5 Relationship 2: Active Badge versus Energy Consumption

Figure 1.1-8 illustrates the relationship between the monthly energy consumption (noted
Emontniy, in KWh) and the number of active badges (noted B, on¢ni, Without units) during the
same month. The colours used in Figure 1.1-8 represent the same periods in Figure 1.1-7. It
can be observed that there exists a simple linear dependence (represented with a dotted line)
between the number of active badges and the maximum monthly energy consumption. This
dependency is expressed in the following formula, which will be referred to as the second
relationship in the methodology:

Emonthly [kWh] = 100 x Bmonthly (1.1-8)
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Figure 1.1-8 Monthly EV power consumption versus monthly number of active badges.
1.1.4.3 PV Production

1.1.4.3.1 Production and Forecast Profiles

The PV production forecast is based on public forecasts provided by the French Transmission
System Operator (TSO): RTE. This forecast represents the aggregated French PV production
and is calculated on the morning (approximately at 08:00 A.M) of the current day. The time
step of the forecast is one hour. The forecast data for the considered period has been retrieved.
It is represented in Figure 1.1-9 (left). As the installed PV capacity increased significantly in
France during this period, the values have been corrected to obtain forecasts as if the installed
capacity had been constant. These values have also been normalized to correspond to the
production of a plant with a given peak power. In Figure 1.1-9 (right), this peak power is equal
to 1 kWp.
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Figure 1.1-9 Raw production forecast (left) and corrected values (right).

In order to eliminate the effect of forecast imprecision, it is supposed that the CPO is able to
perfectly forecast the PV production. Thus, the forecasted data is considered as the PV
production.

1.1.4.3.2 Relationship 3: Yearly PV Production versus Peak Power

There are two manners to obtain the yearly PV energy production from a peak power value for
a given location as required to obtain the third relationship.

e If production profiles are available, integrating the power over a complete year gives
the energy produced during this year;

e If production profiles are not available, many free software tools like PVGIS [28]
estimate the annual PV production per peak power value.
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1.1.4.4 Solar EV Charging

1.1.4.4.1 Production-to-Consumption Ratio

The PTC ratio has been calculated for annual periods (each beginning on the 1%t of June and
ending on the 315t of May the following year) and for the period that begins on the 1%t of June
2021 and ends on the 315 of August 2022. These values are summarized in Table 1.1-4, where
it can be observed that the annual PV production is relatively constant while EV electricity
consumption varies considerably.

Table 1.1-4 Sum-up of the PV production, the EV consumption and the PTC ratio over

6 year period.
Periods Duration Annual PV Production Annual EV Annual PTC Ratio
(Months) (100 kWp) MWh Consumption (MWh)
1 June 2016-31 May 2017 12 178 24 7.21
1 June 2017-31 May 2018 12 171 76 2.25
I June 2018-31 May 2019 12 180 109 1.66
1 June 2019-31 May 2020 12 173 76 2.28
1 June 2020-31 May 2021 12 171 77 2.21
I June 2021-31 August 2022 15 238 178 1.33

It is also worth noting that the total production for the PV is rather large compared to the
installed peak power (i.e., ~ 1.7 kWh per kWp compared to ~ 1.6 kWh per kWp estimated with
PVGIS and with optimal orientation and tilt angle). This is because the PV production has been
calculated from forecast data provided by RTE, and the normalization factor used for this
purpose has certainly been overestimated.

1.1.4.4.2 EV Charging Strategies

The charging power profiles for individual vehicles were not recorded during the period
considered. Thus, simulations are conducted with different EV charging strategies based on
charging session history to reconstruct these profiles. As the charging records contain the
energy withdrawn by vehicle i (E;) and the transaction duration (DT), it is supposed that this
data is used by the CPO for controlling the charges. In practice, this data is not known, but it
could be statistically estimated by the CPO. In this work, three charging strategies with different
complexity are considered.

The first strategy is the Plug and Charge strategy described in 1.1.3.1. In that case, the
charging power is limited by the nominal charging power of the embedded charger of the
vehicle, noted P;,,,. The effective duration of the charging session is then equal to E' /Py, -

The second strategy is called ‘Mean Power’. In that case, the vehicle charges at constant
power from the beginning to the end of the charging session. The duration of the charge is
thus equal to DT and the constant charging power for vehicle i is E'/DT.

The third strategy is a Smart Charging strategy, whose main objective is to increase the SPR.
The detailed algorithm is out of the scope of the study but can be briefly explained as follows.
The PV production forecast of the PV plant is considered as the power that is “available” to
charge the EVs. The planning algorithm then sorts the EVs according to the alphabetical order
of the badges and allocates a part of this available power to each car. The principle of this
allocation is as follows. The setpoints of a car are constituted of a constant power part added
to a part that is proportional to the available power. Two constraints have been considered
when choosing the setpoints: the sum of the power has to be less than the maximum power of
the car (PB}4,) and the integrate of the setpoints has to be equal to the energy withdrawn by
the car (EY).
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1.1.4.4.3 Load Curve Reconstruction

Figure 1.1-10 represents the simulated load curves of 11 July 2018, obtained for different
strategies and with a 75 kWp PV installation. The PV production is represented in blue. The
curve that corresponds to the EV consumption with the PC strategy, in red, shows a large peak
of approximately 200 kW at the beginning of the day and a second peak at noon. The curve
corresponding to the Mean Power strategy, in yellow, is smoother and relatively synchronized
with the PV production, but it is observed that energy is consumed by the EVs during the night
(due to EVs that stay connected for more than a day). The curve corresponding to the Smart
Charging strategy, in purple, is aligned with the PV production. It is observed that no power
consumption occurs during night-time.
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Figure 1.1-10 Simulation results on 11" of July 2018 for a PV system of 75 kWp.

On this particular day, the SCR and SPR are considerably higher for Mean Power and Smart
Charging strategies than the basic Plug and Charge since their charging profiles are distributed
throughout the day, in particular, when the PV production is the highest. Thus, the SPR is equal
to 49% with the Plug and Charge strategy, 89% with the Mean Power and 100% with the Plug
and Charge strategy. The SCR is equal to 31% with the Plug and Charge strategy, 62% with
the Mean Power and 69% with the Plug and Charge strategy.

1.1.4.4.4 Relationship 4: PTC Ratio versus SPR

This section explores the relationship between the PTC and the SPR, given a particular
charging strategy chosen among the three described in Section 1.1.4.4.2. In order to vary the
PTC, as the total energy consumption of the cars is independent of the charging strategy, the
value of the PV production has been modified. Fifteen different sizes of the PV plant have been
considered for this study:

Spea = 0,1,25,50,75,100,125,150,175,200,300,700,1 000,5 000,12 000]kWp.

First, the following 17 simulations are performed, with the horizon spanning more than a 6-
year period:

¢ One simulation of the Plug and Charge strategy;
e One simulation of the Mean Power strategy;

e One simulation Smart charging strategy for each of the 15 different values of S,,.,.
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Daily PTC and SPR for each of these simulations and for each value of PV plant size are then
calculated. Figure 1.1-11 illustrates the values of daily PTC along with daily SPR, computed for
a peak power value of 100 kWp using more than 6 years of data. This figure distinguishes
between the different charging strategies: in yellow, the results with smart charging, in red with
Mean Power and in blue with Plug and Charge. It is observed that the SPR is the highest for
the smart charging strategy and the lowest for the Plug and Charge strategy. Itis also observed
that very high values of SPR are obtained with the SC strategy as soon as the PTC exceeds 1.
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Figure 1.1-11 Daily SPR and Daily PTC for every day for 6 years of the
experimentation.

In addition, the PTC and SPR have been computed over the entire 6 year-long period. Each
point of Figure 1.1-12 has PTC as the x-coordinate and SPR as the y-coordinate. For the
purpose of simplicity, only the PTC values obtained with the 10 lowest PV peak power values
0,1,25,50,75,100,125,150,175, 200 are displayed. The colors of the points distinguish different
strategies similar to those in Figure 1.1-11.
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Figure 1.1-12 Relationship 4: PTC vs SPR, computed for different PV peak powers
(0,1,25,50,75,100,125,150,175,200) over a more than 6-year period.
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It is observed that, for a given value of PTC, the self-production increases with the Smart
Charging strategy compared to the Mean Power strategy. In the same way, the SPR increases
with the Mean Power strategy compared to the Plug and Charge strategy. For example, for
PTC = 1, the SPR is equal to 56% for the Smart Charging strategy, is equal to 48% for the
Mean Power strategy and is equal to 38% for the Plug and Charge strategy. It can also be
observed that, in order to obtain an SPR of 70%, the PTC has to be equal to 1.5 with the Smart
Charging strategy, 2.5 with the Mean Power strategy, and 4.1 with the Plug and Charge
strategy.

It should be noted that the results presented in Figure 1.1-12 allow for the simplistic
aggregation of the dataset and chosen strategies into the computational procedure described
in Section 1.1.3.4.2. Such a choice is discussed in Section 1.1.5.2. The following subsection
exemplifies the importance of these results in a specific use-case.

1.1.5 Sizing Procedure Examples

1.1.5.1 Price Examples

Since there are several stakeholders participating in the collective self-consumption scheme,
the electricity would be billed differently according to stakeholder interactions. As assumed in
Section 1.1.4.1.1, these bills are computed with flat rates and the cost of the electricity
subscription is not considered.

The price of the electricity coming from the grid in this example is calculated by the Energy
Regulation Commission in France for 2023 [29]. The price structure of Prgsgy_cpo (424 €/ MWh
in total) is then composed of:

o Energy Component: 322 €/MWh corresponding to “non-residential blue” tariff
(version B, power subscription less than 36 kVA, included transportation,
“supplementary power case” also called ‘alloproduit’ in French), as described in
Appendix B2 of [29];

e Contribution Component: 31 € MWh corresponding to the electricity consumption
tax (Taxe Intérieure sur la Consommation Finale d’Electricité) or TICFE until 31
January 2022. This contribution since then has been reduced to 1 €/ MWh as a
result of electricity subsidy for French consumers (called “bouclier tarifaire” in
french). Such a subsidy lasts until the end of 2024;

e Tax Component: 71 €/ MWh corresponding to 20% of the VAT on the energy,
transport and contribution parts.

PV fit-in-tariff is a selling price also regulated by the Energy Regulation Commission and is
currently at 120 €/ MWh (Tariff T;, 100 kWp < Ppeqr < 500 kWp in 2023) [30]. The purchase

price Prpyo_1p = Prpyo_gspy 1S thus supposed to be equal to 120 €/ MWh as well. It is
considered that the energy is sold by the LP at this price (i.e., without margin) but increased
with transport, contribution, and taxes. The price structure of Pryp_cpo(197 €/ MWh in total) is
as follows:

e Energy component: Prpyo_1p = 120 €/MWh;
e Transportation component: 13 €/ MWh (as explained in [31]);
e Contribution part: 31 €/ MWh corresponding to TICFE;
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e Tax Component: 33 €/ MWh corresponding to 20% of the VAT on the energy,
transport and contribution.

A summary of these prices’ structure described above is given in Table 1.1-5.

Table 1.1-5 Electricity Prices for different stakeholder interactions. Notice that these
prices are simple flat rates.

Interaction Nomenclature Prices (€/MWh) Price Structure

PVO sells to LP Prpyo_rp 120 120 Energy

LP sells to CPO Prip_cro 197 120 Energy + 13 Transport + 64 (Taxes and contribution)
ESEYV sells to CPO  Prgsgv_cpro 424 322 (Energy + transport), 102 (Taxes and contributions)

1.1.5.2 Hypothesis

In the following examples, it is supposed that the methodology will be applied by the CPO for
PFS (i.e., with the lowest effort but at the price of relatively low precision). Its use-case has to
be similar to the one described in this research in order to utilize the integrated dataset of the
fourth relationship. In particular:

e The configuration of the charging points must be similar to the one presented in
Section 1.1.3.1, i.e., 100% of the charging points are 22 kW AC;

e The characteristics of the EVs are identical to the presented ones (i.e., a probability
distribution similar to the one of Figure 1.1-6);

o The working time and user behaviour (i.e., the statistics of the start and end date of
the transaction, as depicted in Figure 1.1-4) are comparable;

e The EVCI has to be large enough to integrate new users such that there is no
congestion in the charging stations.

Note that if these assumptions are not satisfied, the fourth relationship is not valid and all the
simulations would have to be performed again.

1.1.5.3 Sizing PV Given a Targeted Number of EV's and a Targeted Mean Power Price

As an illustration, let it be considered that the method of this research is applied by the CEA to
size a PV plant located at Cadarache (near Aix-En-Provence, France) in order to charge its
EV fleet in 2030. By using Figure 1.1-5, CEA observes that the number of EVs currently
increases by approximately 100 per year. Thus, the number of EVs is assumed to be 1 000 in
2030 (instead of 200 in 2022). By using Equation (1.1-8), this represents an annual
consumption of 12 X 100 X 1 000 = 1.2 GWh.

Let it be considered that the target price of the CPO is Prypy = 265 €/MWh. Equation (1.1-8)

gives SPR = —1cPo=PTESEV-CPO _ -, 709; Thanks to Figure 1.1-12, it is identified that, in order to
Prcpo-LP—PTESEV-CcPO

obtain an SPR of 70%, the ratio PTC has to be equal to 1.5, 2.5, and 4 for Smart Charging,
Mean Power, and Plug and Charge strategies, respectively.

With an EV consumption of 1.2 GWh these correspond to an annual PV production of 1.8, 3
and 4.8 GWh. Once the required annual PV production has been identified, the PV peak power
can be determined using solar potential for a particular location. For example, it is estimated
that the PV production is about 1.4 GWh/MWp at the location of the experiment (south
orientation, tilt angle of 20° and system loss of 18%). With such hypotheses, the peak power
of the PV plant has to be equal to 1.28, 2.14 and 3.42 MWp to reach the targeted Prepo_p.
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1.1.5.4 Estimating the Mean Power Price Given an Existing PV Installation and a Number of
EVs

Let it be supposed that the owner of an existing PV installation of 100 kWp in the same region
wants to estimate the Mean Power price of the energy needed to feed 100 EVs with the smart
charging strategy. The procedure for deriving this price, according to Figure 1.1-3, is the
following:

¢ From PVGIS: Annual PV Production Ep, = 100[kWp] x 1.4 [%] = 140 MWh;

kWh
E

e From Equation (1.1-8): Annual EV Charging Consumption Ez, = 12 X 100 [badge

100 [badge] = 120 MW h;
o PTC= gﬂ = 1.16;

EV

e SPR (for Smart Charging) according to Figure 1.1-12: SPR = 0.6;
e Prepo can then be estimated from Equation (1.1-6);

* Prepo = Prgsgv—cpo — SPR(PTgsgy—cpo — PTip—cpo) = 287€/MWh;

1.1.5.5 Estimating the Number of EV's Given an Existing PV Installation and a Target Mean
Power Price

Let it be supposed that the owner of an existing PV installation of 100 kWp in the same region
wants to determine the number of EVs that could be charged with the Mean Power strategy
and with a targeted Mean Power price of Pr-pp = 265 €/MWh. The procedure for deriving the
number of EVs that it can support is as follows, according to Figure 1.1-3:

e From PVGIS: Annual PV Production Ep, = 100[kWp] X 1.4 [IZTVZI] = 140 MW h;

Prcpo—PTESEV-cPO _ 265—424

e From Equation (1.1-7), SPR = ~ 0.7;

Prcpo-Lp—PTESEV-CcPO 197-424

e The PTC ratio for different strategies is determined using Figure 1.1-12:
PTCyeanpower = 2-5;

¢ Annual EV Charging Consumption (using the Mean Power strategy) is then Eg, =
Epy _ 140[MWh] _ 56 MWh:
PTC 25
Egy _  56MWh
(12x100) ~ 12x 100kWh

e From Equation (1.1-8), the optimal number of EVs is then:
46.

1.1.6 Conclusions and Perspectives
In this study, a method was proposed for:

e Sizing the PV plant required to properly charge a certain number of EVs, given a
targeted Mean Power price;

¢ Estimating the Mean Power price, given a PV plant size and the number of EVs to
be charged,

e Estimating the number of chargeable EVs for a particular PV installation and
charging price.
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This method was applied to a car park located in a research centre in southern France. The
main input of this study is a massive empirical dataset collected over more than 6 years with
350 EV users and 80 charging points. To generate the EV charging power profiles, simulations
were conducted with different charging strategies based on historical real data.

This allowed for the simulation of EV profiles for individual power demand and for different
sizes of the PV plant. The effect of implementing rule-based charging strategies (Mean Power
and Solar Smart Charging) has been proven to be significantly beneficial as compared to the
simple Plug and Charge mode. In one of the showcases, the PV peak power required for 1
000 vehicles to attain a charging cost of 265 €/ MWh for Smart Charging, Mean Power and
Plug and Charge strategies are 1.28, 2.14 and 3.42 MWp, respectively.

The main advantage of the methodology is its modularity, meaning that each key parameter
(PV production, EV charging demand, business models, and EV charging strategies) can be
analyzed independently of each other. Thus, when the method is fully applied once on a given
case, some computations may be re-used for other “similar” cases. In some cases, as fully
exemplified in the previous section, the application of the method becomes very simple and
quick.

The described methodology and results offer several avenues for future expansion:

e Different simple and advanced strategies can be further integrated into this
methodology, among which optimization-based methods are the most promising,
in particular, MILP;

o More realistic electricity tariff schemes (time-of-use or dynamic spot price) should
be considered instead of flat rates from the energy provider ESEV;

e Costs due to power subscription (in €/ MW) should also be considered, in addition
to the total electricity consumption (in €/ MWh) as the number of EVs grows;

¢ This study assumes that the PV forecast is perfectly precise and omits any negative
impact on the PV forecast accuracy. Hence, further studies are required to
determine the impact of real PV forecast;

¢ Individual Battery Degradation should be considered [32].

In contrast, datasets representative of standard use cases could be openly disseminated within
the research community, as suggested in [33]. Such datasets could serve as valuable
resources for benchmarking purposes. Furthermore, with increasingly higher aggregated EV
capacity, the EVCI is also eligible for different market participation, thus creating several
revenue streams for the CPO. For example, two of these markets encompass the European
frequency containment market and demand-response market.
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2 TECHNICAL ECONOMIC AND ENVIRONMENTAL CO-
OPTIMIZATION OF PVCS

To fully harness the potential of integrating PVCS, it is essential to focus on the technical,
economic, and environmental co-optimization of these systems. Technically, this involves
optimizing PV generation, energy storage management, and real-time control strategies to
ensure reliable and efficient operation. Economically, co-optimization aims to minimize
lifecycle costs, enhance return on investment, and identify favorable market conditions for
deployment. Environmentally, it seeks to reduce greenhouse gas emissions and land use
impact while maximizing the use of renewable energy. A balanced approach that jointly
considers these three dimensions enables the development of smarter, cost-effective, and
environmentally responsible PVCS solutions, paving the way for a cleaner and more resilient
energy infrastructure.

This chapter, therefore, focuses on the optimal design and operation of microgrids by balancing
technical performance, economic viability, and environmental impact. These challenges are
addressed through an integrated approach that combines system sizing and energy
management into a single decision-making framework. The proposed method is based on a
multi-objective mixed-integer linear programming model, aimed at minimizing both the
levelized cost of energy and the life cycle emissions of a microgrid composed of photovoltaic
systems, battery storage, and an optional grid connection.

The first part of this chapter presents the developed methodology and its application to the city
of Compiégne, France. It also includes a comparison between a grid-connected microgrid and
an isolated (off-grid) microgrid.

While the second section introduces a case study of EVs into the co-optimization framework
developed previously. It evaluates the algorithm by testing various combinations of
technologies and applying different case studies in differents geographic locations to highlight
the influence of key input parameters such as solar irradiance, temperature, and other
technical constraints.
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2.1 Optimal sizing and energy management for a microgrid: A joint
MILP approach for minimization of energy cost and carbon
emission

This research addresses the optimal design and operation of microgrids challenges by
proposing a comprehensive approach that combines the sizing and energy management
problems of a microgrid into a single decision-making framework. The study introduces a joint
multi-objective mixed-integer linear programming algorithm that minimizes the levelized cost
of energy (LCOE) and life cycle emissions (LCE) of the microgrid formed by photovoltaic
system, battery storage, and with/without grid connections®®.

2.1.1 Introduction

2.1.1.1 Context

Climate change is a pressing issue in the 215t century, largely caused by the use of fossil fuel-
based energy sources which emit high levels of CO.. The Paris Agreement aims to keep global
temperatures below 2°C above pre-industrial levels by reducing reliance on fossil-fuel based
electricity production [1]. Renewable energy sources (RES) are a key solution to reach carbon
neutrality, as they emit no CO; during energy generation. Microgrids can be defined as a
compact and interconnected energy setup that combines different distributed energy resources
such as solar panels, wind turbines and energy storage with local energy demands [2].
Accordingly, there is a strong connection between micro grids and RES, as microgrids provide
a valuable platform for integrating RES and maximizing their compatibility with local battery
energy storage system (BESS) resources [3]. Microgrids can also address the inconsistent
nature of RES, such as solar and wind power, by incorporating them with BESS, demand
response, and other conventional generation.

Optimal sizing of microgrid components is important because it helps to ensure that the
microgrid system meets the desired performance requirements while minimizing the overall
cost of the system [4]. Microgrid optimal sizing involves selecting the best size and number of
components to achieve the desired level of reliability, resilience, and cost-effectiveness [5].
Microgrid system offers the ability to operate the electricity grid both as grid-connected
microgrid (GCMG) and isolated microgrid (IMG) without jeopardizing the reliability and stability
of the system while increasing the use of renewable energy [6] and ensuring the cost-beneficial
operation of local networks [7].

One potential advantage of microgrids is their capability to adapt intelligent approaches in order
to facilitate peak consumption reduction in order to improve grid reliability [8]. Peak shaving
can be considered as one of the objectives while determining the optimal capacities of the
microgrid components, to aid increasing energy efficiency and reliability with reduced energy
cost and carbon emission release. In the context of microgrids, system efficiency and reliability

5 This study is based on the following publication: F. A. Kassab, B. Celik, F. Locment, M. Sechilariu, S. Liaquat, and T. M. Hansen,
“Optimal sizing and energy management of a microgrid: A joint MILP approach for minimization of energy cost and carbon
emission,” Renewable Energy, vol. 224, p. 120186, 2024, doi: https://doi.org/10.1016/j.renene.2024.120186.

6 This work has been achieved within the framework of EE4.0 (Energie Electrique 4.0) project. EE4.0 is co-financed by European
Union with the financial support of the European Regional Development Fund (ERDF), French State and the French Region of
Hauts-de-France.
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rely heavily on optimal sizing and energy management of the microgrid equipment. These two
factors are crucial in ensuring the microgrid operation at full effectiveness.

Three microgrid types are available: AC, DC, and hybrid AC/DC. AC microgrids are compatible
with diverse power sources, while AC/DC microgrids can accommodate both AC and DC loads,
combining various power sources. However, a DC microgrids with photovoltaic (PV) systems
and battery BESS offers several advantages over AC microgrids. These include the reduction
of system losses attributed to DC power generation by these components. Notably, regulating
only the voltage amplitude is necessary, and synchronization is not required. Moreover, the
absence of reactive power in the DC bus allows connecting AC sources to the common DC
bus, which operates solely with active power. This configuration enhances power efficiency
and transfer capability. Additionally, other advantages are presented in [9].

2.1.1.2 Literature review

The majority of scientific literature and commercial software in the field of optimization studies
primarily concentrate on the optimization of single-objective, which aims to minimize the overall
costs of the system [10], [11] or multi-objective that are usually economic and environmental
as in [12]. The studies that investigate the optimal sizing of microgrids typically fall into two
main categories. In the first category, the optimization of the component’s size and the energy
management are separated. In that manner, the integration of RES is investigated without co-
optimizing the energy management within a microgrid using heuristic rule-based approaches.
In the second category, the optimal sizing of the RES components is combined with optimal
energy management, where the combination of the sizing and energy management is usually
done using mixed-integer linear programming (MILP).

In the first category, rule-based approaches with predefined strategies use heuristic algorithms
to size microgrid components within an acceptable computation time because the optimization
problem is large in terms of constraints and decision variables [13]. However, heuristic
algorithms do not guarantee a global optimal solution for the optimization problem [14]. In [15],
the sizing of both GCMG and IMG is achieved using a genetic algorithm (GA), with the aim of
achieving the optimal levelized cost of energy (LCOE) for the microgrid formed by PV panels
and BESS. In [16], a GA is also used to study a microgrid consisting of PV, wind turbines,
BESS, and loads (electric vehicles and electric loads).

The objective functions aimed to minimize three factors: greenhouse gas (GHG) emissions,
life cycle cost, and the non-renewable energy consumed over the life cycle of the microgrid
equipment. The work presented in [17] involves the examination of a microgrid comprising PV
systems, a wind turbine, and storage. This microgrid’s sizing optimization is achieved using
particle swarm optimization where the energy management within the system is executed
through the implementation of a rule-based strategy. An IMG case that includes a PV system,
wind turbine, BESS, and a diesel generator was studied in [18] with the aim of minimizing both
system cost and CO; emissions. In [19], multiple microgrid configurations were explored with
compromises between several indicators such as greenhouse gas emissions versus global
cost or microgrid autonomy versus global cost. The study in [20] focused on sizing an
autonomous AC microgrid to minimize energy and installation costs while also reducing the
probability of loss of supply for improved reliability. In [21], the optimization problem aimed to
minimize energy and installation costs while maximizing reliability using GA to determine the
capacity of the BESS, PV, and other components. The study in [22] presents an application of
the grasshopper optimization algorithm to size an autonomous microgrid composed of PV,
wind, BESS, and diesel generation. The objective was to minimize cost and CO, emissions
while considering battery degradation and energy management between components. The
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study in [23] discusses integrating life cycle analysis into the design process of hybrid
microgrids to optimize the design and minimize environmental impact while ensuring technical
and economic feasibility.

In the second category, MILP is predominantly employed as a primary method. In [24], the
optimization problem addressed the optimal sizing and energy dispatch of a residential
microgrid consisting of PV, wind turbine, grid connection, and an electric load. In [14], a convex
optimization approach was used to determine the optimal sizing and energy management of
an island microgrid, considering battery degradation. The study in [25] presented a two-stage
approach for determining the optimal size, service lifetime, and maximum depth of discharge
of the battery. In [26], the optimal sizing, placement, and daily charge/discharge of a battery in
the distribution network was studied. An IMG where a cost optimization approach is considered
with the hourly dispatch, load demand, and generating power MILP method, is demonstrated
in [27]. In [28], an investigation is conducted on a microgrid implemented in an island territory,
which incorporated multiple technologies such as PV, wind, biomass, and geothermal sources,
among others, with the objective function of minimizing the overall costs within the system. In
[29], a two-stage MILP algorithm is utilized to determine the microgrid’s sizing in the first stage
and to execute daily energy management in the second stage considering load uncertainty. In
addition to these two delineated categories, there are investigations wherein the sizing problem
is addressed by employing heuristic algorithms, while the daily energy management is
executed through MILP. This hybridized approach has demonstrated potential in mitigating
computational simulation time [30].

The study previously cited, which performs MILP-based sizing and hourly energy
management, does not include neither an analysis of the techno-economic-environmental
relationship for both IMG and GCMG operation modes, nor an examination of the energy
sources utilized for the local consumption from the grid energy mix. Additionally, the impact of
peak shaving on LCOE and life cycle emissions (LCE) has not been evaluated. Our work
extends the state-of-the-art by incorporating a joint multi-objective optimization strategy using
MILP that combines system planning and energy management to minimize both the LCOE and
the LCE over the project lifetime by presenting extensive Pareto front analysis. The presented
optimization algorithm outperforms other algorithms discussed in the literature in terms of
speed, leveraging only a single binary decision variable, and ensuring an optimal solution for
energy management along with sizing, without the need for separating them into two distinct
stages. Moreover, the impact of peak shaving on both the LCOE and LCE is evaluated, and
the energy sources utilized from the French electricity grid are being evaluated.

2.1.1.3 Objectives and contributions

The objective of this research is to enhance the decision-making capabilities of microgrid
designers by providing them with a comprehensive approach for system planning for both IMG
and GCMG operation modes. By incorporating a joint multi-objective optimization strategy
using MILP which ensures a global optimal solution [31], this research enables designers to
make more informed and effective design choices. These choices involve evaluating various
proposed solutions and striking a balance between cost and carbon emissions while
considering technical constraints of energy management problem, to address the complexities
and trade-offs inherent in microgrid design.

One of the key novel aspects of this work is the integration of energy management and
component sizing into a unified optimization problem while ensuring an optimality gap of 0%
with a decreased computation time in comparison with the existing literature. Implemented in
Python and solved using CPLEX, the optimization process aims to minimize both the LCOE
and the LCE. The proposed method allows to perform a comprehensive analysis by evaluating
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the interdependence among components and their collective influence on the overall system
performance in terms of emission and cost over the project lifetime. Additionally, by identifying
the Pareto front— a set of optimal trade-off solutions— the study provides valuable insights by
proposing the range of feasible solutions and the associated compromises between economic
and environmental objectives.
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Figure 2.1-1 General framework of the proposed multi-objective joint optimization
algorithm.

The overall structure of the study, as depicted in Figure 2.1-1, encompasses a comprehensive
set of inputs, including electrical load data, ambient temperature data, solar irradiation data,
time-of-use (TOU) tariffs with utility grid subscription costs, and economic and environmental
data for each microgrid component. These inputs form the foundation for the system model,
which incorporates the physical models of PV systems, BESS, utility grid, and the associated
converters. By unifying energy management and component sizing within a single framework,
the optimization problem yields the optimal energy management strategy and optimal
component sizes for the microgrid system. The main contributions of this study are:

e integrating the sizing and energy management challenges within a DC microgrid
framework, with due consideration to a project lifespan spanning 25 years; the
focus extends to achieving hourly optimal energy management within the microgrid,;

e encompassing technical, economic, and environmental dimensions in the microgrid
context through the formulation of a unified multi-objective MILP algorithm. The
algorithm’s primary objective is to find an optimal solution, minimizing both the
LCOE and the LCE of the microgrid, all while optimizing computational efficiency;

e varying the LCE constraint value to analyse and compare the Pareto front and the
variation in BESS and PV capacities of the GCMG and IMG operation modes;

e evaluating the influence of peak shaving on the LCOE and LCE of the microgrid by
calculating the average variation for each utility grid subscription power; and

e analysing the energy sources utilized in the French electricity grid under different
LCOE and LCE scenarios where this assessment involves examining the
proportional contribution of each energy source and exploring seasonal trends.
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The research is organized as follows: Section 2.1.2 outlines the system modelling. Section
2.1.3 formulates the joint multi-objective optimization problem. Section 2.1.4 presents the
study’s results and analysis. Section 2.1.5 offers a detailed discussion, and Section 2.1.6
provides the conclusion and perspectives.

2.1.2 System modelling

This study analyses a university campus DC microgrid, which includes a DC bus, PV system,
BESS, a connection to the utility grid, two DC/DC converters, an AC/DC converter, and a DC
load. The architecture of the microgrid is shown in Figure 2.1-2, which is designed to operate
with and without the utility grid connection. Excess power generated from the PV system is
curtailed if the load demand is met, the BESS is fully charged, and the utility grid has reached
its maximum injection limit (GCMG mode). Each component is formulated prior to determining
the optimal sizing and the energy management strategy of the DC microgrid in the rest of this
section. The maximum power point tracking (MPPT) mode of the PV system is accomplished
through the associated converter. The efficiency of all converters is assumed to be constant
for simplicity in this study.

DC Bus

-G

L =%..4&4§4
oS A

Figure 2.1-2 The architecture of the studied DC microgrid.

2.1.2.1 PV system modelling

In this study, equation (2.1-1) is used to calculate the PV output power pXF*7 (t;) at each time

instant t;, which depends on the solar irradiation and ambient temperature data. It is assumed
that the PV system operates in MPPT mode and its power output is determined by [32]:

ey T (t) = Ppvspe X () X 1000 % (1 + v X (Tpy(t;) — 25)) X Npy (2.1-1)

with t; = ty, ty + At, -, tf
where ppy . is the PV panel rated power at standard test conditions (STC). The STC stands
for conditions to standardize the performance characteristics of PV panels. It typically refers to
a solar irradiation of 1 000 W/m? solar spectrum of air mass 1.5, and PV cell temperature at
25°C [33]. g(t;) is the measured solar irradiation, y is the power temperature coefficient of the
PV panel, Tpy (t;) is the PV cell temperature, Npy is the number of PV panels, and t;, t,, At,
and ty are the continuous time, initial time, time step, and simulation time, respectively. In
equation (2.1-2), the PV cell temperature is calculated as follow [32]:

Tpy (&) = Tamp (&) + g(t;) X NU;;O_ZU (2.1-2)
where T, (t;) is the ambient temperature, and NOCT is the nominal operating cell

temperature.
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2.1.2.2 Battery system modeling

The battery is utilized as the energy storage system in the microgrid to fulfil the energy
requirements in the absence of enough renew able production using stored excess PV
production at high renewable production times. The energy transfer between the utility grid and
the battery is prohibited in this study, hence the battery can only be charged by PV production
and discharged for local load.

The battery models can be summarized in three models: the first is the charge model, which
consists of modeling the state of charge (SOC) of the battery [34], the second is the voltage
model, which focuses on modeling the terminal voltage for more detailed losses calculation
[35], and the third is the lifetime model which assesses the impact of the operations on the
battery lifetime [36]. These models could be independent or interdependent from each other.
In this study, the charge model is considered as follows:

ep(t)) = ey(ti-1) + (P5(t) + P (L)) x At (2.1-3)

where e, (t;) is the quantity of energy at each instant; and pg(t;), and pZ(t;) are the charging
and discharging powers of the battery, respectively. Equation (2.1-3) represents the charge
model for the battery, despite not considering the SOC. The reason for this choice is to maintain
the linearity of the optimization problem, as the calculation of SOC involves dividing two
decision variables (charge/discharge powers and BESS capacity), which makes the problem
formulation nonlinear.

2.1.3 Formulation of the joint multi-objective optimization problem

The optimization problem considers both economic and environ mental objectives and aims to
find a trade-off between them. By balancing the competing objectives, the joint multi-objective
optimization problem enables the design of a microgrid that integrates cost-effective solutions
while reducing CO, emissions. While the constraints for both IMG and GCMG a real most
similar, the IMG excludes constraints related to the utility grid. The constraints and objective
functions are discussed in the following sections.

2.1.3.1 Constraints

In the optimization problem, constraints play a crucial role in defining the feasible solution
space. Firstly, the quantity of BESS energy e, (t;) is restricted by the maximum and the
minimum allowed SOC as follows:

SOCmin X Eb = eb(ti) = SOCmax X Eb (2.1-4)

where E, is the installed capacity of the BESS in kWh; and S0C,,;, and SOC,,,, are the
minimum and maximum SOC of BESS, respectively. Ensuring a dependable energy supply for
the subsequent year is of paramount importance, necessitating that the stored energy within
the BESS at the end of the one-year simulation equals or surpasses the initial battery energy
(taken as 50% of the storage capacity in this study). This strategic choice is implemented to
guarantee a sufficiently robust BESS energy reserve capable of meeting the anticipated load
demands in the forthcoming year. Omitting this constraint from the optimization algorithm could
result in the BESS S0C settling at the minimum SOC level, potentially leading to load shedding
in the subsequent year due to inadequate stored energy in the BESS. This constraint is
formulated as follows:

ep(tr) =05 (2.1-5)

where ¢, (tf) is the BESS energy at the end of the one-year simulation.
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To specify the power flow of the BESS and the utility grid powers, the constraints on BESS
charge/discharge powers (pS(t;)/ pZ(t;)) and the utility supply/inject powers (pg (t) /p!i}n(ti))
are established as follows:

ps(t) = 0, pf(t) < 0 (2.1-6)
—pg < pgt) < 0 (2.1-7)
0 <pi"t) < p™* (2.1-8)

where pg'®* is the maximum limit that can be supplied/injected by/into the utility grid. The
convention of representing injection as positive and supply as negative is to reflect the direction
of power flow. The constraints for maximum charge/discharge powers of the BESS are not
included into the formulation due to the conflicting need of determining the optimal capacity of
the BESS-associated converter in the sizing optimization problem. Therefore, to determine
converter capacities, the nominal power value of the associated converters of the PV, BESS,
and utility grid is considered to be equal or greater than electric power that flows through them
as stated below:

pev T (t) < NgJ (2.1-9)
— P (t) X g + p5(E) /1 /vy < Ny° (2.1-10)
—p5(t) +pT(t) /vy’ < Nj° (2.1-11)

where N§p , Ni°, and Ng° are the nominal power capacity of the PV, the BESS, and the utility
grid converters, respectively; and y;°and v’ are the efficiency of the BESS and utility grid
converters, respectively.

If the load power surpasses the PV power, the BESS should discharge and/or the utility grid
should provide power. Conversely, the BESS must be charged and/or the surplus power
should be fed into the utility grid. Therefore, the energy management within the microgrid
typically requires the use of “if-else” conditions to control the power flow among each microgrid
component. The “if-else” statements are used in programming to make decisions based on
certain conditions; however, they cannot be expressed as linear equations or inequalities,
hence it cannot be used directly in linear programming (LP). However, some formulations of
certain problems may require the use of binary variables for the “if-else” statement, and in
such cases alternative techniques may be used to model the optimization problem. As a
solution in this study, the “Big M” method is employed that introduces a large constant value
M (typically set to 10%) and a binary decision variable x,,,(t;).The Big M method works by
defining constraints that represent the conditions in “if-else” statements. The binary decision
variable takes on either the value of 1 or 0, and the large constant value is used to penalize
the objective function if the conditions are not met. When x,,,(t;) = 1, the constraints
corresponding to the “if” part of the “if-else” statement are active, otherwise if x4, (t;) = 0 the
“else” constraints are active.

This allows to consider the different scenarios represented by the “if-else” conditions, while the
optimization problem remains linear [37].

M X X () = (PE () = voy X PFFTT(t)) 2 0 (2.1-12)
M % (1= X (t)) = (rS9 X pHPPT () = pP(t) ) 2 0 (2.1-13)
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Where yg;, is the PV converter efficiency, and pP(t,) is the load demand. In equations (2.1-12)
and (2.1-13), xqux(t) =0 when pMFPPT(t) — pP(t) =0 and x4, (t;) =1 when p?(t) —
veo X ppF P () =0 . Once x4, (t;) is determined, the “if-else” conditions are implemented
using constraints to control the BESS and utility grid power as follows:

ps () X v§2,pE (t) X vE° X ptg = M X Xgux(t:) (2.1-14)
pg (t)/Y5 pE ) /ue/VES < M X (1 — Xaux(t)) (2.1-15)
Where y;° represents the efficiency of the BESS converter, and u. and u, represent the
charging and discharging efficiencies of the battery, respectively. In equations (2.1-12) and
(2.1-13), the algorithm determines pg(t;) = 0, p(t;) = 0 when x4, (t;)) =0, and pg”(ti) =0,
p5(t) = 0when xg,, () = 1.

The control of the battery discharge and the utility grid supply in order to not exceed the load
power within the system is formulated as follows:

pg (i) X yg° + p(t) X V5 X pg + M X (1 - xaux(ti)) = (2.1-16)

— (PPt = vE x PP (t)

In the absence of (2.1-16), there is a possibility that the battery can over-discharge beyond the
required load demand. This situation arises due to the conditions described in equations
(2.1-14), (2.1-15), when x4, (t;) = 1, the optimization algorithm might discharge the BESS
more than the load demand (avoid selling energy to utility grid). Additionally, it is important to
note that in convex optimization, multiple optimal solutions can exist, but equation
(2.1-16)serves the critical purpose of eliminating solutions where the battery is discharged
beyond the load demand, ensuring the appropriate power balance.

Lastly, the DC bus net power p,,s(t;) of the system is determined by summing the
entering/leaving powers on the DC bus of the microgrid as in equation (2.1-17):

Pous(ti) = DL (&) — Vey X oy 7T () + P () /ue /v’ +ph(t) X pa X ,° (2.1-17)

+ 93t X v5° + (i () x ¥5° < 0
According to equation (2.1-17), when p,,.s (t;) < 0, the produced PV power exceeds the total
consumption power, battery charging, and grid selling powers; hence, the surplus generation
should be curtailed. On the other hand, when py, (t;) = 0, the generation and consumption
powers are equal, thus there is no surplus generation in the DC microgrid. However, it should
be noted that if p,, (t;) was chosen to be strictly equal to zero in equation (2.1-17) the
algorithm would be forced to utilize all the PV power, which means that the excess power
should be either injected into the utility grid or stored in the BESS. Therefore, the algorithm in
this case increases the capacity of the BESS and reduces the capacity of the PV system to
obtain p,,(t;) = 0 for all times. However, this will not be the most cost-effective solution (if
the cost of the PV system is lower than BESS), because the algorithm will force increasing the

BESS capacity in order to reduce curtailment. To avoid that situation, PV curtailment is allowed
by enabling p,,s(t;) < 0in equation (2.1-17).

2.1.3.2 Objective functions

The multi-objective optimization problem is formulated to obtain the system’s minimal annual
LCOE and LCE while ensuring an optimized energy management. The LCOE is the average
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cost per unit of producing electricity over the lifetime of a power plant, while LCE is the total
amount of CO; emissions produced over the entire lifecycle of a product. The LCOE is
calculated as in:

LCOE = —<XCRE (2.1-18)
3 P (eoxat

where TC is the total cost over the project lifetime, CRF is the capital recovery factor. The CRF
is a financial metric used to determine the annual capital cost from the project lifetime cost [8].
The TC and the CRF are calculated as follows:

TC = Ciny + Cen + Crep + Cgria — Csp (2.1-19)
_d@+a)? (2.1-20)
CRE = (1+d)Q-1

where d is the discount rate, @ is the project lifetime, and Ci,y,, Cinn:CrepCyria,Csy are the

investment, maintenance, replacement, grid, and salvage value costs, respectively, which are
calculated as [15]:

Cinv = Xk=1Chypy X N¥ + Cgep (2.1-21)
Contn = Zh=1 Chen X N* Za1 (712) (2.1-22)
Crep = Zf=1 Clop x N* TN (332) (2.1-23)
Cyria = (Csub — At X (Z;g py(t) X A5(t) + pH () Ain)) X Zf;:l (ﬁ ’ (2.1-24)

where N is the total number of the k" microgrid component (PV, BESS, etc.), k is the total
number of microgrid components, and €, and Caep are the k™ component investment cost
and the microgrid deployment cost, respectively.

The microgrid deployment cost includes the installation of the microgrid components (such as
wiring, concrete, steel, wood, and electrical connections), as well as labour costs and indirect
costs associated with the microgrid installation. For the k" microgrid component, CX,,, is the
operation and maintenance cost; ¢ is the escalation rate; Cl‘ep is the replacement cost; NOR is
the number of rth component replacements over the project lifetime; g and r are the year and
replacement indices, respectively; and A* and A" are the grid tariffs for power supply (buying
from the grid) and injection (selling to the grid), respectively. Finally, C,; represents the fixed
subscription cost for the utility grid, which is a fixed annual fee imposed by the French utility
grid companies [38] and is paid by customers to maintain their connection to the grid, covering
infrastructure upkeep and operational expenses. The subscription cost is determined by the
utility companies, and its value is taken differently based on the registered maximum power
rating (allowed peak consumption) of the grid connection. The salvage cost is considered to
be 10% of the PV investment cost and 20% of the battery investment cost [15].

The second objective function is formulated to obtain the system’s minimal annual LCE given
in equation (2.1-25) as follows:

LCE = LCEPV + LCEBESS + LCEgrid (21'25)
LCEp, = %@W" (2.1-26)
LCEBESS _ abXEbXéNOR+1) (21_27)
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t -
LCEgria = Y/, p5(t) X ag(t) x At (2.1-28)

where LCEpy, LCEggss, and LCE,,;q are the LCE of the PV system, BESS, and the utility grid,
respectively; apy, is the equivalent CO, emissions of the PV system per kWp; a, is the
equivalent CO. emissions of the BESS per kWh installed; and ay(t;) is the dynamic emissions
from the utility grid per kWh.

The optimization problem aims to minimize two objective functions, which are LCE and LCOE.
Several approaches are used to solve a multi-objective optimization problem such as
weighted-sum, trade off constraint, hierarchical, goal programming, and global criterion
methods [39]. In this study, the trade-off constraint approach is used as follows:

min(LCOE) (2.1-29)
LCE < € (2.1-30)

where € represents predetermined value that the objective functions are not allowed to
surpass. The trade-off methodology, a widely adopted strategy in multi-objective optimization,
involves the transformation of one of the two objective functions into an inequality constraint
with an upper bound represented by €. By manipulating the parameter €, multiple solutions for
the LCOE can be derived. This method effectively converts the original multi-objective
optimization problem into a mono-objective form. The motivation for adopting this approach
arises from the distinct units of measurement associated with LCOE and LCE. However, this
method eliminates the need to convert the units of the two separate objective functions.

The optimization problem in equation (2.1-29) is solved by determining the following decision
variables under the constraints in equation (2.1-14) to equation (2.1-17): the BESS capacity
(Ep), the number of PV panels (Npy,), the BESS charge/discharge powers (p5(t;)/ p2(t;) the
utility grid supply/inject powers (p (t;) /pé,”(ti)), and the auxiliary variables (x,,, (t;)); and the
capacity of PV, BESS, and the utility grid associated converters (Nsp, Ny°, Ng°).

2.1.4 Results and analysis

In this study, the optimization problem is solved using data in a one-hour time resolution (time
step of At = 1h), and the power profiles of the energy management are determined for a
duration of one year (8 760 h). Four types of data are presented in this section, which are
meteorological, electrical load, electricity tariff, and energy mix emissions data. The technical
and economic parameters used in the study are detailed in Table 2.1-1.

Moreover, the CO: plays a predominant and substantial role in total greenhouse gas emissions
compared to other gases [40]. Therefore, the current analysis focuses exclusively on carbon
emissions, and the equivalent CO, emission data consider the manufacturing, transportation,
and end-of-life of components, excluding CO- contribution of converters, which is negligible,
as reported in [18].

The project lifetime is chosen to be 25 years [41] with a discount rate of 4% [42], an escalation
rate 3% [41], a deployment cost of 40% of PV cost per year [15]. Lastly, the optimization
problem is implemented in Python 3.8 and solved using the CPLEX solver on a desktop
computer with an Intel Xeon W-2145 @3.7 GHz processor, 64 GB RAM, and a 64 bit operating
system.
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Table 2.1-1 Technical, economic, and environmental parameters.

Components Parameter Value Unit Ref Parameter Value Unit Ref
NOCT 45 °C [43] Conv. efficiency (¥) 95 % [40]
PV rated power (ppy src) 200 Wp [43] Conv. lifetime 15 years [44]
Power temperature coefficient (y) —0.45 % /°C [43] Conv. investment cost (C,»';"{ ) 140 €KW [44]
PV Lifetime 25 years [43] Conv. maintenance cost (C,f:y") 25 €/kW/year [44]
Investment cost (CY) 90 € [43) Conv. replacement cost (CZV,,,) 140 €/kW [44]
Maintenance cost (CFV ) 1 % of cost/year [15]
Equivalent CO; emissions (apy) 2,625 kgCOzeq/kWp [45]
Charge/discharge efficiency (1./114) 0.85 % [46] Conv. efficiency (y) 95 % [40]
Lifetime 5 years [46] Conv. lifetime 15 years [15]
Unit capacity 1.8 kWh [46] Conv. investment cost (Cffw) 280 €/kW [15]
BESS Investment cost (C,!;“,) 200 € [46] Conv. maintenance cost (Cf,’"-") 2 €/kW/year [15]
= Maintenance cost (C%; ) 3 % of cost/year [15] Conv. replacement cost (C},,,) 280 €KW [15]
Replacement cost (C,’;l,) 200 € [46] Min/Max SOC (SOCin/SOCpax) 0.2/0.9 pu
Equivalent CO, emissions (o) 553 kgCOseq/kWh [18] Initial SoC 0.5 pu
Conv. efficiency (7*) 95 % [40] Conv. maintenance cost (C),;,) 0.5 €/kW/year [44]
Utility grid interface Conv. lifetime 15 years [44] Conv. replacement cost (C),,,,) 95 €/kW [44]
Conv. investment cost (C},) 95 €/kW [44]

2.1.4.1 Meteorological and electrical load data

The meteorological data for Compiegne, a city located in northern France (latitude: 49.41°
North, longitude: 2.82° East), serves as the primary case study for conducting simulations.

The solar irradiation and ambient temperature data, presented in Figure 2.1-3 (a), are acquired
through sensors strategically positioned in the study area. The solar irradiation sensor is
equipped with a monocrystalline silicon (Si) sensor, featuring a permissible tolerance of + 5%.
Functioning within an extensive temperature range from — 40°C to 85°C, this sensor ensures
reliable operation across diverse environmental conditions. The ambient temperature sensor
operates within the temperature range of — 40°C to +180°C, with a nominal tolerance of +
0.8°C, thereby attaining a notable level of precision. Together, these sensors provide
indispensable meteorological data and significantly enhance the predictive accuracy of the
model.

The electrical load considered in the study is for a university building and its subscribed power
limit which is 36 kW as depicted in Figure 2.1-3 (b). The electrical load profile is derived from
empirical data, capturing the typical energy consumption patterns exhibited by the building.
Analysis of historical data reveals that the university building, affiliated with the Université de
Technologie de Compiegne, has exhibited no discernible growth. This absence of growth is
attributed to energy-related concerns, particularly those addressed by governmental incentives
in France targeting CO. emissions. These incentives, coupled with global considerations
surrounding building consumption, especially for heating, have collectively contributed to the
absence of load increase. The observations over the past five years affirm the trend in
consumption, substantiating the aforementioned factors. It is noteworthy that the optimization
problem remains adaptable to potential load growth scenarios, as an assumption, without
impeding its solution.

The objective of limiting the subscribed power from the utility grid is to perform peak shaving,
as described in [8]. The cited research that restricts the discharge of BESS when the electrical
load is below the maximum grid limit. However, it should be noted that BESS can be
discharged all times as long as it is profitable or less polluting compared to utility grid.
Therefore, the battery discharge power is not restricted for only peak shaving in this study, it
can be also used when the load is less than 36 kW.
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Figure 2.1-3 Hourly input data from 2021: (a) Solar irradiation and ambient temperature,
(b) the electrical load, and (c) utility grid CO2 emissions.
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2.1.4.2 Electricity tariffs and energy mix emissions

TOU electricity price and the cost of grid subscription are taken from one of the electricity
service providers in France [38]. Accordingly, the cost of 36 kVA power subscription (Cs,;,) for
TOU option is 494.92 €/year [38], and TOU tariff is 0.1841 €/kWh for on-peak hours (06:00
A.M — 10:00 P.M) and 0.1470 €/kWh for off-peak hours (10:00 P.M — 06:00 A.M) [47] for the
studied location. The grid injection price is fixed at 0.06 €/kWh all times over the year [48].
Figure 2.1-3 (c) displays the utility grid dynamic emissions for the year 2021, where the French
transmission system operator RTE provides real-time CO, emissions data in [49].

2.1.4.3 Technical, economic, and environmental results

The economic and environmental results for LCE < 225,000 kgCO0, ., in IMG operating mode
and GCMG operations mode are displayed in Table 2.1-2. The system LCE is computed as
the LCE sum of the PV, BESS, and utility grid. The results in Table 2.1-2 show that the system’s
LCOE and LCE are higher in IMG mode compared to GCMG mode.

One reason is that the French electricity grid is heavily dominated by the nuclear power plants
which provides cost-efficient and low-carbon electricity services for the end-users. Therefore,
the utility grid provides already a clean and cost-efficient solution in GCMG case, where the
BESS capacity is mostly determined to provide electricity when the load demand passes the
subscribed grid power limit.
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Additionally, the specific characteristics of the PV technology, including the incorporation of
phase change material [45], make the PV system the primary contributor to the overall
system’s LCE in both operational modes. The microgrid components’ sizes and technical
results under identical conditions (where LCE < 225,000 kgCO, ., in IMG operating mode and
GCMG operations mode) are presented in Table 2.1-3. The size of BESS and PV for IMG is
higher than that of GCMG, with a percentage difference of 160.9% for the PV and a difference
of 154% for the BESS.

Larger PV and BESS capacities translate to increased capacities for their associated
converters, as illustrated in Table 2.1-3 for the IMG case in comparison with GCMG operation
mode. CPLEX computation time for IMG is lower than that of GCMG because the IMG
operation mode is based on LP, requiring fewer decision variables and constraints.

In contrast, the GCMG operation mode is a MILP with the addition of a binary decision variable
and decision variables related to the utility grid. The outcomes from Table 2.1-2 and Table
2.1-3 are comprehensively analyzed in the following section.

Table 2.1-2 Economic and environmental results in IMG and GCMG operation modes.

Parameter IMG GCMG Unit
System LCOE 0.98 0.22 €/kWh
System LCE 220,533 31,596 kgCO»eq
PV LCE 204,099 26,621 kgCO»eq
BESS LCE 16,434 1,839 kgCO»eq
Utility grid LCE - 3,136 kgCOseq
Table 2.1-3 Components size and technical results for IMG and GCMG operation
modes.
Parameter IMG GCMG Unit
Components size
PV system capacity 1.94 0.21 MWp
BESS capacity 1.48 0.19 MWh
PV converter capacity 2. 0.24 MW
BESS converter capacity 0.2 0.03 MW
Utility grid converter capacity - 0.03 MW
Technical results
PV output energy 2,195 246 MWh/year
PV curtailed energy 1,826 42 MWh/year
BESS energy 108 33 MWh/year
Grid supplied energy - 102 MWh/year
Grid injected energy - 58 MWh/year
BESS complete cycles 73 166 cycles/year
CPLEX computation time 1,853 5,652 seconds

2.1.4.3.1 Isolated microgrid

Another reason for high LCOE and LCE in the IMG mode is that load shedding is not allowed,
as stated in equation (2.1-18). This means that the optimization problem must be able to meet
the load demand even during periods of low solar irradiation, such as the winter season.
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Figure 2.1-4(a) depicts the energy profiles throughout a year, indicating a significant amount
of curtailed power generated by the PV system, particularly during the summer season.
Specifically, the curtailed PV energy amounts to about 83% of the total PV output energy. Even
though the PV curtailed power is high, the PV contribution to the system still reaches around
60%, with the remaining contribution coming from the BESS. Figure 2.1-5 shows simulation
results for August 19 — 20 and November 13 — 14, which are the dates with the highest and
lowest solar irradiation levels, respectively. As solar irradiation is typically high during the
summer, the battery is not always charging during this period as there is an excess PV
generation throughout this time. However, the BESS is configured to maintain its maximum
SOC between November 13 and 14 to ensure a continuous supply of power to meet the load
demand.

The IMG is sized to match the energy needs between November 13 and 14, which demands
significant capacities for both the PV system and BESS. As a result, there is a high amount of
energy from the PV system that is being curtailed during the period of August 19 to 20. This
high level of energy curtailment (see Table 2.1-3 and Figure 2.1-4 (a)) also affects the size of
the PV-associated converter, as it needs to be able to handle the incoming energy from the
PV system.

It can be seen in Table 2.1-3 that the BESS has a maximum charging/discharging power that
is low in comparison to its capacity, indicating that the BESS does not overcharge or discharge
as the charging C-rate equals 0.156 and the discharging C-rate equals 0.044. Avoiding high
BESS C-rates is recommended for better safety and lifespan of the battery [50].

Furthermore, the relatively low number of complete BESS cycles is a result of the BESS’s
substantial capacity. In simpler terms, because the BESS can store a lot of energy, it does not
need to cycle through charging and discharging as frequently as a smaller BESS would.
Additionally, this demonstrates that the assumption of a fixed battery replacement every five
years guarantees a well-operating BESS, as 73 BESS cycles per year will not exceed the
cycles to failure in the fifth year for the chosen battery [46].

[PV enerqy IBMBESS disch. energy Ml Grid supp. energy MM PV curtailed energy I BESS cha. energy MMl Grid inj. enerqy Il System losses energy ===Load energy

15 2
< <
= 10f =
£ >
> >
2 5t 2
Q a
[ =
AN} w
-2 : : : -1 : : : :
150 225 300 365 0 75 150 225 300 365
Time (days) Time (days)

(a) (b)
Figure 2.1-4 Energy profiles over one year for (a) IMG and (b) GCMG operation modes.

2.1.4.3.2 Grid-connected microgrid

The LCOE and LCE have significantly decreased in the GCMG operation mode compared to
the IMG mode (see Table 2.1-2). This decrease can be attributed to the lower cost of
purchasing power from the utility grid as opposed to increasing the capacity of BESS. Figure
2.1-4(b) demonstrates the power profiles over a simulated year, revealing a noteworthy
reduction in curtailed power generated by the PV system compared to the IMG mode.
Additionally, the graph highlights the significance of grid injection and battery charging during
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the summer season. The load is served directly from the utility grid during periods of low solar
irradiation (November 13 — 14, see Figure 2.1-5 (d)), rather than relying on an increased PV
and BESS capacities. This results in decreased capacity for PV and BESS capacities and their
associated converters in the GCMG mode compared to the IMG mode. Hence, during periods
of high solar irradiation (August 19 — 20), as illustrated in Figure 2.1-5 (b), there is a reduction
in curtailed power. Overall, the curtailed power decreased to 17% in this operation mode with
a PV contribution of 54%. During the summer months, when solar irradiation is abundant, the
S0C of BESS is experiencing complete cycles because it is guaranteed that the BESS would
be recharged the next day. Conversely, the SOC of BESS is kept at a certain level during the
period of November 13 — 14 to maintain a sufficient power supply for the load. The
charging/discharging C-rates of the BESS are approximately 0.184 and 0.121, respectively.
Although these rates are higher than those of the IMG operation mode, they are still considered
low, ensuring that the battery does not overcharge or over discharge, thereby ensuring the
safety of the battery. Similar to the IMG operation mode, the BESS cycles of 166 per year
ensure a well-operating BESS during the five years considered in this study.
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Figure 2.1-5 Power profiles of Aug 19 — 20 for (a) IMG, (b) GCMG operation modes, and
of Nov 13 — 14 for (c) IMG, (d) GCMG operation modes.

2.1.4.4 Analysis of Pareto Fronts

A key idea in multi-objective optimization is the Pareto front, sometimes referred to as the
Pareto set or Pareto frontier. It describes a group of solutions to a problem area that cannot
be enhanced for one target without degrading the effectiveness of another objective. In other
words, it symbolizes the trade-offs among multiple competing aims. In this study, the Pareto
front is determined by manipulating € (see equation (2.1-30)) where the trade-off between the
objectives can be altered, leading to different solutions on the Pareto front. Figure 2.1-6
illustrates the Pareto front along with the variations observed in BESS and PV panels for both
IMG and GCMG operation modes.

In the instance of the IMG, there is an approximate 28% difference in both LCOE and LCE
between various solutions. For the GCMG mode, these differences amount to about 23% for
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LCOE and 17% for LCE. It can be seen that reducing the LCE would necessitate an increase
in LCOE and vice versa. This can be explained by the fact that reducing one objective requires
sacrificing some of the other objective. Additionally, reducing the LCE of the system can be
achieved by increasing the proportion of BESS in the overall system and decreasing the
number of PV panels. This finding is consistent with the observation that the LCE of the PV
system is slightly greater than that of the BESS in this study.

For the GCMG operation mode, the Pareto front exhibits a generally downward slope from left
to right, indicating that it is typically possible to reduce the LCE without substantially increasing
the LCOE, but decreasing LCOE often necessitates accepting higher levels of LCE. The
variation of the BESS and PV panels is the same for both operation modes, where the BESS
increases and the PV decreases whenever the LCE decreases.
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Figure 2.1-6 Pareto front and the variation of BESS and PV panels for (a) (c) IMG
operation mode (b) (d) GCMG operation modes.

Figure 2.1-7 shows a radar plot that compares the economic indicators such as investment,
maintenance, replacement, salvage value, and grid costs (for GCMG operation mode). It can
be inferred that when LCOE is the lowest, the investment cost is the highest for both operation
modes. This is because the algorithm suggests a microgrid that relies on PV panels, which
have a larger investment cost than that of BESS. On the other hand, when LCE is the lowest,
the maintenance, replacement, and grid costs are larger compared to the case where LCOE
is the lowest. This is because in this case, the algorithm suggests a solution that is more reliant
on BESS, which is an only replaced component several times during the project lifetime, in this
study.
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Figure 2.1-7 Radar plot for economic analysis for (a) IMG (b) GCMG operation modes.

2.1.4.5 Peak shaving strategy impact

Peak shaving is achieved by varying the maximum subscription limit from 36 kVA to lower
limits of 30 kVA, 24 kVA, and 18 kVA by updating subscription cost Cg,,;, for each power level
[38]. Figure 2.1-8 displays the Pareto fronts for peak shaving strategy with varying utility grid
limits and for IMG operation mode. The onset of observable variations in the solution occurs
when the LCE for the IMG and GCMG operation modes are less than or equal to 225
000 kgCO0,, eq. The results indicate that increasing the utility grid limit results in a reduction in
both LCE and LCOE, as evidenced by the upward trend of the Pareto fronts. The average
variation between each Pareto curve is calculated in order to determine the impact of the peak
shaving on the LCOE and LCE evaluation by varying subscription limit.

It can be seen that when the subscription limit is reduced around 16% (36 kVA to 30 kVA), the
LCOE and LCE are increased approximately 12% and 24% due to low-carbon and low-cost
French electricity grid. However, it should be noted that this will eventually increase the self-
consumption and autonomy in the microgrid around 43% (in parallel to 16% peak reduction)
using local PV and BESS due to being less dependent on the utility grid. The optimization
algorithm tends to decrease the required BESS capacity as the utility grid limit increases.
These findings suggest that it is more economically and environmentally (in terms of CO-
emissions) favourable to rely on the utility grid (which mostly depends on nuclear power plants
in France) instead of integrating a local BESS. The Pareto fronts become lower and steeper
as the utility grid limit increases. The steeper Pareto front suggests that by relying more on the
utility grid, it is possible to reduce the LCE without significantly increasing the LCOE, but
reducing LCOE often requires accepting higher levels of LCE.
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Figure 2.1-8 The trend of Pareto fronts for peak shaving strategy based on various grid

subscription power.

2.1.4.6 Analysis of utilized energy sources in French electricity grid

The French energy mix has undergone significant decarbonization, primarily attributed to the
extensive integration of nuclear power in electricity generation, which emits low levels of CO»
[51]. This investigation illustrates the proportionate contribution of various energy sources to
the electricity grid of France, as demonstrated in Figure 2.1-9 for the 36-kVA subscription case
study. The results of the scenario of the lowest LCOE are presented in Figure 2.1-9 (a).

The results emphasize the country’s substantial dependence on local renewable energy
consumption, accounting for 54% of the electricity mix. These findings are in line with the
French government’s ambitious goals to boost the use of renewable energy sources in
electricity generation. Furthermore, the electricity consumption derived from the nuclear grid
remains the highest, highlighting the high reliance on nuclear power for electricity production
in France.

ILocal Renewable Production IMGrid Nuclear Production [EZ)Grid Renewable Production IlMlGrid Non-Renewable Production
4%

11% 2.5
=
=
£
o>
o
o
54% c
3%

0
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Figure 2.1-9 (a) The percentage breakdown of the utilized energy sources in the
French electricity grid for the case of lowest LCOE, (b) the distribution of energy
sources utilized over

Figure 2.1-9 (b) presents the distribution of energy sources used over the year with a temporal
resolution of one day for the lowest LCOE scenario. The results indicate a high reliance on
local renewable consumption specifically PV and BESS, followed by nuclear power production.
The proportion of nuclear power increases in the winter season due to lower solar irradiation
and hence less local renewable consumption.
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Figure 2.1-10 Comparative bar chart of the lowest LCOE and lowest LCE scenarios for
the (a) local renewable consumption (b), grid nuclear consumption (c), grid renewable
consumption (d).

Figure 2.1-10 compares the scenarios of lowest LCE and lowest LCOE for local renewable
consumption (Figure 2.1-10 (a)), grid nuclear consumption (Figure 2.1-10 (b)), grid renewable
consumption (Figure 2.1-10(c)), and grid non-renewable consumption (Figure 2.1-10(d)). For
both scenarios, the local renewable consumption tends to decrease with an increase in the
subscription power from the utility grid. In contrast, the grid nuclear, grid renewable, and grid
non-renewable consumptions tend to increase with an increase in the utility grid subscription
power.

In the case of local renewable consumption (Figure 2.1-10(a)), for the scenario of the lowest
LCOE, the percentage of local renewable consumption is higher than that of the scenario of
lowest LCE for subscription powers of 18 kVA, 24 kVA and 30 kVA.

However, this is not the case for the 36-kVA subscription power as the percentage level of
local production for the scenario lowest LCE is slightly higher. Regarding nuclear, grid
renewable, and grid non-renewable power production (Figure 2.1-10 (b), (c) and (d)) the
percentage level for the scenario of lowest LCE is higher than that scenario of lowest LCOE
for subscription powers of 18 kVA, 24 kVA and 30 kVA. In contrast, for the 36-kVA subscription
power, the percentage level for the scenario of lowest LCOE is higher than that of the scenario
where LCE is lowest.

The trend exhibited by the 36-kVA subscription power differs from the remaining cases,
primarily attributed to grid injection. As the grid limit increases to 36 kVA, the likelihood of grid
injection surpasses that of other capacities such as 18 kVA, 24 kVA and 30 kVA. Consequently,
prioritizing the LCOE leads to increased local energy contribution, resulting in a higher grid
injection.

The environmental impact of nuclear power generation should be considered when evaluating
its feasibility as an energy source. This includes the potential for radioactive pollution of soil
and water, which can have long-lasting effects on ecosystems and human health. It is
important to consider these impacts when developing objective functions for nuclear power
projects.

2.1.5 Discussion

In this study, the battery degradation is not formulated in the optimization problem (specifically
through depth of discharge constraints) since the battery complete cycles are determined low
in both operation modes. As explained previously, the energy capacity of the battery is
obtained significantly higher compared to required charge and dis charge powers in BESS
converter, hence battery cycle is not performing high number of complete cycles. However, it
is aimed to be considered as a future work of this study in order to increase functionality of the
presented methodology for the cases where BESS has high number of complete cycles.
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Moreover, it should be noted that the presented results are not generic which can vary based
on the chosen PV and BESS models, and according to electricity grid characteristics.
Therefore, the proposed methodology can/should be used for testing the impact of the various
equipment models in different electricity grid which has different emission and price profiles.
For instance, when one of the main components, either PV or BESS, has lower costs and
emissions in a microgrid with PV systems, BESS, load, and their converters, the solutions and
the Pareto front show no variations. In the presented results the PV emissions are
comparatively higher due to specific technology characteristics [45], but its cost remains lower.
Importantly, it is worth noting that a PV panel with 2 000 kgCO0,,eq/kWp, there will not be any
differences in the solutions along the Pareto front (single solution) for the chosen BESS
technology in this study.

2.1.6 Conclusion and perspectives

In this study, a MILP optimization algorithm is presented to co optimize equipment sizing and
energy management problems of a DC microgrid for the objectives of cost and emissions
reduction. Based on the analysis and results presented in the study, the following conclusions
can be drawn:

e In the IMG operation mode, the microgrid exhibits larger component capacities
compared to GCMG. This difference is attributed to the necessity of coping with
more challenging conditions, such as the absence of a grid connection during
periods of low solar irradiation;

o The results reveal that the BESS capacity increases as the LCE decreases, and
the number of PV systems is higher when the LCOE is lower for both operation
modes. This is due to the fact that the BESS has a slightly lower LCE compared to
the PV, and in this study, the LCOE of PV is also lower than BESS;

e From an economic point of view, the solution with a lower LCOE incurs the highest
investment cost. Conversely, the solution with the lower LCE incurs the highest
replacement cost, as it depends on BESS, which is an only replaced component
over the project lifetime in this study;

e As the limit of the utility grid increases, the Pareto fronts for both peak shaving
strategy become lower and steeper;

e From an environmental point of view, the findings reveal that 54% of the total
production comes from local sources, with the remainder primarily reliant on the
grid, which predominantly relies on nuclear power in the French energy mix.

As a future perspective, the Value of Lost Load will be calculated to assess the economic
impact of power outages or service interruptions. By assigning a monetary value to the loss of
supply reliability, businesses, utilities, and policymakers can better understand the
consequences of such disruptions on the economy.
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2.2 Optimizing Microgrid Sizing, Energy Management, and Electric
Vehicle Integration

This section applies the proposed study from Section 2.1 by introducing the EV problem to the
previously described methodology and presenting a case study in Compiégne, France. It also
analyses the Levelized Cost of Energy (LCOE) and conducts a life cycle emissions (LCE)
analysis across various cities’?8.

2.2.1 Introduction

A microgrid offers an efficient solution for integrating distributed energy resources, such as
solar power, with the electrical grid. In this context, the increasing demand for electricity is
driven by several factors, such as the growth of the electric vehicle (EV) market, which is
advancing due to technological innovations and shared societal and political goals aimed at
mitigating climate change [1]. Therefore, ensuring the optimal sizing of the microgrids is
essential. An undersized microgrid relies on the grid and may not achieve the desired level of
autonomy. Moreover, optimizing the microgrid’s size helps in reducing the overall cost of the
system [2]. The most common goal in the context of optimal microgrid sizing is cost
minimization, and to address this problem, software tools, heuristic methods, and linear
techniques are commonly utilized.

In the examined literature, various studies consistently apply HOMER commercial software to
explore the optimal configurations of microgrids and distributed energy resources. In [3], the
research focuses on multi-microgrid component sizing, considering economic and technical
factors. Similarly, [4] employs HOMER to design a microgrid with Photovoltaic (PV), wind,
batteries, and a diesel generator in Biskra, Algeria. Additionally, in [5], HOMER is used to
determine the optimal configurations for PV/Diesel/Pump-hydro and PV/Diesel/Batteries
systems and calculate payback periods, emphasizing cost effective solutions. These studies
likely yield insights into efficient and economically viable microgrid designs, including resource
combinations, cost effectiveness, and anticipated financial returns.

Regarding heuristic optimization methods, these methods are prevalent in the literature due to
the complexity of the microgrid sizing problem. Heuristic techniques play a crucial role in
reducing the required computational time. In [6], the study introduces three meta-heuristic
algorithms: enhanced differential evolution, teaching-learning-based optimization, and the salp
swarm algorithm. These algorithms are applied to tackle the sizing optimization problem of a
standalone microgrid. In [2], particle swarm optimization is used to address a hybrid microgrid
sizing problem by minimizing the Levelized Cost of Energy (LCOE) and maximizing the

" This study is based on the following publication: F. A. Kassab, B. Celik, S. Cheikh-Mohamad, F. Locment, M. Sechilariu, S.
Liaquat and T. M. Hansen, “Optimizing Microgrid Sizing, Energy Management, and Electric Vehicle Integration in Various French
Cities,” in Electrimacs 2024, 2024, doi: (hal-04772766)

8 The methodology developed is detailed in previous work; refer to the antecedent publication for more details:

F. A. Kassab, B. Celik, F. Locment, M. Sechilariu and T. M. Hansen, "Combined Optimal Sizing and Energy Management of a DC
Microgrid using MILP," 2023 IEEE Belgrade PowerTech, Belgrade, Serbia, 2023, pp. 1-6,
https://doi.org/10.1109/PowerTech55446.2023.10202939.

F. A. Kassab, B. Celik, F. Locment, M. Sechilariu, S. Liaquat, and T. M. Hansen, “Optimal sizing and energy management of a
microgrid: A joint MILP approach for minimization of energy cost and carbon emission,” Renewable Energy, vol. 224, p. 120186,
2024, https://doi.org/10.1016/j.renene.2024.120186.
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microgrid autonomy. Additionally, in [7], the NSGA Il algorithm is implemented for co-
optimizing a microgrid in terms of both economic and environmental aspects.

As for linear techniques, the literature frequently features the use of Mixed-Integer Linear
Programming (MILP). In [8], cost minimization is achieved through MILP, as this technique
ensures a globally optimal solution. Each of these studies also pursues additional objectives,
such as load scheduling and the minimization of life cycle emissions (LCE), with a focus on
specific regions and types of buildings, encompassing both residential and commercial
structures.

Each technique has its own set of limitations. Commercial software packages, such as
HOMER, fall short in certain aspects. They lack the capability to perform multi-objective
optimization or effectively address intra-hour-based variability. Furthermore, when confronted
with more intricate design scenarios, they often demand a significant amount of computational
time or do not converge [9]. Heuristic approaches do not guarantee global optimal solutions
for optimization problems [10]. MILP techniques, on the other hand, can entail high
computational time, especially for complex problems where linearizing equations becomes
challenging, potentially necessitating trade-offs between optimality and computational
efficiency.

This research is a continuation of the work in [11],[12], where a MILP algorithm that ensures a
global optimal solution was introduced to optimize both the sizing and energy management of
a microgrid, considering the yearly solar irradiation and the yearly load demand of a tertiary
building in the university campus. The study is extended by including the modeling and
consideration of EV loads, where the microgrid is tested in various cities. Additionally, the study
calculates the LCE for the proposed solutions across different cities.

The research is organized as follows: In Section 2.2.2, the system modeling is described. The
optimization problem is presented in Section 2.2.3, Section 2.2.4 covers the results and
analysis, and Section 2.2.5 presents the conclusions.

2.2.2 System Modelling

The studied microgrid (Figure 2.2-1) comprises several components, including PV panels, a
battery energy storage system (BESS), a grid connection (EG), a tertiary building, and EV
loads. The same PV and BESS equations from [11], [12] are used for calculating their power
outputs. Additionally, the EV charging models are included in this study.

DC bus
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| " Converter a
| DC/IDC
| Converter Electric Vehicles
PV Array
«—»| DCIAC 3
Utility Grid
I I
(5] g —
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Ba“e'y werner
University Campus

Figure 2.2-1 The studied microgrid structure.

2.2.2.1 EV Charging model

Itis crucial to develop sophisticated models that consider factors such as the EV’s plug-in time
(tp) and initial state of charge (SOCgy,,,;, )- In [13], data is collected for a university campus to
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illustrate the probability density functions (PDFs) of ¢, and SOCgy,, ;. for private EVs. The

findings revealed that the Generalized Extreme Value (GEV) PDF closely aligns with the
collected data. The GEV PDF equation is obtained as follows:

é[l + ¢ (%)]_é_l X exp {— [1 + € (}C?T”)]_é},Lf e #0
éexp - (%),ifs =0

Here, f(x; u,o,¢€) represents the GEV PDF, where x is the random variable, u is the location
parameter, o is the scale parameter, and \varepsilon is the shape parameter. For the SOCgy,, ..,
the GEV PDF parameters are: € = 0.0629, o = 0.5493,u = 8.9068 , while for ¢t,,, the GEV PDF
parameters are: € = 0.0474,0 = 7.9015, . = 12.8820.

(2.2-1)
fxpo,€) =

The duration required for charging the EV varies based on the connection time, and the period
needed to attain the maximum SOC for the EV SOCgy,,, ..., is computed as follows:

r _ (50CEv mara SOCEVinia) *EVeapa (2.2-2)
char,a —
’ Pcs

where Teparas SOCgy 4y, o0 @Nd EVegpq are the charging duration (h), maximum SOC, and
battery capacity (kWh) of the EV a, respectively; and P is the charging station power (kW).

The plug-out time for EV is determined using a uniform distribution that ranges from zero to
three hours after the EV charging time needed to reach the maximum SOC. This consideration
is incorporated into the optimization problem to introduce a margin of flexibility, enabling the
scheduling of EV charging. Without this margin, if the unplugging time coincides exactly with
the EV charging duration, scheduling EV charging sessions would be unfeasible. The EV
charging power demand is calculated as follows:

(SOCEV masx.a— SOCEV init.q)¥EVeapa it (2.2-3)
pEV,a (t) = Tchar,a =P
0, otherwise

Equation (2.2-3) calculates the charging power of each EV, denoted as pgy 4, after the plug-in
time t,. The energy needed to charge the EV is divided by the rounded-up charging duration
(Tchar,q) to calculate the actual EV power. This method is chosen because the study operates
on an hourly time scale, and charging the EV at a steady power rate might risk pushing the
battery’s SOC beyond its permitted maximum level.

2.2.3 Formulation of the optimization problem

The optimization problem is designed to achieve a dual objective: the first objective is to
minimize the LCOE, and the second is to determine the optimal size of microgrid components
and efficiently manage energy within the microgrid. As this study is a continuation of [11][12],
the optimization problem and its formulation are already detailed in those researches.
However, the algorithm introduced in this chapter considers the EV demand. For that, this
section introduces the equations that are modified, and the rest can be seen considered from
[11][12].

2.2.3.1 Constraints

The BESS charge/discharge power (pS(t) / p(t)) are not limited to a specific power level.
This allows for optimal sizing of the BESS converter, as restricting the charging/discharging
power would fix the converter's size. In contrast, the grid supply/injection powers
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(pic(£)/p2(t)) are constrained to a maximum power level to represent the subscribed
maximum power from the French grid.

pi(t) =0, pg(t) <0 (2.2-4)
—PEG <prc(t) <0 (2.2-5)
0 < p () < ppe (2.2-6)

In (2.2-4), there is no strict maximum limit imposed on the power of the BESS, allowing the
BESS associated converter to be determined by the algorithm. The “Big M” technique, used
for optimizing energy management in the microgrid, simplifies complex decision making,
similar to how “If Else” statements are employed in programming. For a detail understanding
of the constraints and BESS energy calculations, refer to the reference [11]. The converters
capacity is determined based on the maximum output power obtained by the connected
resources as follows:

MPPT(t) X Npy < MDC/DC (2.2-7)
— () X+ p§(©) /e [vy P < My (2.2-8)
—pic () + L) Jye ¢ < MpS/Pe (2.2-9)
pev () /Yo 4 < MPETAC (2.2-10)
Pouita () /Voa’ < Mpcha© (2.2-11)

where ppy (t) is the power output of a PV panel, Npy, is the total PV panel number, and p, and
u, denote the charge and discharge efficiency of the BESS. Additionally, y; and Mj; represent

the efficiency and capacities of the x* component associated with the k" component
respectively, and p,i14(t) is the consumption power. The net power on the DC bus, denoted
as ppus(t), is calculated as given below:
C/AC C/AC c/DC
pbus(t) = Pbuil (t)/VbDul{d + pEV(t)/V}?V/ VI?V /P X pp
+p5 (/1 X v, /P + PR x ¥ P X g
+Dge () X V;GC/DC + it (t)/Vé)c;C/AC <0

Enforcing pp,s(t) < 0 implies curtailing negative power and prohibiting load shedding.

MPPT(t)

(2.2-12)

2.2.3.2 Objective function

The objective function aims to minimize the LCOE and the LCE calculated as follows:

LCOE = ﬂ (2.2-13)
thp (£)xAt
LCE = LCEPV + LCEBESS + LCEEG + LCEcables (22'14)

In Equation (2.2-13), TC is the total cost which considers several factors, including initial capital
investment, maintenance, replacement costs, potential salvage value of electrical components,
and the expenses associated with energy procurement from the grid. The capital recovery
factor is CRF, p{ (t) denotes the load (which includes EV and building loads), and t,, t; and At
represent the initial, final, and the step time of the simulation, respectively.

In Equation (2.2-14), LCEpy, LCEggss, LCEg; and LCE.4p0s are the LCE of the PV system,
BESS, utility grid and the cables, respectively. Readers are referred to [11],[12] for detailed
equations related to equations (2.2-13) and (2.2-14).
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The optimization problem is addressed by determining the following decision variables:
e BESS capacity (E,);
e the number of PV panels (Npy);
e BESS charge/discharge powers (p(t)/pl(t));
e EG supply/inject powers (pg; (t)/pa (b));
e Auxiliary variables (x4, (t)).

Additionally, the capacities of PV, BESS, EG, EV, and building associated converters

pc/pc ,,DC/DC ,,AC/DC ,,DC/AC ,,DC/AC .
(Mpy," ™, My ™", Me" ™, Mg," ™ My, 1, are also determined.

2.2.4 Results and Analysis

In the studied microgrid, the load distribution encompasses the EVs and the university building.
The charging infrastructure for EVs comprises five EV charging terminals, each equipped with
two 7 kW chargers, allowing for a maximum of 10 EVs to be charged simultaneously.

Additionally, plugging in the EV is subject to an SOC limitation, ranging from 20% to 100%.
The EV battery capacity is assumed to be 50 kWh. The daily arrival of EVs is determined using
a uniform distribution. On weekdays, there are between seven to ten EV arrivals, while on
weekends, there are one to two EV arrivals. During the vacation month of August, there can
be one to four EV arrivals.

The load profile of the university building is sourced from empirical data collected at a specific
building within Université de Technologie de Compiégne in 2023. Both the EVs and university
building’s load characteristics are visually represented in Figure 2.2-2.
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Figure 2.2-2 (a) Building load and (b) EV load

The EG CO, emissions are considered dynamic as it is provided by the French transmission
system operator. In this study, a load growth of 1% is considered to anticipate potential future

increases in demand and to ensure the resilience of the microgrid, while the EG tariffs remain
the same.

o

The optimization horizon covers one year (8 760) with an hourly timestep while considering
the project’s 20-year economic lifespan.

The problem is formulated using Python 3.8 and CPLEX optimization solver. The computations
are carried out on a super computer equipped with an AMD EPYC 7763 64-Core Processor,
256 cores, and 1 510 GB of RAM, all running on the “RockyLinux9.1” operating system.
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2.2.4.1 Case study — Compiegne, France

The optimization algorithm has been applied to the case study of Compiégne, France, using
the input described in the above section and a combination of several PV and BESS
technologies. The technical, economic, and environmental data utilized for this analysis are
presented in Table 2.2-1.

Table 2.2-1 Input parameters data of the microgrid system.

Parameter Value Unit Parameter Value  Unit
DualSun PV SunPower PV
PV module-rated power 400 Wp PV module-rated power 315 Wp
Lifetime 25 years Lifetime 25 years
Investment cost 612 € Investment cost 550 €
Maintenance cost 1 % of Investment costiyear  Maintenance cost 1 % of Investment cost/year
CO; emissions 507.5 kgCOs.eqkWp CO; emissions 685 kgCOs.eqkWp
JASolar PV Voltec PV
PV module-rated power 310 Wp PV module-rated power 300 Wp
Lifetime 25 years Lifetime 25 years
Investment cost 450 € Investment cost 480 €
Maintenance cost 1 % of Investment cost/year  Maintenance cost 1 % of Investment cost/year
CO; emissions 1,349 kgCOy eqkWp CO; emissions 776 kgCOyeq/kWp
Li-Ion BESS Lead Acid BESS
Unit Capacity 255 kWh Unit Capacity 1.8 kKWh
Lifetime 10 years Lifetime 5 years
Investment cost 1.084 € Investment cost 200 €
Maintenance cost 3 % of Investment costiyear  Maintenance cost 3 % of Investment cost/year
Replacement cost 1,084 € Replacement cost 200 €
COs emissions 102 kgCOs.eqkWp CO: emissions 146 kgCOseqkWp
DOMC & ACDC & DC/AC converters System
Efficiency 95 % Cable COs emissions 17,680 kgCOs.eq
Lifetime 10 years Project Lifetime 0 years
Investment cost 80 kW Discount rate 7 %
Maintenance cost 2 % of Investment cost/year  Escalation rate 3 %
Replacement cost 80 kW Installation cost 40 % of PV Investment cost
EG EV Charging Station & EV
Grid power limit 140 kVA Charging station power 7 kW
Inject ariff 0.07878 €/kWh EV battery capacity 50 kWh
Fixed subscription cost 1,000 Elyear EV max S0C 100 %
Peak hour supply tariff 0.2460 €kWh EV min SOC 0 %
Off-Peak hour supply taiff  0.1524 €/kWh

DualSun offers the lowest cost among the available PV panel options. The Table 2.2-2
presents the optimization results for DualSun PV in combination with both BESS technologies
Lead Acid and Lithium-lon (Li-lon).

In terms of LCOE, the combination of Lead Acid batteries with DualSun results in a lower LCOE
compared to the Li-lon/DualSun configuration. However, the Li-lon/DualSun system achieves
a lower LCE than the Lead Acid/SunPower case when considering the latter's higher grid
supply, which is due to the smaller PV capacity.

The Li-ion/DualSun system is designed with excess capacity, as the optimization algorithm
increases the PV size to reduce LCE. This result leads to a higher amount of curtailed PV
power. Conversely, the higher PV capacity in the Li-lon/DualSun system also results in higher
grid injection, as more power is available for feeding back into the grid.

Table 2.2-2 Optimization results for DualSun/Lead Acid and DualSun/Li-lon.

Parameter Lead Acid Li-Ion Unit
LCOE 0.36 0.54 €/KWh
LCE 57,221 52,182  kgCOs,eq
PV capacity 0.385 0.86 MWp
BESS capacity 1.87 0.77 MWh
PV energy 316 710 MWh/year
PV curtailment 0.05 133  MWh/year
Grid supplied energy 446.5 379 MWhl/year
Grid injected energy 6.75 167 MWh/year
BESS energy 93.3 121 MWh
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The Figure 2.2-3 illustrates the energy distribution over one year within the microgrid for the

two studied combinations.
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Figure 2.2-3 Energy distribution over one-year (a) Lead Acid/DualSun and (b) Li-
lon/DualSun.

The Lead acid/DualSun system is well-proportioned, resulting in minimal PV curtailment thanks
to the high capacity of the BESS. In comparison, the energy generated in the Li-lon/DualSun
case is nearly double the amount produced in the Lead acid/DualSun case, highlighting the
superior performance of the Li-lon system in terms of energy production.

The Figure 2.2-4 presents a zoomed-in view of the energy distribution when using the Lead
Acid/DualSun BESS over one week in February and one week in July.
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Figure 2.2-4 (a) One-week in February and (b) one-week in July of the one-year
simulation.

The Figure 2.2-4 highlights the fact that during the summer, the BESS experiences significantly
higher discharge levels compared to the winter months. In contrast, grid interventions are more
frequent during the winter, primarily due to lower solar irradiation. The surplus PV power
generated in both seasons is mainly used to recharge the Lead Acid/DualSun BESS, ensuring
a continuous and reliable energy supply.

22411 LCOE and LCE Results

The optimization process involves studying various PV and BESS technologies to assess their
impact on the dimensioning and energy management of the microgrid. Figure 2.2-5 (a) and (b)
illustrate the LCOE and LCE, respectively.

66



~ :\
Task 17 PV and Transport — PV-Powered Charging Stations: Sizing, Optimization and Control

(a) (b)

08 LCOE of Different PV Technologies 80 LCE of Different PV Technologies

' ElLi-lon ElLi-lon

IlLead Acid IlLead Acid

0.6 1 60f
0.4 E 40 -
0.2+ 1 20F

0 0

DualSun SunPower JASolar Voltec DualSun SunPower JASolar Voltec

Figure 2.2-5 (a) LCOE and (b) LCE results of different PV technologies.

When Lead Acid batteries are used, the LCOE is lower compared to systems incorporating Li-
lon batteries. Among the analyzed configurations, the Voltec/Li-lon system exhibits the highest
LCOE, while the DualSun/Lead Acid system achieves the lowest. However, the reliance on
Lead Acid batteries leads to the highest grid costs, primarily due to the smaller PV capacity. In
contrast, investment costs are highest when Li-lon batteries are utilized, as they are generally
paired with larger PV capacity systems.

The analysis further highlights that the JASolar configuration yields the highest LCE. Notably,
Lead Acid/PV systems consistently exhibit higher LCE values than Li-lon/PV systems, with the
exception of the Li-lon/JASolar combination. However, JASolar is also associated with the
highest emissions (kgCO-,eq), which explains why the PV capacity for the Li-lon/JASolar
configuration is significantly lower than in other cases. Additionally, emission sources vary
depending on the BESS type: in Li-lon/PV scenarios, PV-related emissions represent the
largest share, whereas in Lead Acid/PV scenarios, the primary contributor to emissions is the
BESS.

2.2.4.2 Geographical Analysis

To go further, the study progressed by applying the optimization algorithm to several cities in
France and worldwide. Table 2.2-3 presents the average solar irradiation for the considered
regions over the course of one year, as retrieved from [14].

Table 2.2-3 Solar irradiation and Ambient temperature average in different cities.

City Solar irradiation (kWh/m?)  Ambient temperature (°C)  City Solar irradiation (kWh/m?)  Ambient temperature (°C)
Adelaide, AU 1,758 14.98  Madrid, ES 1.991 14.94
Ajaccio, FR 1,769 12,36 Marseille, FR 1,375 16.59
Bamako, ML 2,300 27.89  Nagoya, JP 1,775 14.94
Bern, CH 1,658 9.12  New Delhi, IN 2,027 27.17
Brest, FR 810 12.81  Poitiers, FR 968 13.81
Cairo, EG 2,624 22.18 Rabat, MA 2,259 18.72
Compiggne, FR 838 12.74  Strasbourg, FR 964 12.44
Dijon, FR 987 12.5 Toronto, CA 1,634 8
Doha, QA 2,323 27.7 Toulouse, FR 1,697 14.89
Le Havre, FR 873 12,17 Tripoli, LB 2,165 19.37
Lille, FR 820 12.16  Twente, NL 1,313 11.58
Lisbon, PT 1,983 169  Washington, US 1.868 115

The optimization encompasses all cities specified in Table 2.2-3, where the same load (EV
and building) is used for each city.

The capacity analysis of the microgrid components and the detailed energy dispatch for some
cities with high solar irradiation are presented in Table 2.2-4. Additionally, the power profiles
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of these cities for one week in July are depicted in Figure 2.2-6. Rabat, Tripoli, and Lisbon are
identified as the cities with a high solar irradiation among the selected cities.

Table 2.2-4 The microgrid components capacities and energy of the selected cities
with high solar irradiation.

Parameter/City Rabat Tripoli Lisbon
Microgrid components capacities

PV capacity (kWp) 381 303 389
BESS capacity (kWh) 226 461 270
PV converter capacity (kW) 410 302 413
BESS converter capacity (kW) 57 94 67
EG converter capacity (kW) 147 140 147
EV converter capacity (kW) 66 66 66
Building converter capacity (kW) 164 164 164
Energy dispatch

PV output energy (MWh/year) 824 623 602
Curtailed energy (MWh/year) 18.5 0.4 0
BESS energy (MWh/year) 63 101 116
EG supplied energy (MWh/year) 362 375 368
EG injected energy (MWh/year) 257 94 63
System losses energy (MWh/year) 93 87 88

It can be seen that, the curtailed energy from the PV system is relatively small compared to
the PV output energy. This observation indicates that the BESS capacity and EG power limits
are sufficient to absorb most of the PV surplus. Additionally, the EG supply is always higher
than the EG injection rate, highlighting the reliance on the EG. This suggests that the EG in
France offers a more cost-effective solution compared to BESS, primarily due to the high
investment cost of batteries. Furthermore, the EG limit is close to the maximum load peak,
which explains the increased EG contribution in the microgrid. It should be noted that system
losses include converters for PV, BESS, the electrical grid, EV load, and building load.

Figure 2.2-6 represents one week (the first week of July) of the one-year simulation for Rabat,
Tripoli, and Lisbon.
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Figure 2.2-6 One-week (15t of July’s week) of the one-year simulation for (a) Rabat (b)
Tripoli (c) Lisbon.

For all these cities, the load is primarily covered by PV during the daytime and by the BESS
and EG supply during the night-time. On the other hand, Brest, Le Havre, and Marseille are
identified as cities with low solar irradiation. The capacity analysis of the microgrid components
and the detailed energy dispatch for these cities are presented in Table 2.2-5. Additionally, the
power profiles of these cities for one week in July are depicted in Figure 2.2-7.

68



~ C\
Task 17 PV and Transport — PV-Powered Charging Stations: Sizing, Optimization and Control “

Table 2.2-5 The microgrid components capacities and energy of the selected cities
with Low solar irradiation.

Parameter/City Brest Marseille Le Havre
Microgrid components capacities

PV capacity (kWp) 1,146 457 1,060
BESS capacity (kWh) 2,732 1,160 1,611
PV converter capacity (kW) 1,130 460 1,052
BESS converter capacity (kW) 425 181 351
EG converter capacity (kW) 147 140 147
EV converter capacity (kW) 66 66 66
Building converter capacity (kW) 164 164 164
Energy dispatch

PV output energy (MWh/year) 920 614 915
Curtailed energy (MWh/year) 133 0.07 138
BESS energy (MWh/year) 280 189 247
EG supplied energy (MWh/year) 327 350 352
EG injected energy (MWh/year) 139 37 160
System losses energy (MWh/year) 158 110 150

The energy dispatch analysis in Brest, Marseille, and Le Havre shows that the curtailed energy
is generally higher than that in Rabat, Tripoli, and Lisbon. This leads to the conclusion that a
city with low solar irradiation will result in higher curtailed energy rates due to the greater PV
capacity needed to cover the load. A higher PV capacity will result in higher curtailed energy
and greater system energy losses, as Table 2.2-5.

Figure 2.2-7 represents one week (the first week of July) of the one-year simulation for Brest,
Marseille, and Le Havre.

I PV power Il BESS discharge power IMlEG supply power Il BESS charge power Il EG inject power Il System losses power == =Load power
1000 400 1000

500

n
s

Power (kW)
Power (kW)
o
Power (kW)
w
o 8

N
8

-500
-1000 -400
0 24 48 72 96 120 144 168 0 24 48 72 96 120 144 168 0 24 48 72 96
Time (h) Time (h) Time (h)
(a) (b) (c)

Figure 2.2-7 One-week (1st of July’s week) of the one-year simulation for (a) Brest (b)
Marseille (c) Le Havre.

120 144 168

2.2.4.3LCOE and LCE results

The heat maps Figure 2.2-8 presented represent the Solar Irradiation, LCOE, and LCE values,
respectively, for various cities. These visual aids highlight significant variability in both energy
costs and carbon emissions across different locations.
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Figure 2.2-8 Heat map for the Solar irradiation, LCOE, LCE values of different studied
cities.

These visual aids demonstrate considerable variability in both energy costs and carbon
emissions across different locations. The heat map presented in Figure 2.2-8 shows stable
LCOE values, indicating more predictable and affordable energy costs under these conditions.
Cities like Cairo, EG (0.22 €/kWh), Doha, QA (0.28 €/kWh), and Lisbon, PT (0.27 €/kWh)
maintain relatively low LCOE values, suggesting more efficient energy production. They also
exhibit low LCE values (0.03 kgCO2,eq/kWh, 0.034 kgCO2ei/kWh, and 0.035 kgCO2eq/kWh,
respectively), indicating more sustainable and environmentally friendly energy production
practices.

The colour gradients facilitate quick visual assessments, identifying areas where strategic
interventions might be necessary to mitigate costs and reduce carbon emissions. This
information is crucial for informed decision-making in energy investments and policy-making,
aimed at carbon reduction initiatives. These results are consistent with the data presented in
Table 2.2-3, which indicates that Cairo has the highest average solar irradiation. However, the
ranking based on average solar irradiation does not consistently match the order of cities
based on LCOE and LCE. This discrepancy is primarily due to variations in solar irradiation
across different months and seasons rather than solely depending on the annual average solar
irradiation.

For example, although Dijon has a higher average solar irradiation than Poitiers, Poitiers
achieves a lower LCOE and LCE. Figure 2.2-9 illustrates this phenomenon by presenting the
monthly solar irradiation data for both Dijon and Poitiers.
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Figure 2.2-9 The monthly solar irradiation data for both Dijon and Poitiers.

Notably, during the summer and spring seasons, Dijon experiences higher levels of solar
irradiation compared to Poitiers. However, during the autumn and winter seasons, Dijon’s solar
irradiation is lower than that of Poitiers. As a result, to meet the load demand during the autumn
and winter months in Dijon, the optimization algorithm increases the PV capacity. In contrast,
while Poitiers’ solar irradiation in summer and spring is not as high as that of Dijon, it remains
sufficient to cover the load requirements. Moreover, the significantly higher solar irradiation in
Poitiers during the autumn and winter seasons allows for a lower PV capacity compared to
Dijon. Thus, LCOE and LCE can vary significantly between different cities, even when the load
remains the same. This highlights the importance of seasonal and monthly variations in solar
irradiation in determining the optimal energy strategy.

2.2.5 Conclusions

In this study, a MILP algorithm is developed to optimize the size and energy management of
microgrids across various cities and technologies. The case study is based on the energy load
of a university building, including the consumption by EVs. The optimization problem considers
the economic horizon over the project's lifetime, with the objective of minimizing both the LCOE
and LCE. The results indicate that cities with high solar irradiation exhibit lower LCOE and LCE
compared to cities with low solar irradiation. It is also observed that the ranking of cities based
on average solar irradiation does not necessarily correlate with the ranking of LCOE and LCE.
Monthly and daily fluctuations in solar irradiation significantly impact these results. The study
highlights the importance of a well-sized combination of renewable resources to optimize the
economic and environmental performance of energy systems in different cities. There is no
universal solution; therefore, a thorough assessment of local conditions and available
resources is essential for making decisions tailored to each specific city. Regarding the
technologies, locally produced PV panels positively contribute to the overall LCE of the
microgrid. Additionally, the LCE associated with BESS plays a dominant role in determining
the total LCE of the configurations.
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3 PVCS: INTELLIGENT CONTROL AND NEW SERVICES

As the adoption of EVs accelerates worldwide, their integration into the energy ecosystem
introduces both challenges and opportunities. Among the most pressing concerns is how to
satisfy the increased power demand of EVs in a way that aligns with sustainability goals.
Meeting this demand through clean energy sources is essential to minimizing carbon
emissions and ensuring the long-term viability of the smart grid.

In parallel, the evolution of the EV market has brought forth new services and models, such as
Vehicle-to-Grid (V2G) and Battery Swapping, that require dedicated analysis. These emerging
approaches not only redefine the relationship between EVs and the grid but also open new
avenues for energy management, flexibility, and user convenience.

The following two sections explore these key developments.

The first section delves into the concept of V2G, examining how EVs can support the grid by
returning stored energy during peak periods.

The second section focuses on battery swapping, an alternative model that offers rapid energy
replenishment and addresses some limitations of traditional charging infrastructure.

Together, these sections aim to shed light on how these innovations contribute to the evolving
role of EVs within a smarter, more sustainable energy landscape.
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3.1 Energy Cost Optimization via V2G Services

This study introduces an energy management algorithm of a PVCS formulated with mixed-
integer linear programming to minimize the total energy cost of the participation of EV users in
V2G service. Simulation results demonstrate that the proposed optimization method satisfies
EV user demands while providing V2G service and highlights the benefits of the V2G service
where the determined costs of the proposed algorithm perform significantly better compared
to the baseline scenario (simulation without optimization)®°.

3.1.1 Introduction

Photovoltaic (PV) - powered charging stations (PVCS) are designed for charging electric
vehicles (EV) using clean energy sources that can be installed on car parking shades and/or
building rooftops. Charging EVs with renewable energy sources, particularly PV sources, is a
crucial factor in enhancing their environmental benefits and reducing their greenhouse gas
emissions [1]. To achieve defined objectives such as minimizing charging costs and providing
a satisfactory charging process for EV users [2], it is necessary to implement an energy
management system that can control and monitor the energy flows within the PVCS. A
feasibility study of a PVCS has been conducted by analysing its effectiveness based on
technical, economic, and environmental aspects by comparing the impact of different
geographical areas on the installation location in [3]. The study investigates how a PVCS can
contribute to charging EVs with different energy mixes and compares the produced CO:
emissions of charging EV batteries solely from the grid, from the PVCS, and with internal
combustion engine vehicles. They have found that the PVCS concept is more efficient in
countries with high annual average irradiance and significant CO2 emissions in their grid, but
it remains economically unfeasible due to expensive storage systems. In [4], a supervision
control system is presented for smart charging of an EV fleet in a PVCS-based research
building. The proposed control strategy is based on a real-time operation to satisfy EV users
using PV forecasting and EV charging historical records over four years to predict the EV
power profiles. A user-friendly smart charging method, which includes interactions with EV
users via an interface, has been developed in [5], where the EV user is a key player in the
process of choosing the best scenario among uncoordinated charging, smart charging, and
bidirectional smart charging control in a PVCS. The proposed methodology is based on real-
time rule-based control and a predictive linear optimization control. The results showed that
bidirectional charging control had the best cost reduction, while uncoordinated charging control
costs the most. In [6], mixed-integer programming was investigated to minimize the cost of
energy traded to a PVCS, where the intermittency of PV power can be compensated by EVs
which can also discharge energy to the PVCS, where it does not integrate stationary storage.
The EVs are classed in three categories according to their charging behaviour, and the results
showed that an increase of green EVs, the only category of EVs for which the users can allow
discharging of energy into the charging station, could reduce the total cost of the PVCS. In [7],

9 This chapter is based on the following publication:

S. Cheikh-Mohamad, B. Celik, M. Sechilariu, and F. Locment, ‘PV-Powered Charging Station with Energy Cost Optimization via
V2G Services’, Applied Sciences, vol. 13, no. 9, 2023, http://doi.org/10.3390/app13095627.

© This work has been achieved within the framework of the EE4.0 project (Energie Electrique 4.0). EE4.0 is co-financed by the
French State and the French Region of Hauts-de-France. This research was also funded by ADEME France, project T-IPV grant
number # 2308D0002.
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mixed-integer linear programming (MILP) has been applied to optimize the sizing of a PVCS
components (PV, stationary storage, and transformer) in order to minimize the investment cost
and the total cost considering the uncertainties of PV and EV charging power profiles. The
simulation results, with a 1 hour step time, showed that EV charging stations powered by PV
are more cost-effective than EV charging stations powered by the grid.

However, large-scale EV charging will pose difficulties from a power point of view for grid
operators [8]. Therefore, charging of EVs should be controlled intelligently in order to reduce
the negative impact on the connected public grid [9]. Additionally, EVs remain in an idle state
for a long time. As a result, they can serve as energy storage systems and assist the grid by
providing energy when they are plugged in. In this way, EVs can be charged during off-peak
periods and discharged during peak periods to support the public grid and/or a microgrid. This
approach enables EVs to be utilized as a flexible load, with their charging and discharging
being controlled. Therefore, vehicle-to-grid (V2G) services have emerged as a promising
technology in the field of smart grids [10], where they can improve frequency [11] and voltage
regulations while providing benefits to the EV users [12], and this depends on the number of
available EVs [13,14]. Additionally, such services can enhance power quality and promote the
integration of renewable energy with developed smart control algorithms [15,16,17]. In [18],
the benefits are highlighted for V2G service participants, as these services can decrease the
total ownership cost of EVs. For the grid operator, V2G is seen as a power source that is able
to mitigate fluctuations caused by renewable energy sources and provide ancillary services.
As for EV owners, participating in V2G services should have financial incentives without limiting
their travel needs.

Moreover, V2G optimization plays a crucial role in maximizing the benefits. In [19], the authors
found that total cost of EV ownership could be reduced by implementing V2G service in the
Flanders region of Belgium. This service helped to smooth out electricity demand by filling in
valleys and reducing power peaks, ultimately leading to improved grid stability. A charging and
discharging strategy for EVs proving the effectiveness of their V2G operation in different cities
in China with different trip patterns was developed in [20]. Their aim was to minimize the cost
of operation of the distribution grid considering grid congestion and voltage constraints. These
factors were particularly important, given the variation in the distribution of EVs across areas
of operations. The potential locations for EV charging and their participation in V2G service
have been predicted in [21] using automated machine learning, based on historical data
collected over 42 weeks. The authors of [22] have demonstrated that the participation of EVs
in V2G services, when they are idle at charging stations, can reduce the demand for charging
EVs. In [23], an improved harmony particle swarm optimization problem was investigated in a
bi-level model (low level: EV cluster scheduling, upper level: planning) to determine the optimal
allocation of distributed generation and charging stations within a V2G service. The results
indicated that the optimized model could satisfy the charging demand of EV users, improve
the voltage quality, mitigate load fluctuations, encourage the use of renewable energy, and
improve the global performance of the planning scheme. An optimization framework has been
developed in [24] to reduce greenhouse gases and intensive electricity imports in the
Switzerland power system with controlled charging/discharging of EVs. To jointly install EV
charging stations and distributed energy resources in a distribution system in China, an
optimization model has been presented in [25], where V2G service is considered with
minimized annual costs (considering also social aspects). An optimization problem has been
modelled in [26] as a nonlinear stochastic programming problem with uncertainty of PV energy.
The EVs can operate in V2G mode, where this allows EVs to charge during off-peak hours and
discharge during peak hours to reduce energy costs. The proposed problem can optimize the
operation of EVs and minimize the cycles of their batteries to reduce battery degradation
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speed. A novel control system has been presented in [27] to underpin V2G service by
deploying a fleet of EVs, which allows a V2G aggregator to provide voltage and frequency
services while reducing the charging cost with the minimization of battery-level degradation. A
case study of an EV charging station based on a university campus in Jordan has been
presented in [28], which investigates the feasibility of a V2G service to minimize the global
consumption of energy drawn from the public grid. A computational model of an EV with battery
degradation has been studied in [29] to supply power to the grid while gaining profit for the EV
owner by alleviating the load on the main grid. The results show that the potential benefits from
V2G are greater than the cost of battery degradation.

On the other hand, research studies have investigated the optimization of V2G service in a
PVCS. In [30], a dynamic searching peak-and-valley algorithm was proposed to determine the
optimal charging and discharging start time of EVs based on their initial state-of-charge (S0C),
arrival time, charging mode, departure time, and the tariffs in peak hours. The aim of this
optimization was to reduce the burden on the public grid and lower its energy cost. A control
scheme using a grid-connected inverter was developed in [31] to improve the voltage and
frequency stability of a PVCS with V2G operation. This inverter can identify unusual faults of
the microgrid and functions in islanding mode. The authors in [32], have modelled a PVCS to
provide ancillary services where EV users can receive rewards for their V2G participation. The
results proved that EVs participating in V2G service could provide high availability of service.
Furthermore, in [33], an energy management strategy has been examined for the real-time
control of multi-source EV charging to lower the operating cost, taking into consideration
battery degradation of stationary storage and EVs for their V2G participation. In [34], a PVCS
was designed with V2G service to lower the stress on the public grid and to enhance its stability
during peak hours. The authors also discussed possible financial incentives that can motivate
EV users to participate in the demand response. Additionally, an energy management and
control system has been introduced in [35] for an EV charging station with V2G integration.
This charging station featured a PV system, wind turbine, and fuel cell with grid connection. A
MILP model has been proposed in [36] for a parking lot of EVs powered with a microgrid, based
on PV sources, wind turbines, hydrogen energy, and a stationary storage system to minimize
the total sustainability cost, as well as economic and environmental costs. The EVs can
operate in V2G mode to participate in demand response, thus encouraging EV users to charge
in off-peak periods instead of on-peak periods. In [37], a day-ahead operation planning method
that incorporates EVs with V2G service in a microgrid was investigated to minimize the daily
operation costs. A multi-objective optimization model has been proposed in [38] for a microgrid
integrating EVs with V2G service. Their objectives were maximizing the use of renewable
energy, maximizing the benefits for EV users, and minimizing grid load fluctuation. A heuristic
optimization problem has been studied in [39] to optimize the sizing of a hybrid PV sources,
battery, and diesel generator for an EV parking lot with V2G service, where EVs are considered
as a flexible load. A two-stage smart charging algorithm (first stage: optimization problem,
second stage: real-time control) has been proposed in [40] for buildings integrating EVs, PV
sources, a storage system, and a heat pump. The optimization problem is formulated as a non-
linear programming model to optimize the operation of EVs. The results show the benefits of
V2G service as primary frequency regulation reserve while participants achieve energy cost
reductions; however, the degradation of Lithium — lon (Li-lon) batteries is non-negligible. The
authors in [41] have proposed an effective strategy using adjustable robust optimization to
enhance the operation stability and economic cost of a microgrid by enabling V2G service
during peak periods and charging for valley filling at off-peak periods to minimize the cost of
operation under various constraints.
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The references cited earlier have highlighted the role of V2G in serving as a spinning reserve
source and power regulation to lower the impact of the peak load on the grid and its associated
services. Yet, their optimization problems are mostly based on day-ahead prediction of EV
profiles modelled with a probability distribution function, whereas the proposed optimization
algorithm in this study is actualized at every arrival of a new EV, considering the impact of the
uncertainties in real-time simulation. This study is an extension of [42], where V2G is realized
with a rule-based control scheme, whereas in this extended version, the focus is on the energy
cost optimization problem with V2G implementation in the PVCS. In this study, a PVCS with
five chargers that can support three charging modes, slow, average, and fast charging, is
presented. The PVCS combines PV sources, a stationary storage system, a public grid
connection, and EVs as a flexible load that can operate in V2G mode. The human—machine
interface (HMI) allows the EV users to interact with the PVCS and choose their preferences,
such as charging mode, desired state of charge SOC at departure, and willingness to participate
in V2G service. Additionally, EV users arrive arbitrarily at the PVCS, and their arrivals are
unpredictable. In [43], the authors presented a control mechanism aimed at minimizing the
discomfort of EV users for a charging station equipped with PV sources and connected to a
public grid, but without a stationary storage system. However, their study differs from ours in
several ways. Firstly, only one charging mode—namely, the slow mode—is allowed, whereas
three different charging modes are offered in the present work. Secondly, their focus is on
maximizing social welfare and minimizing the discomfort of EV users, while the objective in
this study is to minimize the total energy cost of the PVCS, with optimization being updated for
each EV arrival. Furthermore, the energy injected into the grid from EVs and the energy
distribution for each EV charging from each power source are being analyzed to provide a
more comprehensive understanding of the system’s energy dynamics. To sum up, the main
contributions of this study are:

e Proposing an energy cost optimization problem in a PVCS with V2G service, taking
into consideration the uncertainty of the arrival time of EVs in a real-time simulation;

e Actualizing the optimization problem formulated via MILP at every arrival of a new
EV; the arrival of EVs is not modelled based on day-ahead prediction; instead it is
randomly generated as unpredicted events in MATLAB;

e Assessing the energy consumption of every EV from each power source and the
energy participation among the power sources (PV, energy storage, and grid).

The study is organized as follows: Section 3.1.2 introduces the PVCS with V2G energy cost
optimization. 3.1.3 develops the energy cost optimization problem. Section 3.1.4 describes the
different simulation cases with V2G service. Section 3.1.5 analyses the energy cost results.
Section 3.1.6 concludes the study.

3.1.2 PV-Powered Charging Station with V2G Service

The PVCS infrastructure consists of PV modules, a stationary storage system, and a
connection with the public grid [42], as illustrated in Figure 3.1-1.
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Figure 3.1-1 Scheme of PV-powered charging station with V2G service.

In Figure 3.1-1, ppy_uppr is the PV power operating in maximum-power point-tracking (MPPT)
mode, ppy is the PV power after shedding (if it is necessary), p;_; is the power injection into
the public grid, p;_s is the power supply from the public grid, ps_ is the charging power of the
stationary storageps_p is the discharging power of the stationary storage, ppycs—p is the total
demand power of EVs, and ppycs is the total charging power of EVs after shedding (if it is
necessary). The PVCS is designed such that the public grid can provide power to charge EVs
and also absorb power in case of excess energy from PV sources or discharging EVs. Each
component of the PVCS is connected to the DC bus using dedicated converters. The EVs’
batteries are considered as controllable loads because they can be charged or discharged at
variable or constant power. To ensure a consistent power supply and reduce the difference
between power production and load, the public grid connection is formed through a
bidirectional AC/DC converter. The stationary storage is charged solely by PV sources and
can be discharged to provide power for EVs’ load.

3.1.2.1 PV-Powered Charging Station with V2G Service without Energy Cost Optimization

The PVCS can operate without energy cost optimization based on the storage priority algorithm
shown in Figure 3.1-2. In this case, the EVs are charged using PV sources first, followed by
the stationary storage system, and finally by the public grid. The surplus PV production is used
to charge the stationary storage system. However, if the storage system has reached its
capacity or charging power limit and there is still unused excess PV power, the remaining
power is injected into the public grid. Participating in a V2G service allows EV users to
discharge their EVs for up to 15 min or until the battery is fully discharged during peak periods.
Following the V2G operation, the EVs will then be charged to achieve the desired SOC at
departure. The charging can be performed using any available power, regardless of the initial
charging mode, as long as the charging terminal can support variable power up to 50 kW.
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Figure 3.1-2 PV-powered charging station energy management via V2G service without
optimization.

3.1.2.2 PV-Powered Charging Station with V2G Service with Energy Cost Optimization

On the other hand, the PVCS can operate with energy cost optimization. In this case, Figure
3.1-3 describes the supervisory control system for the PVCS [44]. The supervisory control
system of the PVCS is composed of four layers: prediction, energy cost optimization, operation,
and HMI. The control block has been designed and implemented to interact with EV users and
maintain power balance at the DC bus through the energy cost optimization and operation
layers.

Operation layer

Energy cost optimization layer @
Public grid constraints
Physical constraints

PV prediction
Consumption profile

Prediction layer Power distribution coefficient

PV prediction

Weather forecasts

Public grid constraints

Physical constraints

Power references

Human-machine interface
Charging mode, desired SOC at
departure, V2G acceptance

Figure 3.1-3 Supervisory control system for the PVCS [44].

The prediction layer utilizes weather forecasts. From the interaction with the HMI, the user of
an EV v selects their desired SOC at departure charging mode, participates in the V2G service,
and obtains the SOC of their EV at arrival in real-time. The energy cost optimization relies on
the production prediction, which depends on the hourly solar irradiation predictions and
consumption profile communicated from the HMI. Moreover, the power limits of the connected
public grid, energy pricing, and energy system limits are communicated. The MILP formulation
is used to reduce the total energy cost of the PVCS. This supervisory control system has the
advantage of interacting with EV users for optimization; yet, if the choices of the EV users are
not practical, they must be adjusted in order to enable optimization [45]. For instance, if an EV
user arrives at the charging station and requests fast charging, but the available power cannot
support it, the HMI will communicate with the user to suggest charging in average or slow
mode, waiting for available power, or leaving the charging station altogether. Similarly, if the
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EV user mistakenly inputs an invalid SOC at departure (e.g., 180%), the HMI will alert the user
to enter a valid SOC interval below 100%. Whenever a new EV arrives, the optimization process
is updated with the new inputs from the HMI and physical constraints. Therefore, the process
is repeated each time a new EV arrives.

Dealing with the unpredicted arrival of EVs is the main challenge. The power references for
the public grid, stationary storage, and EVs are sent to the operation layer based on the
optimization results. The operation layer is responsible for maintaining the power balance while
respecting the system’s constraints and physical limitations [46]; furthermore, it sets the PV
power limitation and applies EV shedding if needed.

3.1.2.2.1 Prediction Layer

In the prediction layer, hourly solar irradiation predictions are provided by Météo France to
calculate the PV power prediction. The PV power prediction is based on solar irradiation (g)
and the ambient temperature (T,,,,) from forecasted data [47]. Therefore, the PV power
prediction ppy_yppr-prea iS Calculated in MPPT mode for each time instant ¢; [48] as in
Equations (3.1-1) and (3.1-2), and it is introduced into the energy cost optimization layer:

g(ty)

Ppv-mpPT—preda = Ppy_src X 2000 % [1+y X (Tpy(t;) —25)] X Npy (3.1-1)

witht; = tg, to + At, to + 2At, -+, te
Toy (£1) = Tamp (t:) + 9(t1) X (NOCT = Tair—rest) /Geest (3.1-2)

where Ppy_src is the PV power in standard test conditions (STC), y is the power coefficient of
temperature (-0.29%/°C), Npy is the number of PV panels, Tpy is the PV cell temperature, and
to, At, and ty are the initial time instant, time interval between two samples, and time instant
at the end of operation, respectively. NOCT is the nominal operating cell temperature (41°C),
Gest i the fixed solar irradiation (800 W/m?), and T,;,_tes: is the fixed air temperature (20°C).

3.1.2.2.2 Human—Machine Interface

This layer interacts with the EV users, allowing them to choose their preferred charging mode
M, among slow, average, and fast. It should be noted that all EVs have the same energy
capacity and can handle fast charging. The HMI obtains the SOC of the EVs at their arrivals
SOCgy_qrr, and assists the users in selecting their desired SOC at departure SOCgy_qe5 , as
well as their participation in V2G service V2Ggy, in real-time. Therefore, the estimated charging
time t.s;—cn,,» Which indicates the time required to reach the desired SOC, is determined in

Equation (3.1-3):
test—ch, = (SOCEV—dep,, - SOCEV—arr,,) X d (3.1-3)

PEV—maxv

where E is the EV battery capacity, and Pgy_p,qy, is the maximum power of EV charging based
on the charging mode selected by the user. The HMI for the PVCS is explained thoroughly in
[49], and once the user preferences are set in the HMI, these data are communicated
simultaneously to the operation layer and to the energy cost optimization layer to actualize the
optimization with these data.

3.1.2.2.3 Energy Cost Optimization

This layer interacts with the prediction layer and the HMI to carry out the optimization to
minimize the total energy cost. This layer, the power references for the stationary storage, the
public grid, and the EVs, which are the decision variables, are sent to the operational layer.
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The optimization has several benefits, such as minimizing the energy cost, determining the
optimal contribution of the stationary storage or the public grid, and avoiding EV and PV
shedding. The energy pricing is considered for on-peak and off-periods with fixed tariffs, and
the limits for public grid power injection and supply are defined with the public grid operators.
Moreover, the physical limitations of the stationary storage should be respected to avoid its
damage. The energy cost optimization problem is detailed in Section 3.1.3.

3.1.2.2.4 Operation Layer

From the energy optimization layer, the optimal power flow for the sources and the EVs
considering ppy —mppr-prea @Nd ppycs is found. The optimized powers for the stationary storage
and the public grid are obtained through the optimization layer. However, these optimized
powers are not sent directly into the operation layer. Instead, the power distribution coefficient
kp is identified and introduced into the operation layer to account for uncertainties in the
forecasted data. The power distribution coefficient k;, determines the power share between
the public grid and the stationary storage. Thus, if PV power is insufficient for EV charging,
either the public grid or the stationary storage or both can continue supplying power to charge
the EVs based on the value of kj, (see Section 3.1.5). The upside of kj, is coupling easily the
energy management with the operation layer while respecting all constraints [47].

The operation layer must ensure robustness and be able to withstand uncertainties in the
forecast data. After that, this layer defines the power references and applies PV or EV shedding
when needed. To maintain the DC bus at the reference voltage V.., the actual operating

conditions are used to determine the power reference P,..r using (3.1-4) and (3.1-5) :
Pref(ti) = ppy (t) — Ppycs—p(ti) — Cp X (Vref - vDC—bus) (3.1-4)
pref(ti) = pG—ref(ti) + pS—ref(ti) (3.1-5)

where Cp is the proportional controller gain, and vp-_p.s is the actual voltage of the DC bus.
The power reference for the public grid p;_,.r and the stationary storage ps_,.r can be

obtained by (3.1-6), and the power distribution coefficient k, is given by (3.1-7):
Ps—ref(ti) = kp(t;) X Dres(t) (3.1-6)

3 — ps—c(ti)+ps—p(t:) : (3.1-7)
Fep () Ps—c(t)+ps—p(ty) + pe—1(t)+pg—s(ti) withkp € [0,1]

3.1.3 Energy Cost Optimization with V2G Service

The principal objective of the formulated optimization problem is to minimize the total energy
cost while satisfying various constraints [47]. The constraints and objective function are
explained in detail in the following subsections.

3.1.3.1 PV Sources

PV system can operate in two modes: MPPT or limited-power mode. The latter mode is used
in case of excessive surplus PV production which exceeds the total EV load, the allowed
stationary storage charging power, and the public grid injection power. In the MPPT mode,
there is no need to shed any PV power, and thus PV shedding ppy_s is zero. However, in the
power-limitation mode, ppy_s becomes positive, indicating the amount of PV power that needs
to be shed to ensure that the total power injected into the grid does not exceed the limits.
Accordingly, ppy is calculated [47] as given by (3.1-8) with the constraint of ppy_gin (3.1-9)
and (3.1-10):
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pev (&) = Ppv-mppr (&) — Ppyv—s(t) (3.1-8)
ppy(t) >0 (3.1-9)
0 < ppy—s(ti) < ppv—mppr(ti) (3.1-10)

3.1.3.2 Stationary Storage

In order to extend the lifetime of the Li-lon batteries as a stationary storage method and protect
them from overcharging or over-discharging, the maximum and minimum SOC of the storage,
SOCs_max, SOCs_minas well as the maximum storage power Ps_,,, ., must be respected as given
by (3.1-11) and (3.1-12) [47]-[50]. The SOC of the storage socs can be simplified as in [51],
neglecting the effects of self-discharge and temperature, and is given by (3.1-13) below:

— Ps_max < Ds(ti) < Ps_pmax Where ps(t;) = ps_c(t;) — ps—p(t;) (3.1-11)
SOCs_min < socs(t;) < SOCs_max (3.1-12)
socg(t;) = SOC(t,) + m fttops(ti) dt (3.1-13)

where Eg,; and pg are the energy capacity (kWh) and power of the stationary storage,
respectively.

3.1.3.3 Grid Connection

The maximum limits for the grid supply and injection P;_s_max and Pe_j—max» SEt by the public
grid, should be respected [47], as given by (3.1-14), where p,; is the public grid power:

_PG—S—max < Pe (ti) < PG—I—max' where Pe (ti) = pG—I(ti) - pG—S(ti) (3-1'14)

3.1.3.4 Electric Vehicles

When the stationary storage and public grid have reached their limits, it may not be possible
to fully supply EV batteries, which represent the entire load of the PVCS. In such cases, the
charging of EVs can be shed [47]. Moreover, it should be noted that ppy s can be negative
when an EV is in the process of discharging into the grid during V2G service. In situations
where there is enough PV power available, there is no need to shed any PV production.
Similarly, when there is sufficient charging capacity available, there is no need to shed any EV
charging power. Moreover, the stationary storage could be charged, and/or the public grid
could absorb power when PV production is higher than load demand. On the other hand, when
the load demand exceeds the PV production, the stationary storage can be discharged, and/or
the public grid can supply power. Therefore, the constraints given by (3.1-15) and (3.1-16)
must be respected.

. pe(t) =0
if ppv-mppr(ti) = Ppycs—p(t;) then {Ps(ti) >0 (3.1-195)
ppy—s(t;)) =0
if Ppv-mppr(t) < Dpyvcs—p(t) then § pe(t) <0 (3.1-16)
ps(t) <0

The PVCS interface allows EV users to make choices regarding their charging mode and other
preferences. The constraints given in (3.1-17) — (3.1-34) reflect the interaction between EV
users and the supervisory control system.
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3.1.3.4.1 V2G Mode

The following constraints given below in (3.1-17) — (3.1-23) are included in the optimization
problem for the EV users who accept providing V2G services.

dischopiy X % < Y V2Gpin, (t) < dischygy X % Vt; € [tarr, taep,| (3.1-17)
V2Gsy, (t;) = V2Gyin, (t;) — V2Gpin, (ti—1) Vt; € [tarr, taep,| (3.1-18)
G2Vsw, (t)) = G2Vyin, (t;) — G2Vpy, (ti-1) Vt; € [tarr, taep,| (3.1-19)
G2Vpin,(t:) + V2Gpim, () <1 Vt; € [tarr, taep, | (3.1-20)
—Pev_fast-max X V2Gpin,(t;) < pgy, (&) Vt; € [tarr, taep, | (3.1-21)
Pev, (&) < Pev—sast-max X G2Vpin, (t;) Vt; € [tarr, taep, | (3.1-22)
Pev, (6) = Pry, (b)) < Limit X 22X G2V, (£7) Vt; € [tarr, taep, ] (3.1-23)

where disch,,;,(5min) and disch,,,, (15min) are the minimum and maximum duration for the
EV’s discharge, while t,,, and t4., are the time of arrival and departure of vehicle v,
respectively. G2V,;,, and V2G,;, are binary decision variables for charging/discharging times;
G2Vsy, and V2Ggy, are binary decision variables for the switching times between charging/stop
and discharging/stop; pgy, is the EV charging power of vehicle v; Pgy_fast—max is the fast
charging power at maximum; and Limit is the ramp-up charging power (15 kW/min). Constraint
(3.1-17) determines the discharging period of the EV, while Constraints (3.1-18) and (3.1-19)
determine that the discharging and charging times of the EV, respectively, should be
successive. Constraint (3.1-20) specifies that the EV can either charge, discharge, or be idle
at any given time. Constraints (3.1-21) and (3.1-22) refer to the discharging and charging
power of the EV, respectively. Lastly, Constraint (3.1-23) helps to reduce the charging
fluctuations of the EV.

3.1.3.4.2 EV Charging Mode

If the EV user does not want to participate in the V2G service, Constraints (3.1-24) — (3.1-27)
are used for charging the EV battery, where the charging power is determined by the charging
mode selected by the EV user as follows:

if My, = 1then 0 < pgy, (¢;) < Pey—fast-max Vt; € [tarr,) taep,] (3.1-24)
Withv =1,2,---,N,

if My =2 then 0 < pgy, (t:) < Psv—aver-max Vt; € [tarn, taep,| (3.1-25)

if M, = 3then 0 < pgy, (t;) < Pgy—siow—max Vt; € [tarr, taep, | (3.1-26)

Pev, (t) = 0 Vt; € [tarry taep, | (3.1-27)

where N, is the total number of EVS, Pgy_ver—max 1S the average charging power at maximum,
and Pgy_siow—max 1S the slow charging power at maximum. The total EV charging power in
(3.1-28) and the SOC calculation with its constraints in (3.1-29) — (3.1-34) are given:

prves (6) = X” Pry, (t) Vt; € [tarr, taep, | (3.1-28)
SOCgy—min < socgy,(t) < SOCpy—max Vt; € [tarrv' tdepy] (3.1-29)
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socpy,(t;) = 0 Vt; € [tarr, taep, | (3.1-30)
socgy, (t;) = SOCgy,,, Vit = tarr, (3.1-31)
S0Cgy,,, (t:) = SOCgy_min Vi = tarr, (3.1-32)
50¢g,(t) = S0Cpy,,,,(t) + o5 Jooe? Py, (t:) dt (3.1-33)
socgy, (t;) = S0Cgy . Vit = taep, (3.1-34)

where socgy, is the SOC of vehicle v, and SOCgy_min @nd SOCpy_mqx are the minimum and
maximum battery SOC of vehicle v, respectively. The dynamic SOC evolution socgy, is given by
(3.1-33). Similar to the stationary storage, Constraint (3.1-29) determines the SOC limit.
Additionally, Constraint (3.1-30) refers to the absence of an EV, while Constraint (3.1-31)
assigns the SOC of an EV at its arrival time, requiring it to be greater than the limit specified in
Constraint (3.1-32). Finally, Constraint (3.1-34) refers to the SOC of an EV at its departure time,
which should be lower than or equal to the desired SOC of the EV at departure.

3.1.3.5 Power Balancing

All the production and consumption should be equal on the DC bus; therefore, an equation for
power balancing should be included in the formulation. The power balancing equation [47],
where all power signs are assigned positives, is be given by (3.1-35):

ppy (t1) + ps_p(t;) + Pe-s(ti) = Ppves(ti) + Ps—c (&) + Do () (3.1-35)

3.1.3.6 Objective Function

The total energy cost C;,:4; takes into consideration the cost of the power supplied from the
public grid, the profit from the power injected into the public grid, the cost of the stationary
storage, the penalty cost in case the EV has not reached the desired SOC at departure, and
the cost associated with shedding power from the PV sources. To prevent excessive switching
during charging or discharging, a switching penalty Cs, is introduced to ensure that the action
is completed in the fewest cycles possible. Therefore, the objective function minimizes Cptai,
as given by Equations (3.1-36) — (3.1-41):

min Ceorqr = Cg + Cs + Cpys + Cpv_penaity + Csw (3.1-36)
Co = Xip [eo(t) X At X (=po—(t) + pg-s(t))] (3.1-37)

o Coyyfort € normal hours
&7 | coyyfort € peak hours

(s = Zif:to[cs(ti) X At X (ps—c(t) + ps—p(t))] (3.1-38)
Crvs = Doy [epys(E) X AL X ppys(t)] (3.1-39)
Cov-penatty = 2" [cav, X (SOCsy—aes, = SOCey—aep,) X E (3.1-40)
Cow = Ty T [csw (8 x (V2Gsw, (8 + 62V, (8] (3.1-41)

where Cg, Cs, Cpys, Cgy—penaity, @and Csy, are the public grid, stationary storage, PV shedding,
EV penalty, and switching penalty costs, respectively; and c;, cs, Ccpys, CEv,» and cgy, are the

public grid, stationary storage, PV shedding, EV penalty, and switching penalty tariffs,
respectively. The energy cost optimization problem is formulated to minimize the objective
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function in (3.1-36) with respect to Constraints (3.1-8) — (3.1-35) , determining the decision
variables: pg, vs, Prv—s, Pev, V2Gpin,, G2Vhin,, V2Gsy,,and G2Vgy, .

3.1.4 Simulation Results for PVCS with V2G Service

Several simulation cases are presented to demonstrate the effectiveness of the energy cost
optimization method. Finally, the cases with optimization, denoted as “Sim w/ opti”, are
compared with the cases without optimization, denoted as “Sim w/o opti”. The “Sim w/o opti”
is operated under a simple control scheme based on a storage priority, where k, is set to one
in this operation mode [52]. The optimization problem is solved by CPLEX [53], where CPLEX
is a high-performance mathematical programming solver for linear programming, mixed-
integer programming, quadratic programming, and convex optimization, developed by IBM.
The optimization is performed with 1min intervals, while the simulation is performed with 1s
intervals. The data for the irradiance and ambient temperature were recorded at 10s intervals
using proper instruments of measurement, and through interpolation, the data are reduced to
1s intervals.

In this section, two case studies are presented for a PVCS that includes five chargers, with
EVs equipped with 50 kWh Li-lon batteries. The PVCS has 84 PV panels with 28.9 kWp, and
the stationary storage has a capacity of 130 Ah, with 288 V providing 37.44 kWh. However,
there is no defined power injection limit for the public grid. Table 3.1-1 lists the parameters that
are used in the following simulation cases for the PVCS with V2G service.

Table 3.1-1 Parameter values used in the simulations for the V2G service.

Parameter Value Parameter Value Parameter Value
PG—1—max - SOCs_pin 20 % CG-NH 0.1 €/kWh
Po—_s—iiis S50kW  SOCs_ o 80 % CG-PH 0.7 €/kWh
Ps_max TkW  SOCgy_min 20 % cs 0.01 €/kWh
Pev_fast—max SOKW  SOCgy_jax 100 % cpys 1.2 €/kWh
PEV—aver—max 22 kW SOCSO 50 % CEV,, 2.5 €/kWh
Peyv_siow—max TKW  vg 288V % csw 0.05 €

E 50 kWh Cgy 130 Ah % ppvyppr 28.9 kWp

Table 3.1-2 presents the EV users’ data and preferences. SOCgy_grr,, 5 tarr,, My, and V2G
participation are generated randomly. SOCgy_ 4y, and SOCgy 4.5, are generated in the intervals
[20%,50%] and [70%,100%], respectively. It is assumed that EV battery capacity is capable of
handling fast charging.

Table 3.1-2 Data and preferences of EV users [43].

EVs SOCgy_ar SOCgy_ges tarr tost—ch Mode V2G
EV1 31% 85 % 09:20 03 h 52 min Slow Yes
EV2 35% 75 % 10:00 00 h 24 min Fast No
EV3 50 % 80 % 12:05 02 h 08 min Slow Yes
EV4 25 % 78 % 13:45 01 h 13 min Average No
EV5 29 % 72 % 14:25 03 h 05 min Slow No

Additionally, two scenarios in each study case are taken into consideration:
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e Scenario a: during peak periods, EVs discharge at a constant power and then

recharge with the same constant charging power as set by the user until departure
time;

e Scenario b: during peak periods, EVs discharge at a maximum power of 50 kW and
then recharge again with a variable charging power, irrespective of the charging

mode selected by the user, to achieve the desired SOC at departure after V2G
service.

3.1.4.1 Case 1: Sunny Day

For case 1, a day with high irradiance was considered, specifically, 29 June 2019 in
Compiegne. The real and predicted PV power are shown in Figure 3.1-4, where it can be
observed that the predicted PV power is slightly higher than the real PV power and follows the
same trend. As a result, this uncertainty has an impact on the optimization results, which will
potentially lead to supplying energy from the public grid instead of discharging energy from the
stationary storage. In this case, two scenarios are conducted, which involve constant and
variable charging/discharging powers.
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Figure 3.1-4 Real PV power ppy_yppr and predicted PV power ppy_yppr—prea — 29 June
2019.
3.1.4.1.1 Scenario a: Constant Power

Figure 3.1-5 and Figure 3.1-6 show the power and SOC of the EVs with V2G service at constant
power with the “Sim w/o opti” and “Sim w/ opti” algorithms, respectively.
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Figure 3.1-5 Power (a) and SOC of the EVs (b) — scenario a in “Sim w/o opti”.
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Figure 3.1-5 (a) shows that EV1 as well EV3 are discharged at peak hours with 7 kW each for
15 min; they are then charged after providing V2G service directly until their departure time
with the same constant power. As a result, EV1 and EV3 failed to achieve their desired SOC
values at departure. Specifically, EV1 only reached 71% instead of the desired 85%, and EV3
reached 68.33% instead of 80%, as shown in Figure 3.1-5 (b). The dashed points represent
the SOCs of the EVs that should be reached with respect to user preferences. On the other
hand, Figure 3.1-6 (a) shows that all the EVs are charging according to user preferences, and
the desired SOC at departure is reached even when EV users opt to participate in V2G service,
as shown in Figure 3.1-6 (b). However, discharging the EVs is not possible because it would
prevent the desired SOC from being achieved, and hence meeting the requirements of EV
users is given priority over discharging energy via V2G into the grid.

3.1.4.1.2 Scenario b: Variable Power

The power flow of the PVCS with V2G service at variable power with the “Sim w/o opti” and
“Sim w/ opti” algorithms is presented in Figure 3.1-7, where the predicted PV power is used
only to run the optimization, and the real PV power is used in both simulation scenarios.
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Figure 3.1-7 Power flow with V2G service — scenario b (a) in “Sim w/o opti” and (b) in
“Sim w/ opti”.

Figure 3.1-7 shows that EV1 as well EV3 are discharged at peak periods for 15 min at 50 kW
each, and then they are recharged with the appropriate charging power after V2G service to
meet the needs of the users while considering the duration of the remaining parking time. The
PVCS operates in storage-priority mode, meaning that any excess PV power is initially used
to charge the stationary storage. Once the stationary storage is either full or its maximum
charging power is reached, which occurs around 11:00 A.M till 11:30 A.M and from 03:00 P.M
until 06:00 P.M, any additional PV power is then injected into the public grid. Furthermore, the
public grid provides power when EV2 charges in fast mode and during peak periods when EV1
and EV3 recharge after V2G. Thus, charging EVs during peak periods will increase the energy
cost. Sharp variations in power levels might lead to stability issues. To prevent this, Constraint
(3.1-23) limits steep power variations, which can be seen in Figure 3.1-7 (a)’'s zoom-in during
the peak hour of 12:00 P.M to 01:00 P.M. On the other hand, in Figure 3.1-7 (b), EV1 and EV3
are discharged simultaneously during peak periods (serving a total of 100 kW power to the
grid), and then each EV recharges after V2G with the optimized power to meet user
preferences. EV1 and EV3 are primarily charged by PV power. However, due to uncertainty
in the PV power prediction, the public grid may supply power to the EVs between 10:25 A.M
and 12:00 P.M, although it is not very significant. The injection of power into the public grid is
determined by the optimization result to maximize profits in the event of excess PV power,
which occurs before 10:00 A.M during V2G service and from 03:00 P.M until 06:00 P.M. The
power and SOC of the EVs in “Sim w/o opti” and “Sim w/ opti” are shown in Figure 3.1-8 and
Figure 3.1-9, respectively.
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Figure 3.1-8 Power (a) and SOC of the EVs (b) — scenario b in “Sim w/o opti”.
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Figure 3.1-9 Power (a) and SOC of the EVs (b) — scenario b in “Sim w/ opti”.

Figure 3.1-8 (a) shows that EV1 begins discharging 50 kW and then recharges with 50 kW to
reach the desired SOC at the time of departure. The EVs have enough remaining charging time
after V2G to recharge with 22 kW. In Figure 3.1-9 (b), the optimized charging/discharging
profiles of EV1 and EV3 allow them to participate in V2G service, reach the desired SOC at
departure, and satisfy the users with minimization of the cost. When EV2 arrives, the
optimization is actualized again, and as a result, EV1’s charging power is dropped to reduce
the total power demand because EV2 charges in fast mode. After EV2 leaves, EV1 starts
recharging again, which helps to discharge power during peak periods. After providing V2G
service, EV1 resumes charging its battery to achieve the desired SOC at the time of departure.
In the same way, the optimization is actualized every time a new EV comes to the PVCS, and
thus the optimization procedure is realized five times during the day in this case. The power
provided to recharge EV1 and EV3 is synchronized with PV power, even during peak periods.
Consequently, all EVs have achieved their desired SOC values at the time of departure, as
shown in Figure 3.1-8 (b) and Figure 3.1-9 (b).

Scenario a, where the charging/discharging power is constant, is proved to be impractical
because EVs will never achieve their desired SOC at the time of departure. On the other hand,
scenario b proves its feasibility by allowing EVs to recharge with variable power after
participating in V2G service, irrespective of their initially selected charging mode, in order to
satisfy the EV user. Therefore, only the variable charging/discharging scenario is considered
in the following case studies, and the “Sim w/ opti” is compared to the “Sim w/o opti”.
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3.1.4.2 Case 2: Cloudy Day

For case 2, a cloudy day with high irradiation was considered, specifically, 10 May 2019 in
Compiegne. The real and predicted PV powers are shown in Figure 3.1-10, where it can be
observed that the predicted PV power is slightly higher than the real PV power, and the
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fluctuations are hard to predict due to hourly provision of forecasts and their inconsistent
trends. As a result, these uncertainties have an impact on the optimization results that
potentially lead to supplying power from the public grid instead of discharging energy from the
stationary storage. In this case, the power flow of the PVCS with V2G service in “Sim w/o opti”
and “Sim w/ opti” is shown in Figure 3.1-11, where the predicted PV power is used only to run
the optimization, and the real PV power is used in both simulation scenarios.
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Figure 3.1-10 Real PV power ppy_yppr and predicted PV power ppy_yppr_prea — 10 May
2019.
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Figure 3.1-11 Power flow with V2G service — case 2 (a) in “Sim w/o opti” and (b) in
“Sim w/ opti”.

Figure 3.1-11 (a) shows that EV1 and EV3 are discharged at peak periods for 15 min with 50
kW each, and they are then recharged after V2G with the appropriate charging power to meet
the needs of the users. As the PV power is not very significant and is fluctuating, the stationary
storage is discharged to support the charging of EVs. The PVCS operates in storage-priority
mode, meaning any excess PV power is initially used to charge the stationary storage. Once
the stationary storage is either full or its maximum charging power is reached, which occurs at
around 11:30 A.M, any additional PV power is injected into the public grid. However, once the
storage is empty, which occurs around 05:00 P.M, the public grid supplies power to continue
charging the EVs. Furthermore, the public grid supplies power when EV2 charges in fast mode
and during peak periods, when EV1 and EV3 recharge after V2G. Therefore, charging EVs
during peak periods will increase the energy cost. On the other hand, in Figure 3.1-11 (b), EV1
and EV3 are discharged simultaneously during peak periods (serving total 100 kW power to
the grid), and they are then recharged after V2G with optimized power to meet the needs of
the users. The power injected into the public grid is defined by the optimization result to
maximize profits in the event of excess PV power, which occurs before 09:30 A.M, around
11:30 A.M during V2G service, and from 01:15 P.M until 01:45 P.M. Figure 3.1-12 and Figure
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3.1-13 show the power and SOC of the EVs for the “Sim w/o opti” and “Sim w/ opti” algorithms,
respectively.
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Figure 3.1-12 Power (a) and SOC of the EVs (b) — case 2 in “Sim w/o opti”.
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Figure 3.1-13 Power (a) and SOC of the EVs (b) — case 2 in “Sim w/ opti”.

In Figure 3.1-12 (a), similarly to case 1 scenario b under “sim w/o opti”, EV1 and EV3 are
discharged at peak periods for 15 min at 50 kW each, and then they continue charging until
their departure times to meet the needs of the EV users at 50 kW and 22 kW, respectively.
However, in Figure 3.1-13 (a), the charging and discharging profiles of EV1 and EV3 are the
optimized profiles that allow them to participate in V2G service, reach the desired SOC at the
time of departure, and satisfy the users with the lowest cost. PV power is not very significant;
therefore, EV1 keeps charging even when EV2 comes to charge in fast mode. During peak
periods, the charging power of EV1 and EV3 is provided by PV sources. Consequently, all EVs
have achieved their desired SOC at the time of departure, as shown in Figure 3.1-12 (b) and
Figure 3.1-13 (b). Figure 3.1-14 compares the dynamic SOC of the stationary storage for case
1, scenario b, and case 2.
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Figure 3.1-14 SOC of the stationary storage in (a) case 1, scenario b and (b) — case 2.
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For Figure 3.1-14 (a), the dynamic SOC of the stationary storage is shown for case 1, where
the real PV power is high. In “sim w/o opti”, where the storage priority is applied, the storage
is always used for either charging or discharging. The storage becomes full around 11:30 A.M
and 04:30 P.M, when the charging demand of EVs is not significant. In contrast, in sim w/ opti”,
the storage is used only at the moments decided by the optimization algorithm — for example,
during peak hours (02:30 P.M — 03:00 P.M) and when the charging demand of EVs is high,
such as the case where EV2 charges in fast mode simultaneously with EV1.

On the other hand, Figure 3.1-14 (b) shows the dynamic SOC of the stationary storage for case
2 where the real PV is highly fluctuating. In “sim w/o opti”, the storage is always used for either
charging or discharging, but it is never at full capacity and becomes empty around 04:00 P.M.
In contrast, in “sim w/ opti”, the behaviour of the storage is similar to case 1 in “sim w/ opti” and
becomes empty at 03:00 P.M.

3.1.5 Energy Cost Analyses for PV-Powered Charging Station with V2G Service

Table 3.1-3 demonstrates the energy injected into the grid for the two case studies. The energy
is injected into the grid during V2G, where the EVs’ contribution is significantly greater in the
variable charging/discharging power scenario than the constant charging/discharging power
scenario. The contribution of EVs is higher than 65% in the variable charging/discharging
power scenario. Even in “Sim w/ opti”, the energy share from EVs is similar to that in “Sim w/o
opti” and considered significant.

Table 3.1-3 Energy injected into the public grid for the different cases.

Energy Injected into the
Public Grid during V2G Period

Operation Case PV (kWh) EVs (kWh) Total Energy during % EV/Total % PV/Total Energy Injected into the

V2G (kWh) Grid during the Day (kWh)
Case 1 - constant power scenario Sim w/o opti 5.88 291 8.79 33.10% 66.90% 44.03
Sim w/ opti 0 0 0 0 0 58.85
Case 1 - variable power scenario  Sim w/o opti 5.88 20.83 26.71 77.98 % 22.02 % 50.95
Sim w/ opti 5.88 23.33 29.21 79.87% 20.13 % 68.34
Case 2 - variable power scenario  Sim w/o opti 6.21 20.83 27.04 77.04 % 22.96 % 30.52
Sim w/ opti 7.45 25 32.45 77.04% 22.96 % 4091

Furthermore, “Sim w/o opti” and “Sim w/ opti” are compared with an ideal case, which is
considered as a reference: “Opti for real conditions”. In this reference case, it is assumed that
the real PV MPPT power production and the arrival times of all EVs are known, and hence
there will be no uncertainty issues related to forecasting errors. Therefore, the optimization is
executed only one time because the arrival times of EVs are considered known in “Opti for real
conditions”. The total energy costs of “Sim w/ opti” are closer to the ideal case than “Sim w/o
opti” in the two cases, which indicates the effectiveness of the proposed optimization algorithm
during different meteorological conditions.

Table 3.1-4 presents the energy costs for the case studies. Only in case 1 “Sim w/o opti”, with
constant charging/discharging power, is the obtained dissatisfaction cost for EV users positive
due to not having the desired SOC at the departure time. In the variable charging/discharging
power scenario, the total energy cost is negative, which refers to selling energy to the public
grid. Moreover, in “Sim w/ opti” the total energy cost is better due to power injection into the
public grid, bringing more profits. In case 1 “Sim w/ opti”, with constant charging/discharging
power, the total cost is negative, as there is no penalization due to injecting power to the public
grid. However, there is no V2G participation even though the users accept participating to meet
the user requirement (minimum SOC of EV) at departure time.
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Table 3.1-4 Energy costs for the different cases.

‘%

Operation Case Public Grid Cost (c€) Stationary Storage Cost (c€) EV Penalty (c€) Total Cost (¢€)
Case 1 - constant power scenario  Sim w/o opti -1106 32 1750 -1074
(Dissatisfied client - Risk of losing client)
Sim w/ opti -1247 9 0 -1238
Case | - variable power scenario Sim w/o opti -1006 40 0 -966
Sim w/ opti -2942 6 0 -2936
Opti for real conditions -4210 10 0 -4200
Case 2 - variable power scenario Sim w/o opti -571 28 0 -543
Sim w/ opti -1745 11 0 -1734
Opti for real conditions -2710 11 0 -2699

Table 3.1-3 and Table 3.1-4 prove the unfeasibility of the constant charging/discharging
scenario, as the energy injected into the public grid from EVs is not significant because they
charge/discharge with constant power. The total final cost for this scenario is calculated without
including the EV penalty cost, which is only included to optimization for modeling the
dissatisfaction of the EV users. A high EV penalty indicates that EV users will be dissatisfied
due to having low battery energy at departure time, which can cause risks of rejection of
enabling V2G services by EV users or even losing clients in the future. The distribution of
energy for EVs in “sim w/o opti” and “sim w/ opti” is also assessed in Figure 3.1-15 and Figure
3.1-16 for case 1b and 2 respectively.
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Figure 3.1-15 Distribution of energy for EVs in “sim w/o opti” and “sim w/ opti” for

case 1b.

opt

m Grid energy

opt

®u Storage energy ™ PV energy

opt

EViw/oopt EViwith EV2Zw/oopt EV2with EV3w/oopt EV3with EVaw/foopt EVAwith EVSw/oopt

opt

EVS with
opt

Figure 3.1-16 Distribution of energy for EVs in “sim w/o opti” and “sim w/ opti” for

case 2.

In Figure 3.1-15 and Figure 3.1-16, PV sources mainly charge EV1 and EV3. Moreover, in the
“sim w/ opti” scenario, the amount of PV energy used for charging EV1 is significantly higher
than in the “sim w/o opti” scenario, as shown in case 1. Given that EV2 is charging in fast
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mode, the primary source of its charging power is the public grid. On the other hand, because
EV4 is charged in average mode, it depends on PV and stationary storage energy. Similarly,
because EV5 is charged in slow mode, it is mainly charged by PV sources. However, in case
2, EVs require frequent charging from the public grid due to the fluctuation of PV power.

V2G service can improve the energy efficiency of EVs by allowing the EV batteries to be used
as a source of energy for the grid during times of high grid demand (and/or high-tariff, low-
renewable production) and then recharge from the grid during times of low grid demand (and/or
low-tariff, high-renewable production). By providing energy back to the grid, EVs can help
balance the electrical load, which can improve the overall efficiency and reliability of the
distribution grid. As for the EV users, V2G can provide a way to earn revenue by selling energy
stored in their EV batteries back to the grid during peak times. Additionally, the EV batteries
can be charged with clean and low-cost renewable resources (e.g., photovoltaics) and can be
discharged later to the grid at high-grid-consumption moments via V2G; thus, the electricity
grid can use local renewable production more efficiently.

3.1.6 Conclusions

In conclusion, a PVCS with energy cost optimization and V2G service can provide a
sustainable and cost-effective solution for EV charging/discharging, which can help grid
operators by discharging EV batteries via with V2G services, leading to a more efficient
system. The focus of the study is to minimize energy costs, prevent EV penalization and PV
shedding, and consider prediction errors in real-time simulations. Additionally, the research
analyses energy distribution for the system and each EV to gain a better understanding of the
system’s functionality. However, there are still some challenges to be addressed in order to
optimize the energy cost of the charging station. One of the main challenges is the optimal
scheduling of the charging and discharging of the EV batteries to minimize the energy cost and
to maximize the charging of EVs with PV power. Furthermore, the cost of implementing and
maintaining a PVCS and V2G system can be high, and there is a need to establish
standardization and protocols for integration with the existing public grid and communication
networks. In addition, the type of an EV can affect the energy cost in the case of V2G because
each type of EV has a different battery size, charging and discharging power characteristics,
and energy efficiency. Battery EVs have larger batteries with higher power ratings than plug-
in EVs and hybrid EVs, which means they can provide more flexibility for charging/discharging
operations, and eventually they provide more energy to support the electricity grid. Although
V2G operation is possible for FCEVs, the consumption/production of hydrogen can be
inefficient compared to battery-based vehicles due to the low efficiency of fuel cells and
electrolyzers.

The simulation results show that variable charging and discharging power have major
advantages over constant charging/discharging, as no penalization was imposed, and the EV
users were satisfied. In addition, optimizing the charging/discharging power is cost-effective
because EVs are charged during off-peak hours and discharged during on-peak hours into the
public grid, resulting in greater profitability. Furthermore, the energy that EVs inject into the
public grid during V2G service is significant, accounting for over 75% of the total energy
injected into the public grid during V2G service. The optimization problem is applicable to both
private (domestic, work) charging stations and public ones, regardless of their size. By
participating in V2Gservices, EV owners and/or charging station operators can generate
revenue and reduce the total energy cost of EV charging, while also providing grid services to
improve the reliability and efficiency of the public grid. The HMI allows for the operation of both
a single EV and multiple EVs, and the number of EVs that can be operated is only limited by
the number of charging terminals. However, the size of the charging station can affect the
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applicability of optimization problems for V2G services. For example, a small charging station
(e.g., one EV in a residential building) can participate in V2G service to support the electricity
grid and earn revenue in return for its services; however, it will have limited power support
capacity, and hence it may not be able to provide significant aid individually. In contrast, a large
charging station (e.g., 100 EVs in a university parking lot) will have more power capacity, which
can enable more significant V2G services for the electricity grid based on its requirements.

For future research, the degradation impact on EV batteries will be studied, as well as the
environmental impact. Moreover, more case studies will be conducted to validate the
optimization method and demonstrate its feasibility in real-time experimental tests under the
concept of power hardware in the loop. Furthermore, annual simulation will be considered
where optimization and real-time simulation consider annual irradiation profiles, temperatures,
and EV profiles.
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3.2 Solar charging swappable EV batteries

The integration of PV with swappable battery systems offers a promising solution to align solar
energy integration into EV charging needs. This approach enhances grid flexibility, reduces
overall system costs, and supports wider PV adoption".

3.2.1 Introduction

The use of photovoltaics (PV) to charge electric vehicle (EV) batteries plays a crucial role in
the cost-competitive mitigation of greenhouse gas emissions linked to transportation. However,
the temporal mismatch between solar generation peaks and charging needs may hinder some
of its benefits. The use of swappable batteries, by decoupling battery charging from vehicle
use, overcomes this mismatch [1],[2]. Furthermore, it also facilitates a more extensive
integration of photovoltaics within both the realm of electric mobility and the broader electricity
demand of consumers. This integration, in turn, leads to a substantial reduction in the overall
costs associated with the combined power and transport systems.

The concept of swappable batteries has recently remerged with the increasing adoption of
electric vehicles and the challenges of synchronizing the development of plug-in charging
infrastructure and EV sales. Recent literature reviews have presented the battery swapping
concept, highlighting its impact on the decrease in energy refuelling duration as well as its
potential for regulating grid load and extending battery life [4]-[6]. Techno-economic
assessments have repeatedly shown that the swappable batteries approach is cost-
competitive for a range of assumptions and geographies [7]-[10] pointing out some of the
challenges to overcome such as the need for battery standardization [4]-[6]. For an in-depth
discussion of the potential benefits and challenges to the adoption of the swappable battery
approach [2].

3.2.2 Assumptions

In this model, vehicles swap their low-charge batteries for charged ones at battery swapping
stations (BSS), mostly an evolution of the traditional fuel service stations. The batteries
received are inserted into rack-mounted chargers and remain grid-connected for long periods
(typically 24 hours). They are charged at a relatively low rate (0.25 kW/kWh, or 4 hours) at
times of solar excess generation and lowest energy prices. Thus, EV battery charging is
decoupled from vehicle use, and its load to the electric system is flexible (within their residence
time). This flexibility is a powerful tool for PV integration: most of the electricity for battery
charging will concentrate on solar peak hours [1].

A typical battery swapping station swaps about 0.4 million batteries per year [2]. Assuming that
their useful life for e-mobility corresponds to about 2 000 full charge cycles, then some 200
batteries/year will be declared unfit for loading into EVs. Perhaps half will be classified as
healthy and fit for second-life use; the other 100 are further diagnosed, and with some

" This work is based on the participation of A.M Vallera and M.C Brito from Faculdade de Ciéncias da Universidade de Lisboa,
Portugal in Task17 activities and was funded by the Portuguese Fundagéo para a Ciéncia e a Tecnologia (FCT) I.P./MCTES
through national funds (PIDDAC) - UIDB/50019/2020 https://doi.org/10.54499/UIDB/50019/2020, UIDP/50019/2020
https://doi.org/10.54499/UIDP/50019/2020 and LA/P/0068/2020 (https://doi.org/10.54499/LA/P/0068/2020).
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intervention/repair, many will still be fit for second-life, the others are sent for recycling. This
means that every battery swapping station has a continuous pipeline of second-life batteries,
and will naturally use them in rack-mounted bidirectional inverter modules, on the premises,
for increased PV integration and grid service. These resident second-life batteries may further
substitute grid energy with cheaper and cleaner locally produced PV also away from the solar
hours, extending their usefulness even to fast, high power, battery-to-grid services such as
reserve power, increasing grid resilience and balance.

To illustrate the impact of swappable batteries on PV penetration, the approach was applied
to an idealized small region of 200 000 inhabitants, served by the national electric grid and
relying solely on PV as the viable renewable resource [3]. The fraction of energy required to
meet both transport and general electricity demand (with general demand excluding mobility)
that could be economically supplied by local PV generation was studied.

Two key research questions are addressed here. First, the optimal fraction of PV generation
that can be effectively utilized for EV battery charging is determined. Additionally, the feasibility
of using excess generation to satisfy general demand, thereby reducing imported grid energy,
is investigated. Second, these results are compared with alternative models, as summarized
in Table 3.2-1.

Table 3.2-1 Description of models under study.

Model Description
1 Business as usual (BAU) Transport relies on fossil diesel and petrol
2 Plug-in Vehicles are all battery electric and charge by connecting a plug into the socket of a charger
3 Plug-in Flex + Storage As above, with 10% demand flexibility and added second-life battery storage
4 BSwap Flex Vehicles refuel by swapping their low-charge batteries by charged batteries at the BSS
5 BSwap Flex + Storage As above, with added second-life battery storage
6 BSwap Flex + Double Storage As above, with twice the previous storage capacity

The optimum PV capacity that should be installed is determined by the minimum of the global
cost function which includes estimates of all costs (or cost differences between models), as
summarized in Table 3.2-2. For details on the modelling methodology and assumptions check

[3].

Table 3.2-2 Summary of costs considered for the analysis within the small region
under study.

Cost component Values Description
Imported energy 70 €/MWh + 100 €/tCOy, Dynamic hourly prices centred on this reference value,
to which carbon emissions cost is added.
0.25 €/tCO2.,(/MWh Emissions per unit of grid electric energy are also dynamic,
centred on this reference value.
PV generation 35 €/MWh
Fuel 65 €/MWh + 100 €/tCO2 A reference cost for an average of diesel oil and petrol,
special taxes excluded. Emissions costs are also added.
Charging infrastructure Plug-in: 11.1 M€/year Annualized costs of Plug-in chargers
BSS: 17.1 M€/year and BSSs in the region.
Battery rack modules Plug-in: 6.85 M€/year Annualized costs of bidirectional B2G
for the second life batteries BSS: 6.85 M€/year modules (cost of batteries excluded) in the region.
BSS (double storage): 12 M€/year
Vehicles (cost difference)  ICE: 0 M€/year Annualized costs,imputed to the region considered, including, besides
Plug-in: 5.7 M€/year upfront vehicle cost, the costs of repair and maintenance, and substitution of
BSwap: 6.1 M€/year important parts such as batteries.
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3.2.3 Results

Results are presented in Figure 3.2-1 showing that, compared with the business-as-usual
model of internal combustion engine vehicles, the plug-in model reduces the overall cost of
energy and transport, whilst allowing for higher integration of PV generation, from 40% to 60%
(rigid demand, no storage) or 80% (10% flexibility and storage) of the general demand. The
decrease in overall cost is essentially due to the higher efficiency of electric when compared
to ICE motors (substitution of fuels for electric energy, similarly priced but with a large efficiency
gain).

The battery-swapping model, however, can achieve even lower cost and higher PV integration.
In fact, higher PV integration, substituting grid energy for lower cost, cleaner, solar energy,
essentially explains the further cost reduction below Plug-in: with battery swapping, the
flexibility of battery charging demand concentrates it mostly under the solar peaks. Notice that
the demand for transport is 42% of the general demand for models 2 to 6, and therefore the
total electric energy consumption is 142% of the general demand. As expected, the higher the
installed storage capacity, the larger the optimal integration of PV in the system. The precise
values of course depend on the detailed model assumptions, but the qualitative trends would
be reproduced by most other reasonable models.

Total costs (include: emissions, electric and road transport
infrastructures, vehicles, ...)
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Figure 3.2-1 Total costs of the electricity and transport sectors for the region under
study. Notice that the vertical axis does not start at the origin to enhance readability.

Considering the optimal installed PV capacity, one-year hourly demand and PV-generation
time series allow determining annual energy curtailment, import and use for the general and
transport demand, as shown in Figure 3.2-1. The results show that the need to import grid
energy falls dramatically with the battery-swapping models, from 1.42 (business as usual with
no PV) down to 0.63 (44% of total demand) in the pure flexibility model, and to 0.44 and 0.26
(31 and 18%) in the case of the battery swapping models including second-life batteries with
bidirectional coupling to the grid. As a consequence, emissions are also reduced by an
estimated 1.3 tCO2eq/capita for the central battery-swapping model.

Integration of PV reaches very high values in the battery-swapping models, and this causes
total export and curtailment of PV generation to be in the range of 15% to 16% of the total
energy consumption. On the other hand, PV generation satisfies 56%, 69% and 82% of the
total, transport and general, demand for each of the battery-swapping models considered.
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Figure 3.2-2 The annual energy (grey) imported from the national grid and (green)
locally generated by PV

Overall, the battery-swapping approach has a significant impact on the overall cost of electricity
(for general and mobility demand) and on GHG emissions, as shown in Figure 3.2-3.
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Figure 3.2-3 The decrease in electricity cost (blue) and GHG emissions (orange),
compared to the business-as-usual model with optimum PV capacity.

3.2.4 Conclusion

This case study has shown that battery-swapping models in most systems are expected to
lead to the highest levels of PV integration with the lowest costs for electric energy, both for
EV battery charge and for general consumers, while providing a stable and resilient electric
system with a large fraction of flexible load and high power, fast response reserve capacity.
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4 ELECTRIC BUS CHARGING STATIONS

The electrification of public transportation plays a pivotal role in the global transition toward
sustainable, low-emission mobility systems. Among the various solutions, electric buses (e-
buses) have emerged as a key component in reducing urban air pollution, lowering greenhouse
gas emissions, and improving the energy efficiency of transport networks.

Unlike private EVs, e-buses operate on fixed routes with high daily mileage, making their
integration into energy and transport infrastructures both impactful and technically demanding.
The deployment of electric bus fleets presents unique challenges and opportunities in terms
of charging strategies, battery management, grid interaction, and operational planning.

This chapter presents a preliminary study on the integration of e-buses in urban areas, with a
focus on their energy modeling, consumption patterns, and the various charging methods
proposed in the literature. The study also highlights the potential role of PV systems in
supporting e-bus charging infrastructure.
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4.1 Modelling of Electric Bus Operation and Charging Process:
Potential Contribution of Local Photovoltaic Production

This study assesses the transition from diesel to electric buses, focusing on charging
strategies' impacts on service quality and the utility grid. Through comprehensive modeling of
an urban bus network in Compiégne, France, it evaluates various charging infrastructure
configurations. Additionally, it explores the potential benefits of local photovoltaic (PV) energy
production to reduce grid strain'>"3,

4.1.1 Introduction

Urban public transport is essential for carrying millions of people for their daily trips; however,
it has a significant impact on greenhouse gas (GHG) emissions. Therefore, the electrification
of urban buses is an efficient way to reduce emissions, as long as the supplied electricity is
provided by low carbon energy sources. Additionally, electric buses (e-buses) provide
supplementary benefits compared to conventional buses such as a reduction of air pollution
(fine particle matter), noise, and on-board vibrations [1]. Their maintenance is also easier and
cheaper; however, the integration of e-buses is a challenging procedure due to the increased
power demand which adds additional stress to the electricity network.

The location of charging infrastructures and charging periods can induce negative impacts on
the utility grid. The three main locations for static-charging infrastructures are bus depots, line
terminals, and bus stops. Most of the time, e-buses are charged at the bus depot during the
night [2]. Therefore, buses require sufficient battery capacity to perform their daily service of
around 200-300 km [3]. The consumption of an e-bus varies between 0.76 and 2.79 kWh/km
for a standard bus with an average of 1.65 kWh/km [4]. Therefore, at least 150 kWh battery
capacity is required to complete the daily service. Such an on-board battery pack weights
approximately one ton considering the energy density around 150 Wh/kg for lithium-ion
batteries. Ji et al. have shown that an increase of the on-board battery capacity from 50 kWh
to 400 kWh induces a raise in the bus’ energy consumption by 25% [5]. A larger battery
capacity will thus increase the available energy to perform a long trip without frequently
charging the battery. However, it will also lead to an increased energy consumption due to
higher bus weight. Battery capacity has also an impact on the capacity of passengers, as a
higher battery capacity requires more space in the bus [6]. The TOSA project has shown that
decreasing the battery capacity leads to a reduction on the battery weight by 5 — 7 tons, an
increase of the passengers’ capacity of 15 — 30% and a reduction in the energy consumption
of 10% [7].

Charging at the bus depot is usually performed once per daily service during several hours in
the night at a power of 24 — 180 kW [1]. Currently, the majority of e-bus fleets is very small,
around 15 e-buses per bus fleet in Europe [2] and 6 in the United States [8]. However, in the
future, the penetration of a higher number of e-bus fleets is expected, hence a higher amount

2 This study is based on the following publication: N. Dougier, B. Celik, S.-K. Chabi-Sika, M. Sechilariu, F. Locment, and J.
Emery, “Modelling of Electric Bus Operation and Charging Process: Potential Contribution of Local Photovoltaic Production,”
Applied Sciences, vol. 13, 2023, https://doi.org/10.3390/app13074372.

'3 This research was funded by ADEME France, project T-IPV, grant number #2308D0002.
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of power consumption will most likely be observed during the night period. Although it is not a
peak power consumption period for the utility grid, charging during the night might prevent
transformers from cooling down and accelerating the degradation of these units.

Alternatively, e-bus batteries can also be charged on-route at line terminals or bus stops (also
called opportunity charging). Charging at terminals can occur around 20 times per daily service
for a few minutes at a power of 150 — 600 kW [1]. On the other hand, charging at bus stops
can occur around 200 times per daily service for a few seconds at a power up to 600 kW. From
this perspective, the on-board battery capacity can be reduced with on-route charging, and it
will lead to lower bus energy consumption. However, the short charging times imposed by
passengers’ transportation require high power to supply enough energy to the bus battery in a
few seconds/minutes. A significant number of e-buses in the fleets could impact the stability of
the utility grid and create a risk of increasing the peak power consumption in the local area. A
large number of e-buses could also cause an overloading of utility grid transformers and induce
the use of carbon-based fuel supplies, which release high GHG emissions.

One solution to reduce the impacts on the utility grid is to produce electricity locally with
photovoltaic (PV) panels. If the e-buses charge during the daylight, the PV production can
reduce the bus consumption peak. On the other hand, if they charge during the night, an
additional stationary battery could help to reduce grid impact by storing surplus PV production
during the day to use it at night. The charging scenario must be adapted in order to maximize
PV self-consumption ratio, i.e., to increase the percentage of the bus load covered by the PV
production. However, charging during the daylight at a low power to maximize PV self-
consumption ratio might induce additional charging time, which can cause delays in the
service. All of these factors show that the location and the size of charging infrastructures, as
well as the charging strategy, can have a significant impact on both the utility grid and the
transport network, which need to be carefully analysed with a detailed model of the bus
transportation network.

The aim of this study is to focus on the influence of sizing and placement of charging
infrastructures on both the utility grid and transportation network. This preliminary study
simulates a bus fleet operation with several scenarios, which differ according to the location of
chargers (depot, terminals, or stops) and their rated power. First, the bus network is modelled
and the operation of buses is simulated. After that, charging stations are placed on the
transportation network — at depot, terminals, or stops — and charging rules are applied.
Performance indicators are defined to compare studied configurations. The main contributions
of this work are listed as follows:

e A bus consumption model that considers the influence of the battery capacity on
the bus gross weight and thus on the bus consumption;

e Modelling of a bus network is presented based on General Transit Feed
Specification (GTFS) data;

e A sequential simulation of the e-bus operation is performed in order to analyse the
influence of the charging scenarios on the quality of transportation services (delay
indicator);

e A comparison between bus energy demand and PV production in order to assess
the potential of PV energy to reduce impacts of e-bus charging on the utility grid.

The rest of the study is structured as follows. Section 4.1.2 analyses the scientific literature to
underline the research gaps. Section 4.1.3 presents the modelling and simulation approach
for the buses’ operation and charging. The case study is introduced in Section 4.1.4. Section
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4.1.5 displays the simulation results, and Section 4.1.6 analyses them. Finally, Section 4.1.7
contains a conclusion and perspectives for future works.

4.1.2 State of the Art of Scientific Literature

This section analyses the scientific literature to underline trends and gaps. The literature survey
focuses on public transport planning, sizing of charging infrastructures, and PV supply of
charging stations

4.1.2.1 Research Positioning

The planning of public transportation can be divided into three main phases: strategic (horizon
of years), tactical (one year to days), and operational (real time). As described by Perumal et
al.[9], the planning process starts by determining the infrastructure, the lines, the frequencies,
and the bus fleet investment. The tactical planning phase consists of the definition of the
timetables, the vehicle scheduling (assignation of buses to the timetabled trips), the crew
scheduling, and eventually the crew rostering. Recovery plans and real-time control strategies
are also often implemented to reduce the impact of disruptions. From a transportation point of
view, the present study concerns the strategic planning (sizing and placement of charging
infrastructures) and its impact on the operational planning (e.g., bus delay). According to
Manzolli et al. [10], e-bus studies can be divided into five categories: vehicle technology,
battery technology, energy management, fleet operation, and sustainability. The present
research concerns both the vehicle technology, in particular the charging power, and the fleet
operation.

4.1.2.2 Sizing of Charging Infrastructures

Scientific publications about e-bus charging either focus on the infrastructures’ sizing [11]
and/or the scheduling of the battery charging power [12][13]. A charging strategy can be
defined as the choices of charging frequency, power, start time, and duration [6]. Few studies
tackle both the sizing and management problems. Gao et al. [14] compared the impact of
normal charging at 90 kW and ultra-fast charging at 480 kW on the on-board battery capacity
for improving the autonomy of the bus. Fast charging has been shown to reduce the battery
capacity and increase the autonomy. Leone et al. [15] have demonstrated that two 150 kW
charging stations and an opportunity charger of 350 kW are needed at the terminals in order
to reduce the cost and environmental impact compared to current diesel buses. Hasan et al.
[16] have focused on the energy management of the bus and the charging strategy. The
developed “ECO-charging” strategy, using pulsed charging to lessen the battery cooling
needs, reduces the average grid load by more than 10% and shifts the charging to off-peak
periods. On the other hand, a two-phase optimization framework is proposed to size the
charging infrastructure and schedule the charging of e-buses with the objective to minimize
the total system cost in [6]. The developed rolling-horizon-based charging strategy, which
adjusts charging scheduling in real-time based on e-bus consumption and travel time, reduces
the total charging cost by 68.3% compared to uncontrolled charging. In several studies, the
sizing of a battery storage is combined with the determination of charging schedules [17]-[19].
Most studies only consider the sizing of the charger’s rated power and the capacity of
stationary storage. They usually consider that the size of the on-board battery of the bus is
known. However, [6] investigated the charger deployment, the on-board battery capacity, the
charging schedules, and charging costs, and the study shows the importance of considering
the on-board battery.
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Many studies about e-bus charging consider the influence on transportation or on the utility
grid, but not both at the same time [20]. For example, in order to improve the traffic, Bie et al.
have analysed passenger loading to optimize the vehicle scheduling plan, locations of starting,
and terminal stations for short-turning lines and charging strategies [21]. The proposed
strategy led to reduce the total passenger travel time (dwell times at stops and inter-stop travel
times) of 15%. On the other hand, Akaber et al. have considered mainly grid constraints to
optimize the objectives of bus operators such as load balancing via peak shaving and cost
minimization with load shifting. The presented methodology is achieved to reduce the peak
consumption and total charging cost by 50% and 27%, respectively. Lin et al. optimized the
bus planning process considering jointly the transportation system and utility grid [23], and
Tomizawa et al. studied the feasibility of simultaneously minimizing the power and the energy
of surplus PV production [24]. Both studies showed that joint optimization reduces the charging
cost, prevents later conflicts between transportation objectives and electricity network
constraints, and increases the rate at which e-buses charge using local renewable energy.

4.1.2.3 Photovoltaic Integration for Bus Charging

Charging infrastructures of e-buses are often supplied only by the utility grid [25]; however, Arif
et al. also included local PV production and/or electricity storage in order to improve the energy
management [26]. Regarding a PV-storage-based charging station at the depot, the authors
showed that limiting the supplied power from the grid to 5 kW can maximize the bus depot
operator profit while minimizing the charging power causing transformer overloading. Rafique
et al. also presented an optimal energy management system using a weighted multi-objective
stochastic optimization to minimize the cost of electricity while aiming to reduce battery
degradation [27]. Zhuang et al. studied the stochastic energy management of bus charging
stations for reducing charging costs with PV production and battery storage considering bus-
to-grid energy flows [28]. Szczesniak et al. adopted another point of view, attempting to find
an optimal bus charging schedule at line terminals or depots in order to locally smooth the PV
production fluctuations [29]. The proposed method was compared to uncontrolled charging
and a cost minimization strategy. Results showed that operating costs increased marginally
compared to the cost minimization strategy, but that utility grid power fluctuations were
significantly reduced.

Concerning the design of PV power plants related to battery charging of e-buses, Santos et al.
focused on the suitable locations of PV implantation at bus shelters [30]. Based on the solar
irradiation, the potential of each bus shelter in Lisbon to supply electronic devices with PV
panels was analysed. Almost 54% of bus shelters were found to be able to receive small
devices such as lighting or remote small-scale sensors, but only 4% could provide at least 100
W and 2.4 kWh per day in order to supply a refrigerated vending machine. Dalala et al.
performed an economic and environmental feasibility study about the installation of PV panels
near a bus route [25]. With the right placement of PV panels, supplying e-buses with PV panels
was found economically and environmentally interesting. However, the investment cost can be
huge, as shown by Islam et al. who designed an off-grid PV system to balance the consumption
of a bus depot in Malaysia [31]. Sizing results showed that 7 350 PV modules (6.5MWp in
total), a battery capacity of 118 200 Ah, and 23 200 m? area were needed to offset a peak
demand of 466.5 kW. Ren et al. [32] determined the optimal size and location of rooftop PV
panels and capacity of storage near the line terminals of neighbouring communities. A case
study in Hong Kong showed that the infrastructure (PV and stationary battery) deployment
achieved the shortest payback period of 3.98 years and addressed the design issues such as
battery oversizing with PV and battery misallocation. In [33], Ren et al. focused on the
optimization of the charging strategy in the same community-based bus network to increase
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the on-site consumption of PV production. All of these studies have showed the importance of
both infrastructure location and charging strategy to lower the cost.

4.1.2.4 Discussion on the State of the Art

The literature review shows that the sizing of charging infrastructures and the management of
the charging process have a significant influence on the economic and the environmental
performances of the bus charging. Many studies tackle the sizing or the management
problems, but rarely both at the same time. Similarly, impacts of e-bus charging on the utility
grid and the transport network are not simultaneously considered, although the deployed
charging strategies have significant impacts on both networks. Joint consideration of these two
aspects could show benefits for the integration of renewable energy.

Several researchers analysed the integration of PV panels and stationary energy storage
system to charge e-buses with reduced GHG emissions. Where PV production on bus shelters
seems insufficient to supply bus energy consumption, large power plants at the depot show
opportunity for balancing the energy consumption or reducing the peak demand. The designed
infrastructures present a reduced energy cost but a higher investment cost compared to a
diesel bus network. The sizing and the placement of charging infrastructures and PV
production have an influence on both electricity and transport networks. Therefore, it is
important to model the e-buses’ network and operation precisely in order to identify the various
impacts.

4.1.3 Modelling of the Bus Transportation Network

In this section, the modelling approach of the transportation network is presented to determine
the charging powers and time delays of e-buses. First, the technical terms used to characterize
the bus network are defined, then the utilized input data are presented with the deployed
models and the simulation approach. The modelling steps are presented in Figure 4.1-1 . The
inputs represent the bus network, the bus fleet operation, the solar irradiation, and the
assumptions made on the bus technology and the charging infrastructures. General Transit
Feed Specification (GTFS) data are used for modelling the bus network accurately. Models of
bus consumption, charging process, and PV production are then integrated into a simulation
process to analyse the operation of a bus fleet.

Inputs I Model 1 Simulation
b meessssssssssssssssssnsssnns, I
I = Distance between siopﬁ L
e [ PER— .
: : Stop altitude — :
Bus services ' l !
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Figure 4.1-1 Flow chart of the modelling approach with the inputs and the computation
steps.
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4.1.3.1 Definitions

Several specific terms which are used for the modelling of bus transportation network are
introduced to ease the comprehensibility of the presented method (see Figure 4.1-2). The first
components of a bus network are bus stops where the bus will stop during the day to board or
alight passengers. The travel of a bus from one stop to another is named as a segment. A
succession of segments is a route defined by its ordered sequence of stops. A route can belong
to various bus lines that are official paths with intermediate stops between one or several
terminals at the end of a line.

Public transport along a line is characterized by a timetable which indicates the times when a
bus will stop at each bus stop. Based on the timetable, bus operators define the different bus
trips that are combinations of routes and time sequences. This means that a bus can run
through the same route several times during the day; however, each time will represent a
different bus trip. Eventually, the succession of trips represents the daily service. Services can
vary according to the period of the year (e.g., weekdays, weekends, or bank holidays). A
service is composed of commercial trips and deadheading ones such as travelling from a bus
depot to the beginning of a line without carrying passengers. These terms are illustrated on
Table 4.1-1, which is the timetable of the bus line “ARC Express” in Compiégne, France [34].
The first column shows the stop sequence for bus line ARC Express, from the “Gare” terminal
to the “Aramont” terminal. Then each column is a bus trip, starting at a different time. It can be
noticed that bus trips 1,2,3,6,10 and 11 correspond to the same stops sequence, as well as
trips 4,5, and 7. Therefore, 11 trips are represented on the table with only 4 routes. These trips
are assigned to the services of two buses, represented on the first row. It is worth noticing that
studies may use a different vocabulary to present the bus transportation network from a
passenger point of view.

Figure 4.1-2 Scheme of a bus line with three terminals (in red), intermediate bus stops
(in green), two routes (in blue and purple), and the time schedule of one trip on the
purple route.
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Table 4.1-1 Timetable of bus line “ARC Express” in Compiégne, France [34].

Service n° 1 [ 1 \ 1 \ 2 | 2 \ 2 [ 2 [ 2 | 2 [ 2 ] 1
Trip n° 2 [ 3 \ 4 [ 5 | 6 | 7 | 8 \ 9 | 10 \ 11 \
Bus stops Time Schedule
Gare 06:42 AM | 07:34 AM | 08:36 AM | 09:36 AM | 10:00 AM | 12:10PM | 02:10PM | 03:41 PM | 04:00 PM | 04:49 PM | 05:36 PM

Couttolenc 06:47 AM | 07:59 AM | 08:44 AM | 09:41 AM | 10:05 AM | 12:15PM | 02:15PM | 03:44 PM | 04:05PM | 04:54 PM | 05:41 PM
Rés. Univ. 06:51 AM | 08:03 AM | 08:46 AM | 09:45 AM | 10:09 AM | 12:19PM | 02:19PM | 03:44 PM | 04:08 PM | 04:58 PM | 05:46 PM
Denielou 06:55 AM | 08:07 AM | 08:51 AM | 09:49 AM | 10:13AM | 12:25PM | 02:23PM | 03:48PM | 04:12PM | 05:04 PM | 05:51 PM
Mercieres 06:58 AM | 08:12 AM | 08:55 AM | 09:52 AM | 10:16 AM | 12:28PM | 02:26 PM | 03:51 PM | 04:16 PM | 05:08 PM | 05:55PM
Parc Tertiaire | 07:00 AM | 08:15 AM | 08:58 AM | 09:55 AM | 10:19 AM | 12:30PM | 02:29PM | 03:53PM | 04:19PM | 05:11 PM | 05:58 PM

Longues 07:04 AM | 08:18 AM | 09:02 AM 12:33PM | 02:33PM | 03:57PM | 04:35PM | 05:16 PM | 06:02 PM
Lecuru 07:10 AM | 08:25 AM | 09:10 AM 12:40 PM 04:05 PM
ZA. 07:18 AM 09:18 AM 12:49 PM 05:31 PM 06:18 PM
Automne 07:21 AM | 08:30 AM | 09:21 AM 12:52 PM 05:34 PM 06:23 PM
Eglise 07:25 AM | 08:40 AM | 09:25 AM 12:56 PM 05:38 PM 06:25 PM
Aramount 07:28 AM | 08:42 AM | 09:29 AM 01:00 PM 05:42 PM 06:29 PM

4.1.3.2 Bus Consumption Modelling

E-bus energy consumption varies according to several parameters: bus speed, weight, traffic,
number of passengers, road slope, etc. Bus consumption also depends on heating, ventilation,
and air-conditioning (HVAC), and other auxiliaries, as well as on the implementation of a
deceleration and braking energy recovery system. Therefore, a bus consumption model is
needed to assess the energy demand of each e-bus in the fleet. Physical (also called white-
box) models rely on the analysis of physical and chemical processes in the energy
transmission and storage components of the vehicle [35]. Data-driven (also called black-box)
models deduce the bus consumption based on large amounts of experimental or real-world
operation data [35]. Eventually, intermediate grey-box models combine experimental data with
mechanical insight [36].

4.1.3.2.1 Consumption Model

Data-driven models require gathering a high amount of data, which can be collected through
sensors. High-resolution data can be used [37][38], but they are often hard to collect and
replicate for other locations. Low-resolution data [39] can also be used; however, they
decrease the accuracy of the consumption model. Comparatively, physical models apply
Newton’s second law of motion in order to model the electricity consumption of e-bus. In this
category, longitudinal dynamic models consider only the traction of the bus and require driving
profiles of e-buses as input (i.e., a time series of velocity and elevation) [40]. Jefferies and
Gohlich [41] have indicated that driving profiles may come from real-world operation [14] or
standard dynamometer driving cycles [42][43]. Moreover, HVAC and other auxiliaries’
consumption (lighting and other support systems) can be also considered for more detailed
modelling of an electricity consumption profile [44]-[47]. This study implements an existing
physical model [35]. The model needs to be fast enough to compute, to require accessible
data, and to consider both the traction and the auxiliaries’ consumption, considering the
influence of the latter on the bus’ consumption. It should be noted that the presented method
does not consider the regenerative braking, the curves of the road, the number of crossroads,
the meteorological conditions, or the driver’s behaviour. The total consumed power by the bus
P.,+(t) is defined by Equation (4.1-1) (as the sum of the power needed for vehicle motion
Pam (t) and for auxiliary systems P, (t) at each time step t.

Piot (£) = Prgm (t) + Payx (£) (4.1-1)
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Pigm(t) = v(t) X (m(t) x g X sin(a) + m(t) X g X C, X cos(a) + %x p X (4.1-2)
2(£) X Apyone X Cq +m(t) X a(t))
Poux(£) = Pyyac(t) + Potner(t) = Pyc(t) + Pyentitation (£) + Potner (t) (4.1-3)

where v(t) is the bus speed, m(t) is the mass of the bus, g = 9.81 m/s? is the standard
acceleration of gravity, a is the slope, C, is the coefficient of rolling resistance, p = 1.2 kg/m?
is the air density, A,y is the frontal area of the bus, and C, is the drag coefficient. The auxiliary
consumption is modelled as the sum of the consumption of HVAC (the sum of P,.,.tiiation @Nd
Py [35]) and the other auxiliaries P, - It should be noted that the total bus weight m(t)
consists of the bus curb (m,,,;), battery pack (mpg¢tery ), @and the total number of passengers
(mpassengers) inside the bus m = Mpys + Mpattery + Mpassengers attime ¢ .

4.1.3.2.2 Speed Profile

The speed of the bus must be determined based on the distances and travel times between
bus stops taken from the GTFS data in order to calculate the power consumption. Inspired by
SORT standard driving cycles [48]-[50], the present study considers a speed profile with a
trapezoid shape between two consecutive bus stops, as seen on Figure 4.1-3.

Bus speed (m/s)

Uhpax

Tmr Twr+T(s! t!rs fime (S)
Figure 4.1-3 Bus speed profile in trapeze representing the travel between two bus
stops.

The trapezoid is defined by the maximal speed v,,,, and the acceleration a. Travel time and
the distance between two bus stops t,; and d,, are determined using GTFS data. The
spatial and temporal constraints of the bus travel can be determined from the speed profile.
The distance between the consecutive stops is therefore determined as follows:

dps = 2 X dygr + dest (4_1_4)
dyar = foTvar v(t) X dt = fOTvaT axXtxdt = % X Tvzar (4.1-5)
dese = fg}vaa:-‘-TCStv(t) X dt = Vpmax X Test (4.1-6)

where d,,- and d.; are the distances travelled during the acceleration/deceleration and
constant speed phases, respectively. T, is the acceleration/deceleration time, T, is the time
at constant speed, and v(t) is the bus speed. The time to travel between the two stops is
described below:

ths = 2 X Tyar + Test (4.1-7)
Toar = Zmax (4.1-8)

a
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Therefore, using Equations (4.1-7) and (4.1-8) with the value of discriminant of the quadratic
equation A= tZ; — 4a x d, , the maximal speed v,,,, is determined by:

2
v
n;ax — tps X Umax + dps =0

tps— ,/tlz)s_zx‘ibs lf A> 0

Vmax = 2 xa (4.1-9)

Lxa if A< O

If a delay is anticipated for arriving to the next stop on the route, the e-bus is assumed to
increase its speed and acceleration up to limits. If the maximal speed — computed based on
the real departure time of the bus from one stop and the theoretical arrival time to another — is
above the speed limit, the speed is capped to a maximal value v;;,,, and a new acceleration is
computed. If the new acceleration is also above its limit, then it is capped to a;;,,, and the bus
is considered to be late arriving to the next stop.

4.1.3.3 Modelling of Charging Process

The state of charge (SoC) of the bus battery soc,,s(t) at each time t depends on the bus
consumption and the charged energy. The evolution of soc,,(t) is determined by:

(Pconso (t)"'Pcharged(t))XAt (4 1 -1 0)

Epatt

50Chys(t) = socy,s(t —At) +

S0Cmin < Socbus(t) < S0Cmax (4.1-1 1)

Where P.,ns0(t) is the power consumed by the bus (negative), Pcpqrgeq(t) is the power used
for battery charging (positive), Ep4:+ i the e-bus battery capacity, soc,,;, and soc,,,, , are,

respectively, the minimal and maximal SoC limits of the e-bus battery.

4.1.3.4 PV Production

PV power is considered to be utilized for a local and clean energy source for charging the e-
bus’ battery. The PV power is determined according to [51] as below:

pev(t) = Nsyse X Psre X Npy X % X [1+y xTpy(t) —25] (4.1-12)
Toy (t) = Tamp (t) + g(t) X W (4.1-13)
Test

where 75,5, is a yield considered to represent the system losses in the cables and converters,
Psrc is the PV power at standard test conditions (STC), Npy, is the number of PV panels, g(t)
is the solar irradiation, gsrc is the standard solar irradiation value at STC, y is the power
temperature coefficient of PV module, Tpy, (t) is the PV cell temperature, T,,,,, (t) is the ambient
temperature, NOCT is the nominal operating cell temperature of PV module, T,;_test iS the
fixed air temperature at NOCT condition, and Gr.s; is the fixed solar irradiation at NOCT
condition.
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4.1.3.5 Bus Network Modelling

This subsection deals with the modelling of the network, which consists of the bus stops,
routes, trips, services, and lines. The GTFS data format is used in order to analyse the
operation of the bus fleet on a transportation network.

41.3.51 GTFS Data

The GTFS format was initially developed by Google and has since become a de facto standard.
Open data in GTFS format are generated by urban transport organizing authorities. They are
composed of several tables gathering information about bus schedules and line topography
[52] via various text files. The major advantages of GTFS files are that they are open access
and the data are provided in the same format for the transportation network of different cities.
However, they must be combined with a description of bus services to simulate the operation
of buses. The location information (i.e., latitude and longitude) of bus stops can be found in
GTFS data but the distances and slopes between stops must be computed with the post-
treatment as in the following section.

4.1.3.5.2 Post-Treatment of GTFS Data

The GTFS data are used to determine the list of all routes and trips. As GTFS data only
consider trips to model buses’ operations and do not use the concept of routes defined in
Section 4.1.3.1, all trips must be analysed to identify their corresponding route. After that, the
distance between consecutive stops of each route is determined using Open Street Map, which
is a free editable geographic database of the world [53]. The elevation of each stop is retrieved
from Open Elevation Software. GTFS data also allows analysing the time spent between two
consecutive bus stops. This duration can vary during a day mainly due to the hourly/daily traffic
conditions.

Firstly, the distance between stops are determined. Based on the latitude and longitude
information, a path between two bus stops is generated on Open Street Map using a “bus”
transportation mode. To generate the path, Open Street Map creates a sequence of
intermediate points on the road between the two stops with a higher density in curved portions
(see Figure 4.1-4), and defines the total distance as the sum of distances between each
intermediate point. This matches quite accurately the real path of the bus; however, it requires
manual verification that the path proposed by Open Street Map fits the one on the bus network
map.
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Figure 4.1-4 Path between two bus stops generated using Open Street Map with
intermediate points.

Secondly, determination of the altitude is performed. The bus consumption also depends on
the slope of the road. Therefore, the Open Elevation software has been used to compute the
altitude of all stops based of their latitude and longitude [54]. However, only the mean slope
between consecutive stops is accessible in this way. The limit is the resolution of topographic
map, around 200 m for open-source maps. This means that all points in a square of 200 m
per side will have the same altitude, and that slope variations in this area might be hidden.

4.1.3.5.3 Simulation of the Operation of Buses

The operation of bus trips is defined by timetables, which are provided by urban transport
organizing authorities to bus operators. Bus operators determine which bus will perform which
trip to complete their daily service. This step is called the “vehicle scheduling problem” and e-
bus services which are gathered as the output of scheduling problem are used as the inputs
of the presented simulations in this study.

Simulation inputs are the transport network modelling (GTFS data) and the bus fleet operation
(bus services). The distance that a bus has to travel from each stop to the next charging station
can be calculated for each bus service. The energy needed to reach the next charging station
can be calculated based on this distance. Therefore, it is possible to ensure that a bus does
not leave a charging station until it has enough energy to complete its service. The procedure
of calculation of bus power consumption on a transportation network is presented in the flow
chart in Figure 4.1-5. Inputs are first initialized such as bus services, trips, and routes. Then,
for each time step of the simulated period, the status of each bus is determined successively:
its position, speed, acceleration, service, trip, route, energy consumption, charged energy (if
the bus is at a charging station), remaining dwell time (if the bus is at a stop), and battery SoC.
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For each time
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(1) tawel = max(tpassagers: tmin, tschedule thecessary_charge)
(2) tawell = max(tpassagers. tmin, tschedule)

Figure 4.1-5 Flow chart of the simulation of the bus fleet operation.

The process to compute the new status of a specific bus depends on the inputs. If the bus was
previously being charged or stopped, it continues this way until its dwell time reaches zero.
However, if the bus has to run at this time step (it was running previously or its dwell time at a
bus stop is over), then its position and speed need to be assessed. When the bus starts running
between two stops, its maximal speed and acceleration on the current segment are computed
and its trapezoid-shaped speed profile is deduced. Then, the bus energy consumption is
assessed for all the time steps. If the bus arrives at a stop at the next time step, its dwell time
must be computed considering the required energy needed to reach the next charging station.

The dwell time is computed in two different ways depending on whether the bus is charging or
not. The passengers boarding/alighting time t,,sse4ers 1S defined as the time taken by the
passengers to board or alight from the bus. The minimal dwell time t,,;, is defined as a
necessary idle time for transportation reasons (e.g., to change driver). The theoretical dwell
time tcneque i the difference between the time when the bus arrives at a stop and the
theoretical time at when it is supposed to leave according to the timetable. In the case when
the bus is not charging, dwell time is the maximal value among t,4ssegers » tmin, @Nd tschedute -
In the case when the bus is charging, the dwell time additionally depends on the time
necessary to charge the battery to a sufficient level to travel to the next charging station
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tnecessarycharge. This case requires computing the distance to the next charging station and
assuming an average consumption for the following trip.

Bus delay can be computed in two manners: charging delay and scheduling delay. The
charging delay delay pqr4e is the additional dwell time of a bus due to charging the bus battery,
and the scheduling delay delay,.,.qu1e OCCUrs because of other reasons which cause the bus
to leave a bus stop late.

delaYCharge (t) = tdwell - max(tmin: tpassegers: tschedule)

delayschedule = tarrivalreal - tarrivalthemy

Where tg,,¢;; is the computed dwell time, t,,;, is the minimal dwell time at a stop, t,4ssegers 1S
the necessary dwell time for passengers’ boarding/alighting, tschequie 1S the theoretical dwell
time before the next trip, torrivai g, i the time at which the bus arrives at the next stop, and

tarrivaltneroy is the theoretical arrival time at the next stop (according to the timetable).

4.1.4 Case Study

In this study, the GTFS data are gathered for the city of Compiégne in France. The bus line
“ARC EXPRESS”, which is 20 km long and composed of 12 bus stops, is chosen as the case
study (see Figure 4.1-6). According to GTFS data, there are 11 routes and 36 trips used for
providing transportation services over a day. The services of two buses were defined manually,
so they matched the timetable. In order to realize all the trips defined on the timetable, the first
bus “bus n°1” begins its service at 06:30 A.M and ends it at 07:15 P.M. It performs 11 trips,
including 2 between the bus depot and the line terminals. The second bus “bus n°2” operates
from 06:10 A.M to 06:50 P.M and performs 15 trips. Both buses have long idle period in the
middle of the day. The cumulative distance travelled by bus n°1 and bus n°2 are 149 km and
219 km, respectively. Concerning the speed profile between two bus stops, the acceleration is
assumed to be constant at a = 1 m/s? [55]. Speed and acceleration limits are assumed as
Viim = 40 km/h and a;;,,, = 1.5 m/s? , considering the need of passenger comfort [56].

Legend
Bus depot

Bus stop

(-]

© Line terminal
o

wem= Line path
-

= Depot-line path

Potential charging| = s v —
location Ay _
y

Figure 4.1-6 Bus line ARC EXPRESS in Compiégne [57].

The 12 m bus model from BYD has been chosen for this case study [58], and its characteristics
are given in Table 4.1-2. This e-bus is equipped with a 422-kWh battery adding 2.8 tons
(assuming 150 Wh/kg for lithium iron phosphate battery [1]) to the normal bus weight of 16.7
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tons (total weight 19.5 tons). Average power values are assumed for the ventilation P, ,tiiation
and the other auxiliaries P, [35]. The initial SoC of the e-bus battery is arbitrarily set to 90%.

Available charging powers are taken from the ABB’s chargers. Buses can be charged at the
depot using a Combined Charging System plug with a power of 100 kW or 150 kW [59]. They
can also be charged overnight at the depot with a pantograph at 50 kW [60]. Eventually, on-
route charging at bus stops and terminals can be performed via ABB’s HVC-Opportunity
charger at the power ratings of 150 kW, 300 kW, 450 kW, or 600 kW [60]. Scenarios described
hereafter consider a power of 50 kW at the depot and 150 kW, 300 kW, 450 kW, and 600 kW
for opportunity charging.

Table 4.1-2 Characteristics of the BYD-12m bus and the PV panels. (LFP: Lithium Iron

Phosphate)

BYD-12 m Bus PV Panel
Characteristics Value Characteristics Value
Length 122m Power Output 345 W
Width 255m Panel Efficiency 290
Height 330m Solar Irradiance 1000 W/m?
Gross Vehicle Weight 19.5¢ Temperature Coefficient | 0.29 %/°C
Maximal Passenger Capacity 85 NOCT 41.5°C
Battery Capacity 422 kWh Tair-test 20 °C
Battery Technology LFP Glest 800 W/m?
SOCpin 20% syst 85%
SOCmax 90%

P ventilation 0.5 kW
Pother 2 kW

The number of boarding/alighting passengers is chosen arbitrarily, and the passenger flow is
fixed for all routes of the same length. The number of passengers boarding/alighting is
summarized in Table 4.1-3 for different lengths of bus sequence and one example for a bus
route composed of 10 stops is displayed in Figure 4.1-7 . The passage rate is assumed to be
one passenger every four seconds [35]. An average passenger weight of 68 kg is considered.
When computing the necessary energy to reach the next charging station, an arbitrary
consumption of 1.3 kWh/km is chosen in order to keep a safety margin for considering the
uncertainty on the future bus consumption.

Table 4.1-3 Number of passengers boarding (B) and alighting (A) from the bus at each
stop according to the length of the bus sequence.

Stop 1 2 3 4 5 6 7 8§ 9 10 11 12
B 30 15 5 20 0 0

A 0o 0 10 10 15 15 17

B 20 25 15 10 10 5 20

A 0o 0 5 10 20 15 10 22

B 20 25 15 10 5 10 5 1 0

A 0 1 5 6 14 15 9 20 21

B 25 20 10 15 5 0 5 i 0 0

A 0 1 3 1w 2 15 7 18 12 15

B 30 1s 20 10 5 0 5 0 2 1 0 0
A o 2 0 15 10 5 10 5 3 15 10 13
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Figure 4.1-7 Number of passengers boarding, alighting, and on the bus at each stop of
route n°1.
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Local PV production has been considered and compared to the energy needs of the buses.
Irradiation and ambient temperature data have been gathered on the STELLA experimental
platform of the Université de Technologie de Compiégne with a time step of 10 s. The PV
power plant is assumed to operate without stationary storage. The electricity produced is
primarily supplied to the bus charging stations and the surplus is injected into the utility grid.
However, buses charge automatically when they reach an available charging station without a
charging strategy. The objective is to determine the temporal adequacy between the PV
production and the bus consumption according to the charging scenario. The data from two
days, one in January and one in July, have been used. A 100-kWp PV installation,
corresponding to a realistic surface of a bus depot, is considered in this example. The
parameters of the PV panel are presented in Table 4.1-2. It is assumed in this study that all
charging stations and PV panels are connected to the same substation of the electric
distribution network.

Simulations are performed and presented for three main scenarios with three additional sub-
scenarios that differ only by their charging power. Charging scenarios are identified as follows:

e Scenario 1: two chargers at the depot;

e Scenarios 2 and 2bis: two chargers at the depot and a charger at “Gare” and
“Aramont” line terminals;

e Scenarios 3, 3bis, and 3ter: chargers at the terminals “Gare” and “Aramont”, and
bus stops “Denielou” and “Matra Lecuru”.

The number and location of charging stations are chosen arbitrarily. Charging powers at each
location are presented in Table 4.1-4. The on-board battery capacity varies according to the
scenarios from 70 kWh to 422 kWh. The simulations are performed over a day horizon with a
two-second time step.

Table 4.1-4 Location and power of charging stations in the different scenarios.

Scenarios 1 2 2bis 3 3bis 3ter
Bus depot 2x 50kW | 2 x50kW | 2 x50kW - - -
Line terminal - 150kW 300kW | 150kW | 450kW | 600kW
Bus stops - - - 150kW | 450kW | 600kW
Battery Capacity | 422kWh | 422kWh 70kWh | 70kWh | 70kWh | 70kWh
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4.1.5 Results

4.1.5.1 Scenario 1 — Charge at the Bus Depot

In this scenario, 2 buses with 422 kWh batteries realize their services over 1 day. A charging
station is located at the bus depot with two 50 kW chargers. Figure 4.1-8 shows the cumulative
distance travelled by each bus and the SoC of the bus’s battery. Horizontal portions represent
dwell times at bus stops and line terminals. The dwell times at bus stops can be seen more
easily on the zoomed-in Figure 4.1-8 (a) as they are very short (around twenty seconds). SoC
decreases over time as there are no charging points on the road. It can be noticed that, even
with a 422-kWh battery, the battery SoC of bus n°2 with the highest daily consumption goes
below 38%. As expected, buses are fully recharged at the depot during the night after
completing daily service. The total energy consumption is 373 kWh—respectively, 155 kWh
and 218 kWh for buses n°1 and 2—which represents an average consumption per travelled
distance of 1.01 kWh/km.
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Figure 4.1-8 Travelled distance and battery SoC of buses n°1 (a) and n°2 (b) — scenario
1.

Figure 4.1-9 shows the total charging power at each time step, i.e., the sum of the charging
power of all charging stations with the PV production on the 15 January and the 17 July. The
charging starts at 06:50 P.M when bus n°2 arrives to the depot. The charging power increases
from 50 kW to 100 kW at 07:15 P.M when both buses are at the depot for the night. The daily
PV production is 108 kWh in January and 500 kWh in July, which makes it possible to balance
the buses’ consumption only in July. PV energy could be stored in an additional stationary
storage during the day and then used to charge the e-buses’ batteries at night.
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Figure 4.1-9 Total charging power and PV production over time — scenario 1.
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4.1.5.2 Scenario 2 — Charge at the Line Terminals

In the second scenario, two additional 150 kW chargers are located at the line terminals Gare
and Aramont (see Figure 4.1-6). The batteries’ SoCs of the buses are given in Figure 4.1-10.
Buses recharge during their dwell time between consecutive trips without a delay. According
to the number of times they pass through a charging station, bus n°1 charges approximately
ten times and bus n°2 twelve times (cf. Section 4.1.4). The minimal values of the batteries’
SoCs are obtained at 79% for bus n°1 and 73% for bus n°2. This means that the on-board
battery capacity can be reduced if charging stations are located at the line terminals. The total
energy consumption is 373 kWh, which represents an average consumption per travelled
distance of 1.01 kWh/km.
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Figure 4.1-10 Travelled distance and battery SoC of buses n°1 (a) and n°2 (b) —
scenario 2.

It can be seen in Figure 4.1-11 that the two buses recharge during a short period at line
terminals, usually not at the same time. However, the total charging power reaches 300 kW
for 4 min at 06:36 P.M when both buses are charging at bus terminals and 200 kW for 3 min
at 07:02 P.M when bus n°2 arrives at the terminal and bus n°1 is at the depot. The charging
process occurs mainly during the day, when electricity is produced by PV panels. As for PV
energy, 81 kWh are used directly to charge buses during the day, but additional stationary
storage would increase the PV share during the day and allow the use of PV energy during the
night.
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Figure 4.1-11 Total charging power and PV production over time — scenario 2.

4.1.5.3 Scenario 3 — Charge at Several Bus Stops

In scenario 3, the battery capacity of the bus is reduced to 70 kWh. Charging stations are
located at line terminals Gare and Aramont, and at bus stops Denielou and Matra Lecuru. The
charging power is limited to 150 kW. Therefore, there is a delay of 84 s in the dwell time due
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to the charging process at 09:49 A.M and 10:08 A.M. Figure 4.1-12 shows the cumulative
distance travelled by bus n°2 in scenario 1 and scenario 3. The black dotted line is shifted
twice compared to the orange one. The reason why this delay does not spread is because the
simulation authorizes the bus to accelerate (up to a limit) to reach the next bus stop on time,
as explained in Section 4.1.3.2. Case studies with more frequent buses would probably show
a more significant impact on the transport due to the waiting time of buses when they need to
charge at a bus stop but the charging station is occupied. The delay could be avoided by
increasing the on-board battery capacity, increasing the charging power, and/or adding new
charging points on the road to reduce the required energy between two charges.
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Figure 4.1-12 Comparison between the distance travelled by bus n°2 in scenario 1 and
scenario 3.

Figure 4.1-13 shows that the SoC of the 70-kWh battery of bus n°2 reaches 22.2% in scenario
3. This means that there is almost no security margin to ensure that the SoC will not fall below
socyin IN case of a higher consumption. The total energy consumption is 337 kWh—
respectively, 140 kWh and 197 kWh for buses n°1 and 2—which represents an average
consumption per travelled distance of 0.91 kWh/km.
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Figure 4.1-13 Travelled distance and battery SoC of buses n°1 (a) and n°2 (b) —
scenario 3.

Concerning the charging power, Figure 4.1-14 shows that most charges occur at different times
with a power of 150 kW (the rated power of one charger). Rarely, 2 buses are charging at the
same time, with a cumulative power of 300 kW when both buses are at bus stops (but not
necessarily the same stop). The assumption here is that all chargers are connected to the
same substation on the utility grid. Otherwise, the technical constraints would differ for each
portion of the network where the chargers are located. Regarding PV energy, charging during
the daylight at terminals and stops increases the PV self-consumption compared to scenarios
1 and 2. Additional storage would increase the PV benefits. Considering the reasonable
amount of energy needed as the next charging station is close and the high charging power
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required due to the short duration of charges at bus stops, supercapacitors with a high-power
density could be used to store the solar energy but with an increased cost.
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Figure 4.1-14 Total charging power and PV production over time — scenario 3.

4.1.6 Discussion

In this section, performances of all the scenarios are summarized in Table 4.1-5 and the results
are discussed focusing on the impacts on the utility grid in terms of energy and power
with/without considering the presence of PV panels. First of all, the charging of e-buses shows
that the determined average bus consumption in terms of kWh/km is consistent with the
literature data [4] which validates the presented model. However, it should be noted that there
is a potential for further improvement of the presented model, through an analysis of the GTFS
and Open Street Map data, by defining classes of roads according to the number of curves,
intersections, and traffic lights. Additionally, the obtained energy consumption is 36 kWh
(9.4%) less in scenario 3 (where a 70 kWh battery weighs 467 kg) compared to scenarios 1
and 2 (where a 422 kWh battery weighs 2.8 tons). Therefore, the total energy consumption of
the two buses during their daily operation decreases based on the capacity of on-board battery.
Secondly, analysing the minimal SoC of the on-board battery allows assessing the adequacy
between the capacity of the batteries and the charging scenario. For instance, in scenario 2,
the minimal battery SoC of bus n°2 is determined at 73.3% which indicates that the battery is
oversized or that it can be charged less frequently and/or at a lower power. On the other hand,
in scenario 3 in which buses operate with a lower battery capacity, the SoC of bus n°2
decreases until it reaches 22.2%, which might increase charging time of the battery for next
trip and cause delays in case of higher consumption. Lastly, the maximal charging power of
the bus fleet is analysed for each scenario. The highest total power is determined at 1 200 kW
in scenario 3ter where the two buses charge their battery simultaneously on route. Although
the peak power only lasts a few seconds/minutes, it can jeopardize the reliability of the utility
grid due to severe changes in grid consumption in the case of a massive deployment of e-
buses. Utilization of PV energy can be considered low, which occurs because it is not able to
charge the e-buses’ batteries on the road. Therefore, the utilization of the hybrid energy system
which is formed by PV panels and stationary storage is essential for increasing clean energy
utilization for e-buses. On the other hand, the PV panels might be integrated into the roof of
the e-buses in order to use produced PV power directly while moving on the road. However,
in that case, the surrounding buildings around the road which e-buses use to perform their
services are required to be modelled in detail to consider the impact of the buildings’ shadows
over the PV panels of the e-bus.

Concerning the utilization of local PV energy, simulation results show that only a small fraction
of PV energy is directly supplied to e-buses and the rest of the energy is injected back into the
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grid. The obtained self-consumption of the PV energy varies according to the scenarios as
seen in Table 4.1-5. The highest utilization of the PV energy is obtained in scenario 2 (charging
at terminals/depot) with 81 kWh, while the minimum is determined in scenario 1 (charging at
depot) due to charging only at night. Moreover, it can be seen that the total energy production
on January the 15" is lower than the buses’ energy consumption. On the other hand, the
produced PV energy in July is sufficient to supply all buses’ consumption during the day if an
additional stationary storage system is deployed.

Overall, this study presents a methodology for modelling and analysing the consumption power
of the e-bus fleet for various scenarios. The potential impacts of the e-buses charging on the
utility grid are discussed considering a local PV production without trying to minimize them via
an optimization. However, results show that optimal planning and management are required
for minimizing the grid impacts while maximizing the potential benefits. The main indicators
that could be used as decision criteria for the implementation of a scenario are the e-buses’
maximal charging power, grid supplied energy/power, and charging times. Based on the
criteria, an optimal sizing of PV-storage-based charging infrastructure with an intelligent energy
management algorithm can be developed for efficient public bus services that aims to increase
renewable energy utilization by storing surplus production during the day and/or summer
seasons and using it during low PV production times.

4.1.7 Conclusions

This study analyses the performance of various charging infrastructure placements. The
proposed method considers a modelling of the bus network based on GTFS data and a
sequential simulation of the bus operation. The method is applied to the operation of two buses
on one bus line in Compiégne, France. Scenarios with charging stations at the depot, line
terminals, and bus stops are compared. Results show the relevance of the method to estimate
the impacts on both the transport delay and the power supplied from the grid. Charging at the
depot implies having a larger on-board battery pack whereas on-route charging at bus stops
and terminals helps reduce the battery capacity by 83%, and thus the bus consumption by
9.4% due to a reduction in the bus weight. However, on-route charging with a high power can
have an impact on the utility grid, especially during the peaks of charging power. On the other
hand, a lower charging power can generate some transport delay due to the slow charging
process. The potential of a local PV production to reduce the impacts on the grid is shown.
Nevertheless, the PV self-consumption remains very low during winter and PV energy cannot
balance the buses consumption. During summer additional energy storage would increase PV
benefits.

Table 4.1-5 Performance indicators per scenarios.

Scenarios | 1 2 | 2bis [ 3 [ 3bis | 3ter
Bus charging

Average consumption of the buses (kWh/km) | 1.01 | 1.01 | 0.91 | 0.92 | 0.91 | 0.91
Consumed energy of bus n°1 (kWh) 155 | 155 | 140 | 140 | 140 | 140
Consumed energy of bus n°2 (kWh) 218 | 218 | 197 | 197 | 197 | 197
Minimal SoC of bus n°1 (%) 533 794 | 450 | 446 | 65.5 | 69.1
Minimal SoC of bus n°2 (%) 384 733|279 | 222 | 63.5 | 66.2
Max. total charging power (kW) 100 | 300 | 350 | 300 | 900 | 1200
Influence of PV production on 15 January

PV energy production (kWh) 108 | 108 | 108 | 108 | 108 | 108
PV energy used for direct charging (kWh) 1 14 6 13 - 3
Influence of PV production on 17 July

PV energy production (kWh) 500 | 500 | 500 | 500 | 500 | 500
PV energy used for direct charging (kWh) 17 81 42 69 24 18
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Future work will simulate the charging process with stationary storage and smarter charging
strategies. Furthermore, charging stations and PV power plants will be positioned on the utility
grid to model more realistically the impacts on each portion of the network. The operation of
larger fleets will be simulated to underline different impacts. An annual time horizon will allow
analysing the evolution of the solar irradiation, external temperature, passenger flow, and bus
services according to the period of the year and thus to simulate more realistically the operation
of buses. Eventually, several performance indicators will be implemented in an optimization
algorithm for the sizing and management of PV-storage-based charging infrastructures of an
e-bus network.
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CONCLUSIONS AND FUTURE WORKS

This report has explored various aspects of EV charging infrastructure and energy
management systems, with emphasis on optimization approaches and their practical
implications.

As the number of EVs and the complexity of charging scenarios grow, scalability becomes a
critical concern. Addressing this, a series of modifications to the MILP formulation were
proposed to reduce computational burden. By employing linear cuts and reformulating the
problem as a linear program under simplified assumptions, substantial reductions in solving
time were achieved without sacrificing solution quality. Additionally, a distributed computation
scheme was introduced, further enhancing scalability for large-scale implementations. These
adjustments demonstrated that it is possible to efficiently manage thousands of vehicles while
maintaining near-optimal performance, making real-time or near real-time operation
increasingly viable.

Beyond individual vehicle charging, the optimization of microgrids that incorporate renewable
energy sources and storage systems was also examined. When sizing components and
managing energy flows within DC microgrids, it was observed that operation in islanded mode
led to larger capacity requirements compared to grid-connected scenarios. This is primarily
due to the need to maintain supply reliability under variable generation conditions. Economic
analysis revealed trade-offs between lower levelized cost of electricity (LCOE) and higher
investment or replacement costs, with battery energy storage systems (BESS) playing a pivotal
role in both cost and emissions profiles. Environmentally, the systems contributed significantly
to local energy production, but grid reliance remained essential, particularly in the context of
the French energy mix.

The location of deployment also plays a key role, as shown in a comparative study across
multiple cities using different solar irradiation levels. The results highlighted that optimal system
configurations vary significantly with local resource availability. Cities with higher solar
irradiation achieved better economic and environmental performance, although temporal
fluctuations in solar availability affected outcomes. These findings reinforce the need for site-
specific designs and emphasize the value of tailoring renewable resource integration based
on local conditions. Technologies such as locally produced PV panels and BESS were shown
to have a dominant influence on the life-cycle emissions of the systems.

Energy cost optimization and vehicle-to-grid (V2G) services offer additional avenues to
improve system efficiency and sustainability. Incorporating real-time simulations that account
for prediction errors, it was demonstrated that dynamic scheduling of charging and discharging
could minimize costs and enhance grid support. V2G-enabled systems were especially
effective in reducing peak grid demand and increasing profitability, with EVs providing the
greatest flexibility. However, challenges remain in standardizing communication protocols,
addressing battery degradation, and managing integration costs. Future research aims to
deepen these analyses through annual-scale simulations and hardware-in-the-loop testing to
better understand long-term impacts and system behaviour under realistic conditions.

Finally, the charging infrastructure for electric buses was assessed, considering the
implications of different charging station placements on transport efficiency and grid impact.
While depot charging required larger battery capacities and incurred higher energy
consumption due to increased vehicle weight, on-route charging offered significant benefits by
reducing battery size and overall energy usage. Nevertheless, such strategies introduced new
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challenges, such as potential grid stress during high-power charging events and increased
transport delays with slower charging rates. The potential of local PV generation was also
explored, though seasonal variability limited its contribution during certain periods. Future
developments will involve integrating stationary storage, refining charging strategies, and
modeling broader grid interactions to inform the optimal design and management of e-bus
charging networks.

Taken together, the studies in this report highlight the multifaceted nature of EV charging
systems and energy management, showing that advances in optimization, infrastructure
sizing, and system integration are key to achieving both economic and environmental goals.
Moving forward, continued interdisciplinary research and real-world validation will be essential
to unlock the full potential of sustainable electric mobility.
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