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What is IEA PVPS TCP? 

The International Energy Agency (IEA), founded in 1974, is an autonomous body within the framework of the Organization 

for Economic Cooperation and Development (OECD). The Technology Collaboration Programme (TCP) was created with 

a belief that the future of energy security and sustainability starts with global collaboration. The programme is made up of 

6.000 experts across government, academia, and industry dedicated to advancing common research and the application 

of specific energy technologies.  

The IEA Photovoltaic Power Systems Programme (IEA PVPS) is one of the TCP’s within the IEA and was established in 

1993. The mission of the programme is to “enhance the international collaborative efforts which facilitate the role of 

photovoltaic solar energy as a cornerstone in the transition to sustainable energy systems.” In order to achieve this, the 

Programme’s participants have undertaken a variety of joint research projects in PV power systems applications. The 

overall programme is headed by an Executive Committee, comprised of one delegate from each country or organisation 

member, which designates distinct ‘Tasks,’ that may be research projects or activity areas.  

The 28 IEA PVPS participating countries are Australia, Austria, Belgium, Canada, China, Denmark, Finland, France, 

Germany, India, Israel, Italy, Japan, Korea, Lithuania, Malaysia, Morocco, the Netherlands, Norway, Portugal, South 

Africa, Spain, Sweden, Switzerland, Thailand, Türkiye, the United Kingdom and the United States of America. The 

European Commission, Solar Power Europe and the Solar Energy Research Institute of Singapore are also members. 

Visit us at: www.iea-pvps.org 

What is IEA PVPS Task 17? 

The objective of Task 17 of the IEA Photovoltaic Power Systems Programme is to deploy PV in the transport, which will 

contribute to reducing CO2 emissions of the transport and enhancing PV market expansions. The results contribute to 

clarifying the potential of utilization of PV in transport and to proposal on how to proceed toward realising the concepts.  

Task 17’s scope includes PV-powered vehicles such as PLDVs (passenger light duty vehicles), LCVs (light commercial 

vehicles), HDVs (heavy duty vehicles) and other vehicles, as well as PV applications for electric systems and 

infrastructures, such as charging infrastructure with PV, battery and other power management systems.  
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EXECUTIVE SUMMARY 

Electric mobility is accelerating worldwide, increasing the demand for cleaner and more 

sustainable charging solutions. Among the most promising options are photovoltaic (PV)-

powered charging stations (PVCS), which integrate solar energy production with electric 

vehicle (EV) charging infrastructure. These systems are becoming increasingly common in 

both urban and rural settings, reflecting a global shift toward renewable energy integration and 

greater energy autonomy. 

However, the effective deployment of PVCS involves more than simply installing solar panels 

and chargers. Key challenges include the dimensioning of PV generation and storage systems 

to meet local energy demands, the management of energy flows between the PV source, the 

grid, and potential battery storage, and the control of EV charging to ensure system stability, 

operational efficiency, and user satisfaction. Without proper coordination, PVCS may face 

issues such as overloading, underutilization, or intermittent service availability. 

Building on the initial IEA Task 17 Subtask 2 report—which examined the feasibility and 

fundamental requirements of PVCS – and a second report that addressed technical solutions 

and societal impacts, this third report advances the work further. It explores the deployment of 

PVCS within microgrid-based architectures, the integration of smart energy management and 

charging systems, and the incorporation of emerging services such as Vehicle-to-Grid (V2G) 

and battery swapping. It also considers the specific requirements and challenges related to 

charging electric buses with solar energy. 

Effectively addressing these technical and operational aspects is essential to fully realize the 

potential of PV-powered charging, ensuring not only environmental sustainability, but also 

system reliability and economic viability. 

A. Sizing for EV Workplace Charging Station  

This goal is to maximize on-site solar energy for charging electric vehicles via a dedicated 

control system. A modular sizing methodology was developed that separates the sizing 

problem into four relationships, allowing business model, charging strategy, and demand 

profile to vary independently, giving stakeholders flexibility to adapt the approach to different 

real-world scenarios. Results show that aligning charging with PV generation can greatly 

reduce infrastructure needs and costs. Workplace parking lots are especially suitable, as EV 

demand often matches predictable daytime solar production. 

B.  PVCS: Sizing and Energy Cost Optimization 

The optimal sizing and operation of PVCS in microgrid contexts involve complex trade-offs 

among technical, economic, and environmental objectives. A multi-objective framework based 

on MILP was developed to minimize both the levelized cost of energy (LCOE) and life cycle 

emissions (LCE) over the station’s economic lifespan. Results show that while high solar 

irradiation improves both LCOE and LCE, site-specific conditions (e.g., climate, energy 

demand, grid availability) necessitate customized designs. The choice of PV and battery 

technologies plays a crucial role in achieving balanced outcomes. 

C. PVCS: Integration of Vehicle-to-Grid (V2G) Services 

Since EVs are parked for extended periods, V2G services offer mutual benefits for grid 

operators and EV owners. A MILP-based optimization algorithm was designed to schedule EV 

battery charging and discharging, aiming to minimize energy costs while maximizing solar 
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utilization. Simulations demonstrated that dynamic scheduling strategies outperform static 

ones, yielding economic benefits without compromising driver requirements. 

D. PVCS for Electric Buses 

The deployment of electric buses in public transport highlights both their environmental 

advantages and deployment challenges. A case study in Compiègne, France, evaluated the 

impacts of various charging strategies – depot-only, terminal, and opportunity charging – on 

grid performance and service reliability. The integration of PV generation was assessed for its 

role in reducing emissions and grid stress. Results show significant trade-offs among 

strategies, affecting battery sizing, operational flexibility, and infrastructure demands. Although 

opportunity charging reduces battery size and energy consumption, it also imposes stress on 

the grid and requires costly infrastructure. Seasonal variability also limits solar potential in 

winter, reinforcing the need for energy storage. 

KEY FINDINGS 

A. Sizing for EV Workplace Charging Station:  

• Using the Mean Power strategy instead of Plug and Charge halved (≈50 % 

reduction) the size of the required PV plant.  

• Using the Solar Smart Charging strategy reduced the needed PV peak power to 

about one-third compared to the basic Plug and Charge scenario. 

• The modular approach means that once the four relationships are computed for a 

“representative” site, other similar sites can be sized in hours instead of weeks—

this is valuable for a CPO managing many workplace charging stations. 

A. PVCS Sizing and Energy Management: 

• Off-grid setups require larger components to handle low-sun periods; 

• Higher battery capacity is associated with lower LCE; more PV panels improve 

LCOE; 

• Economically optimal systems require higher initial investments, while 

environmentally optimal setups lead to increased long-term replacement costs; 

• Greater grid interaction improves both economic and environmental outcomes; 

• In the French case study, 54% of energy was locally produced, with the rest 

supplied primarily by the nuclear-dominated public grid. 

B. V2G Integration: 

• Small-scale V2G (e.g., residential) has limited impact but contributes to flexibility; 

• Large-scale implementations (e.g., 100 EVs in a campus setting) provide better 

returns and support grid services more effectively. 

C. Electric Buses and PVCS: 

• Electric Buses reduce tailpipe emissions and contribute to urban air quality 

improvement; 

• Depot-only charging: Simple, but leads to night-time grid peaks and larger battery 

requirements; 
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• Terminal + Depot charging: Reduces peak demand but needs more infrastructure; 

• Opportunity charging: Cuts battery size by 83% and energy consumption by 9.4%, 

but stresses the grid due to high-power demands; 

• PV integration lowers CO₂ emissions and eases peak demand, especially during 

high-use periods; 

• Solar contribution is limited in winter, requiring battery storage for consistency. 
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1 SIZING FOR EV WORKPLACE CHARGING STATION  

 
Electrification of transportation and the rise of EVs are driving the need for smart, sustainable 
charging infrastructure. Integrating PV into workplace charging stations offers a strategic 
solution: solar energy can directly supply EV demand, reducing reliance on the grid and 
enhancing environmental sustainability. 
 
This study proposes a versatile and modular methodology to aid Charging Point Operators 
(CPOs) in optimally sizing PVCS, particularly in workplace environments. Recognizing that a 
CPO may oversee multiple sites, the authors emphasize an efficient workflow: sizing begins 
with a representative station and extrapolates to others – transforming a process that might 
take weeks into one executable in mere hours. 
 
Their approach is grounded in an extensive empirical dataset from a research complex in 
Southern France: over 32 000 charging events spanning six years, 350 unique EV users, and 
80 charging points. The study examines three different charging strategies, coupled with a 
business model aiming to maximize self-consumption of generated PV power. 
 
By highlighting the synergy between solar generation and EV charging under real-world 
conditions, this chapter aims to guide CPOs, energy planners, and policymakers in designing 
efficient, solar-powered workplace charging infrastructure – paving the way for greener mobility 
and optimized renewable energy use.  
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1.1 An Empirical Study in France 

PVCS are gaining traction due to the natural synergy between solar energy and electric 

vehicles. This study introduces a flexible methodology to help CPOs size key components of 

PVCS based on customizable factors like EV charging demand, strategy, and business model. 

By first applying the method to a representative site, CPOs can significantly reduce the time 

required to size additional stations. Applied to a real-world case in southern France with over 

32 000 transactions, the results show that smart charging strategies, particularly Solar Smart 

Charging, can dramatically reduce PV system size requirements1,2,3. 

1.1.1 Introduction 

On 4 November 2022, the French Senate enacted legislation mandating that exterior parking 

areas for light-duty vehicles exceeding 1 500 square meters allocate at least 50% of their 

surface area to solar panels [1]. The French government has also introduced a series of 

financial incentives to accelerate the transition towards a sustainable transportation sector, 

covering both the purchase of electric vehicles and the installation of charging infrastructure. 

These legal obligations and incentives collectively pave the way for the widespread adoption 

of energy systems that integrate both photovoltaic (PV) and electric vehicle (EV) technologies. 

Reviews of all possible interactions between these two technologies are provided in [2] – [5]. 

Among these possible interactions, large PV-powered charging stations (PVCS) for EV near 

workplaces are considered to be one of the most promising use cases. From a technical 

standpoint, in such scenarios, EV charging demand – which typically spans the entire working 

day – is found to be nearly concurrent with PV production. Additionally, if the number of EVs 

is sufficiently large, this demand becomes relatively predictable. As a result, the optimization 

of PV energy use is a priori facilitated by these two factors. This use case is also recognized 

as one of the simplest in terms of stakeholder interactions, allowing cooperation to be made 

more feasible, as demonstrated by proven experiments described in [6] and, on a larger scale, 

ten years later in [7]. Furthermore, when PVCS are made sufficiently large – both in terms of 

PV capacity and the number of charging points – economies of scale are achieved. Finally, 

when PV panels are installed as car park canopies, the user experience is enhanced (through 

vehicle shading and EV charging services), and the energy transition is supported. 

In the context of large PVCS, several technical and financial stakeholders interact [2]. A PVCS 

with multiple charging points is managed by a Charging Point Operator (CPO). For simplicity, 

it is assumed that the EV driver interacts directly with the CPO, although, in practice, a third-

party stakeholder known as the e – Mobility Service Provider may act as an intermediary. In 

the vicinity of the PVCS, ground-mounted PV plants and/or solar carports are installed and 

operated by a Photovoltaic Operator (PVO). To remain as generic as possible, the PVO and 

 

 

1 This chapter is based on the following publication: B. Robisson, V.-L. Ngo, L. Marchadier, M.-F. Bouaziz, and A. Mignonac, ‘PV 

Sizing for EV Workplace Charging Stations – An Empirical Study in France’, Applied Sciences, vol. 13, no. 18, 2023, 

https://doi.org/10.3390/app131810128. 

2 The content has been adapted to suit the context of this document. 

3 This work was supported by ADEME France, project PV2E_Mobility (grant number #1905C0043) and project T-IPV (grant 

number #2308D0002) and by the French National Program “Programme d’Investissements d’Avenir-INES.2S” (grant number 

ANR-10-IEED-0014-01). 

https://doi.org/10.3390/app131810128
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CPO are assumed to be separate legal entities. It is also considered that the PV plant and 

charging stations are both connected to the distribution network, managed by the Distribution 

System Operator (DSO), but each has its own connection point (i.e., separate power meters). 

These power connections are used to serve a dual function: they supply electricity to the EV 

stations when PV generation is insufficient and allow surplus PV energy to be injected into the 

grid during periods of excess production.  

Sizing PVCS at the earliest design stage is critical, especially for the CPO, as this will form the 

basis for subsequent design phases. However, this step is particularly challenging. First, by 

nature, the technical details of the final PVCS – such as the IT and power architecture and EV 

charging control algorithms (if any) – are unknown. Thus, during the sizing phase, the designer 

must select models that are not only approximate (i.e., lacking technical detail) but also 

reflective of feasible and practical technical solutions. Second, data on EV demand (e.g., 

arrival/departure times and energy needed to charge EV batteries) over a significant time 

horizon (at least six months to a year) is crucial for sizing the PVCS. However, such data is 

often unavailable or of poor quality at this stage. Third, various potential business interactions 

among stakeholders make the development of a generic sizing method particularly complex. 

The objective of this study is to propose a method that addresses these challenges. First, the 

simplified models of PVCS used in this work are based on over ten years of experience 

analysing PV–EV interactions at CEA. Notably, this research considers three different EV 

charging strategies, the most complex of which has been validated with real users in two 

separate locations [6],[7]. Second, the method is built around four relationships that can be 

analyzed independently. One of these determines what proportion of EV annual consumption 

is supplied by PV, based on the number of EVs, a charging strategy, and the size of the PV 

plant. This relationship is derived from a large empirical dataset collected over more than six 

years (from 1 June 2016 to 31 August 2022), involving 350 EV users and 80 charging points 

at a workplace. Although calculating this relationship is resource-intensive, it can be reused 

for PVCS in similar contexts (i.e., large workplace car parks). The reuse of such pre-

computations significantly reduces the time required to apply the method – from several days 

to a few hours. This feature is especially valuable for a CPO responsible for sizing multiple 

stations with comparable EV charging demands. Third, one of the four relationships, is specific 

to a particular financial arrangement among stakeholders. This relationship can be easily 

adapted to various business models without modifying the others. To the best of current 

knowledge, the proposed method is unique in offering this combination of properties. 

The remainder of the chapter is structured as follows: Section 1.1.2 reviews the state of the art 

in this field and highlights the main contributions. Section 1.1.3 summarizes the proposed 

methodology, including its context, input data, and variables. Section 1.1.4 details the 

computation of the relationships between inputs and variables. These relationships pertain to 

1.1.4.1 business models (i.e., stakeholders and their interactions), 1.1.4.2 EV consumption, 

1.1.4.3 PV production and forecasting, and 1.1.4.4 charging strategies. Section 1.1.5 presents 

numerical examples of the methodology, while Section 1.1.6 provides an overview of the 

results and outlines the study's broader implications.  

1.1.2 State of the Art 

1.1.2.1 Research Positioning 

There are four stages in the project development process of an energy system [8]: 

• The first one is the “idea development.” It consists of “brainstorming and idea 

generation activities to give the project a more rounded shape”; 
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• The second one is the “concept development” which describes the scope of the 

project (case descriptions, investment context, system and stakeholder overviews, 

etc.). It also specifies the resources required and estimates key financial (such as 

revenue stream, CAPEX, OPEX, etc.) and technical figures. Amongst them, the 

size of the main components of the system is determined. For example, the sizing 

of PVCS consists in determining one or all of the following quantities: the maximum 

power that the PV plant may deliver (also called “peak power”), the number of 

charging points (and possibly the maximum power that each of these charging 

points may deliver), the number of EVs that may be charged on the PVCS, or the 

capacity and the maximum power of the storage system. For such sizing studies, 

EV demand (number of daily EVs and their arrival and departure time), users’ 

behaviour, and vehicles’ characteristics are the most imperative type of input data. 

Other types of input data are also required, such as incentives, taxes, grid codes, 

PV potential, etc. The concept development phase also determines the project 

risks, its social and environmental impacts and its profitability; 

• The third stage is called “business development” and outlines all the actions needed 

to make “real” the system sketched during the previous phase. During this phase, 

the system is first designed in detail and an operation plan to build it is provided; 

• The last stage is dedicated to the project execution. This phase entails the 

construction and installation of the final system, plus any other civil work needed 

for the project operations. 

The concept development phase typically comprises a prefeasibility study (PFS) and a 

feasibility study (FS). As described in [8], “the PFS scans a series of options and determines 

the best one in the set. The FS analyses in depth the best solution from the prefeasibility phase. 

The PFS reduces the number of options that are chosen to proceed with a more detailed fs 

and eventually with business development, ultimately saving time and money.” 

The objective of this study is to propose a method for sizing PVCS during the early stages – 

specifically, the PFS – of the concept development phase. As emphasized in [9], such sizing 

is particularly crucial for the CPO, as it provides a strong foundation for the business 

development stage. However, performing this sizing at such an early stage is a particularly 

challenging task due to the limited availability and reliability of essential input data. 

For example, key data required to size a PVCS is often unavailable or of low quality during the 

PFS. To address this, EV demand can be synthesized from statistical distributions based on 

experimental datasets [10]. However, due to daily and seasonal variability, these datasets 

must span a substantial time horizon (at least six months to one year) to be meaningful. 

Additionally, the technical specifications of the future power infrastructure, IT architecture, and 

control system are generally not known at this stage. 

In this context, the term “control system” refers to the set of algorithms – classified into 

scheduling, clustering, and forecasting as in [11] – and the IT and power system interactions 

that collectively aim to optimize PVCS operation according to financial, efficiency, or 

environmental objectives [4]. Therefore, the concept development phase must employ 

simplified models of these control systems that can reasonably predict the performance of the 

final system while remaining sufficiently abstract to allow exploration of a wide range of design 

alternatives [12]. 

The following section reviews the state of the art concerning sizing during the concept 

development phase of energy systems that integrate at least both EVs and PV – whether in 

the context of a microgrid or not. Notably, studies that focus solely on the design of control 
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algorithms are excluded; readers can find such references in Table 1.1-1 of [9], under the 

column “optimal control.” 

1.1.2.2 Sizing PVCS at the Concept Development Step: 

The study in [9] details the sizing of the main components of a system comprising a household, 

a battery, a PV plant, and bidirectional EV chargers. It considers three EVs with identical 

weekday parking schedules (08:00 A.M – 06:00 P.M). The authors integrate the sizing problem 

into the optimal power management framework by treating component ratings as decision 

variables in addition to the power profiles of the EVs and batteries. These variables include 

battery energy storage (BES) capacity (kWh), BES and EV charger power ratings (kW), PV 

system peak power (kW), and inverter power rating (kW). The power management strategy 

aims to minimize total costs, including battery degradation, while accounting for network and 

component constraints. These constraints enable the implementation of advanced business 

models based on self-consumption, energy arbitrage, and frequency containment reserve 

market participation. The optimization problem is formulated and implemented using the 

Generic Algebraic Modeling System [13]. 

The authors in [14] propose an optimal sizing-control methodology for residential microgrids 

where EVs are modelled as controllable loads. The microgrid includes PV, wind turbines (WT), 

a bidirectional inverter, and a local BES. The optimization algorithm, based on Mixed Integer 

Linear Programming (MILP), is solved using CPLEX [15] and aims to minimize the annual 

electricity cost. Component sizes and the dispatched power profile serve as decision variables. 

In this study, the number of EVs is fixed and thus not treated as a sizing parameter. EV mobility 

data consist of deterministic behaviour for three EVs. 

In [16], the authors identify the optimal sizes of PV, WT, and BES for a smart home microgrid 

in a vehicle-to-home context. The energy management system minimizes annual electricity 

costs using rule-based logic, while the sizing optimization employs the Particle Swarm 

Optimization technique [17]. Meteorological and EV mobility data (for a single vehicle) are 

synthetically generated using probabilistic distribution functions derived from existing datasets. 

The authors in [18] investigate a workplace microgrid consisting of an EV charging station, 

BES, and PV plant. The system is controlled using expert rules designed to minimize grid 

interaction. The methodology determines the optimal PV tilt and BES size under two scenarios 

and across eight charging profiles. Optimal values are obtained through a “parametric 

analysis,” where parameters are tested within predefined ranges – for example, BES 

capacities from 5 kWh to 75 kWh in 5 kWh increments. 

In [12], the system includes a PV plant and bidirectional EV chargers. One scenario considers 

a 2.64 MWp PV plant and 184 EVs. The charge/discharge control algorithm minimizes the 

deviation between day-ahead PV production commitments and actual production. The 

optimization is formulated as a linear problem with deterministic EV demand – vehicles are 

assumed to be available from 09:00 A.M to 06:00 P.M. The study also analyses different EV – 

to – PV ratios. 

An economic study in [19] explores EV parking lots at workplaces equipped with PV in Ohio 

and California. It assesses the financial viability of such systems under varying PV capacities 

and economic assumptions. Vehicle mobility data (arrival and parking times) are statistically 

simulated using probability distributions derived from empirical data at Ohio State University’s 

parking garage. The analysis accounts for diverse incentives and tax deductions across 

jurisdictions. MATLAB™ is used for EV demand and grid emissions modeling, while PV output 

and financial analysis are performed using the System Advisor Model [20],[21]. A constant 
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charging power of 6.6 kW is assumed. A follow-up study by the same authors introduces a 

more advanced charging algorithm based on dynamic programming and optimization [22]. This 

algorithm maximizes PV energy utilization and minimizes grid impact while fulfilling EV energy 

needs. Parametric studies examine how various factors (PV size, installation cost, incentives, 

electricity rates, parking fees) influence financial outcomes, especially payback time. 

The methodology in [23] focuses on sizing the PV system, stationary battery, and transformer 

in a PVCS microgrid. These component sizes, along with operational constraints, are included 

in an optimization model aimed at minimizing total system costs. The initial state-of-charge of 

EVs is modelled with a Gaussian distribution between 0.2 and 0.5. Other parameters, such as 

EV battery capacities, number of daily EVs, and arrival times, are also generated using 

Gaussian distributions. One numerical example considers a system with four 40 kW chargers, 

a 300 kWp PV system, a 600-kWh battery, and a 200-kW transformer. The study concludes 

that an optimal configuration with PV is more cost-effective than one without. 

In [24], the authors present a simple, multi-phase methodology for sizing a microgrid 

comprising a PV system, BES, and EV charging infrastructure. Implemented via a 

customizable Excel tool, the method is designed for use by various stakeholders. Users can 

adjust EV charging profiles, physical dimensions, and financial parameters to evaluate system 

performance from different perspectives. The energy management strategy mirrors a realistic 

deployment approach: grid energy is used when PV and BES outputs are insufficient; surplus 

PV energy is stored or exported to the grid to avoid overloading and ensure high PV utilization. 

The study in [25] examines PV and EV integration in an office building in southern Italy. One 

EV is charged during working hours under four different driving needs (from 0 km/day to 120 

km/day). Two charging modes are compared: uncontrolled AC charging and controlled DC 

charging, which prioritizes the use of surplus PV energy. The analysis evaluates self-

consumption and self-production metrics across four PV capacities (4.5 kWp to 9 kWp) and 

various charger sizes. 

In [26], the authors analyze long-term EV – PV integration in a household over a ten-year 

period, accounting for battery and PV aging. Scenarios vary based on annual driving distance 

(10 000– 25 000 km/year), charging strategy (uncontrolled or basic controlled charging), and 

PV system characteristics (location and size ranging from 2 kWp to 10 kWp). User profiles are 

also considered: a "commuter" not home during workdays versus a "private user" who returns 

home several times a day. EV charging profiles for these user types are synthesized from 

statistics found in [27]. 

1.1.2.3 Synthesis 

The authors in [2] propose classifying systems that integrate PV and EV based on three main 

criteria: 

• Spatial configuration: Systems may be deployed at different scales, including 

households, buildings, charging stations, or broader territories. An extension of this 

criterion is proposed by also considering the size of the PV plant and the number 

of EV users; 

• Technological environment: This refers to the various technological components 

that are included in or added to the system. These components can include BES, 

WT, Heating, Ventilation, and Air Conditioning systems, and network technologies 

such as DC microgrids; 

• Smart control strategy: Strategies are further categorized by their objectives, which 

may be: 
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o Economic, such as minimizing electricity costs or maximizing revenues; 

o Energy-related, such as improving self-consumption or reducing grid impact; 

o Environmental, such as lowering CO₂ emissions. 

Additionally, the coordination method – i.e., the mathematical formulation of the strategy – is a 

key distinction. These methods may include: 

• Optimization methods (e.g., MILP); 

• Heuristic methods (e.g., rule-based expert systems); 

• Hybrid methods, which combine heuristic and optimization approaches. 

As described in Section 1.1.2.1, prefeasibility studies are designed to explore a wide range of 

potential solutions, while feasibility studies focus on evaluating the most promising ones in 

greater detail. In practice, these phases differ primarily in terms of complexity, particularly 

regarding the data required and the level of technical expertise involved. This expertise often 

concerns the complexity of the charging schedule algorithms and the software used for 

implementation. Heuristic methods are commonly employed during the prefeasibility phase, 

while optimization methods are more typical in feasibility studies. 

Table 1.1-1 summarizes the reviewed studies in Section 1.1.2.2 using the criteria mentioned 

above, as well as additional dimensions: the targeted project development stage, EV fleet and 

PV plant size, EV mobility data, sizing methods, and the variables/parameters being sized. 

Table 1.1-1 Summary of literature review 

 

 

1.1.2.4 Contribution 

EV charging demand data is considered to be among the most important input parameters in 

PFS and FS. More precisely, it is believed that, in order to obtain accurate results, this EV 

charging demand must be as representative as possible of the use case under study. In 

particular, it should reflect both the variability of EV users’ behaviour over an extended period 

and the technical characteristics of the EVs and the charging infrastructure. 

It is also believed that standard EV charging demand profiles can be defined to correspond to 

typical scenarios, such as: 
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• Workplace parking lots, where EVs remain plugged in during work hours; 

• Shopping centres, where users arrive throughout the day and stay for a few hours; 

• Residential areas, where users arrive in the evening and leave in the morning; 

• Delivery fleets, where EVs arrive and depart at fixed times during the day. 

The workplace parking lot use case is the focus of this study. Empirical data has been collected 

over more than six years at an industrial and research complex in southern France. As detailed 

in Section 1.1.4.2, the dataset is composed of over 32 000 charging transactions, 350 EV 

users, more than 40 EV models, and 80 charging points. Based on the literature review and to 

the best of current knowledge, this study is believed to be the first to describe a sizing 

procedure based on such a large, real-world EV charging dataset. 

Furthermore, the computational logic of the proposed methodology is structured around four 

key relationships between input data and internal variables (defined in Section 1.1.3.3). Of 

these, Relationship 4 – which links the self-production ratio to the production-to-consumption 

ratio – is the most complex. To derive it, the designer must  

• collect and process input data (mainly EV demand and PV production/forecast);  

• perform simulations, and;  

• aggregate the simulation results. 

Relationship 1 connects energy price and self-production rate and can be readily adapted to 

business models that aim to increase self-production. Relationships 2 and 3 are relatively easy 

to compute. 

Thus: 

• When the PVCS designer assumes that EV charging demand follows a standard 

profile, the pre-computed values of Relationship 4 can be reused. The designer 

may also adjust Relationship 1 if a different business model is considered. In both 

cases, the required effort is minimal (i.e., a few hours of work for a non-specialist); 

• For specific or non-standard use cases, the pre-processed data provided in this 

research cannot be reused. All four relationships must be recomputed. This enables 

the most precise estimation of project performance but requires significantly more 

effort. It is estimated that 3 to 4 weeks of work with solid programming skills are 

needed. 

In summary, the modular structure of the method allows business models to be modified 

independently of other parameters, and intermediate results to be pre-computed. Once these 

pre-computations are completed, the sizing procedure is made quick and straightforward. To 

the best of current knowledge, no other method is known to possess such properties. 

This approach is particularly useful, for example, for a CPO who needs to size multiple 

charging stations with similar demand profiles. In that case, the CPO would compute the 

relationships once, based on a representative charging station, and then reuse them – 

especially Relationship 4 – to significantly accelerate the sizing of the remaining stations. 
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1.1.3 Context and Methodology 

1.1.3.1 Use-Case: CEA Cadarache EV Charging Infrastructure (EVCI) and PV Plant 

The data collection took place at the Cadarache research centre of the French Alternative 

Energies and Atomic Energy Commission (CEA, the French acronym for Commissariat à 

l’Énergie Atomique et aux Énergies Alternatives), located near Aix-en-Provence. This research 

centre has its own water, heating, lighting, and electricity distribution network, within which it 

operates as the DSO. A private bus service is provided for employees to commute and to travel 

between laboratories and canteens. A taxi service is also available for intra-site transportation. 

Thus, the Cadarache centre can be seen as a privately-owned town with a population of 

approximately 5 000, managed by the CEA. 

The CEA also set up an Electric Vehicle Charging Infrastructure (EVCI) during the summer of 

2016. It consists of 40 Diva-type terminals, produced and installed by G²Mobility, which was 

acquired by TotalEnergies in 2018. Each Diva terminal includes two 22 kW AC charging points. 

Each charging point is equipped with a Type 2 socket for mode 3 connections and a Type E 

socket for mode 1 and 2 connections. These charging stations were installed either individually 

or in groups of up to four Diva terminals, forming 30 charging stations spread throughout the 

centre. Each station has an embedded IoT gateway that communicates via 3G networks using 

Open Charge Point Protocol (OCPP) commands. As soon as an EV is plugged in, it charges 

at its nominal power. In other words, the EVCI enables vehicles to charge as rapidly as possible 

from the moment they are connected. This charging strategy, referred to as the “Plug and 

Charge” strategy in this work, is generally the default approach used by most commercial 

charging points. 

The CEA also conducts research at Cadarache in collaboration with INES on solar thermal 

energy and PV. In particular, it tests and evaluates innovative PV systems (such as Tandem 

Perovskite-Silicon PV, bifacial PV, and single- and dual-axis solar trackers) ranging in size 

from individual modules to systems of several tens of kilowatts. The energy produced by this 

equipment – aggregating up to 50 kWP – is injected into the CEA's private power network. 

Furthermore, the CEA plans to install additional PV plants, either ground-mounted or building-

integrated, as well as PV solar canopies. In the latter case, these PV installations will be 

designed for a self-consumption scheme, described in the following section. 

1.1.3.2 Collective Self-Consumption Scheme 

As explained in the introduction and visualized in Figure 1.1-1, the general case is considered, 
in which the EVCI and the PV installation are managed by two separate entities, namely the 
Charging Point Operator and PV Operator (CPO and PVO). The CPO has to manage the 
charging of a certain number of EVs while utilizing the production from the PV plant, 

characterized by a certain peak power, noted 𝑃𝑝𝑒𝑎𝑘
𝑃𝑉 . It is also considered that an agreement 

on the exchange of PV energy is established between them. Without loss of generality, this 
agreement could be a partnership with a ‘third party’ called Legal Person (LP), or ‘Personne 
Morale Organisatrice’ in French, according to the scheme called “collective self-consumption” 
in France. This LP entity plays the role of a facilitator for the financial as well as power flows 
between the CPO and the PVO. The CPO also contracts with an energy supplier (ESEV) that 
provides supplementary energy to the charging stations when PV production is insufficient to 
the EV charging consumption. In the meantime, the PVO also establishes a contract with 
another energy supplier (ESPV), which extracts the surplus PV energy produced when there 
is more PV production than EV consumption. 
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Figure 1.1-1  Interactions of the EVCI’s stakeholders. 

In this study, the power 𝑥 is denoted 𝑃𝑥. The energy of 𝑃𝑥 over a period 𝛥, 𝐸𝑥
∆ is the integral of 

this power over 𝛥: (𝐸𝑥
∆  =  ∫ 𝑃𝑥𝑑𝑡

∆

0
). The energy of the power 𝑃𝑥 calculated over a day, a month 

and a year are noted 𝐸𝑥
𝑑, 𝐸𝑥

𝑚 and 𝐸𝑥
𝑎, respectively. The energy of the power 𝑃𝑥  computed on 

an arbitrary period is noted without a subscript, i.e., 𝐸𝑥 . The price per kWh that actor A pays 

when he buys a given amount of energy from actor B is noted 𝑃𝑟𝐵−𝐴. It is important to note 
that this price may also include other services, apart from the energy production fee itself, such 
as transport, taxes and contributions. 

With these notations (summarized in Table 1.1-2), the principle of this scheme, represented in 
Figure 1.1-2, is the following: 

 

Figure 1.1-2 Principle of collective self-consumption scheme. 

Table 1.1-2 Nomenclature of variables used in this study. 

 

• The PV power (𝑃PV) and the corresponding energy (EPV), produced by the PV plant 

during the period, are visualized in the top left part of the figure; 
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• The charging power (𝑃𝐸V) and energy (𝐸𝐸V) consumed by the EVs are represented 

on the bottom left diagram; 

• The CPO partially charges the EVs with the power 𝑃𝑆𝑃 (SP for Self-Production) such 

that 𝑃𝑆𝑃 = 𝑚𝑖𝑛(𝑃𝑃𝑉 , 𝑃𝐸𝑉). The CPO buys the associated energy, represented in 

green and noted 𝐸𝑆𝑃 to the LP at a price noted 𝑃𝑟𝐿𝑃−𝐶𝑃𝑂; 

• The PVO, for his part, sells 𝐸𝑆𝑃 to the LP at a price noted 𝑃𝑟𝑃𝑉𝑂−𝐿𝑃; 

• The CPO also charges the EVs with the power 𝑃𝐸𝑆𝐸𝑉 that complements 𝑃𝑆𝑃 when 

there is not enough solar power (i.e., such as 𝑃𝐸𝑆𝐸𝑉 = 𝑚𝑎𝑥(𝑃𝐸𝑉 − 𝑃𝑃𝑉 , 0)). The CPO 

buys the associated energy, represented in dark blue and noted 𝐸𝐸𝑆𝐸𝑉, to the power 

supplier ESEV at a price noted 𝑃𝑟𝐸𝑆𝐸𝑉−𝐶𝑃𝑂; 

• The PVO injects in the network the power 𝑃𝐸𝑆𝑃𝑉 , if any, produced by the PV plant 

but not consumed by the EVS (i.e., such as 𝑃𝐸𝑆𝑃𝑉 = 𝑚𝑎𝑥(𝑃𝑃𝑉 − 𝑃𝐸𝑉 , 0)). The PVO 

sells the associated energy, represented in pink and noted 𝐸𝐸𝑆𝑃𝑉, to the power 

supplier ESPV at a price 𝑃𝑟𝑃𝑉𝑂−𝐸𝑆𝑃𝑉. 

In such a configuration, the local DSO is responsible for the virtual dispatch (“virtual” because 
the dispatch is performed in front of the meter); the DSO measures 𝐸𝐸𝑉 and 𝐸𝑃𝑉 from the power 
meters of the EV charging point and the PV plants, respectively. The meters are read at a 
frequency that depends on the market time step whose value depends on countries. The DSO 
computes 𝑃𝐸𝑆𝑃𝑉, 𝑃𝐸𝑆𝐸𝑉, 𝐸𝑆𝑃 based on the following logics and transfers these values to the LP, 
ESPV and ESEV, respectively. 

• 𝐸𝐸𝑆𝑃𝑉   =  𝑚𝑎𝑥(𝐸𝑃𝑉 − 𝐸𝐸𝑉 , 0) ; 

• 𝐸𝐸𝑆𝐸𝑉   =  𝑚𝑎𝑥(𝐸𝐸𝑉 − 𝐸𝑃𝑉 , 0) ; 

• 𝐸𝑆𝑃  =  𝑚𝑖𝑛(𝐸𝑃𝑉 , 𝐸𝐸𝑉) . 

1.1.3.3 Main Internal Variables 

The ratio between the total PV production to the total EV, computed for an arbitrary period, is 
termed Production-to-Consumption ratio (or 𝑃𝑇𝐶).  

𝑃𝑇𝐶 =  
𝐸𝑃𝑉 

𝐸𝐸𝑉 
  (1.1-1) 

The Self-Production Rate (𝑆𝑃𝑅) and Self-Consumption Rate (𝑆𝐶𝑅) are also considered, which 
represent the proportion of total EV charging demand being supplied by the PV production and 
the proportion of total PV production used for EV charging, respectively. These variables are, 
for an arbitrary period, defined as follows: 

𝑆𝑃𝑅 =  
𝐸𝑆𝑃 

𝐸𝐸𝑉 
  (1.1-2) 

𝑆𝐶𝑅 =  
𝐸𝑆𝑃 

𝐸𝑃𝑉 
  (1.1-3) 

A period 𝑑𝑖 is considered during which the different prices are assumed to remain constant. 
The duration of such a period depends on the pricing scheme; if the prices are flat, the period 
is generally one year. On the contrary, if the prices are time-varying, the period is the market 
time step. The annual energy cost and the Mean Power Price, 𝑃𝑟𝐶𝑃𝑂 (€/MWh), which is the 
effective price of electricity that the CPO has to pay for both electricity from the PV and the 
electricity from the grid, are then calculated using equations (1.1-4) and  (1.1-5). 

𝐶𝑜𝑠𝑡𝐶𝑃𝑂 
𝑎 =  ∑ 𝐸𝑆𝑃

𝑑𝑖 × 𝑃𝑟𝑑𝑖
𝐿𝑃 − 𝐶𝑃𝑂 + 𝐸𝐸𝑆𝐸𝑉

𝑑𝑖 × 𝑃𝑟𝑑𝑖
𝐸𝑆𝐸𝑉 − 𝐶𝑃𝑂

𝑌𝑒𝑎𝑟
𝑑𝑖   (1.1-4) 



Task 17 PV and Transport  – PV-Powered Charging  Stations: Sizing, Optimization and Control 

21 

𝑃𝑟𝐶𝑃𝑂 =
𝐶𝑜𝑠𝑡𝐶𝑃𝑂 

𝑎

𝐸𝐸𝑉
𝑎    (1.1-5) 

1.1.3.4 Methodology Description 

1.1.3.4.1 Inputs/Output Data 

This section describes the input data required, depending on the elements that are to be sized: 

• Given a target 𝑃𝑟𝐶𝑃𝑂 (€/kWh) and a number of EV users, what should the PV peak 
power be (kWp)? 

• Given a PV peak power (kWp) and a number of EV users, what should the 𝑃𝑟𝐶𝑃𝑂 
be (€/kWh)? 

• Given a PV peak power (kWp) and a target 𝑃𝑟𝐶𝑃𝑂, what should be the maximum 
number of EV users? 

The row name of Table 1.1-3 represents the targeted outputs, while the columns are the input 
data. For example, in order to calculate the peak power of a PV plant (first line of the table), 8 
out of 9 inputs (marked with an x symbol) must be collected. The CPO has to provide the price 
of the power from the network (𝑃𝑟𝐸𝑆𝐸𝑉−𝐶𝑃𝑂) and from the PV plant (𝑃𝑟𝐸𝑆𝑃𝑉−𝐶𝑃𝑂); he also needs 

its target of Mean Power price (𝑃𝑟𝐶𝑃𝑂), obtain data about potential PV production (location of 
the plant, orientation, tilt angle and possibly PV production and forecast profiles), the expected 
number of EVs and their main characteristics (size and efficiency of the embedded charger, 
capacity of the battery, etc.). He also needs a charging session history that contains, for each 
session, the start date and the end date of the session. This history also has to contain the 
energy withdrawn by the car during each session. The history also has to record the name of 
the charging point and the user’s badge number. Lastly, the CPO has to obtain the relationship 
between a badge and the EV model. 

Table 1.1-3 Input and Output data. 

 

1.1.3.4.2 Principles 

In this section, the main principles of the methodology are briefly described through four 
different relationships among various inputs, outputs, and variables, as illustrated in Figure 
1.1-3. First, the energy exchange scheme between the CPO and the PVO needs to be 
specified. This scheme is then used to derive a relationship between the 𝑆𝑃𝑅 and the Mean 
Power price (𝑃𝑟𝐶𝑃𝑂), with different prices as inputs. This first relationship is described in Section 
1.1.4.1. 



Task 17 PV and Transport  – PV-Powered Charging  Stations: Sizing, Optimization and Control 

22 

 

Figure 1.1-3 Computational procedure for EV and PV sizing. 

The charging session history is then used to express the annual EV energy consumption as a 

function of the number of EVs. This second relationship is then given in Section 1.1.4.2. 

The yearly PV production is then estimated as a function of the PV peak power 𝑃𝑃𝑉
𝑝𝑒𝑎𝑘

. This 

production depends on the solar potential that varies with the location of the PV plant, its 
orientation and its tilt angle. Section 1.1.4.3 will specify more details about this relationship. 

Lastly, the PV production forecast profile is required, which is then combined with the charging 

session history to reconstruct the corresponding charging power profiles based on a given 

charging strategy. Based on these profiles and PV production profiles, the computation of the 

𝑆𝑃𝑅 can be performed. In addition, it is also possible to compute the 𝑃𝑇𝐶. The relationship 

between the 𝑆𝑃𝑅 and 𝑃𝑇𝐶 is an abacus (that can then be approximated using empirical 

formulas as described in Appendix A4), which is presented in Section 1.1.4.4. 

The diagram in Figure 1.1-3 describes the computational logic flow for this methodology. The 

black plain line boxes are inputs and the dotted ones are inputs or outputs. The red boxes 

represent internal variables. Lastly, the bidirectional arrows represent the reciprocal 

relationship between two quantities (if one is known, the other can be determined and vice 

versa). 

1.1.4 Relationships Necessary for the Application of the Method 

1.1.4.1 Business Model 

1.1.4.1.1 Hypothesis 

It is considered in this study that 𝑃𝑟𝐸𝑆𝑃𝑉 = 𝑃𝑟𝑃𝑉𝑂−𝐿𝑃, this means that all revenues of the PVO 
come with the same price, thus making its revenue independent of neither 𝑆𝑃𝑅 nor 𝑆𝐶𝑅. 

1.1.4.1.2 Relationship 1: Self-Production Rate versus Mean Power Price 

The cost 𝐶𝑜𝑠𝑡𝐶𝑃𝑂 given in (1.1-4) can be rewritten by replacing 𝐸𝐸𝑆𝐸𝑉 with 𝐸𝐸𝑆𝐸𝑉 = 𝐸𝐸𝑉 − 𝐸𝑆𝑃 =
𝐸𝐸𝑉 − 𝑆𝑃𝑅 × 𝐸𝐸𝑉 = 𝐸𝐸𝑉 × (1 − 𝑆𝑃𝑅): 

𝐶𝑜𝑠𝑡𝐶𝑃𝑂 = 𝑆𝑃𝑅 × 𝐸𝐸𝑉 × 𝑃𝑟𝐿𝑃−𝐶𝑃𝑂 + (1 − 𝑆𝑃𝑅) × 𝐸𝐸𝑉 × 𝑃𝑟𝐸𝑆𝐸𝑉−𝐶𝑃𝑂  (1.1-6) 

 

 

4 https://doi.org/10.3390/app131810128. 

https://doi.org/10.3390/app131810128
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The Mean Power price, previously given in (1.1-5), is then obtained by dividing Equation (1.1-6) 

by 𝐸𝐸𝑉, thus establishing a linear relationship between 𝑃𝑟𝐶𝑃𝑂 and 𝑆𝑃𝑅: 

𝑃𝑟𝐶𝑃𝑂 = 𝑃𝑟𝐸𝑆𝐸𝑉−𝐶𝑃𝑂  − 𝑆𝑃𝑅 × (𝑃𝑟𝐸𝑆𝐸𝑉−𝐶𝑃𝑂  −  𝑃𝑟𝐶𝑃𝑂−𝐿𝑃)   (1.1-7) 

When 𝑃𝑟𝐸𝑆𝐸𝑉−𝐶𝑃𝑂  >  𝑃𝑟𝐶𝑃𝑂−𝐿𝑇, the Mean Power price for the 𝐶𝑃𝑂 linearly decreases with the 

increasing value of 𝑆𝑃𝑅. In other words, if electricity from the PV plant is more affordable then 
from the grid, self-production has to be prioritized. When 𝑆𝑃𝑅 = 0, 𝑃𝑟𝐶𝑃𝑂 = 𝐸𝐸𝑉  × 𝑃𝑟𝐸𝑆𝐸𝑉. This 
means that when there is no PV available for EV charging, the Mean Power price is equivalent 
to the price of the power from the grid. When 𝑆𝑃𝑅 = 1, 𝑃𝑟𝐶𝑃𝑂 = 𝑃𝑟𝐶𝑃𝑂−𝐿𝑃. This means that when 
there is no power coming from the network, the Mean Power price is the price of the power 
coming from the PV plant. 

1.1.4.2 EV Consumption 

1.1.4.2.1 Charging Periods 

Data from 31 014 charging sessions were collected for more than 6 years, spanning from 1 

June 2016 to 31 August 2022. Each charging session record contains the start and end time 

stamps of the session (noted 𝑆𝑇 and 𝐸𝑇, respectively), the identification number (𝐼𝐷) of the 

charging point, the badge number of the user and the energy that has been supplied to the 

EV. The transaction duration, 𝐸𝑇 − 𝑆𝑇, is denoted 𝑇𝐷. 

Figure 1.1-4 illustrates the distributions of the start and end times of the dataset. It is observed 

that the start time of the charging sessions is statistically concentrated around 08:00 A.M (start 

of work hours), lunch time and early afternoon (after 04:00 P.M, when the business trips are 

terminated). There are also three main periods during which the majority of the charging 

sessions terminate. The first one is at 09:00 A.M when the service cars that have been 

connected the day before are disconnected to be used for business trips, the second one is 

after lunchtime and the last period is at the end of the working day (around 05:00 P.M) when 

employees leave the centre. The average duration and energy consumption of each charging 

session were 11.3 h and 17.22 kWh, respectively, and a total of 551 MWh of electricity was 

consumed. 

 

Figure 1.1-4 Histograms of start and end times of charging sessions. 

1.1.4.2.2 EV Users and EV Fleet Compositions 

The number of "active" and "delivered" badges is computed from the EVCI charging session 

history. A badge is said to be “active” from the start of its first charging session until the end of 
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its last recorded session. The status “inactive” will be given otherwise. A badge is said to be 

“delivered” from its first connection to the ESEV. The number of active and delivered badges 

per day is described in Figure 1.1-5, where it can be observed that 348 RFID badges were 

delivered to EV (including PHEV) owners, with up to 200 active badges at the end of the 

considered period. Between 2021 and 2022, the number of delivered badges increased 

steadily by around 100 per year. At the end of the collection horizon, all the badges are inactive 

due to the definition of an active badge (i.e., they are all inactive after their last connection). It 

is also noted that there is a considerable amount of delivered inactive badges. This can be 

attributed to the loss of badges or to the fact that the users left them permanently or they 

stopped charging their EVs within the facility. 

 

Figure 1.1-5 Number of active and delivered badges. 

1.1.4.2.3 EV Characteristics 

Technical information regarding the vehicle corresponding to the badge was also recorded: 

vehicle model and usage category (personal, internal taxi and service car). Amongst all the 

delivered badges, 232 vehicles are attributed to employees’ personal vehicles, eighty-four 

vehicles are for facility services and three Renault ZOE for internal taxi services. An additional 

29 vehicles serving external companies are also among the considered EVs. In terms of car 

models, there is a very clear predominance of Renault ZOE, which represents 38% of the fleet. 

There are also, among others, 10% of Peugeot e208, 7% of Renault Twingo, 8% of Tesla 

(Model + and Model S) and 5% of Nissan Leaf vehicles. 

Primary characteristics of vehicles were also collected from publicly available sources, namely, 

the nominal power of the on-board chargers (kW) and their battery capacity (kWh). Figure 1.1-6 

displays the histogram of these nominal powers and battery capacities of the considered fleet. 

It is observed that approximately 45%, 30% and 25% of EVs have nominal charging power at 

22 kW, 11 kW and less than 11 kW, respectively. Additionally, it is observed that more than 

half of the EVs have a battery capacity between 45 and 55 kWh. 

 

Figure 1.1-6 Histograms of vehicles’ (a) nominal charging power and (b) battery 

capacity. 
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1.1.4.2.4 Energy Consumption 

The aggregated daily, weekly, monthly, quarterly, and annual energy delivered to the EVs has 

been computed from the EV charging session history. Figure 1.1-7 demonstrates that the total 

monthly energy consumption data can be classified into four groups over the entirety of the 

data collection. The first period, called pre-COVID-19, started in June 2016 and terminated at 

the beginning of the COVID-19 crisis. The second period corresponds to the first COVID-19 

lockdown in France (March 2020 – April 2020), during which very little charging service was 

used, leading to minimal electricity consumption. The third period (May 2020 to February 2022 

has seen the introduction of the hybrid-working mode (i.e., normal onsite and work from home) 

and, thus, resulted in charging patterns similar to that of the first period but with slightly lower 

consumption. The last period of the considered horizon (March 2022 to August 2022) bears 

an identical context to the first period since the facility has returned to the pre-COVID-19 

working mode (work from home is still available but has been exercised negligibly). It can be 

noticed that the electric consumption has increased significantly compared to the first and third 

periods. This increase can be attributed to the rise in the number of active badges during this 

period (as seen in Figure 1.1-5). 

 

Figure 1.1-7 Monthly energy consumption of the dataset. 

1.1.4.2.5 Relationship 2: Active Badge versus Energy Consumption 

Figure 1.1-8 illustrates the relationship between the monthly energy consumption (noted 
𝐸𝑚𝑜𝑛𝑡ℎ𝑙𝑦, in kWh) and the number of active badges (noted 𝐵𝑚𝑜𝑛𝑡ℎ𝑙𝑦 without units) during the 

same month. The colours used in Figure 1.1-8 represent the same periods in Figure 1.1-7. It 
can be observed that there exists a simple linear dependence (represented with a dotted line) 
between the number of active badges and the maximum monthly energy consumption. This 
dependency is expressed in the following formula, which will be referred to as the second 
relationship in the methodology: 

𝐸𝑚𝑜𝑛𝑡ℎ𝑙𝑦[𝑘𝑊ℎ] = 100 × 𝐵𝑚𝑜𝑛𝑡ℎ𝑙𝑦  (1.1-8) 
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Figure 1.1-8 Monthly EV power consumption versus monthly number of active badges. 

1.1.4.3 PV Production  

1.1.4.3.1 Production and Forecast Profiles 

The PV production forecast is based on public forecasts provided by the French Transmission 

System Operator (TSO): RTE. This forecast represents the aggregated French PV production 

and is calculated on the morning (approximately at 08:00 A.M) of the current day. The time 

step of the forecast is one hour. The forecast data for the considered period has been retrieved. 

It is represented in Figure 1.1-9 (left). As the installed PV capacity increased significantly in 

France during this period, the values have been corrected to obtain forecasts as if the installed 

capacity had been constant. These values have also been normalized to correspond to the 

production of a plant with a given peak power. In Figure 1.1-9 (right), this peak power is equal 

to 1 kWp. 

 

Figure 1.1-9 Raw production forecast (left) and corrected values (right). 

In order to eliminate the effect of forecast imprecision, it is supposed that the CPO is able to 

perfectly forecast the PV production. Thus, the forecasted data is considered as the PV 

production. 

1.1.4.3.2 Relationship 3: Yearly PV Production versus Peak Power 

There are two manners to obtain the yearly PV energy production from a peak power value for 

a given location as required to obtain the third relationship. 

• If production profiles are available, integrating the power over a complete year gives 

the energy produced during this year; 

• If production profiles are not available, many free software tools like PVGIS [28] 

estimate the annual PV production per peak power value. 
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1.1.4.4 Solar EV Charging 

1.1.4.4.1 Production-to-Consumption Ratio 

The 𝑃𝑇𝐶 ratio has been calculated for annual periods (each beginning on the 1st of June and 

ending on the 31st of May the following year) and for the period that begins on the 1st of June 

2021 and ends on the 31st of August 2022. These values are summarized in Table 1.1-4, where 

it can be observed that the annual PV production is relatively constant while EV electricity 

consumption varies considerably. 

Table 1.1-4 Sum-up of the PV production, the EV consumption and the 𝑷𝑻𝑪 ratio over  

6 year period. 

 

It is also worth noting that the total production for the PV is rather large compared to the 

installed peak power (i.e., ~ 1.7 kWh per kWp compared to ~ 1.6 kWh per kWp estimated with 

PVGIS and with optimal orientation and tilt angle). This is because the PV production has been 

calculated from forecast data provided by RTE, and the normalization factor used for this 

purpose has certainly been overestimated. 

1.1.4.4.2 EV Charging Strategies 

The charging power profiles for individual vehicles were not recorded during the period 

considered. Thus, simulations are conducted with different EV charging strategies based on 

charging session history to reconstruct these profiles. As the charging records contain the 

energy withdrawn by vehicle 𝑖 (𝐸𝑖) and the transaction duration (𝐷𝑇), it is supposed that this 

data is used by the CPO for controlling the charges. In practice, this data is not known, but it 

could be statistically estimated by the CPO. In this work, three charging strategies with different 

complexity are considered. 

The first strategy is the Plug and Charge strategy described in 1.1.3.1. In that case, the 

charging power is limited by the nominal charging power of the embedded charger of the 

vehicle, noted 𝑃𝑚𝑎𝑥
𝑖 . The effective duration of the charging session is then equal to 𝐸𝑖/𝑃𝑚𝑎𝑥

𝑖 . 

The second strategy is called ‘Mean Power’. In that case, the vehicle charges at constant 

power from the beginning to the end of the charging session. The duration of the charge is 

thus equal to 𝐷𝑇 and the constant charging power for vehicle 𝑖 is 𝐸𝑖/𝐷𝑇. 

The third strategy is a Smart Charging strategy, whose main objective is to increase the 𝑆𝑃𝑅. 
The detailed algorithm is out of the scope of the study but can be briefly explained as follows. 
The PV production forecast of the PV plant is considered as the power that is “available” to 
charge the EVs. The planning algorithm then sorts the EVs according to the alphabetical order 
of the badges and allocates a part of this available power to each car. The principle of this 
allocation is as follows. The setpoints of a car are constituted of a constant power part added 
to a part that is proportional to the available power. Two constraints have been considered 
when choosing the setpoints: the sum of the power has to be less than the maximum power of 

the car (𝑃𝑚𝑎𝑥
𝑖 ) and the integrate of the setpoints has to be equal to the energy withdrawn by 

the car (𝐸𝑖). 
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1.1.4.4.3 Load Curve Reconstruction 

Figure 1.1-10 represents the simulated load curves of 11 July 2018, obtained for different 
strategies and with a 75 kWp PV installation. The PV production is represented in blue. The 
curve that corresponds to the EV consumption with the PC strategy, in red, shows a large peak 
of approximately 200 kW at the beginning of the day and a second peak at noon. The curve 
corresponding to the Mean Power strategy, in yellow, is smoother and relatively synchronized 
with the PV production, but it is observed that energy is consumed by the EVs during the night 
(due to EVs that stay connected for more than a day). The curve corresponding to the Smart 
Charging strategy, in purple, is aligned with the PV production. It is observed that no power 
consumption occurs during night-time. 

 

Figure 1.1-10 Simulation results on 11th of July 2018 for a PV system of 75 kWp. 

On this particular day, the 𝑆𝐶𝑅 and 𝑆𝑃𝑅 are considerably higher for Mean Power and Smart 

Charging strategies than the basic Plug and Charge since their charging profiles are distributed 

throughout the day, in particular, when the PV production is the highest. Thus, the 𝑆𝑃𝑅 is equal 

to 49% with the Plug and Charge strategy, 89% with the Mean Power and 100% with the Plug 

and Charge strategy. The 𝑆𝐶𝑅 is equal to 31% with the Plug and Charge strategy, 62% with 

the Mean Power and 69% with the Plug and Charge strategy. 

1.1.4.4.4 Relationship 4: 𝑃𝑇𝐶 Ratio versus 𝑆𝑃𝑅 

This section explores the relationship between the 𝑃𝑇𝐶 and the 𝑆𝑃𝑅, given a particular 

charging strategy chosen among the three described in Section 1.1.4.4.2. In order to vary the 

𝑃𝑇𝐶, as the total energy consumption of the cars is independent of the charging strategy, the 

value of the PV production has been modified. Fifteen different sizes of the PV plant have been 

considered for this study:   

𝑆𝑝𝑒𝑎𝑘 = [0,1,25,50,75,100,125,150,175,200,300,700,1 000,5 000,12 000]𝑘𝑊𝑝. 

First, the following 17 simulations are performed, with the horizon spanning more than a 6-

year period: 

• One simulation of the Plug and Charge strategy; 

• One simulation of the Mean Power strategy; 

• One simulation Smart charging strategy for each of the 15 different values of 𝑆𝑝𝑒𝑎𝑘. 
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Daily 𝑃𝑇𝐶 and 𝑆𝑃𝑅 for each of these simulations and for each value of PV plant size are then 

calculated. Figure 1.1-11 illustrates the values of daily 𝑃𝑇𝐶 along with daily 𝑆𝑃𝑅, computed for 

a peak power value of 100 kWp using more than 6 years of data. This figure distinguishes 

between the different charging strategies: in yellow, the results with smart charging, in red with 

Mean Power and in blue with Plug and Charge. It is observed that the 𝑆𝑃𝑅 is the highest for 

the smart charging strategy and the lowest for the Plug and Charge strategy. It is also observed 

that very high values of 𝑆𝑃𝑅 are obtained with the SC strategy as soon as the 𝑃𝑇𝐶 exceeds 1. 

 

Figure 1.1-11  Daily 𝑺𝑷𝑹 and Daily 𝑷𝑻𝑪 for every day for 6 years of the 

experimentation. 

In addition, the 𝑃𝑇𝐶 and 𝑆𝑃𝑅 have been computed over the entire 6 year-long period. Each 

point of Figure 1.1-12 has 𝑃𝑇𝐶 as the 𝑥-coordinate and 𝑆𝑃𝑅 as the 𝑦-coordinate. For the 

purpose of simplicity, only the 𝑃𝑇𝐶 values obtained with the 10 lowest PV peak power values 

0,1,25,50,75,100,125,150,175, 200 are displayed. The colors of the points distinguish different 

strategies similar to those in Figure 1.1-11. 

 

Figure 1.1-12 Relationship 𝟒: 𝑷𝑻𝑪 vs 𝑺𝑷𝑹, computed for different PV peak powers 

(0,1,25,50,75,100,125,150,175,200) over a more than 6-year period. 
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It is observed that, for a given value of 𝑃𝑇𝐶, the self-production increases with the Smart 

Charging strategy compared to the Mean Power strategy. In the same way, the 𝑆𝑃𝑅 increases 

with the Mean Power strategy compared to the Plug and Charge strategy. For example, for 

𝑃𝑇𝐶 =  1, the 𝑆𝑃𝑅 is equal to 56% for the Smart Charging strategy, is equal to 48% for the 

Mean Power strategy and is equal to 38% for the Plug and Charge strategy. It can also be 

observed that, in order to obtain an 𝑆𝑃𝑅 of 70%, the 𝑃𝑇𝐶 has to be equal to 1.5 with the Smart 

Charging strategy, 2.5 with the Mean Power strategy, and 4.1 with the Plug and Charge 

strategy. 

It should be noted that the results presented in Figure 1.1-12 allow for the simplistic 

aggregation of the dataset and chosen strategies into the computational procedure described 

in Section 1.1.3.4.2. Such a choice is discussed in Section 1.1.5.2. The following subsection 

exemplifies the importance of these results in a specific use-case. 

1.1.5 Sizing Procedure Examples 

1.1.5.1 Price Examples 

Since there are several stakeholders participating in the collective self-consumption scheme, 

the electricity would be billed differently according to stakeholder interactions. As assumed in 

Section 1.1.4.1.1, these bills are computed with flat rates and the cost of the electricity 

subscription is not considered. 

The price of the electricity coming from the grid in this example is calculated by the Energy 

Regulation Commission in France for 2023 [29]. The price structure of 𝑃𝑟𝐸𝑆𝐸𝑉−𝐶𝑃𝑂 (424 €/MWh 

in total) is then composed of: 

• Energy Component: 322 €/MWh corresponding to “non-residential blue” tariff 

(version B, power subscription less than 36 kVA, included transportation, 

“supplementary power case” also called ‘alloproduit’ in French), as described in 

Appendix B2 of [29]; 

• Contribution Component: 31 €/MWh corresponding to the electricity consumption 

tax (Taxe Intérieure sur la Consommation Finale d’Electricité) or TICFE until 31 

January 2022. This contribution since then has been reduced to 1 €/MWh as a 

result of electricity subsidy for French consumers (called “bouclier tarifaire” in 

french). Such a subsidy lasts until the end of 2024; 

• Tax Component: 71 €/MWh corresponding to 20% of the VAT on the energy, 

transport and contribution parts. 

PV fit-in-tariff is a selling price also regulated by the Energy Regulation Commission and is 

currently at 120 €/MWh (Tariff 𝑇𝑐, 100 𝑘𝑊𝑝 <  𝑃𝑝𝑒𝑎𝑘 <  500 𝑘𝑊𝑝 in 2023) [30]. The purchase 

price 𝑃𝑟𝑃𝑉𝑂−𝐿𝑃 = 𝑃𝑟𝑃𝑉𝑂−𝐸𝑆𝑃𝑉 is thus supposed to be equal to 120 €/MWh as well. It is 

considered that the energy is sold by the LP at this price (i.e., without margin) but increased 

with transport, contribution, and taxes. The price structure of 𝑃𝑟𝐿𝑃−𝐶𝑃𝑂(197 €/MWh in total) is 

as follows: 

• Energy component: 𝑃𝑟𝑃𝑉𝑂−𝐿𝑃  =  120 €/MWh; 

• Transportation component: 13 €/MWh (as explained in [31]); 

• Contribution part: 31 €/MWh corresponding to TICFE; 
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• Tax Component: 33 €/MWh corresponding to 20% of the VAT on the energy, 

transport and contribution. 

A summary of these prices’ structure described above is given in Table 1.1-5. 

Table 1.1-5 Electricity Prices for different stakeholder interactions. Notice that these 

prices are simple flat rates. 

 

1.1.5.2 Hypothesis 

In the following examples, it is supposed that the methodology will be applied by the CPO for 

PFS (i.e., with the lowest effort but at the price of relatively low precision). Its use-case has to 

be similar to the one described in this research in order to utilize the integrated dataset of the 

fourth relationship. In particular: 

• The configuration of the charging points must be similar to the one presented in 

Section 1.1.3.1, i.e., 100% of the charging points are 22 kW AC; 

• The characteristics of the EVs are identical to the presented ones (i.e., a probability 

distribution similar to the one of Figure 1.1-6); 

• The working time and user behaviour (i.e., the statistics of the start and end date of 

the transaction, as depicted in Figure 1.1-4) are comparable; 

• The EVCI has to be large enough to integrate new users such that there is no 

congestion in the charging stations. 

Note that if these assumptions are not satisfied, the fourth relationship is not valid and all the 

simulations would have to be performed again. 

1.1.5.3 Sizing PV Given a Targeted Number of EVs and a Targeted Mean Power Price 

As an illustration, let it be considered that the method of this research is applied by the CEA to 

size a PV plant located at Cadarache (near Aix-En-Provence, France) in order to charge its 

EV fleet in 2030. By using Figure 1.1-5, CEA observes that the number of EVs currently 

increases by approximately 100 per year. Thus, the number of EVs is assumed to be 1 000 in 

2030 (instead of 200 in 2022). By using Equation (1.1-8), this represents an annual 

consumption of 12 × 100 × 1 000 =  1.2 𝐺𝑊ℎ. 

Let it be considered that the target price of the CPO is 𝑃𝑟𝐶𝑃𝑂 = 265 €/𝑀𝑊ℎ. Equation (1.1-8) 

gives 𝑆𝑃𝑅 =
𝑃𝑟𝐶𝑃𝑂−𝑃𝑟𝐸𝑆𝐸𝑉−𝐶𝑃𝑂 

𝑃𝑟𝐶𝑃𝑂−𝐿𝑃−𝑃𝑟𝐸𝑆𝐸𝑉−𝐶𝑃𝑂
≈ 70%. Thanks to Figure 1.1-12, it is identified that, in order to 

obtain an 𝑆𝑃𝑅 of 70%, the ratio 𝑃𝑇𝐶 has to be equal to 1.5, 2.5, and 4 for Smart Charging, 

Mean Power, and Plug and Charge strategies, respectively. 

With an EV consumption of 1.2 GWh these correspond to an annual PV production of 1.8, 3 

and 4.8 GWh. Once the required annual PV production has been identified, the PV peak power 

can be determined using solar potential for a particular location. For example, it is estimated 

that the PV production is about 1.4 GWh/MWp at the location of the experiment (south 

orientation, tilt angle of 20° and system loss of 18%). With such hypotheses, the peak power 

of the PV plant has to be equal to 1.28, 2.14 and 3.42 MWp to reach the targeted 𝑃𝑟𝐶𝑃𝑂−𝐿𝑃. 
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1.1.5.4 Estimating the Mean Power Price Given an Existing PV Installation and a Number of 
EVs 

Let it be supposed that the owner of an existing PV installation of 100 kWp in the same region 

wants to estimate the Mean Power price of the energy needed to feed 100 EVs with the smart 

charging strategy. The procedure for deriving this price, according to Figure 1.1-3, is the 

following: 

• From PVGIS: Annual PV Production 𝐸𝑃𝑉 = 100[𝑘𝑊𝑝] × 1.4 [
𝑀𝑊ℎ

𝑘𝑊𝑝
] = 140 𝑀𝑊ℎ; 

• From Equation (1.1-8): Annual EV Charging Consumption 𝐸𝐸𝑉 = 12 × 100 [
𝑘𝑊ℎ

𝑏𝑎𝑑𝑔𝑒
] ×

100 [𝑏𝑎𝑑𝑔𝑒] = 120 𝑀𝑊ℎ; 

• 𝑃𝑇𝐶 =  
𝐸𝑃𝑉

𝐸𝐸𝑉
= 1.16; 

• SPR (for Smart Charging) according to Figure 1.1-12: 𝑆𝑃𝑅 =  0.6;  

• 𝑃𝑟𝐶𝑃𝑂 can then be estimated from Equation (1.1-6); 

• 𝑃𝑟𝐶𝑃𝑂 = 𝑃𝑟𝐸𝑆𝐸𝑉−𝐶𝑃𝑂 − 𝑆𝑃𝑅(𝑃𝑟𝐸𝑆𝐸𝑉−𝐶𝑃𝑂 − 𝑃𝑟𝐿𝑃−𝐶𝑃𝑂) ≈ 287€/𝑀𝑊ℎ; 

1.1.5.5 Estimating the Number of EVs Given an Existing PV Installation and a Target Mean 
Power Price 

Let it be supposed that the owner of an existing PV installation of 100 kWp in the same region 
wants to determine the number of EVs that could be charged with the Mean Power strategy 
and with a targeted Mean Power price of 𝑃𝑟𝐶𝑃𝑂 = 265 €/𝑀𝑊ℎ. The procedure for deriving the 
number of EVs that it can support is as follows, according to Figure 1.1-3: 

• From PVGIS: Annual PV Production 𝐸𝑃𝑉 = 100[𝑘𝑊𝑝] × 1.4 [
𝑀𝑊ℎ

𝑘𝑊𝑝
] = 140 𝑀𝑊ℎ; 

• From Equation (1.1-7), 𝑆𝑃𝑅 =
𝑃𝑟𝐶𝑃𝑂−𝑃𝑟𝐸𝑆𝐸𝑉−𝐶𝑃𝑂

𝑃𝑟𝐶𝑃𝑂−𝐿𝑃−𝑃𝑟𝐸𝑆𝐸𝑉−𝐶𝑃𝑂 
 =  

265−424

197−424
 ≈ 0.7; 

• The 𝑃𝑇𝐶 ratio for different strategies is determined using Figure 1.1-12: 

𝑃𝑇𝐶𝑀𝑒𝑎𝑛𝑃𝑜𝑤𝑒𝑟 = 2.5; 

• Annual EV Charging Consumption (using the Mean Power strategy) is then 𝐸𝐸𝑉 =

 
𝐸𝑃𝑉

𝑃𝑇𝐶
=  

140[𝑀𝑊ℎ]

2.5
= 56 𝑀𝑊ℎ; 

• From Equation (1.1-8), the optimal number of EVs is then: 
𝐸𝐸𝑉 

(12×100)
 =  

56 𝑀𝑊ℎ

12 × 100 𝑘𝑊ℎ
 ≈

 46. 

1.1.6 Conclusions and Perspectives 

In this study, a method was proposed for: 

• Sizing the PV plant required to properly charge a certain number of EVs, given a 

targeted Mean Power price; 

• Estimating the Mean Power price, given a PV plant size and the number of EVs to 

be charged; 

• Estimating the number of chargeable EVs for a particular PV installation and 

charging price. 
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This method was applied to a car park located in a research centre in southern France. The 

main input of this study is a massive empirical dataset collected over more than 6 years with 

350 EV users and 80 charging points. To generate the EV charging power profiles, simulations 

were conducted with different charging strategies based on historical real data. 

This allowed for the simulation of EV profiles for individual power demand and for different 

sizes of the PV plant. The effect of implementing rule-based charging strategies (Mean Power 

and Solar Smart Charging) has been proven to be significantly beneficial as compared to the 

simple Plug and Charge mode. In one of the showcases, the PV peak power required for 1 

000 vehicles to attain a charging cost of 265 €/MWh for Smart Charging, Mean Power and 

Plug and Charge strategies are 1.28, 2.14 and 3.42 MWp, respectively. 

The main advantage of the methodology is its modularity, meaning that each key parameter 

(PV production, EV charging demand, business models, and EV charging strategies) can be 

analyzed independently of each other. Thus, when the method is fully applied once on a given 

case, some computations may be re-used for other “similar” cases. In some cases, as fully 

exemplified in the previous section, the application of the method becomes very simple and 

quick. 

The described methodology and results offer several avenues for future expansion: 

• Different simple and advanced strategies can be further integrated into this 

methodology, among which optimization-based methods are the most promising, 

in particular, MILP; 

• More realistic electricity tariff schemes (time-of-use or dynamic spot price) should 

be considered instead of flat rates from the energy provider ESEV; 

• Costs due to power subscription (in €/MW) should also be considered, in addition 

to the total electricity consumption (in €/MWh) as the number of EVs grows; 

• This study assumes that the PV forecast is perfectly precise and omits any negative 

impact on the PV forecast accuracy. Hence, further studies are required to 

determine the impact of real PV forecast; 

• Individual Battery Degradation should be considered [32]. 

In contrast, datasets representative of standard use cases could be openly disseminated within 

the research community, as suggested in [33]. Such datasets could serve as valuable 

resources for benchmarking purposes. Furthermore, with increasingly higher aggregated EV 

capacity, the EVCI is also eligible for different market participation, thus creating several 

revenue streams for the CPO. For example, two of these markets encompass the European 

frequency containment market and demand-response market. 
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2 TECHNICAL ECONOMIC AND ENVIRONMENTAL CO-
OPTIMIZATION OF PVCS  

To fully harness the potential of integrating PVCS, it is essential to focus on the technical, 

economic, and environmental co-optimization of these systems. Technically, this involves 

optimizing PV generation, energy storage management, and real-time control strategies to 

ensure reliable and efficient operation. Economically, co-optimization aims to minimize 

lifecycle costs, enhance return on investment, and identify favorable market conditions for 

deployment. Environmentally, it seeks to reduce greenhouse gas emissions and land use 

impact while maximizing the use of renewable energy. A balanced approach that jointly 

considers these three dimensions enables the development of smarter, cost-effective, and 

environmentally responsible PVCS solutions, paving the way for a cleaner and more resilient 

energy infrastructure. 

This chapter, therefore, focuses on the optimal design and operation of microgrids by balancing 

technical performance, economic viability, and environmental impact. These challenges are 

addressed through an integrated approach that combines system sizing and energy 

management into a single decision-making framework. The proposed method is based on a 

multi-objective mixed-integer linear programming model, aimed at minimizing both the 

levelized cost of energy and the life cycle emissions of a microgrid composed of photovoltaic 

systems, battery storage, and an optional grid connection. 

The first part of this chapter presents the developed methodology and its application to the city 

of Compiègne, France. It also includes a comparison between a grid-connected microgrid and 

an isolated (off-grid) microgrid. 

While the second section introduces a case study of EVs into the co-optimization framework 

developed previously. It evaluates the algorithm by testing various combinations of 

technologies and applying different case studies in differents geographic locations to highlight 

the influence of key input parameters such as solar irradiance, temperature, and other 

technical constraints. 
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2.1 Optimal sizing and energy management for a microgrid: A joint 
MILP approach for minimization of energy cost and carbon 
emission 

This research addresses the optimal design and operation of microgrids challenges by 

proposing a comprehensive approach that combines the sizing and energy management 

problems of a microgrid into a single decision-making framework. The study introduces a joint 

multi-objective mixed-integer linear programming algorithm that minimizes the levelized cost 

of energy (LCOE) and life cycle emissions (LCE) of the microgrid formed by photovoltaic 

system, battery storage, and with/without grid connections5,6. 

2.1.1 Introduction 

2.1.1.1 Context 

Climate change is a pressing issue in the 21st century, largely caused by the use of fossil fuel-
based energy sources which emit high levels of CO2. The Paris Agreement aims to keep global 
temperatures below 2°C above pre-industrial levels by reducing reliance on fossil-fuel based 
electricity production [1]. Renewable energy sources (RES) are a key solution to reach carbon 
neutrality, as they emit no CO2 during energy generation. Microgrids can be defined as a 
compact and interconnected energy setup that combines different distributed energy resources 
such as solar panels, wind turbines and energy storage with local energy demands [2]. 
Accordingly, there is a strong connection between micro grids and RES, as microgrids provide 
a valuable platform for integrating RES and maximizing their compatibility with local battery 
energy storage system (BESS) resources [3]. Microgrids can also address the inconsistent 
nature of RES, such as solar and wind power, by incorporating them with BESS, demand 
response, and other conventional generation. 
 
Optimal sizing of microgrid components is important because it helps to ensure that the 
microgrid system meets the desired performance requirements while minimizing the overall 
cost of the system [4]. Microgrid optimal sizing involves selecting the best size and number of 
components to achieve the desired level of reliability, resilience, and cost-effectiveness [5]. 
Microgrid system offers the ability to operate the electricity grid both as grid-connected 
microgrid (GCMG) and isolated microgrid (IMG) without jeopardizing the reliability and stability 
of the system while increasing the use of renewable energy [6] and ensuring the cost-beneficial 
operation of local networks [7].  
One potential advantage of microgrids is their capability to adapt intelligent approaches in order 
to facilitate peak consumption reduction in order to improve grid reliability [8]. Peak shaving 
can be considered as one of the objectives while determining the optimal capacities of the 
microgrid components, to aid increasing energy efficiency and reliability with reduced energy 
cost and carbon emission release. In the context of microgrids, system efficiency and reliability 

 

 

5 This study is based on the following publication: F. A. Kassab, B. Celik, F. Locment, M. Sechilariu, S. Liaquat, and T. M. Hansen, 

“Optimal sizing and energy management of a microgrid: A joint MILP approach for minimization of energy cost and carbon 

emission,” Renewable Energy, vol. 224, p. 120186, 2024, doi: https://doi.org/10.1016/j.renene.2024.120186.  

6 This work has been achieved within the framework of EE4.0 (Energie Electrique 4.0) project. EE4.0 is co-financed by European 

Union with the financial support of the European Regional Development Fund (ERDF), French State and the French Region of 

Hauts-de-France.   

https://doi.org/10.1016/j.renene.2024.120186
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rely heavily on optimal sizing and energy management of the microgrid equipment. These two 
factors are crucial in ensuring the microgrid operation at full effectiveness.  
 
Three microgrid types are available: AC, DC, and hybrid AC/DC. AC microgrids are compatible 
with diverse power sources, while AC/DC microgrids can accommodate both AC and DC loads, 
combining various power sources. However, a DC microgrids with photovoltaic (PV) systems 
and battery BESS offers several advantages over AC microgrids. These include the reduction 
of system losses attributed to DC power generation by these components. Notably, regulating 
only the voltage amplitude is necessary, and synchronization is not required. Moreover, the 
absence of reactive power in the DC bus allows connecting AC sources to the common DC 
bus, which operates solely with active power. This configuration enhances power efficiency 
and transfer capability. Additionally, other advantages are presented in [9]. 

2.1.1.2 Literature review  

The majority of scientific literature and commercial software in the field of optimization studies 
primarily concentrate on the optimization of single-objective, which aims to minimize the overall 
costs of the system [10], [11] or multi-objective that are usually economic and environmental 
as in [12]. The studies that investigate the optimal sizing of microgrids typically fall into two 
main categories. In the first category, the optimization of the component’s size and the energy 
management are separated. In that manner, the integration of RES is investigated without co-
optimizing the energy management within a microgrid using heuristic rule-based approaches. 
In the second category, the optimal sizing of the RES components is combined with optimal 
energy management, where the combination of the sizing and energy management is usually 
done using mixed-integer linear programming (MILP).  
 
In the first category, rule-based approaches with predefined strategies use heuristic algorithms 
to size microgrid components within an acceptable computation time because the optimization 
problem is large in terms of constraints and decision variables [13]. However, heuristic 
algorithms do not guarantee a global optimal solution for the optimization problem [14]. In [15], 
the sizing of both GCMG and IMG is achieved using a genetic algorithm (GA), with the aim of 
achieving the optimal levelized cost of energy (LCOE) for the microgrid formed by PV panels 
and BESS. In [16], a GA is also used to study a microgrid consisting of PV, wind turbines, 
BESS, and loads (electric vehicles and electric loads).  
 
The objective functions aimed to minimize three factors: greenhouse gas (GHG) emissions, 
life cycle cost, and the non-renewable energy consumed over the life cycle of the microgrid 
equipment. The work presented in [17] involves the examination of a microgrid comprising PV 
systems, a wind turbine, and storage. This microgrid’s sizing optimization is achieved using 
particle swarm optimization where the energy management within the system is executed 
through the implementation of a rule-based strategy. An IMG case that includes a PV system, 
wind turbine, BESS, and a diesel generator was studied in [18] with the aim of minimizing both 
system cost and CO2 emissions. In [19], multiple microgrid configurations were explored with 
compromises between several indicators such as greenhouse gas emissions versus global 
cost or microgrid autonomy versus global cost. The study in [20] focused on sizing an 
autonomous AC microgrid to minimize energy and installation costs while also reducing the 
probability of loss of supply for improved reliability. In [21], the optimization problem aimed to 
minimize energy and installation costs while maximizing reliability using GA to determine the 
capacity of the BESS, PV, and other components. The study in [22] presents an application of 
the grasshopper optimization algorithm to size an autonomous microgrid composed of PV, 
wind, BESS, and diesel generation. The objective was to minimize cost and CO2 emissions 
while considering battery degradation and energy management between components. The 
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study in [23] discusses integrating life cycle analysis into the design process of hybrid 
microgrids to optimize the design and minimize environmental impact while ensuring technical 
and economic feasibility. 
 
In the second category, MILP is predominantly employed as a primary method. In [24], the 
optimization problem addressed the optimal sizing and energy dispatch of a residential 
microgrid consisting of PV, wind turbine, grid connection, and an electric load. In [14], a convex 
optimization approach was used to determine the optimal sizing and energy management of 
an island microgrid, considering battery degradation. The study in [25] presented a two-stage 
approach for determining the optimal size, service lifetime, and maximum depth of discharge 
of the battery. In [26], the optimal sizing, placement, and daily charge/discharge of a battery in 
the distribution network was studied. An IMG where a cost optimization approach is considered 
with the hourly dispatch, load demand, and generating power MILP method, is demonstrated 
in [27]. In [28], an investigation is conducted on a microgrid implemented in an island territory, 
which incorporated multiple technologies such as PV, wind, biomass, and geothermal sources, 
among others, with the objective function of minimizing the overall costs within the system. In 
[29], a two-stage MILP algorithm is utilized to determine the microgrid’s sizing in the first stage 
and to execute daily energy management in the second stage considering load uncertainty. In 
addition to these two delineated categories, there are investigations wherein the sizing problem 
is addressed by employing heuristic algorithms, while the daily energy management is 
executed through MILP. This hybridized approach has demonstrated potential in mitigating 
computational simulation time [30].  
 
The study previously cited, which performs MILP-based sizing and hourly energy 
management, does not include neither an analysis of the techno-economic-environmental 
relationship for both IMG and GCMG operation modes, nor an examination of the energy 
sources utilized for the local consumption from the grid energy mix. Additionally, the impact of 
peak shaving on LCOE and life cycle emissions (LCE) has not been evaluated. Our work 
extends the state-of-the-art by incorporating a joint multi-objective optimization strategy using 
MILP that combines system planning and energy management to minimize both the LCOE and 
the LCE over the project lifetime by presenting extensive Pareto front analysis. The presented 
optimization algorithm outperforms other algorithms discussed in the literature in terms of 
speed, leveraging only a single binary decision variable, and ensuring an optimal solution for 
energy management along with sizing, without the need for separating them into two distinct 
stages. Moreover, the impact of peak shaving on both the LCOE and LCE is evaluated, and 
the energy sources utilized from the French electricity grid are being evaluated. 

2.1.1.3 Objectives and contributions  

The objective of this research is to enhance the decision-making capabilities of microgrid 
designers by providing them with a comprehensive approach for system planning for both IMG 
and GCMG operation modes. By incorporating a joint multi-objective optimization strategy 
using MILP which ensures a global optimal solution [31], this research enables designers to 
make more informed and effective design choices. These choices involve evaluating various 
proposed solutions and striking a balance between cost and carbon emissions while 
considering technical constraints of energy management problem, to address the complexities 
and trade-offs inherent in microgrid design.  
One of the key novel aspects of this work is the integration of energy management and 
component sizing into a unified optimization problem while ensuring an optimality gap of 0% 
with a decreased computation time in comparison with the existing literature. Implemented in 
Python and solved using CPLEX, the optimization process aims to minimize both the LCOE 
and the LCE. The proposed method allows to perform a comprehensive analysis by evaluating 
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the interdependence among components and their collective influence on the overall system 
performance in terms of emission and cost over the project lifetime. Additionally, by identifying 
the Pareto front– a set of optimal trade-off solutions– the study provides valuable insights by 
proposing the range of feasible solutions and the associated compromises between economic 
and environmental objectives. 
 

 

Figure 2.1-1  General framework of the proposed multi-objective joint optimization 

algorithm. 

The overall structure of the study, as depicted in Figure 2.1-1, encompasses a comprehensive 
set of inputs, including electrical load data, ambient temperature data, solar irradiation data, 
time-of-use (TOU) tariffs with utility grid subscription costs, and economic and environmental 
data for each microgrid component. These inputs form the foundation for the system model, 
which incorporates the physical models of PV systems, BESS, utility grid, and the associated 
converters. By unifying energy management and component sizing within a single framework, 
the optimization problem yields the optimal energy management strategy and optimal 
component sizes for the microgrid system. The main contributions of this study are: 
 

• integrating the sizing and energy management challenges within a DC microgrid 

framework, with due consideration to a project lifespan spanning 25 years; the 

focus extends to achieving hourly optimal energy management within the microgrid; 

• encompassing technical, economic, and environmental dimensions in the microgrid 

context through the formulation of a unified multi-objective MILP algorithm. The 

algorithm’s primary objective is to find an optimal solution, minimizing both the 

LCOE and the LCE of the microgrid, all while optimizing computational efficiency; 

• varying the LCE constraint value to analyse and compare the Pareto front and the 

variation in BESS and PV capacities of the GCMG and IMG operation modes; 

• evaluating the influence of peak shaving on the LCOE and LCE of the microgrid by 

calculating the average variation for each utility grid subscription power; and 

• analysing the energy sources utilized in the French electricity grid under different 

LCOE and LCE scenarios where this assessment involves examining the 

proportional contribution of each energy source and exploring seasonal trends. 
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The research is organized as follows: Section 2.1.2 outlines the system modelling. Section 

2.1.3 formulates the joint multi-objective optimization problem. Section 2.1.4 presents the 

study’s results and analysis. Section 2.1.5 offers a detailed discussion, and Section 2.1.6 

provides the conclusion and perspectives. 

2.1.2 System modelling 

This study analyses a university campus DC microgrid, which includes a DC bus, PV system, 

BESS, a connection to the utility grid, two DC/DC converters, an AC/DC converter, and a DC 

load. The architecture of the microgrid is shown in Figure 2.1-2, which is designed to operate 

with and without the utility grid connection. Excess power generated from the PV system is 

curtailed if the load demand is met, the BESS is fully charged, and the utility grid has reached 

its maximum injection limit (GCMG mode). Each component is formulated prior to determining 

the optimal sizing and the energy management strategy of the DC microgrid in the rest of this 

section. The maximum power point tracking (MPPT) mode of the PV system is accomplished 

through the associated converter. The efficiency of all converters is assumed to be constant 

for simplicity in this study. 

 

Figure 2.1-2 The architecture of the studied DC microgrid. 

2.1.2.1 PV system modelling 

In this study, equation (2.1-1) is used to calculate the PV output power 𝑝𝑃𝑉
𝑀𝑃𝑃𝑇(𝑡𝑖) at each time 

instant 𝑡𝑖, which depends on the solar irradiation and ambient temperature data. It is assumed 

that the PV system operates in MPPT mode and its power output is determined by [32]: 

𝑝𝑃𝑉
𝑀𝑃𝑃𝑇(𝑡𝑖) = 𝑝𝑃𝑉𝑆𝑇𝐶

× 𝑔(𝑡𝑖) × 1 000  × (1 + γ × (𝑇𝑃𝑉(𝑡𝑖) − 25)) × 𝑁𝑃𝑉  (2.1-1) 

𝑤𝑖𝑡ℎ 𝑡𝑖 = 𝑡0, 𝑡0 +  ∆𝑡, ⋯ , 𝑡𝑓   

where 𝑝𝑃𝑉𝑆𝑇𝐶
 is the PV panel rated power at standard test conditions (STC). The STC stands 

for conditions to standardize the performance characteristics of PV panels. It typically refers to 

a solar irradiation of 1 000 W/m2 solar spectrum of air mass 1.5, and PV cell temperature at 

25°C [33]. 𝑔(𝑡𝑖) is the measured solar irradiation, γ is the power temperature coefficient of the 

PV panel, 𝑇𝑃𝑉(𝑡𝑖) is the PV cell temperature, 𝑁𝑃𝑉 is the number of PV panels, and 𝑡𝑖, 𝑡0, ∆𝑡, 

and 𝑡𝑓 are the continuous time, initial time, time step, and simulation time, respectively. In 

equation (2.1-2), the PV cell temperature is calculated as follow [32]: 

𝑇𝑃𝑉(𝑡𝑖) = 𝑇𝑎𝑚𝑏(𝑡𝑖) + 𝑔(𝑡𝑖) ×
𝑁𝑂𝐶𝑇−20 

800
  (2.1-2) 

where 𝑇𝑎𝑚𝑏(𝑡𝑖) is the ambient temperature, and 𝑁𝑂𝐶𝑇 is the nominal operating cell 

temperature. 
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2.1.2.2 Battery system modeling  

The battery is utilized as the energy storage system in the microgrid to fulfil the energy 
requirements in the absence of enough renew able production using stored excess PV 
production at high renewable production times. The energy transfer between the utility grid and 
the battery is prohibited in this study, hence the battery can only be charged by PV production 
and discharged for local load. 

The battery models can be summarized in three models: the first is the charge model, which 
consists of modeling the state of charge (𝑆𝑂𝐶) of the battery [34], the second is the voltage 
model, which focuses on modeling the terminal voltage for more detailed losses calculation 
[35], and the third is the lifetime model which assesses the impact of the operations on the 
battery lifetime [36]. These models could be independent or interdependent from each other. 
In this study, the charge model is considered as follows: 

𝑒𝑏(𝑡𝑖) = 𝑒𝑏(𝑡𝑖−1) + (𝑝𝑏
𝑐(𝑡𝑖) +  𝑝𝑏

𝑑(𝑡𝑖)) ×  ∆𝑡  (2.1-3) 

where 𝑒𝑏(𝑡𝑖) is the quantity of energy at each instant; and 𝑝𝑏
𝑐(𝑡𝑖), and 𝑝𝑏

𝑑(𝑡𝑖) are the charging 

and discharging powers of the battery, respectively. Equation (2.1-3) represents the charge 
model for the battery, despite not considering the 𝑆𝑂𝐶. The reason for this choice is to maintain 
the linearity of the optimization problem, as the calculation of 𝑆𝑂𝐶 involves dividing two 
decision variables (charge/discharge powers and BESS capacity), which makes the problem 
formulation nonlinear. 

2.1.3 Formulation of the joint multi-objective optimization problem  

The optimization problem considers both economic and environ mental objectives and aims to 
find a trade-off between them. By balancing the competing objectives, the joint multi-objective 
optimization problem enables the design of a microgrid that integrates cost-effective solutions 
while reducing CO2 emissions. While the constraints for both IMG and GCMG a real most 
similar, the IMG excludes constraints related to the utility grid. The constraints and objective 
functions are discussed in the following sections. 

2.1.3.1 Constraints  

In the optimization problem, constraints play a crucial role in defining the feasible solution 
space. Firstly, the quantity of BESS energy 𝑒𝑏(𝑡𝑖) is restricted by the maximum and the 
minimum allowed 𝑆𝑂𝐶 as follows: 

𝑆𝑂𝐶𝑚𝑖𝑛 × 𝐸𝑏 ≤  𝑒𝑏(𝑡𝑖)  ≤ 𝑆𝑂𝐶𝑚𝑎𝑥  × 𝐸𝑏  (2.1-4) 

where 𝐸𝑏 is the installed capacity of the BESS in kWh; and 𝑆𝑂𝐶𝑚𝑖𝑛 and 𝑆𝑂𝐶𝑚𝑎𝑥 are the 
minimum and maximum 𝑆𝑂𝐶 of BESS, respectively. Ensuring a dependable energy supply for 
the subsequent year is of paramount importance, necessitating that the stored energy within 
the BESS at the end of the one-year simulation equals or surpasses the initial battery energy 
(taken as 50% of the storage capacity in this study). This strategic choice is implemented to 
guarantee a sufficiently robust BESS energy reserve capable of meeting the anticipated load 
demands in the forthcoming year. Omitting this constraint from the optimization algorithm could 
result in the BESS 𝑆𝑂𝐶 settling at the minimum 𝑆𝑂𝐶 level, potentially leading to load shedding 
in the subsequent year due to inadequate stored energy in the BESS. This constraint is 
formulated as follows: 

𝑒𝑏(𝑡𝑓) ≥ 0.5  (2.1-5) 

where 𝑒𝑏(𝑡𝑓) is the BESS energy at the end of the one-year simulation. 
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To specify the power flow of the BESS and the utility grid powers, the constraints on BESS 

charge/discharge powers (𝑝𝑏
𝑐(𝑡𝑖)/ 𝑝𝑏

𝑑(𝑡𝑖)) and the utility supply/inject powers (𝑝𝑔
𝑠 (𝑡𝑖) / 𝑝𝑔

𝑖𝑛(𝑡𝑖)) 

are established as follows: 

𝑝𝑏
𝑐(𝑡𝑖) ≥  0,  𝑝𝑏

𝑑(𝑡𝑖) ≤  0  (2.1-6) 

−𝑝𝑔
𝑚𝑎𝑥 ≤  𝑝𝑔

𝑠 (𝑡𝑖) ≤  0  (2.1-7) 

0  ≤ 𝑝𝑔
𝑖𝑛(𝑡𝑖)  ≤  𝑝𝑔

𝑚𝑎𝑥  (2.1-8) 

where 𝑝𝑔
𝑚𝑎𝑥 is the maximum limit that can be supplied/injected by/into the utility grid. The 

convention of representing injection as positive and supply as negative is to reflect the direction 

of power flow. The constraints for maximum charge/discharge powers of the BESS are not 

included into the formulation due to the conflicting need of determining the optimal capacity of 

the BESS-associated converter in the sizing optimization problem. Therefore, to determine 

converter capacities, the nominal power value of the associated converters of the PV, BESS, 

and utility grid is considered to be equal or greater than electric power that flows through them 

as stated below: 

𝑝𝑃𝑉
𝑀𝑃𝑃𝑇(𝑡𝑖) ≤  𝑁𝑃𝑉

𝑐𝑜  (2.1-9) 

− 𝑝𝑏
𝑑(𝑡𝑖) × 𝜇𝑑 + 𝑝𝑏

𝑐(𝑡𝑖)/𝜇𝑐/𝛾𝑏
𝑐0 ≤ 𝑁𝑏

𝑐0   (2.1-10) 

 − 𝑝𝑔
𝑠 (𝑡𝑖) + 𝑝𝑔

𝑖𝑛(𝑡𝑖)/𝛾𝑔
𝑐0 ≤ 𝑁𝑔

𝑐0   (2.1-11) 

where 𝑁𝑃𝑉
𝑐𝑜 , Nb

co, and 𝑁𝑔
𝑐𝑜 are the nominal power capacity of the PV, the BESS, and the utility 

grid converters, respectively; and γ𝑏
𝑐𝑜 and γ𝑔

𝑐𝑜  are the efficiency of the BESS and utility grid 

converters, respectively. 

If the load power surpasses the PV power, the BESS should discharge and/or the utility grid 

should provide power. Conversely, the BESS must be charged and/or the surplus power 

should be fed into the utility grid. Therefore, the energy management within the microgrid 

typically requires the use of ‘‘if-else’’ conditions to control the power flow among each microgrid 

component. The ‘‘if-else’’ statements are used in programming to make decisions based on 

certain conditions; however, they cannot be expressed as linear equations or inequalities, 

hence it cannot be used directly in linear programming (LP). However, some formulations of 

certain problems may require the use of binary variables for the ‘‘if-else’’ statement, and in 

such cases alternative techniques may be used to model the optimization problem. As a 

solution in this study, the ‘‘Big M’’ method is employed that introduces a large constant value 

𝑀 (typically set to 104) and a binary decision variable 𝑥𝑎𝑢𝑥(𝑡𝑖).The Big M method works by 

defining constraints that represent the conditions in ‘‘if-else’’ statements. The binary decision 

variable takes on either the value of 1 or 0, and the large constant value is used to penalize 

the objective function if the conditions are not met.  When 𝑥𝑎𝑢𝑥(𝑡𝑖) = 1, the constraints 

corresponding to the ‘‘if’’ part of the ‘‘if-else’’ statement are active, otherwise if 𝑥𝑎𝑢𝑥(𝑡𝑖) = 0   the 

‘‘else’’ constraints are active. 

This allows to consider the different scenarios represented by the “if-else” conditions, while the 

optimization problem remains linear [37]. 

𝑀  × 𝑥𝑎𝑢𝑥(𝑡𝑖) − (𝑝𝐿
𝐷(𝑡𝑖) − 𝛾𝑃𝑉

𝑐0 × 𝑝𝑃𝑉
𝑀𝑃𝑃𝑇(𝑡𝑖)) ≥ 0   (2.1-12) 

𝑀  × (1 − 𝑥𝑎𝑢𝑥(𝑡𝑖)) − (𝛾𝑃𝑉
𝑐0 × 𝑝𝑃𝑉

𝑀𝑃𝑃𝑇(𝑡𝑖) −  𝑝𝐿
𝐷(𝑡𝑖) ) ≥ 0  (2.1-13) 
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Where γ𝑃𝑉
𝑐𝑜  is the PV converter efficiency, and 𝑝𝐿

𝐷(𝑡𝑖) is the load demand. In equations (2.1-12) 

and (2.1-13), 𝑥𝑎𝑢𝑥(𝑡𝑖) = 0  when   𝑝𝑃𝑉
𝑀𝑃𝑃𝑇(𝑡𝑖) −  𝑝𝐿

𝐷(𝑡𝑖) ≥ 0  and 𝑥𝑎𝑢𝑥(𝑡𝑖) = 1  when 𝑝𝐿
𝐷(𝑡𝑖) −

 γ𝑃𝑉
𝑐𝑜 × 𝑝𝑃𝑉

𝑀𝑃𝑃𝑇(𝑡𝑖)  ≥ 0 . Once 𝑥𝑎𝑢𝑥(𝑡𝑖) is determined, the “if-else” conditions are implemented 

using constraints to control the BESS and utility grid power as follows: 

𝑝𝑔
𝑠(𝑡𝑖) ×  𝛾𝑔

𝑐𝑜, 𝑝𝑏
𝑑(𝑡𝑖) ×  𝛾𝑏

𝑐𝑜 × 𝜇𝑑 ≥ 𝑀 × 𝑥𝑎𝑢𝑥(𝑡𝑖)   (2.1-14) 

𝑝𝑔
𝑖𝑛(𝑡𝑖)/𝛾𝑔

𝑐𝑜, 𝑝𝑏
𝑐(𝑡𝑖)/𝜇𝑐/𝛾𝑏

𝑐𝑜 ≤ 𝑀 × (1 − 𝑥𝑎𝑢𝑥(𝑡𝑖))  (2.1-15) 

Where γ𝑏
𝑐𝑜 represents the efficiency of the BESS converter, and 𝜇𝑐 and 𝜇𝑑 represent the 

charging and discharging efficiencies of the battery, respectively. In equations (2.1-12) and 

(2.1-13), the algorithm determines 𝑝𝑔
𝑠 (𝑡𝑖) = 0, 𝑝𝑏

𝑑(𝑡𝑖) = 0 when 𝑥𝑎𝑢𝑥(𝑡𝑖) = 0 , and 𝑝𝑔
𝑖𝑛(𝑡𝑖) = 0,  

𝑝𝑏
𝑐(𝑡𝑖) = 0 when 𝑥𝑎𝑢𝑥(𝑡𝑖) = 1 . 

The control of the battery discharge and the utility grid supply in order to not exceed the load 

power within the system is formulated as follows:  

𝑝𝑔
𝑠(𝑡𝑖) × 𝛾𝑔

𝑐𝑜 + 𝑝𝑏
𝑑(𝑡𝑖) × 𝛾𝑏

𝑐𝑜 × 𝜇𝑑 + 𝑀 × (1 − 𝑥𝑎𝑢𝑥(𝑡𝑖))  ≥  

− (𝑝𝐿
𝐷(𝑡𝑖) − 𝛾𝑃𝑉

𝑐𝑜 × 𝑝𝑃𝑉
𝑀𝑃𝑃𝑇(𝑡𝑖))   

(2.1-16) 

In the absence of (2.1-16), there is a possibility that the battery can over-discharge beyond the 

required load demand. This situation arises due to the conditions described in equations 

(2.1-14), (2.1-15), when 𝑥𝑎𝑢𝑥(𝑡𝑖)  =  1, the optimization algorithm might discharge the BESS 

more than the load demand (avoid selling energy to utility grid). Additionally, it is important to 

note that in convex optimization, multiple optimal solutions can exist, but equation 

(2.1-16)serves the critical purpose of eliminating solutions where the battery is discharged 

beyond the load demand, ensuring the appropriate power balance. 

Lastly, the DC bus net power 𝑝𝑏𝑢𝑠(𝑡𝑖) of the system is determined by summing the 

entering/leaving powers on the DC bus of the microgrid as in equation (2.1-17):  

𝑝𝑏𝑢𝑠(𝑡𝑖) =  𝑝𝐿
𝐷(𝑡𝑖) −  𝛾𝑃𝑉

𝑐0 × 𝑝𝑃𝑉
𝑀𝑃𝑃𝑇(𝑡𝑖) + 𝑝𝑏

𝑐(𝑡𝑖)/𝜇𝑐/𝛾𝑏
𝑐𝑜   + 𝑝𝑏

𝑑(𝑡𝑖) ×  𝜇𝑑 × 𝛾𝑏
𝑐0    

+ 𝑝𝑔
𝑠(𝑡𝑖) × 𝛾𝑔

𝑐𝑜 + (𝑝𝑔
𝑖𝑛(𝑡𝑖)) × 𝛾𝑔

𝑐𝑜 ≤ 0  

(2.1-17) 

According to equation (2.1-17), when 𝑝𝑏𝑢𝑠 (𝑡𝑖)  <  0 , the produced PV power exceeds the total 
consumption power, battery charging, and grid selling powers; hence, the surplus generation 
should be curtailed. On the other hand, when 𝑝𝑏𝑢𝑠 (𝑡𝑖)  =  0, the generation and consumption 
powers are equal, thus there is no surplus generation in the DC microgrid. However, it should 
be noted that if 𝑝𝑏𝑢𝑠 (𝑡𝑖) was chosen to be strictly equal to zero in equation (2.1-17) the 
algorithm would be forced to utilize all the PV power, which means that the excess power 
should be either injected into the utility grid or stored in the BESS. Therefore, the algorithm in 
this case increases the capacity of the BESS and reduces the capacity of the PV system to 
obtain 𝑝𝑏𝑢𝑠(𝑡𝑖)  = 0 for all times. However, this will not be the most cost-effective solution (if 
the cost of the PV system is lower than BESS), because the algorithm will force increasing the 
BESS capacity in order to reduce curtailment. To avoid that situation, PV curtailment is allowed 
by enabling 𝑝𝑏𝑢𝑠(𝑡𝑖)  ≤ 0 in equation (2.1-17). 

2.1.3.2 Objective functions  

The multi-objective optimization problem is formulated to obtain the system’s minimal annual 

LCOE and LCE while ensuring an optimized energy management. The LCOE is the average 
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cost per unit of producing electricity over the lifetime of a power plant, while LCE is the total 

amount of CO2 emissions produced over the entire lifecycle of a product. The LCOE is 

calculated as in: 

𝐿𝐶𝑂𝐸 =  
𝑇𝐶×𝐶𝑅𝐹

∑ 𝑝𝐿
𝐷(𝑡𝑖)×∆𝑡

𝑡𝑓
𝑡0

  (2.1-18) 

where 𝑇𝐶 is the total cost over the project lifetime, 𝐶𝑅𝐹 is the capital recovery factor. The 𝐶𝑅𝐹 

is a financial metric used to determine the annual capital cost from the project lifetime cost [8]. 

The 𝑇𝐶 and the 𝐶𝑅𝐹 are calculated as follows: 

𝑇𝐶 = 𝐶𝑖𝑛𝑣 + 𝐶𝑚𝑡𝑛 + 𝐶𝑟𝑒𝑝 + 𝐶𝑔𝑟𝑖𝑑 − 𝐶𝑠𝑣  (2.1-19) 

𝐶𝑅𝐹 =  
𝑑(1+𝑑)𝑄

(1+𝑑)𝑄−1
  (2.1-20) 

where 𝑑 is the discount rate, 𝑄 is the project lifetime, and 𝐶𝑖𝑛𝑣, 𝐶𝑚𝑡𝑛,𝐶𝑟𝑒𝑝,𝐶𝑔𝑟𝑖𝑑,𝐶𝑠𝑣 are the 

investment, maintenance, replacement, grid, and salvage value costs, respectively, which are 
calculated as [15]: 

𝐶𝑖𝑛𝑣 = ∑ 𝐶𝑖𝑛𝑣
𝑘  × 𝑁𝑘 +𝐾

𝑘=1 𝐶𝑑𝑒𝑝  (2.1-21) 

𝐶𝑚𝑡𝑛 =  ∑ 𝐶𝑚𝑡𝑛
𝑘𝐾

𝑘=1 × 𝑁𝑘  ∑ (
1+ 𝜀

1+𝑑
)

𝑞
𝑄
𝑞=1   (2.1-22) 

𝐶𝑟𝑒𝑝 =  ∑ 𝐶𝑟𝑒𝑝
𝑘𝐾

𝑘=1 × 𝑁𝑘  ∑ (
1+ 𝜀

1+𝑑
)

𝑟
𝑁𝑂𝑅
𝑟=1   (2.1-23) 

𝐶𝑔𝑟𝑖𝑑 = (𝐶𝑠𝑢𝑏  −  ∆𝑡 × (∑ 𝑝𝑔
𝑠 (𝑡𝑖) × 𝜆𝑠(𝑡𝑖) + 𝑝𝑔

𝑖𝑛(𝑡𝑖) × 𝜆𝑖𝑛)
𝑡𝑓

𝑡0
) × ∑ (

1+ 𝜀

1+𝑑
)

𝑞
𝑄
𝑞=1   (2.1-24) 

where 𝑁𝑘 is the total number of the 𝑘𝑡ℎ microgrid component (PV, BESS, etc.), 𝑘 is the total 

number of microgrid components, and 𝐶𝑖𝑛𝑣
𝑘  and 𝐶𝑑𝑒𝑝  are the 𝑘𝑡ℎ  component investment cost 

and the microgrid deployment cost, respectively. 

The microgrid deployment cost includes the installation of the microgrid components (such as 
wiring, concrete, steel, wood, and electrical connections), as well as labour costs and indirect 

costs associated with the microgrid installation. For the 𝑘𝑡ℎ microgrid component, 𝐶𝑚𝑡𝑛
𝑘  is the 

operation and maintenance cost; ε is the escalation rate; 𝐶𝑟𝑒𝑝
𝑘  is the replacement cost; 𝑁𝑂𝑅 is 

the number of rth component replacements over the project lifetime; 𝑞 and 𝑟 are the year and 

replacement indices, respectively; and λ𝑠 and λ𝑖𝑛 are the grid tariffs for power supply (buying 
from the grid) and injection (selling to the grid), respectively. Finally, 𝐶𝑠𝑢𝑏 represents the fixed 
subscription cost for the utility grid, which is a fixed annual fee imposed by the French utility 
grid companies [38] and is paid by customers to maintain their connection to the grid, covering 
infrastructure upkeep and operational expenses. The subscription cost is determined by the 
utility companies, and its value is taken differently based on the registered maximum power 
rating (allowed peak consumption) of the grid connection. The salvage cost is considered to 
be 10% of the PV investment cost and 20% of the battery investment cost [15]. 

The second objective function is formulated to obtain the system’s minimal annual LCE given 
in equation (2.1-25) as follows: 

𝐿𝐶𝐸 =  𝐿𝐶𝐸𝑃𝑉 + 𝐿𝐶𝐸𝐵𝐸𝑆𝑆 + 𝐿𝐶𝐸𝑔𝑟𝑖𝑑    (2.1-25) 

𝐿𝐶𝐸𝑃𝑉 =  
𝛼𝑃𝑉×𝑝𝑃𝑉

𝑀𝑃𝑃𝑇

𝑄
    (2.1-26) 

𝐿𝐶𝐸𝐵𝐸𝑆𝑆 =  
𝛼𝑏×𝐸𝑏×(𝑁𝑂𝑅+1)

𝑄
    (2.1-27) 
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𝐿𝐶𝐸𝑔𝑟𝑖𝑑 =  ∑ 𝑝𝑔
𝑠 (𝑡𝑖) × 𝛼𝑔(𝑡𝑖) ×  ∆𝑡

𝑡𝑓

𝑡𝑖=𝑡0
   (2.1-28) 

where 𝐿𝐶𝐸𝑃𝑉 , 𝐿𝐶𝐸𝐵𝐸𝑆𝑆, and 𝐿𝐶𝐸𝑔𝑟𝑖𝑑 are the LCE of the PV system, BESS, and the utility grid, 

respectively; α𝑃𝑉 is the equivalent CO2 emissions of the PV system per kWp; α𝑏 is the 

equivalent CO2 emissions of the BESS per kWh installed; and α𝑔(𝑡𝑖) is the dynamic emissions 

from the utility grid per kWh. 

The optimization problem aims to minimize two objective functions, which are LCE and LCOE. 
Several approaches are used to solve a multi-objective optimization problem such as 
weighted-sum, trade off constraint, hierarchical, goal programming, and global criterion 
methods [39]. In this study, the trade-off constraint approach is used as follows: 

𝑚𝑖𝑛(𝐿𝐶𝑂𝐸)  (2.1-29) 

𝐿𝐶𝐸  ≤   ∈  (2.1-30) 

where ∈ represents predetermined value that the objective functions are not allowed to 
surpass. The trade-off methodology, a widely adopted strategy in multi-objective optimization, 
involves the transformation of one of the two objective functions into an inequality constraint 
with an upper bound represented by ∈. By manipulating the parameter ∈, multiple solutions for 
the LCOE can be derived. This method effectively converts the original multi-objective 
optimization problem into a mono-objective form. The motivation for adopting this approach 
arises from the distinct units of measurement associated with LCOE and LCE. However, this 
method eliminates the need to convert the units of the two separate objective functions. 

The optimization problem in equation (2.1-29) is solved by determining the following decision 

variables under the constraints in equation (2.1-14) to equation (2.1-17): the BESS capacity 

(𝐸𝑏), the number of PV panels (𝑁𝑃𝑉), the BESS charge/discharge powers (𝑝𝑏
𝑐(𝑡𝑖)/ 𝑝𝑏

𝑑(𝑡𝑖) the 

utility grid supply/inject powers (𝑝𝑔
𝑠 (𝑡𝑖) / 𝑝𝑔

𝑖𝑛(𝑡𝑖)), and the auxiliary variables (𝑥𝑎𝑢𝑥 (𝑡𝑖)); and the 

capacity of PV, BESS, and the utility grid associated converters (𝑁𝑃𝑉
𝑐𝑜 ,  𝑁𝑏

𝑐𝑜, 𝑁𝑔
𝑐𝑜). 

2.1.4 Results and analysis 

In this study, the optimization problem is solved using data in a one-hour time resolution (time 

step of Δt  =  1 ℎ), and the power profiles of the energy management are determined for a 

duration of one year (8 760 h). Four types of data are presented in this section, which are 

meteorological, electrical load, electricity tariff, and energy mix emissions data. The technical 

and economic parameters used in the study are detailed in Table 2.1-1.  

Moreover, the CO2 plays a predominant and substantial role in total greenhouse gas emissions 

compared to other gases [40]. Therefore, the current analysis focuses exclusively on carbon 

emissions, and the equivalent CO2 emission data consider the manufacturing, transportation, 

and end-of-life of components, excluding CO2 contribution of converters, which is negligible, 

as reported in [18].  

The project lifetime is chosen to be 25 years [41] with a discount rate of 4% [42], an escalation 

rate 3% [41], a deployment cost of 40% of PV cost per year [15]. Lastly, the optimization 

problem is implemented in Python 3.8 and solved using the CPLEX solver on a desktop 

computer with an Intel Xeon W-2145 @3.7 GHz processor, 64 GB RAM, and a 64 bit operating 

system. 
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Table 2.1-1 Technical, economic, and environmental parameters. 

 

2.1.4.1 Meteorological and electrical load data 

The meteorological data for Compiègne, a city located in northern France (latitude: 49.41° 
North, longitude: 2.82° East), serves as the primary case study for conducting simulations.  

The solar irradiation and ambient temperature data, presented in Figure 2.1-3 (a), are acquired 
through sensors strategically positioned in the study area. The solar irradiation sensor is 
equipped with a monocrystalline silicon (Si) sensor, featuring a permissible tolerance of ± 5%. 
Functioning within an extensive temperature range from – 40°C to 85°C, this sensor ensures 
reliable operation across diverse environmental conditions. The ambient temperature sensor 
operates within the temperature range of – 40°C to +180°C, with a nominal tolerance of ± 
0.8°C, thereby attaining a notable level of precision. Together, these sensors provide 
indispensable meteorological data and significantly enhance the predictive accuracy of the 
model. 

The electrical load considered in the study is for a university building and its subscribed power 
limit which is 36 kW as depicted in Figure 2.1-3 (b). The electrical load profile is derived from 
empirical data, capturing the typical energy consumption patterns exhibited by the building. 
Analysis of historical data reveals that the university building, affiliated with the Université de 
Technologie de Compiègne, has exhibited no discernible growth. This absence of growth is 
attributed to energy-related concerns, particularly those addressed by governmental incentives 
in France targeting CO2 emissions. These incentives, coupled with global considerations 
surrounding building consumption, especially for heating, have collectively contributed to the 
absence of load increase. The observations over the past five years affirm the trend in 
consumption, substantiating the aforementioned factors. It is noteworthy that the optimization 
problem remains adaptable to potential load growth scenarios, as an assumption, without 
impeding its solution.  

The objective of limiting the subscribed power from the utility grid is to perform peak shaving, 
as described in [8]. The cited research that restricts the discharge of BESS when the electrical 
load is below the maximum grid limit. However, it should be noted that BESS can be 
discharged all times as long as it is profitable or less polluting compared to utility grid. 
Therefore, the battery discharge power is not restricted for only peak shaving in this study, it 
can be also used when the load is less than 36 kW. 
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                        (a)                                                                              (b)  

 

(c) 

Figure 2.1-3 Hourly input data from 2021: (a) Solar irradiation and ambient temperature, 

(b) the electrical load, and (c) utility grid CO2 emissions. 

2.1.4.2 Electricity tariffs and energy mix emissions  

TOU electricity price and the cost of grid subscription are taken from one of the electricity 
service providers in France [38]. Accordingly, the cost of 36 kVA power subscription (𝐶𝑠𝑢𝑏) for 
TOU option is 494.92 €/year [38], and TOU tariff is 0.1841 €/kWh for on-peak hours (06:00 
A.M – 10:00 P.M) and 0.1470 €/kWh for off-peak hours (10:00 P.M – 06:00 A.M) [47] for the 
studied location. The grid injection price is fixed at 0.06 €/kWh all times over the year [48]. 
Figure 2.1-3 (c) displays the utility grid dynamic emissions for the year 2021, where the French 
transmission system operator RTE provides real-time CO2 emissions data in [49]. 

2.1.4.3 Technical, economic, and environmental results 

The economic and environmental results for 𝐿𝐶𝐸 ≤ 225,000 𝑘𝑔𝐶𝑂2,𝑒𝑞 in IMG operating mode 

and GCMG operations mode are displayed in Table 2.1-2. The system LCE is computed as 
the LCE sum of the PV, BESS, and utility grid. The results in Table 2.1-2 show that the system’s 
LCOE and LCE are higher in IMG mode compared to GCMG mode.  

One reason is that the French electricity grid is heavily dominated by the nuclear power plants 
which provides cost-efficient and low-carbon electricity services for the end-users. Therefore, 
the utility grid provides already a clean and cost-efficient solution in GCMG case, where the 
BESS capacity is mostly determined to provide electricity when the load demand passes the 
subscribed grid power limit. 
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Additionally, the specific characteristics of the PV technology, including the incorporation of 
phase change material [45], make the PV system the primary contributor to the overall 
system’s LCE in both operational modes. The microgrid components’ sizes and technical 
results under identical conditions (where 𝐿𝐶𝐸 ≤ 225,000 𝑘𝑔𝐶𝑂2,𝑒𝑞 in IMG operating mode and 

GCMG operations mode) are presented in Table 2.1-3. The size of BESS and PV for IMG is 
higher than that of GCMG, with a percentage difference of 160.9% for the PV and a difference 
of 154% for the BESS.  

Larger PV and BESS capacities translate to increased capacities for their associated 
converters, as illustrated in Table 2.1-3 for the IMG case in comparison with GCMG operation 
mode. CPLEX computation time for IMG is lower than that of GCMG because the IMG 
operation mode is based on LP, requiring fewer decision variables and constraints.  

In contrast, the GCMG operation mode is a MILP with the addition of a binary decision variable 
and decision variables related to the utility grid. The outcomes from Table 2.1-2 and Table 
2.1-3 are comprehensively analyzed in the following section. 

Table 2.1-2 Economic and environmental results in IMG and GCMG operation modes. 

 

Table 2.1-3 Components size and technical results for IMG and GCMG operation 

modes. 

 

2.1.4.3.1 Isolated microgrid 

Another reason for high LCOE and LCE in the IMG mode is that load shedding is not allowed, 
as stated in equation (2.1-18). This means that the optimization problem must be able to meet 
the load demand even during periods of low solar irradiation, such as the winter season.  
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Figure 2.1-4(a) depicts the energy profiles throughout a year, indicating a significant amount 
of curtailed power generated by the PV system, particularly during the summer season. 
Specifically, the curtailed PV energy amounts to about 83% of the total PV output energy. Even 
though the PV curtailed power is high, the PV contribution to the system still reaches around 
60%, with the remaining contribution coming from the BESS. Figure 2.1-5 shows simulation 
results for August 19 – 20 and November 13 – 14, which are the dates with the highest and 
lowest solar irradiation levels, respectively. As solar irradiation is typically high during the 
summer, the battery is not always charging during this period as there is an excess PV 
generation throughout this time. However, the BESS is configured to maintain its maximum 
𝑆𝑂𝐶 between November 13 and 14 to ensure a continuous supply of power to meet the load 
demand.  

The IMG is sized to match the energy needs between November 13 and 14, which demands 
significant capacities for both the PV system and BESS. As a result, there is a high amount of 
energy from the PV system that is being curtailed during the period of August 19 to 20. This 
high level of energy curtailment (see Table 2.1-3 and Figure 2.1-4 (a)) also affects the size of 
the PV-associated converter, as it needs to be able to handle the incoming energy from the 
PV system.  

It can be seen in Table 2.1-3 that the BESS has a maximum charging/discharging power that 
is low in comparison to its capacity, indicating that the BESS does not overcharge or discharge 
as the charging C-rate equals 0.156 and the discharging C-rate equals 0.044. Avoiding high 
BESS C-rates is recommended for better safety and lifespan of the battery [50].  

Furthermore, the relatively low number of complete BESS cycles is a result of the BESS’s 
substantial capacity. In simpler terms, because the BESS can store a lot of energy, it does not 
need to cycle through charging and discharging as frequently as a smaller BESS would. 
Additionally, this demonstrates that the assumption of a fixed battery replacement every five 
years guarantees a well-operating BESS, as 73 BESS cycles per year will not exceed the 
cycles to failure in the fifth year for the chosen battery [46]. 

 

(a)                                                              (b) 

Figure 2.1-4 Energy profiles over one year for (a) IMG and (b) GCMG operation modes. 

2.1.4.3.2 Grid-connected microgrid 

The LCOE and LCE have significantly decreased in the GCMG operation mode compared to 
the IMG mode (see Table 2.1-2). This decrease can be attributed to the lower cost of 
purchasing power from the utility grid as opposed to increasing the capacity of BESS. Figure 
2.1-4(b) demonstrates the power profiles over a simulated year, revealing a noteworthy 
reduction in curtailed power generated by the PV system compared to the IMG mode. 
Additionally, the graph highlights the significance of grid injection and battery charging during 
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the summer season. The load is served directly from the utility grid during periods of low solar 
irradiation (November 13 – 14, see Figure 2.1-5 (d)), rather than relying on an increased PV 
and BESS capacities. This results in decreased capacity for PV and BESS capacities and their 
associated converters in the GCMG mode compared to the IMG mode. Hence, during periods 
of high solar irradiation (August 19 – 20), as illustrated in Figure 2.1-5 (b), there is a reduction 
in curtailed power. Overall, the curtailed power decreased to 17% in this operation mode with 
a PV contribution of 54%. During the summer months, when solar irradiation is abundant, the 
𝑆𝑂𝐶 of BESS is experiencing complete cycles because it is guaranteed that the BESS would 
be recharged the next day. Conversely, the 𝑆𝑂𝐶 of BESS is kept at a certain level during the 
period of November 13 – 14 to maintain a sufficient power supply for the load. The 
charging/discharging C-rates of the BESS are approximately 0.184 and 0.121, respectively. 
Although these rates are higher than those of the IMG operation mode, they are still considered 
low, ensuring that the battery does not overcharge or over discharge, thereby ensuring the 
safety of the battery. Similar to the IMG operation mode, the BESS cycles of 166 per year 
ensure a well-operating BESS during the five years considered in this study. 

 

Figure 2.1-5 Power profiles of Aug 19 – 20 for (a) IMG, (b) GCMG operation modes, and 

of Nov 13 – 14 for (c) IMG, (d) GCMG operation modes. 

2.1.4.4 Analysis of Pareto Fronts 

A key idea in multi-objective optimization is the Pareto front, sometimes referred to as the 
Pareto set or Pareto frontier. It describes a group of solutions to a problem area that cannot 
be enhanced for one target without degrading the effectiveness of another objective. In other 
words, it symbolizes the trade-offs among multiple competing aims. In this study, the Pareto 
front is determined by manipulating ϵ (see equation (2.1-30)) where the trade-off between the 
objectives can be altered, leading to different solutions on the Pareto front. Figure 2.1-6 
illustrates the Pareto front along with the variations observed in BESS and PV panels for both 
IMG and GCMG operation modes. 

In the instance of the IMG, there is an approximate 28% difference in both LCOE and LCE 
between various solutions. For the GCMG mode, these differences amount to about 23% for 
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LCOE and 17% for LCE. It can be seen that reducing the LCE would necessitate an increase 
in LCOE and vice versa. This can be explained by the fact that reducing one objective requires 
sacrificing some of the other objective. Additionally, reducing the LCE of the system can be 
achieved by increasing the proportion of BESS in the overall system and decreasing the 
number of PV panels. This finding is consistent with the observation that the LCE of the PV 
system is slightly greater than that of the BESS in this study. 

For the GCMG operation mode, the Pareto front exhibits a generally downward slope from left 
to right, indicating that it is typically possible to reduce the LCE without substantially increasing 
the LCOE, but decreasing LCOE often necessitates accepting higher levels of LCE. The 
variation of the BESS and PV panels is the same for both operation modes, where the BESS 
increases and the PV decreases whenever the LCE decreases. 

 

Figure 2.1-6 Pareto front and the variation of BESS and PV panels for (a) (c) IMG 

operation mode (b) (d) GCMG operation modes. 

Figure 2.1-7 shows a radar plot that compares the economic indicators such as investment, 

maintenance, replacement, salvage value, and grid costs (for GCMG operation mode). It can 

be inferred that when LCOE is the lowest, the investment cost is the highest for both operation 

modes. This is because the algorithm suggests a microgrid that relies on PV panels, which 

have a larger investment cost than that of BESS. On the other hand, when LCE is the lowest, 

the maintenance, replacement, and grid costs are larger compared to the case where LCOE 

is the lowest. This is because in this case, the algorithm suggests a solution that is more reliant 

on BESS, which is an only replaced component several times during the project lifetime, in this 

study. 
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Figure 2.1-7 Radar plot for economic analysis for (a) IMG (b) GCMG operation modes. 

2.1.4.5 Peak shaving strategy impact 

Peak shaving is achieved by varying the maximum subscription limit from 36 kVA to lower 
limits of 30 kVA, 24 kVA, and 18 kVA by updating subscription cost 𝐶𝑠𝑢𝑏 for each power level 
[38]. Figure 2.1-8 displays the Pareto fronts for peak shaving strategy with varying utility grid 
limits and for IMG operation mode. The onset of observable variations in the solution occurs 
when the LCE for the IMG and GCMG operation modes are less than or equal to 225 
000 𝑘𝑔𝐶𝑂2, 𝑒𝑞. The results indicate that increasing the utility grid limit results in a reduction in 
both LCE and LCOE, as evidenced by the upward trend of the Pareto fronts. The average 
variation between each Pareto curve is calculated in order to determine the impact of the peak 
shaving on the LCOE and LCE evaluation by varying subscription limit.  

It can be seen that when the subscription limit is reduced around 16% (36 kVA to 30 kVA), the 

LCOE and LCE are increased approximately 12% and 24% due to low-carbon and low-cost 

French electricity grid. However, it should be noted that this will eventually increase the self-

consumption and autonomy in the microgrid around 43% (in parallel to 16% peak reduction) 

using local PV and BESS due to being less dependent on the utility grid. The optimization 

algorithm tends to decrease the required BESS capacity as the utility grid limit increases. 

These findings suggest that it is more economically and environmentally (in terms of CO2 

emissions) favourable to rely on the utility grid (which mostly depends on nuclear power plants 

in France) instead of integrating a local BESS. The Pareto fronts become lower and steeper 

as the utility grid limit increases. The steeper Pareto front suggests that by relying more on the 

utility grid, it is possible to reduce the LCE without significantly increasing the LCOE, but 

reducing LCOE often requires accepting higher levels of LCE. 
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Figure 2.1-8 The trend of Pareto fronts for peak shaving strategy based on various grid 

subscription power. 

2.1.4.6 Analysis of utilized energy sources in French electricity grid 

The French energy mix has undergone significant decarbonization, primarily attributed to the 

extensive integration of nuclear power in electricity generation, which emits low levels of CO2 

[51]. This investigation illustrates the proportionate contribution of various energy sources to 

the electricity grid of France, as demonstrated in Figure 2.1-9 for the 36-kVA subscription case 

study. The results of the scenario of the lowest LCOE are presented in Figure 2.1-9 (a). 

The results emphasize the country’s substantial dependence on local renewable energy 

consumption, accounting for 54% of the electricity mix. These findings are in line with the 

French government’s ambitious goals to boost the use of renewable energy sources in 

electricity generation. Furthermore, the electricity consumption derived from the nuclear grid 

remains the highest, highlighting the high reliance on nuclear power for electricity production 

in France. 

 

Figure 2.1-9 (a) The percentage breakdown of the utilized energy sources in the 

French electricity grid for the case of lowest LCOE, (b) the distribution of energy 

sources utilized over 

Figure 2.1-9 (b) presents the distribution of energy sources used over the year with a temporal 
resolution of one day for the lowest LCOE scenario. The results indicate a high reliance on 
local renewable consumption specifically PV and BESS, followed by nuclear power production. 
The proportion of nuclear power increases in the winter season due to lower solar irradiation 
and hence less local renewable consumption. 
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Figure 2.1-10 Comparative bar chart of the lowest LCOE and lowest LCE scenarios for 

the (a) local renewable consumption (b), grid nuclear consumption (c), grid renewable 

consumption (d). 

Figure 2.1-10 compares the scenarios of lowest LCE and lowest LCOE for local renewable 

consumption (Figure 2.1-10 (a)), grid nuclear consumption (Figure 2.1-10 (b)), grid renewable 

consumption (Figure 2.1-10(c)), and grid non-renewable consumption (Figure 2.1-10(d)). For 

both scenarios, the local renewable consumption tends to decrease with an increase in the 

subscription power from the utility grid. In contrast, the grid nuclear, grid renewable, and grid 

non-renewable consumptions tend to increase with an increase in the utility grid subscription 

power. 

In the case of local renewable consumption (Figure 2.1-10(a)), for the scenario of the lowest 

LCOE, the percentage of local renewable consumption is higher than that of the scenario of 

lowest LCE for subscription powers of 18 kVA, 24 kVA and 30 kVA. 

However, this is not the case for the 36-kVA subscription power as the percentage level of 

local production for the scenario lowest LCE is slightly higher. Regarding nuclear, grid 

renewable, and grid non-renewable power production (Figure 2.1-10 (b), (c) and (d)) the 

percentage level for the scenario of lowest LCE is higher than that scenario of lowest LCOE 

for subscription powers of 18 kVA, 24 kVA and 30 kVA. In contrast, for the 36-kVA subscription 

power, the percentage level for the scenario of lowest LCOE is higher than that of the scenario 

where LCE is lowest.  

The trend exhibited by the 36-kVA subscription power differs from the remaining cases, 

primarily attributed to grid injection. As the grid limit increases to 36 kVA, the likelihood of grid 

injection surpasses that of other capacities such as 18 kVA, 24 kVA and 30 kVA. Consequently, 

prioritizing the LCOE leads to increased local energy contribution, resulting in a higher grid 

injection.  

The environmental impact of nuclear power generation should be considered when evaluating 

its feasibility as an energy source. This includes the potential for radioactive pollution of soil 

and water, which can have long-lasting effects on ecosystems and human health. It is 

important to consider these impacts when developing objective functions for nuclear power 

projects. 

2.1.5 Discussion 

In this study, the battery degradation is not formulated in the optimization problem (specifically 

through depth of discharge constraints) since the battery complete cycles are determined low 

in both operation modes. As explained previously, the energy capacity of the battery is 

obtained significantly higher compared to required charge and dis charge powers in BESS 

converter, hence battery cycle is not performing high number of complete cycles. However, it 

is aimed to be considered as a future work of this study in order to increase functionality of the 

presented methodology for the cases where BESS has high number of complete cycles. 



Task 17 PV and Transport  – PV-Powered Charging  Stations: Sizing, Optimization and Control 

56 

Moreover, it should be noted that the presented results are not generic which can vary based 

on the chosen PV and BESS models, and according to electricity grid characteristics. 

Therefore, the proposed methodology can/should be used for testing the impact of the various 

equipment models in different electricity grid which has different emission and price profiles. 

For instance, when one of the main components, either PV or BESS, has lower costs and 

emissions in a microgrid with PV systems, BESS, load, and their converters, the solutions and 

the Pareto front show no variations. In the presented results the PV emissions are 

comparatively higher due to specific technology characteristics [45], but its cost remains lower. 

Importantly, it is worth noting that a PV panel with 2 000  𝑘𝑔𝐶𝑂2, 𝑒𝑞 𝑘𝑊𝑝⁄ , there will not be any 

differences in the solutions along the Pareto front (single solution) for the chosen BESS 

technology in this study. 

2.1.6 Conclusion and perspectives 

In this study, a MILP optimization algorithm is presented to co optimize equipment sizing and 

energy management problems of a DC microgrid for the objectives of cost and emissions 

reduction. Based on the analysis and results presented in the study, the following conclusions 

can be drawn: 

• In the IMG operation mode, the microgrid exhibits larger component capacities 

compared to GCMG. This difference is attributed to the necessity of coping with 

more challenging conditions, such as the absence of a grid connection during 

periods of low solar irradiation; 

• The results reveal that the BESS capacity increases as the LCE decreases, and 

the number of PV systems is higher when the LCOE is lower for both operation 

modes. This is due to the fact that the BESS has a slightly lower LCE compared to 

the PV, and in this study, the LCOE of PV is also lower than BESS; 

• From an economic point of view, the solution with a lower LCOE incurs the highest 

investment cost. Conversely, the solution with the lower LCE incurs the highest 

replacement cost, as it depends on BESS, which is an only replaced component 

over the project lifetime in this study; 

• As the limit of the utility grid increases, the Pareto fronts for both peak shaving 

strategy become lower and steeper; 

• From an environmental point of view, the findings reveal that 54% of the total 

production comes from local sources, with the remainder primarily reliant on the 

grid, which predominantly relies on nuclear power in the French energy mix. 

As a future perspective, the Value of Lost Load will be calculated to assess the economic 

impact of power outages or service interruptions. By assigning a monetary value to the loss of 

supply reliability, businesses, utilities, and policymakers can better understand the 

consequences of such disruptions on the economy. 
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2.2 Optimizing Microgrid Sizing, Energy Management, and Electric 
Vehicle Integration  

This section applies the proposed study from Section 2.1 by introducing the EV problem to the 
previously described methodology and presenting a case study in Compiègne, France. It also 
analyses the Levelized Cost of Energy (LCOE) and conducts a life cycle emissions (LCE) 
analysis across various cities7,8.  

2.2.1 Introduction 

A microgrid offers an efficient solution for integrating distributed energy resources, such as 
solar power, with the electrical grid. In this context, the increasing demand for electricity is 
driven by several factors, such as the growth of the electric vehicle (EV) market, which is 
advancing due to technological innovations and shared societal and political goals aimed at 
mitigating climate change [1]. Therefore, ensuring the optimal sizing of the microgrids is 
essential. An undersized microgrid relies on the grid and may not achieve the desired level of 
autonomy. Moreover, optimizing the microgrid’s size helps in reducing the overall cost of the 
system [2]. The most common goal in the context of optimal microgrid sizing is cost 
minimization, and to address this problem, software tools, heuristic methods, and linear 
techniques are commonly utilized. 

In the examined literature, various studies consistently apply HOMER commercial software to 
explore the optimal configurations of microgrids and distributed energy resources. In [3], the 
research focuses on multi-microgrid component sizing, considering economic and technical 
factors. Similarly, [4] employs HOMER to design a microgrid with Photovoltaic (PV), wind, 
batteries, and a diesel generator in Biskra, Algeria. Additionally, in [5], HOMER is used to 
determine the optimal configurations for PV/Diesel/Pump-hydro and PV/Diesel/Batteries 
systems and calculate payback periods, emphasizing cost effective solutions. These studies 
likely yield insights into efficient and economically viable microgrid designs, including resource 
combinations, cost effectiveness, and anticipated financial returns. 

Regarding heuristic optimization methods, these methods are prevalent in the literature due to 
the complexity of the microgrid sizing problem. Heuristic techniques play a crucial role in 
reducing the required computational time. In [6], the study introduces three meta-heuristic 
algorithms: enhanced differential evolution, teaching-learning-based optimization, and the salp 
swarm algorithm. These algorithms are applied to tackle the sizing optimization problem of a 
standalone microgrid. In [2], particle swarm optimization is used to address a hybrid microgrid 
sizing problem by minimizing the Levelized Cost of Energy (LCOE) and maximizing the 

 

 

7 This study is based on the following publication: F. A. Kassab, B. Celik, S. Cheikh-Mohamad, F. Locment, M. Sechilariu, S. 

Liaquat and T. M. Hansen, “Optimizing Microgrid Sizing, Energy Management, and Electric Vehicle Integration in Various French 

Cities,” in Electrimacs 2024, 2024, doi: ⟨hal-04772766⟩   

8 The methodology developed is detailed in previous work; refer to the antecedent publication for more details:  

F. A. Kassab, B. Celik, F. Locment, M. Sechilariu and T. M. Hansen, "Combined Optimal Sizing and Energy Management of a DC 

Microgrid using MILP," 2023 IEEE Belgrade PowerTech, Belgrade, Serbia, 2023, pp. 1-6, 

https://doi.org/10.1109/PowerTech55446.2023.10202939.    

F. A. Kassab, B. Celik, F. Locment, M. Sechilariu, S. Liaquat, and T. M. Hansen, “Optimal sizing and energy management of a 

microgrid: A joint MILP approach for minimization of energy cost and carbon emission,” Renewable Energy, vol. 224, p. 120186, 

2024,  https://doi.org/10.1016/j.renene.2024.120186. 

https://hal.science/hal-04772766v1
https://doi.org/10.1109/PowerTech55446.2023.10202939
https://doi.org/10.1016/j.renene.2024.120186
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microgrid autonomy. Additionally, in [7], the NSGA II algorithm is implemented for co-
optimizing a microgrid in terms of both economic and environmental aspects. 

As for linear techniques, the literature frequently features the use of Mixed-Integer Linear 
Programming (MILP). In [8], cost minimization is achieved through MILP, as this technique 
ensures a globally optimal solution. Each of these studies also pursues additional objectives, 
such as load scheduling and the minimization of life cycle emissions (LCE), with a focus on 
specific regions and types of buildings, encompassing both residential and commercial 
structures. 

Each technique has its own set of limitations. Commercial software packages, such as 
HOMER, fall short in certain aspects. They lack the capability to perform multi-objective 
optimization or effectively address intra-hour-based variability. Furthermore, when confronted 
with more intricate design scenarios, they often demand a significant amount of computational 
time or do not converge [9]. Heuristic approaches do not guarantee global optimal solutions 
for optimization problems [10]. MILP techniques, on the other hand, can entail high 
computational time, especially for complex problems where linearizing equations becomes 
challenging, potentially necessitating trade-offs between optimality and computational 
efficiency. 

This research is a continuation of the work in [11],[12], where a MILP algorithm that ensures a 
global optimal solution was introduced to optimize both the sizing and energy management of 
a microgrid, considering the yearly solar irradiation and the yearly load demand of a tertiary 
building in the university campus. The study is extended by including the modeling and 
consideration of EV loads, where the microgrid is tested in various cities. Additionally, the study 
calculates the LCE for the proposed solutions across different cities.  

The research is organized as follows: In Section 2.2.2, the system modeling is described. The 
optimization problem is presented in Section 2.2.3, Section 2.2.4 covers the results and 
analysis, and Section 2.2.5 presents the conclusions. 

2.2.2 System Modelling 

The studied microgrid (Figure 2.2-1) comprises several components, including PV panels, a 
battery energy storage system (BESS), a grid connection (EG), a tertiary building, and EV 
loads. The same PV and BESS equations from [11], [12] are used for calculating their power 
outputs. Additionally, the EV charging models are included in this study.   

 

Figure 2.2-1 The studied microgrid structure. 

2.2.2.1 EV Charging model 

It is crucial to develop sophisticated models that consider factors such as the EV’s plug-in time 
(𝑡𝑝) and initial state of charge (𝑆𝑂𝐶𝐸𝑉𝑖𝑛𝑖𝑡

 ). In [13], data is collected for a university campus to 
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illustrate the probability density functions (PDFs) of 𝑡𝑝 and 𝑆𝑂𝐶𝐸𝑉𝑖𝑛𝑖𝑡
 for private EVs. The 

findings revealed that the Generalized Extreme Value (GEV) PDF closely aligns with the 
collected data. The GEV PDF equation is obtained as follows: 

𝑓(𝑥; 𝜇, 𝜎, 𝜀) =  {

1
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(2.2-1) 

Here, 𝑓(𝑥; μ,σ, ε) represents the GEV PDF, where 𝑥 is the random variable, μ is the location 
parameter, σ is the scale parameter, and \varepsilon is the shape parameter. For the 𝑆𝑂𝐶𝐸𝑉𝑖𝑛𝑖𝑡

, 

the GEV PDF parameters are: ε = 0.0629, σ = 0.5493,μ = 8.9068 , while for 𝑡𝑝, the GEV PDF 

parameters are:  ε = 0.0474,σ = 7.9015, μ = 12.8820. 

The duration required for charging the EV varies based on the connection time, and the period 
needed to attain the maximum 𝑆𝑂𝐶 for the EV 𝑆𝑂𝐶𝐸𝑉𝑚𝑎𝑥

, is computed as follows: 

𝑇𝑐ℎ𝑎𝑟,𝑎 =  
(𝑆𝑂𝐶𝐸𝑉𝑚𝑎𝑥,𝑎− 𝑆𝑂𝐶𝐸𝑉𝑖𝑛𝑖𝑡,𝑎)×𝐸𝑉𝑐𝑎𝑝,𝑎

𝑃𝑐𝑠
  

(2.2-2) 

where 𝑇𝑐ℎ𝑎𝑟,𝑎, 𝑆𝑂𝐶𝐸𝑉𝑚𝑎𝑥,𝑎
, and 𝐸𝑉𝑐𝑎𝑝,𝑎 are the charging duration (ℎ), maximum 𝑆𝑂𝐶, and 

battery capacity (kWh) of the EV 𝑎, respectively; and 𝑃𝑐𝑠 is the charging station power (kW). 

The plug-out time for EV is determined using a uniform distribution that ranges from zero to 
three hours after the EV charging time needed to reach the maximum 𝑆𝑂𝐶. This consideration 
is incorporated into the optimization problem to introduce a margin of flexibility, enabling the 
scheduling of EV charging. Without this margin, if the unplugging time coincides exactly with 
the EV charging duration, scheduling EV charging sessions would be unfeasible. The EV 
charging power demand is calculated as follows:  

𝑝𝐸𝑉,𝑎(𝑡) =  {
(𝑆𝑂𝐶𝐸𝑉𝑚𝑎𝑥,𝑎− 𝑆𝑂𝐶𝐸𝑉𝑖𝑛𝑖𝑡,𝑎)×𝐸𝑉𝑐𝑎𝑝,𝑎

𝑇𝑐ℎ𝑎𝑟,𝑎
 𝑖𝑓 𝑡 ≥ 𝑡𝑝

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

  

(2.2-3) 

Equation (2.2-3) calculates the charging power of each EV, denoted as 𝑝𝐸𝑉,𝑎, after the plug-in 

time 𝑡𝑝. The energy needed to charge the EV is divided by the rounded-up charging duration 

(𝑇𝑐ℎ𝑎𝑟,𝑎) to calculate the actual EV power. This method is chosen because the study operates 

on an hourly time scale, and charging the EV at a steady power rate might risk pushing the 
battery’s 𝑆𝑂𝐶 beyond its permitted maximum level. 

2.2.3 Formulation of the optimization problem 

The optimization problem is designed to achieve a dual objective: the first objective is to 
minimize the LCOE, and the second is to determine the optimal size of microgrid components 
and efficiently manage energy within the microgrid. As this study is a continuation of [11][12], 
the optimization problem and its formulation are already detailed in those researches.  
However, the algorithm introduced in this chapter considers the EV demand. For that, this 
section introduces the equations that are modified, and the rest can be seen considered from 
[11][12]. 

2.2.3.1 Constraints  

The BESS charge/discharge power (𝑝𝑏
𝑐(𝑡) / 𝑝𝑏

𝑑(𝑡)) are not limited to a specific power level. 

This allows for optimal sizing of the BESS converter, as restricting the charging/discharging 
power would fix the converter’s size. In contrast, the grid supply/injection powers 
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(𝑝𝐸𝐺
𝑠 (𝑡)/𝑝𝐸𝐺

𝑖𝑛 (𝑡)) are constrained to a maximum power level to represent the subscribed 

maximum power from the French grid. 

𝑝𝑏
𝑐(𝑡)  ≥ 0,  𝑝𝑏

𝑑(𝑡)  ≤ 0  (2.2-4) 

− 𝑝𝐸𝐺
𝑚𝑎𝑥  ≤ 𝑝𝐸𝐺

𝑠 (𝑡) ≤ 0  (2.2-5) 

0 ≤ 𝑝𝐸𝐺
𝑖𝑛 (𝑡) ≤ 𝑝𝐸𝐺

𝑚𝑎𝑥  (2.2-6) 

In (2.2-4), there is no strict maximum limit imposed on the power of the BESS, allowing the 
BESS associated converter to be determined by the algorithm. The “Big M” technique, used 
for optimizing energy management in the microgrid, simplifies complex decision making, 
similar to how “If Else” statements are employed in programming. For a detail understanding 
of the constraints and BESS energy calculations, refer to the reference [11]. The converters 
capacity is determined based on the maximum output power obtained by the connected 
resources as follows: 

𝑝𝑃𝑉
𝑀𝑃𝑃𝑇(𝑡) × 𝑁𝑃𝑉 ≤ 𝑀𝑃𝑉

𝐷𝐶/𝐷𝐶
  (2.2-7) 

− 𝑝𝑏
𝑑(𝑡) ×  𝜇𝑑 +  𝑝𝑏

𝑐(𝑡)/𝜇𝑐  /𝛾𝑏
𝐷𝐶/𝐷𝐶

 ≤  𝑀𝑏
𝐷𝐶/𝐷𝐶

   (2.2-8) 

− 𝑝𝐸𝐺
𝑠 (𝑡) +  𝑝𝐸𝐺

𝑖𝑛 (𝑡)/𝛾𝐸𝐺
𝐷𝐶/𝐴𝐶

 ≤  𝑀𝐸𝐺
𝐴𝐶/𝐷𝐶

   (2.2-9) 

𝑝𝐸𝑉(𝑡)/𝛾𝐸𝑉
𝐷𝐶/𝐴𝐶

 ≤  𝑀𝐸𝑉
𝐷𝐶/𝐴𝐶

   (2.2-10) 

𝑝𝑏𝑢𝑖𝑙𝑑(𝑡)/𝛾𝑏𝑢𝑖𝑙𝑑
𝐷𝐶/𝐴𝐶

 ≤  𝑀𝑏𝑢𝑖𝑙𝑑
𝐷𝐶/𝐴𝐶

  (2.2-11) 

where 𝑝𝑃𝑉(𝑡) is the power output of a PV panel, 𝑁𝑃𝑉 is the total PV panel number, and μ𝑐 and 

μ𝑑 denote the charge and discharge efficiency of the BESS. Additionally, γ𝑘
𝑥 and 𝑀𝑘

𝑥 represent 

the efficiency and capacities of the 𝑥𝑡ℎ component associated with the 𝑘𝑡ℎ component 
respectively, and 𝑝𝑏𝑢𝑖𝑙𝑑(𝑡) is the consumption power. The net power on the DC bus, denoted 
as 𝑝𝑏𝑢𝑠(𝑡), is calculated as given below: 

𝑝𝑏𝑢𝑠(𝑡) = 𝑝𝑏𝑢𝑖𝑙(𝑡)/𝛾𝑏𝑢𝑖𝑙𝑑
𝐷𝐶/𝐴𝐶

+ 𝑝𝐸𝑉(𝑡)/𝛾𝐸𝑉
𝐷𝐶/𝐴𝐶

− 𝛾𝑃𝑉
𝐷𝐶/𝐷𝐶

× 𝑝𝑃𝑉
𝑀𝑃𝑃𝑇(𝑡)

+𝑝𝑏
𝑐   (𝑡)/𝜇𝑐 ×  𝛾𝑏

𝐷𝐶/𝐷𝐶
+ 𝑝𝑏

𝑑(𝑡) ×  𝛾𝑏
𝐷𝐶/𝐷𝐶

× 𝜇𝑑

+𝑝𝐸𝐺
𝑠 (𝑡) × 𝛾𝐸𝐺

𝐴𝐶/𝐷𝐶
+  𝑝𝐸𝐺

𝑖𝑛 (𝑡)/𝛾𝐸𝐺
𝐷𝐶/𝐴𝐶

≤ 0

  
(2.2-12) 

 

 Enforcing 𝑝𝑏𝑢𝑠(𝑡)  ≤ 0 implies curtailing negative power and prohibiting load shedding. 

2.2.3.2 Objective function 

The objective function aims to minimize the LCOE and the LCE calculated as follows: 

𝐿𝐶𝑂𝐸 =  
𝑇𝐶×𝐶𝑅𝐹

∑ 𝑝𝐿
𝐷(𝑡)×∆𝑡

𝑡𝑓
𝑡0

  (2.2-13) 

𝐿𝐶𝐸 =  𝐿𝐶𝐸𝑃𝑉 + 𝐿𝐶𝐸𝐵𝐸𝑆𝑆 + 𝐿𝐶𝐸𝐸𝐺 + 𝐿𝐶𝐸𝑐𝑎𝑏𝑙𝑒𝑠  (2.2-14) 

In Equation (2.2-13), 𝑇𝐶 is the total cost which considers several factors, including initial capital 
investment, maintenance, replacement costs, potential salvage value of electrical components, 
and the expenses associated with energy procurement from the grid. The capital recovery 

factor is 𝐶𝑅𝐹, 𝑝𝐿
𝐷(𝑡) denotes the load (which includes EV and building loads), and 𝑡0,  𝑡𝑓 and ∆𝑡 

represent the initial, final, and the step time of the simulation, respectively.  

In Equation (2.2-14), 𝐿𝐶𝐸𝑃𝑉, 𝐿𝐶𝐸𝐵𝐸𝑆𝑆, 𝐿𝐶𝐸𝐸𝐺 and 𝐿𝐶𝐸𝑐𝑎𝑏𝑙𝑒𝑠 are the LCE of the PV system, 
BESS, utility grid and the cables, respectively. Readers are referred to [11],[12] for detailed 
equations related to equations (2.2-13) and (2.2-14). 
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The optimization problem is addressed by determining the following decision variables:  

• BESS capacity (𝐸𝑏);  

• the number of PV panels (𝑁𝑃𝑉);  

• BESS charge/discharge powers (𝑝𝑏
𝑐(𝑡)/𝑝𝑏

𝑑(𝑡));  

• EG supply/inject powers (𝑝𝐸𝐺
𝑠 (𝑡)/𝑝𝐸𝐺

𝑖𝑛 (𝑡));  

• Auxiliary variables (𝑥𝑎𝑢𝑥(𝑡)).  

Additionally, the capacities of PV, BESS, EG, EV, and building associated converters 

(𝑀𝑃𝑉
𝐷𝐶/𝐷𝐶

, 𝑀𝑏
𝐷𝐶/𝐷𝐶

,  𝑀𝐸𝐺
𝐴𝐶/𝐷𝐶

, 𝑀𝐸𝑉
𝐷𝐶/𝐴𝐶

, 𝑀𝑏𝑢𝑖𝑙𝑑
𝐷𝐶/𝐴𝐶

 are also determined. 

2.2.4 Results and Analysis 

In the studied microgrid, the load distribution encompasses the EVs and the university building. 
The charging infrastructure for EVs comprises five EV charging terminals, each equipped with 
two 7 kW chargers, allowing for a maximum of 10 EVs to be charged simultaneously.  

Additionally, plugging in the EV is subject to an SOC limitation, ranging from 20% to 100%. 
The EV battery capacity is assumed to be 50 kWh. The daily arrival of EVs is determined using 
a uniform distribution. On weekdays, there are between seven to ten EV arrivals, while on 
weekends, there are one to two EV arrivals. During the vacation month of August, there can 
be one to four EV arrivals. 

The load profile of the university building is sourced from empirical data collected at a specific 
building within Université de Technologie de Compiègne in 2023. Both the EVs and university 
building’s load characteristics are visually represented in Figure 2.2-2.  

(a) (b) 

  
Figure 2.2-2 (a) Building load and (b) EV load 

The EG CO₂ emissions are considered dynamic as it is provided by the French transmission 

system operator. In this study, a load growth of 1% is considered to anticipate potential future 

increases in demand and to ensure the resilience of the microgrid, while the EG tariffs remain 

the same.  

The optimization horizon covers one year (8 760) with an hourly timestep while considering 

the project’s 20-year economic lifespan.   

The problem is formulated using Python 3.8 and CPLEX optimization solver. The computations 

are carried out on a super computer equipped with an AMD EPYC 7763 64-Core Processor, 

256 cores, and 1 510 GB of RAM, all running on the “RockyLinux9.1” operating system. 
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2.2.4.1 Case study – Compiègne, France 

The optimization algorithm has been applied to the case study of Compiègne, France, using 

the input described in the above section and a combination of several PV and BESS 

technologies. The technical, economic, and environmental data utilized for this analysis are 

presented in Table 2.2-1. 

Table 2.2-1 Input parameters data of the microgrid system. 

 

DualSun offers the lowest cost among the available PV panel options. The Table 2.2-2 
presents the optimization results for DualSun PV in combination with both BESS technologies 
Lead Acid and Lithium-Ion (Li-Ion).  

In terms of LCOE, the combination of Lead Acid batteries with DualSun results in a lower LCOE 
compared to the Li-Ion/DualSun configuration. However, the Li-Ion/DualSun system achieves 
a lower LCE than the Lead Acid/SunPower case when considering the latter's higher grid 
supply, which is due to the smaller PV capacity.  

The Li-ion/DualSun system is designed with excess capacity, as the optimization algorithm 
increases the PV size to reduce LCE. This result leads to a higher amount of curtailed PV 
power. Conversely, the higher PV capacity in the Li-Ion/DualSun system also results in higher 
grid injection, as more power is available for feeding back into the grid. 

Table 2.2-2 Optimization results for DualSun/Lead Acid and DualSun/Li-Ion. 
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The Figure 2.2-3 illustrates the energy distribution over one year within the microgrid for the 
two studied combinations. 

(a) 

 

(b) 

 
 

 
Figure 2.2-3 Energy distribution over one-year (a) Lead Acid/DualSun and (b) Li-

Ion/DualSun. 

The Lead acid/DualSun system is well-proportioned, resulting in minimal PV curtailment thanks 

to the high capacity of the BESS. In comparison, the energy generated in the Li-Ion/DualSun 

case is nearly double the amount produced in the Lead acid/DualSun case, highlighting the 

superior performance of the Li-Ion system in terms of energy production. 

The Figure 2.2-4 presents a zoomed-in view of the energy distribution when using the Lead 

Acid/DualSun BESS over one week in February and one week in July.  

(a) 

 

(b) 

 

 
Figure 2.2-4 (a) One-week in February and (b) one-week in July of the one-year 

simulation. 

The Figure 2.2-4 highlights the fact that during the summer, the BESS experiences significantly 

higher discharge levels compared to the winter months. In contrast, grid interventions are more 

frequent during the winter, primarily due to lower solar irradiation. The surplus PV power 

generated in both seasons is mainly used to recharge the Lead Acid/DualSun BESS, ensuring 

a continuous and reliable energy supply. 

2.2.4.1.1 LCOE and LCE Results  

The optimization process involves studying various PV and BESS technologies to assess their 

impact on the dimensioning and energy management of the microgrid. Figure 2.2-5 (a) and (b) 

illustrate the LCOE and LCE, respectively. 
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(a) (b) 

 

Figure 2.2-5 (a) LCOE and (b) LCE results of different PV technologies. 

When Lead Acid batteries are used, the LCOE is lower compared to systems incorporating Li-

Ion batteries. Among the analyzed configurations, the Voltec/Li-Ion system exhibits the highest 

LCOE, while the DualSun/Lead Acid system achieves the lowest. However, the reliance on 

Lead Acid batteries leads to the highest grid costs, primarily due to the smaller PV capacity. In 

contrast, investment costs are highest when Li-Ion batteries are utilized, as they are generally 

paired with larger PV capacity systems. 

The analysis further highlights that the JASolar configuration yields the highest LCE. Notably, 

Lead Acid/PV systems consistently exhibit higher LCE values than Li-Ion/PV systems, with the 

exception of the Li-Ion/JASolar combination. However, JASolar is also associated with the 

highest emissions (kgCO2,eq), which explains why the PV capacity for the Li-Ion/JASolar 

configuration is significantly lower than in other cases. Additionally, emission sources vary 

depending on the BESS type: in Li-Ion/PV scenarios, PV-related emissions represent the 

largest share, whereas in Lead Acid/PV scenarios, the primary contributor to emissions is the 

BESS. 

2.2.4.2 Geographical Analysis 

To go further, the study progressed by applying the optimization algorithm to several cities in 

France and worldwide. Table 2.2-3 presents the average solar irradiation for the considered 

regions over the course of one year, as retrieved from [14]. 

Table 2.2-3 Solar irradiation and Ambient temperature average in different cities. 

 

The optimization encompasses all cities specified in Table 2.2-3, where the same load (EV 
and building) is used for each city. 

The capacity analysis of the microgrid components and the detailed energy dispatch for some 
cities with high solar irradiation are presented in Table 2.2-4. Additionally, the power profiles 
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of these cities for one week in July are depicted in Figure 2.2-6. Rabat, Tripoli, and Lisbon are 
identified as the cities with a high solar irradiation among the selected cities. 

Table 2.2-4 The microgrid components capacities and energy of the selected cities 

with high solar irradiation. 

 

It can be seen that, the curtailed energy from the PV system is relatively small compared to 
the PV output energy. This observation indicates that the BESS capacity and EG power limits 
are sufficient to absorb most of the PV surplus. Additionally, the EG supply is always higher 
than the EG injection rate, highlighting the reliance on the EG. This suggests that the EG in 
France offers a more cost-effective solution compared to BESS, primarily due to the high 
investment cost of batteries. Furthermore, the EG limit is close to the maximum load peak, 
which explains the increased EG contribution in the microgrid. It should be noted that system 
losses include converters for PV, BESS, the electrical grid, EV load, and building load. 

Figure 2.2-6 represents one week (the first week of July) of the one-year simulation for Rabat, 
Tripoli, and Lisbon. 

 

Figure 2.2-6 One-week (1st of July’s week) of the one-year simulation for (a) Rabat (b) 

Tripoli (c) Lisbon. 

For all these cities, the load is primarily covered by PV during the daytime and by the BESS 

and EG supply during the night-time. On the other hand, Brest, Le Havre, and Marseille are 

identified as cities with low solar irradiation. The capacity analysis of the microgrid components 

and the detailed energy dispatch for these cities are presented in Table 2.2-5. Additionally, the 

power profiles of these cities for one week in July are depicted in Figure 2.2-7.  
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Table 2.2-5 The microgrid components capacities and energy of the selected cities 

with Low solar irradiation. 

 

The energy dispatch analysis in Brest, Marseille, and Le Havre shows that the curtailed energy 
is generally higher than that in Rabat, Tripoli, and Lisbon. This leads to the conclusion that a 
city with low solar irradiation will result in higher curtailed energy rates due to the greater PV 
capacity needed to cover the load. A higher PV capacity will result in higher curtailed energy 
and greater system energy losses, as Table 2.2-5.  

Figure 2.2-7 represents one week (the first week of July) of the one-year simulation for Brest, 
Marseille, and Le Havre.  

 

Figure 2.2-7 One-week (𝟏st of July’s week) of the one-year simulation for (a) Brest (b) 

Marseille (c) Le Havre. 

2.2.4.3 LCOE and LCE results  

The heat maps Figure 2.2-8 presented represent the Solar Irradiation, LCOE, and LCE values, 

respectively, for various cities. These visual aids highlight significant variability in both energy 

costs and carbon emissions across different locations. 
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Figure 2.2-8 Heat map for the Solar irradiation, LCOE, LCE values of different studied 

cities. 

These visual aids demonstrate considerable variability in both energy costs and carbon 

emissions across different locations. The heat map presented in Figure 2.2-8 shows stable 

LCOE values, indicating more predictable and affordable energy costs under these conditions. 

Cities like Cairo, EG (0.22 €/kWh), Doha, QA (0.28 €/kWh), and Lisbon, PT (0.27 €/kWh) 

maintain relatively low LCOE values, suggesting more efficient energy production. They also 

exhibit low LCE values (0.03 kgCO2,eq/kWh, 0.034 kgCO2,eq/kWh, and 0.035 kgCO2,eq/kWh, 

respectively), indicating more sustainable and environmentally friendly energy production 

practices. 

The colour gradients facilitate quick visual assessments, identifying areas where strategic 

interventions might be necessary to mitigate costs and reduce carbon emissions. This 

information is crucial for informed decision-making in energy investments and policy-making, 

aimed at carbon reduction initiatives. These results are consistent with the data presented in 

Table 2.2-3, which indicates that Cairo has the highest average solar irradiation. However, the 

ranking based on average solar irradiation does not consistently match the order of cities 

based on LCOE and LCE. This discrepancy is primarily due to variations in solar irradiation 

across different months and seasons rather than solely depending on the annual average solar 

irradiation. 

For example, although Dijon has a higher average solar irradiation than Poitiers, Poitiers 

achieves a lower LCOE and LCE. Figure 2.2-9 illustrates this phenomenon by presenting the 

monthly solar irradiation data for both Dijon and Poitiers. 
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Figure 2.2-9 The monthly solar irradiation data for both Dijon and Poitiers. 

Notably, during the summer and spring seasons, Dijon experiences higher levels of solar 

irradiation compared to Poitiers. However, during the autumn and winter seasons, Dijon’s solar 

irradiation is lower than that of Poitiers. As a result, to meet the load demand during the autumn 

and winter months in Dijon, the optimization algorithm increases the PV capacity. In contrast, 

while Poitiers’ solar irradiation in summer and spring is not as high as that of Dijon, it remains 

sufficient to cover the load requirements. Moreover, the significantly higher solar irradiation in 

Poitiers during the autumn and winter seasons allows for a lower PV capacity compared to 

Dijon. Thus, LCOE and LCE can vary significantly between different cities, even when the load 

remains the same. This highlights the importance of seasonal and monthly variations in solar 

irradiation in determining the optimal energy strategy. 

2.2.5 Conclusions 

In this study, a MILP algorithm is developed to optimize the size and energy management of 

microgrids across various cities and technologies. The case study is based on the energy load 

of a university building, including the consumption by EVs. The optimization problem considers 

the economic horizon over the project's lifetime, with the objective of minimizing both the LCOE 

and LCE. The results indicate that cities with high solar irradiation exhibit lower LCOE and LCE 

compared to cities with low solar irradiation. It is also observed that the ranking of cities based 

on average solar irradiation does not necessarily correlate with the ranking of LCOE and LCE. 

Monthly and daily fluctuations in solar irradiation significantly impact these results. The study 

highlights the importance of a well-sized combination of renewable resources to optimize the 

economic and environmental performance of energy systems in different cities. There is no 

universal solution; therefore, a thorough assessment of local conditions and available 

resources is essential for making decisions tailored to each specific city. Regarding the 

technologies, locally produced PV panels positively contribute to the overall LCE of the 

microgrid. Additionally, the LCE associated with BESS plays a dominant role in determining 

the total LCE of the configurations. 
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3 PVCS: INTELLIGENT CONTROL AND NEW SERVICES 

As the adoption of EVs accelerates worldwide, their integration into the energy ecosystem 

introduces both challenges and opportunities. Among the most pressing concerns is how to 

satisfy the increased power demand of EVs in a way that aligns with sustainability goals. 

Meeting this demand through clean energy sources is essential to minimizing carbon 

emissions and ensuring the long-term viability of the smart grid. 

In parallel, the evolution of the EV market has brought forth new services and models, such as 

Vehicle-to-Grid (V2G) and Battery Swapping, that require dedicated analysis. These emerging 

approaches not only redefine the relationship between EVs and the grid but also open new 

avenues for energy management, flexibility, and user convenience. 

The following two sections explore these key developments.  

The first section delves into the concept of V2G, examining how EVs can support the grid by 

returning stored energy during peak periods.  

The second section focuses on battery swapping, an alternative model that offers rapid energy 

replenishment and addresses some limitations of traditional charging infrastructure.  

Together, these sections aim to shed light on how these innovations contribute to the evolving 

role of EVs within a smarter, more sustainable energy landscape. 
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3.1 Energy Cost Optimization via V2G Services   

This study introduces an energy management algorithm of a PVCS formulated with mixed-

integer linear programming to minimize the total energy cost of the participation of EV users in 

V2G service. Simulation results demonstrate that the proposed optimization method satisfies 

EV user demands while providing V2G service and highlights the benefits of the V2G service 

where the determined costs of the proposed algorithm perform significantly better compared 

to the baseline scenario (simulation without optimization)9,10. 

3.1.1 Introduction 

Photovoltaic (PV) - powered charging stations (PVCS) are designed for charging electric 

vehicles (EV) using clean energy sources that can be installed on car parking shades and/or 

building rooftops. Charging EVs with renewable energy sources, particularly PV sources, is a 

crucial factor in enhancing their environmental benefits and reducing their greenhouse gas 

emissions [1]. To achieve defined objectives such as minimizing charging costs and providing 

a satisfactory charging process for EV users [2], it is necessary to implement an energy 

management system that can control and monitor the energy flows within the PVCS. A 

feasibility study of a PVCS has been conducted by analysing its effectiveness based on 

technical, economic, and environmental aspects by comparing the impact of different 

geographical areas on the installation location in [3]. The study investigates how a PVCS can 

contribute to charging EVs with different energy mixes and compares the produced CO2 

emissions of charging EV batteries solely from the grid, from the PVCS, and with internal 

combustion engine vehicles. They have found that the PVCS concept is more efficient in 

countries with high annual average irradiance and significant CO2 emissions in their grid, but 

it remains economically unfeasible due to expensive storage systems. In [4], a supervision 

control system is presented for smart charging of an EV fleet in a PVCS-based research 

building. The proposed control strategy is based on a real-time operation to satisfy EV users 

using PV forecasting and EV charging historical records over four years to predict the EV 

power profiles. A user-friendly smart charging method, which includes interactions with EV 

users via an interface, has been developed in [5], where the EV user is a key player in the 

process of choosing the best scenario among uncoordinated charging, smart charging, and 

bidirectional smart charging control in a PVCS. The proposed methodology is based on real-

time rule-based control and a predictive linear optimization control. The results showed that 

bidirectional charging control had the best cost reduction, while uncoordinated charging control 

costs the most. In [6], mixed-integer programming was investigated to minimize the cost of 

energy traded to a PVCS, where the intermittency of PV power can be compensated by EVs 

which can also discharge energy to the PVCS, where it does not integrate stationary storage. 

The EVs are classed in three categories according to their charging behaviour, and the results 

showed that an increase of green EVs, the only category of EVs for which the users can allow 

discharging of energy into the charging station, could reduce the total cost of the PVCS. In [7], 

 

 

9 This chapter is based on the following publication:  

S. Cheikh-Mohamad, B. Celik, M. Sechilariu, and F. Locment, ‘PV-Powered Charging Station with Energy Cost Optimization via 

V2G Services’, Applied Sciences, vol. 13, no. 9, 2023, http://doi.org/10.3390/app13095627. 

10 This work has been achieved within the framework of the EE4.0 project (Energie Electrique 4.0). EE4.0 is co-financed by the 

French State and the French Region of Hauts-de-France. This research was also funded by ADEME France, project T-IPV grant 

number # 2308D0002. 

http://doi.org/10.3390/app13095627
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mixed-integer linear programming (MILP) has been applied to optimize the sizing of a PVCS 

components (PV, stationary storage, and transformer) in order to minimize the investment cost 

and the total cost considering the uncertainties of PV and EV charging power profiles. The 

simulation results, with a 1 hour step time, showed that EV charging stations powered by PV 

are more cost-effective than EV charging stations powered by the grid. 

However, large-scale EV charging will pose difficulties from a power point of view for grid 

operators [8]. Therefore, charging of EVs should be controlled intelligently in order to reduce 

the negative impact on the connected public grid [9]. Additionally, EVs remain in an idle state 

for a long time. As a result, they can serve as energy storage systems and assist the grid by 

providing energy when they are plugged in. In this way, EVs can be charged during off-peak 

periods and discharged during peak periods to support the public grid and/or a microgrid. This 

approach enables EVs to be utilized as a flexible load, with their charging and discharging 

being controlled. Therefore, vehicle-to-grid (V2G) services have emerged as a promising 

technology in the field of smart grids [10], where they can improve frequency [11] and voltage 

regulations while providing benefits to the EV users [12], and this depends on the number of 

available EVs [13,14]. Additionally, such services can enhance power quality and promote the 

integration of renewable energy with developed smart control algorithms [15,16,17]. In [18], 

the benefits are highlighted for V2G service participants, as these services can decrease the 

total ownership cost of EVs. For the grid operator, V2G is seen as a power source that is able 

to mitigate fluctuations caused by renewable energy sources and provide ancillary services. 

As for EV owners, participating in V2G services should have financial incentives without limiting 

their travel needs. 

Moreover, V2G optimization plays a crucial role in maximizing the benefits. In [19], the authors 

found that total cost of EV ownership could be reduced by implementing V2G service in the 

Flanders region of Belgium. This service helped to smooth out electricity demand by filling in 

valleys and reducing power peaks, ultimately leading to improved grid stability. A charging and 

discharging strategy for EVs proving the effectiveness of their V2G operation in different cities 

in China with different trip patterns was developed in [20]. Their aim was to minimize the cost 

of operation of the distribution grid considering grid congestion and voltage constraints. These 

factors were particularly important, given the variation in the distribution of EVs across areas 

of operations. The potential locations for EV charging and their participation in V2G service 

have been predicted in [21] using automated machine learning, based on historical data 

collected over 42 weeks. The authors of [22] have demonstrated that the participation of EVs 

in V2G services, when they are idle at charging stations, can reduce the demand for charging 

EVs. In [23], an improved harmony particle swarm optimization problem was investigated in a 

bi-level model (low level: EV cluster scheduling, upper level: planning) to determine the optimal 

allocation of distributed generation and charging stations within a V2G service. The results 

indicated that the optimized model could satisfy the charging demand of EV users, improve 

the voltage quality, mitigate load fluctuations, encourage the use of renewable energy, and 

improve the global performance of the planning scheme. An optimization framework has been 

developed in [24] to reduce greenhouse gases and intensive electricity imports in the 

Switzerland power system with controlled charging/discharging of EVs. To jointly install EV 

charging stations and distributed energy resources in a distribution system in China, an 

optimization model has been presented in [25], where V2G service is considered with 

minimized annual costs (considering also social aspects). An optimization problem has been 

modelled in [26] as a nonlinear stochastic programming problem with uncertainty of PV energy. 

The EVs can operate in V2G mode, where this allows EVs to charge during off-peak hours and 

discharge during peak hours to reduce energy costs. The proposed problem can optimize the 

operation of EVs and minimize the cycles of their batteries to reduce battery degradation 
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speed. A novel control system has been presented in [27] to underpin V2G service by 

deploying a fleet of EVs, which allows a V2G aggregator to provide voltage and frequency 

services while reducing the charging cost with the minimization of battery-level degradation. A 

case study of an EV charging station based on a university campus in Jordan has been 

presented in [28], which investigates the feasibility of a V2G service to minimize the global 

consumption of energy drawn from the public grid. A computational model of an EV with battery 

degradation has been studied in [29] to supply power to the grid while gaining profit for the EV 

owner by alleviating the load on the main grid. The results show that the potential benefits from 

V2G are greater than the cost of battery degradation. 

On the other hand, research studies have investigated the optimization of V2G service in a 

PVCS. In [30], a dynamic searching peak-and-valley algorithm was proposed to determine the 

optimal charging and discharging start time of EVs based on their initial state-of-charge (𝑆𝑂𝐶), 

arrival time, charging mode, departure time, and the tariffs in peak hours. The aim of this 

optimization was to reduce the burden on the public grid and lower its energy cost. A control 

scheme using a grid-connected inverter was developed in [31] to improve the voltage and 

frequency stability of a PVCS with V2G operation. This inverter can identify unusual faults of 

the microgrid and functions in islanding mode. The authors in [32], have modelled a PVCS to 

provide ancillary services where EV users can receive rewards for their V2G participation. The 

results proved that EVs participating in V2G service could provide high availability of service. 

Furthermore, in [33], an energy management strategy has been examined for the real-time 

control of multi-source EV charging to lower the operating cost, taking into consideration 

battery degradation of stationary storage and EVs for their V2G participation. In [34], a PVCS 

was designed with V2G service to lower the stress on the public grid and to enhance its stability 

during peak hours. The authors also discussed possible financial incentives that can motivate 

EV users to participate in the demand response. Additionally, an energy management and 

control system has been introduced in [35] for an EV charging station with V2G integration. 

This charging station featured a PV system, wind turbine, and fuel cell with grid connection. A 

MILP model has been proposed in [36] for a parking lot of EVs powered with a microgrid, based 

on PV sources, wind turbines, hydrogen energy, and a stationary storage system to minimize 

the total sustainability cost, as well as economic and environmental costs. The EVs can 

operate in V2G mode to participate in demand response, thus encouraging EV users to charge 

in off-peak periods instead of on-peak periods. In [37], a day-ahead operation planning method 

that incorporates EVs with V2G service in a microgrid was investigated to minimize the daily 

operation costs. A multi-objective optimization model has been proposed in [38] for a microgrid 

integrating EVs with V2G service. Their objectives were maximizing the use of renewable 

energy, maximizing the benefits for EV users, and minimizing grid load fluctuation. A heuristic 

optimization problem has been studied in [39] to optimize the sizing of a hybrid PV sources, 

battery, and diesel generator for an EV parking lot with V2G service, where EVs are considered 

as a flexible load. A two-stage smart charging algorithm (first stage: optimization problem, 

second stage: real-time control) has been proposed in [40] for buildings integrating EVs, PV 

sources, a storage system, and a heat pump. The optimization problem is formulated as a non-

linear programming model to optimize the operation of EVs. The results show the benefits of 

V2G service as primary frequency regulation reserve while participants achieve energy cost 

reductions; however, the degradation of Lithium – Ion (Li-Ion) batteries is non-negligible. The 

authors in [41] have proposed an effective strategy using adjustable robust optimization to 

enhance the operation stability and economic cost of a microgrid by enabling V2G service 

during peak periods and charging for valley filling at off-peak periods to minimize the cost of 

operation under various constraints. 
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The references cited earlier have highlighted the role of V2G in serving as a spinning reserve 

source and power regulation to lower the impact of the peak load on the grid and its associated 

services. Yet, their optimization problems are mostly based on day-ahead prediction of EV 

profiles modelled with a probability distribution function, whereas the proposed optimization 

algorithm in this study is actualized at every arrival of a new EV, considering the impact of the 

uncertainties in real-time simulation. This study is an extension of [42], where V2G is realized 

with a rule-based control scheme, whereas in this extended version, the focus is on the energy 

cost optimization problem with V2G implementation in the PVCS. In this study, a PVCS with 

five chargers that can support three charging modes, slow, average, and fast charging, is 

presented. The PVCS combines PV sources, a stationary storage system, a public grid 

connection, and EVs as a flexible load that can operate in V2G mode. The human–machine 

interface (HMI) allows the EV users to interact with the PVCS and choose their preferences, 

such as charging mode, desired state of charge 𝑆𝑂𝐶 at departure, and willingness to participate 

in V2G service. Additionally, EV users arrive arbitrarily at the PVCS, and their arrivals are 

unpredictable. In [43], the authors presented a control mechanism aimed at minimizing the 

discomfort of EV users for a charging station equipped with PV sources and connected to a 

public grid, but without a stationary storage system. However, their study differs from ours in 

several ways. Firstly, only one charging mode—namely, the slow mode—is allowed, whereas 

three different charging modes are offered in the present work. Secondly, their focus is on 

maximizing social welfare and minimizing the discomfort of EV users, while the objective in 

this study is to minimize the total energy cost of the PVCS, with optimization being updated for 

each EV arrival. Furthermore, the energy injected into the grid from EVs and the energy 

distribution for each EV charging from each power source are being analyzed to provide a 

more comprehensive understanding of the system’s energy dynamics. To sum up, the main 

contributions of this study are: 

• Proposing an energy cost optimization problem in a PVCS with V2G service, taking 

into consideration the uncertainty of the arrival time of EVs in a real-time simulation; 

• Actualizing the optimization problem formulated via MILP at every arrival of a new 

EV; the arrival of EVs is not modelled based on day-ahead prediction; instead it is 

randomly generated as unpredicted events in MATLAB; 

• Assessing the energy consumption of every EV from each power source and the 

energy participation among the power sources (PV, energy storage, and grid). 

The study is organized as follows: Section 3.1.2 introduces the PVCS with V2G energy cost 

optimization. 3.1.3 develops the energy cost optimization problem. Section 3.1.4 describes the 

different simulation cases with V2G service. Section 3.1.5 analyses the energy cost results. 

Section 3.1.6 concludes the study. 

3.1.2 PV-Powered Charging Station with V2G Service 

The PVCS infrastructure consists of PV modules, a stationary storage system, and a 

connection with the public grid [42], as illustrated in Figure 3.1-1. 
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Figure 3.1-1 Scheme of PV-powered charging station with V2G service. 

In Figure 3.1-1, 𝑝𝑃𝑉−𝑀𝑃𝑃𝑇 is the PV power operating in maximum-power point-tracking (MPPT) 

mode, 𝑝𝑃𝑉  is the PV power after shedding (if it is necessary), 𝑝𝐺−𝐼 is the power injection into 
the public grid, 𝑝𝐺−𝑆 is the power supply from the public grid, 𝑝𝑆−𝐶 is the charging power of the 

stationary storage𝑝𝑆−𝐷 is the discharging power of the stationary storage, 𝑝𝑃𝑉𝐶𝑆−𝐷 is the total 
demand power of EVs, and 𝑝𝑃𝑉𝐶𝑆 is the total charging power of EVs after shedding (if it is 
necessary). The PVCS is designed such that the public grid can provide power to charge EVs 
and also absorb power in case of excess energy from PV sources or discharging EVs. Each 
component of the PVCS is connected to the DC bus using dedicated converters. The EVs’ 
batteries are considered as controllable loads because they can be charged or discharged at 
variable or constant power. To ensure a consistent power supply and reduce the difference 
between power production and load, the public grid connection is formed through a 
bidirectional AC/DC converter. The stationary storage is charged solely by PV sources and 
can be discharged to provide power for EVs’ load. 

3.1.2.1  PV-Powered Charging Station with V2G Service without Energy Cost Optimization 

The PVCS can operate without energy cost optimization based on the storage priority algorithm 

shown in Figure 3.1-2. In this case, the EVs are charged using PV sources first, followed by 

the stationary storage system, and finally by the public grid. The surplus PV production is used 

to charge the stationary storage system. However, if the storage system has reached its 

capacity or charging power limit and there is still unused excess PV power, the remaining 

power is injected into the public grid. Participating in a V2G service allows EV users to 

discharge their EVs for up to 15 min or until the battery is fully discharged during peak periods. 

Following the V2G operation, the EVs will then be charged to achieve the desired 𝑆𝑂𝐶 at 

departure. The charging can be performed using any available power, regardless of the initial 

charging mode, as long as the charging terminal can support variable power up to 50 kW. 
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Figure 3.1-2 PV-powered charging station energy management via 𝑽𝟐𝑮 service without 

optimization. 

3.1.2.2 PV-Powered Charging Station with V2G Service with Energy Cost Optimization 

On the other hand, the PVCS can operate with energy cost optimization. In this case, Figure 

3.1-3 describes the supervisory control system for the PVCS [44]. The supervisory control 

system of the PVCS is composed of four layers: prediction, energy cost optimization, operation, 

and HMI. The control block has been designed and implemented to interact with EV users and 

maintain power balance at the DC bus through the energy cost optimization and operation 

layers. 

 

Figure 3.1-3 Supervisory control system for the PVCS [44]. 

The prediction layer utilizes weather forecasts. From the interaction with the HMI, the user of 

an EV 𝑣 selects their desired 𝑆𝑂𝐶 at departure charging mode, participates in the V2G service, 

and obtains the 𝑆𝑂𝐶 of their EV at arrival in real-time. The energy cost optimization relies on 

the production prediction, which depends on the hourly solar irradiation predictions and 

consumption profile communicated from the HMI. Moreover, the power limits of the connected 

public grid, energy pricing, and energy system limits are communicated. The MILP formulation 

is used to reduce the total energy cost of the PVCS. This supervisory control system has the 

advantage of interacting with EV users for optimization; yet, if the choices of the EV users are 

not practical, they must be adjusted in order to enable optimization [45]. For instance, if an EV 

user arrives at the charging station and requests fast charging, but the available power cannot 

support it, the HMI will communicate with the user to suggest charging in average or slow 

mode, waiting for available power, or leaving the charging station altogether. Similarly, if the 
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EV user mistakenly inputs an invalid 𝑆𝑂𝐶 at departure (e.g., 180%), the HMI will alert the user 

to enter a valid 𝑆𝑂𝐶 interval below 100%. Whenever a new EV arrives, the optimization process 

is updated with the new inputs from the HMI and physical constraints. Therefore, the process 

is repeated each time a new EV arrives. 

Dealing with the unpredicted arrival of EVs is the main challenge. The power references for 

the public grid, stationary storage, and EVs are sent to the operation layer based on the 

optimization results. The operation layer is responsible for maintaining the power balance while 

respecting the system’s constraints and physical limitations [46]; furthermore, it sets the PV 

power limitation and applies EV shedding if needed. 

3.1.2.2.1 Prediction Layer 

In the prediction layer, hourly solar irradiation predictions are provided by Météo France to 

calculate the PV power prediction. The PV power prediction is based on solar irradiation (𝑔) 

and the ambient temperature (𝑇𝑎𝑚𝑏) from forecasted data [47]. Therefore, the PV power 

prediction 𝑝𝑃𝑉−𝑀𝑃𝑃𝑇−𝑝𝑟𝑒𝑑  is calculated in MPPT mode for each time instant 𝑡𝑖 [48] as in 

Equations (3.1-1) and (3.1-2), and it is introduced into the energy cost optimization layer: 

𝑝𝑃𝑉−𝑀𝑃𝑃𝑇−𝑝𝑟𝑒𝑑 = 𝑃𝑃𝑉−𝑆𝑇𝐶 ×
𝑔(𝑡𝑖)

1,000
× [1 + 𝛾 × (𝑇𝑃𝑉(𝑡𝑖) − 25)] × 𝑁𝑃𝑉    

𝑤𝑖𝑡ℎ𝑡𝑖 = 𝑡0, 𝑡0 + ∆𝑡, 𝑡0 + 2∆𝑡, ⋯ , 𝑡𝐹   

(3.1-1) 

𝑇𝑃𝑉(𝑡𝑖) = 𝑇𝑎𝑚𝑏(𝑡𝑖) + 𝑔(𝑡𝑖) × (𝑁𝑂𝐶𝑇 − 𝑇𝑎𝑖𝑟−𝑡𝑒𝑠𝑡)/𝐺𝑡𝑒𝑠𝑡  (3.1-2) 

where 𝑃𝑃𝑉−𝑆𝑇𝐶 is the PV power in standard test conditions (STC), 𝛾 is the power coefficient of 
temperature (-0.29%/°C), 𝑁𝑃𝑉 is the number of PV panels, 𝑇𝑃𝑉 is the PV cell temperature, and 

𝑡0, ∆𝑡, and 𝑡𝐹 are the initial time instant, time interval between two samples, and time instant 
at the end of operation, respectively. 𝑁𝑂𝐶𝑇 is the nominal operating cell temperature (41°C), 

𝐺𝑡𝑒𝑠𝑡 is the fixed solar irradiation (800 W/m2), and 𝑇𝑎𝑖𝑟−𝑡𝑒𝑠𝑡 is the fixed air temperature (20°C). 

3.1.2.2.2 Human–Machine Interface 

This layer interacts with the EV users, allowing them to choose their preferred charging mode 
𝑀𝑣 among slow, average, and fast. It should be noted that all EVs have the same energy 
capacity and can handle fast charging. The HMI obtains the 𝑆𝑂𝐶 of the EVs at their arrivals 

𝑆𝑂𝐶𝐸𝑉−𝑎𝑟𝑟𝑣
 and assists the users in selecting their desired 𝑆𝑂𝐶 at departure 𝑆𝑂𝐶𝐸𝑉−𝑑𝑒𝑠 , as 

well as their participation in V2G service 𝑉2𝐺𝐸𝑉 in real-time. Therefore, the estimated charging 
time 𝑡𝑒𝑠𝑡−𝑐ℎ𝑣

, which indicates the time required to reach the desired 𝑆𝑂𝐶, is determined in 

Equation  (3.1-3): 

𝑡𝑒𝑠𝑡−𝑐ℎ𝑣
= (𝑆𝑂𝐶𝐸𝑉−𝑑𝑒𝑝𝑣

− 𝑆𝑂𝐶𝐸𝑉−𝑎𝑟𝑟𝑣
) ×

𝐸

𝑃𝐸𝑉−𝑚𝑎𝑥𝑣

  (3.1-3) 

where 𝐸 is the EV battery capacity, and 𝑃𝐸𝑉−𝑚𝑎𝑥𝑣
 is the maximum power of EV charging based 

on the charging mode selected by the user. The HMI for the PVCS is explained thoroughly in 
[49], and once the user preferences are set in the HMI, these data are communicated 
simultaneously to the operation layer and to the energy cost optimization layer to actualize the 
optimization with these data. 

3.1.2.2.3 Energy Cost Optimization 

This layer interacts with the prediction layer and the HMI to carry out the optimization to 
minimize the total energy cost. This layer, the power references for the stationary storage, the 
public grid, and the EVs, which are the decision variables, are sent to the operational layer. 
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The optimization has several benefits, such as minimizing the energy cost, determining the 
optimal contribution of the stationary storage or the public grid, and avoiding EV and PV 
shedding. The energy pricing is considered for on-peak and off-periods with fixed tariffs, and 
the limits for public grid power injection and supply are defined with the public grid operators. 
Moreover, the physical limitations of the stationary storage should be respected to avoid its 
damage. The energy cost optimization problem is detailed in Section 3.1.3. 

3.1.2.2.4 Operation Layer 

From the energy optimization layer, the optimal power flow for the sources and the EVs 

considering 𝑝𝑃𝑉−𝑀𝑃𝑃𝑇−𝑝𝑟𝑒𝑑  and 𝑝𝑃𝑉𝐶𝑆 is found. The optimized powers for the stationary storage 

and the public grid are obtained through the optimization layer. However, these optimized 

powers are not sent directly into the operation layer. Instead, the power distribution coefficient 

𝑘𝐷 is identified and introduced into the operation layer to account for uncertainties in the 

forecasted data. The power distribution coefficient 𝑘𝐷 determines the power share between 

the public grid and the stationary storage. Thus, if PV power is insufficient for EV charging, 

either the public grid or the stationary storage or both can continue supplying power to charge 

the EVs based on the value of 𝑘𝐷 (see Section 3.1.5). The upside of 𝑘𝐷 is coupling easily the 

energy management with the operation layer while respecting all constraints [47]. 

The operation layer must ensure robustness and be able to withstand uncertainties in the 
forecast data. After that, this layer defines the power references and applies PV or EV shedding 
when needed. To maintain the DC bus at the reference voltage 𝑉𝑟𝑒𝑓, the actual operating 

conditions are used to determine the power reference 𝑃𝑟𝑒𝑓 using  (3.1-4) and (3.1-5) :  

𝑝𝑟𝑒𝑓(𝑡𝑖) = 𝑝𝑃𝑉(𝑡𝑖) − 𝑝𝑃𝑉𝐶𝑆−𝐷(𝑡𝑖) − 𝐶𝑃 × (𝑉𝑟𝑒𝑓 − 𝑣𝐷𝐶−𝑏𝑢𝑠)  (3.1-4) 

𝑝𝑟𝑒𝑓(𝑡𝑖) = 𝑝𝐺−𝑟𝑒𝑓(𝑡𝑖) + 𝑝𝑆−𝑟𝑒𝑓(𝑡𝑖)  (3.1-5) 

where 𝐶𝑃 is the proportional controller gain, and 𝑣𝐷𝐶−𝑏𝑢𝑠 is the actual voltage of the DC bus. 
The power reference for the public grid 𝑝𝐺−𝑟𝑒𝑓 and the stationary storage 𝑝𝑆−𝑟𝑒𝑓 can be 

obtained by (3.1-6), and the power distribution coefficient 𝑘𝐷 is given by (3.1-7): 

𝑝𝑆−𝑟𝑒𝑓(𝑡𝑖) = 𝑘𝐷(𝑡𝑖) × 𝑝𝑟𝑒𝑓(𝑡𝑖)  (3.1-6) 

𝑘𝐷(𝑡𝑖) =  
𝑝𝑆−𝐶(𝑡𝑖)+𝑝𝑆−𝐷(𝑡𝑖)

𝑝𝑆−𝐶(𝑡𝑖)+𝑝𝑆−𝐷(𝑡𝑖) + 𝑝𝐺−𝐼(𝑡𝑖)+𝑝𝐺−𝑆(𝑡𝑖)
  𝑤𝑖𝑡ℎ 𝑘𝐷 ∈ [0,1]  (3.1-7) 

3.1.3 Energy Cost Optimization with 𝑽𝟐𝑮 Service 

The principal objective of the formulated optimization problem is to minimize the total energy 
cost while satisfying various constraints [47]. The constraints and objective function are 
explained in detail in the following subsections. 

3.1.3.1 PV Sources 

PV system can operate in two modes: MPPT or limited-power mode. The latter mode is used 
in case of excessive surplus PV production which exceeds the total EV load, the allowed 
stationary storage charging power, and the public grid injection power. In the MPPT mode, 
there is no need to shed any PV power, and thus PV shedding 𝑝𝑃𝑉−𝑆 is zero. However, in the 

power-limitation mode, 𝑝𝑃𝑉−𝑆 becomes positive, indicating the amount of PV power that needs 
to be shed to ensure that the total power injected into the grid does not exceed the limits. 
Accordingly, 𝑝𝑃𝑉 is calculated [47] as given by (3.1-8) with the constraint of 𝑝𝑃𝑉−𝑆 in (3.1-9) 
and (3.1-10): 
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𝑝𝑃𝑉(𝑡𝑖) = 𝑝𝑃𝑉−𝑀𝑃𝑃𝑇(𝑡𝑖) − 𝑝𝑃𝑉−𝑆(𝑡𝑖)  (3.1-8) 

𝑝𝑃𝑉(𝑡𝑖)  > 0   (3.1-9) 

0 <  𝑝𝑃𝑉−𝑆(𝑡𝑖)  <  𝑝𝑃𝑉−𝑀𝑃𝑃𝑇(𝑡𝑖)  (3.1-10) 

3.1.3.2 Stationary Storage 

In order to extend the lifetime of the Li-Ion batteries as a stationary storage method and protect 
them from overcharging or over-discharging, the maximum and minimum 𝑆𝑂𝐶 of the storage, 
𝑆𝑂𝐶𝑆−𝑚𝑎𝑥, 𝑆𝑂𝐶𝑆−𝑚𝑖𝑛as well as the maximum storage power 𝑃𝑆−𝑚𝑎𝑥 must be respected as given 

by (3.1-11)  and (3.1-12) [47]-[50]. The 𝑆𝑂𝐶 of the storage 𝑠𝑜𝑐𝑆 can be simplified as in [51], 
neglecting the effects of self-discharge and temperature, and is given by (3.1-13) below: 

 − 𝑃𝑆−𝑚𝑎𝑥 ≤ 𝑝𝑆(𝑡𝑖) ≤ 𝑃𝑆−𝑚𝑎𝑥 , 𝑤ℎ𝑒𝑟𝑒 𝑝𝑆(𝑡𝑖) = 𝑝𝑆−𝐶(𝑡𝑖)  −  𝑝𝑆−𝐷(𝑡𝑖)   (3.1-11) 

𝑆𝑂𝐶𝑆−𝑚𝑖𝑛 ≤ 𝑠𝑜𝑐𝑆(𝑡𝑖)  ≤  𝑆𝑂𝐶𝑆−𝑚𝑎𝑥  (3.1-12) 

𝑠𝑜𝑐𝑆(𝑡𝑖) = 𝑆𝑂𝐶(𝑡0)  + 
1

3 600×𝐸𝐵𝑎𝑡
 ∫ 𝑝𝑆(𝑡𝑖) 𝑑𝑡

𝑡

𝑡0
  (3.1-13) 

where 𝐸𝐵𝑎𝑡 and 𝑝𝑆 are the energy capacity (kWh) and power of the stationary storage, 
respectively. 

3.1.3.3 Grid Connection 

The maximum limits for the grid supply and injection 𝑃𝐺−𝑆−𝑚𝑎𝑥 and 𝑃𝐺−𝐼−𝑚𝑎𝑥, set by the public 

grid, should be respected [47], as given by (3.1-14), where 𝑝𝐺 is the public grid power: 

−𝑃𝐺−𝑆−𝑚𝑎𝑥 ≤ 𝑝𝐺(𝑡𝑖) ≤ 𝑃𝐺−𝐼−𝑚𝑎𝑥, 𝑤ℎ𝑒𝑟𝑒 𝑝𝐺(𝑡𝑖) = 𝑝𝐺−𝐼(𝑡𝑖)  −  𝑝𝐺−𝑆(𝑡𝑖)   (3.1-14) 

3.1.3.4 Electric Vehicles 

When the stationary storage and public grid have reached their limits, it may not be possible 
to fully supply EV batteries, which represent the entire load of the PVCS. In such cases, the 
charging of EVs can be shed [47]. Moreover, it should be noted that 𝑝𝑃𝑉𝐶𝑆 can be negative 
when an EV is in the process of discharging into the grid during V2G service. In situations 
where there is enough PV power available, there is no need to shed any PV production. 
Similarly, when there is sufficient charging capacity available, there is no need to shed any EV 
charging power. Moreover, the stationary storage could be charged, and/or the public grid 
could absorb power when PV production is higher than load demand. On the other hand, when 
the load demand exceeds the PV production, the stationary storage can be discharged, and/or 
the public grid can supply power. Therefore, the constraints given by (3.1-15) and (3.1-16) 
must be respected. 

 𝑖𝑓 𝑝𝑃𝑉−𝑀𝑃𝑃𝑇(𝑡𝑖)  ≥  𝑝𝑃𝑉𝐶𝑆−𝐷(𝑡𝑖) 𝑡ℎ𝑒𝑛 {
𝑝𝐺(𝑡𝑖) ≥ 0

𝑝𝑆(𝑡𝑖) ≥ 0
   (3.1-15) 

 𝑖𝑓 𝑝𝑃𝑉−𝑀𝑃𝑃𝑇(𝑡𝑖)  ≤  𝑝𝑃𝑉𝐶𝑆−𝐷(𝑡𝑖) 𝑡ℎ𝑒𝑛 {

𝑝𝑃𝑉−𝑆(𝑡𝑖) = 0

𝑝𝐺(𝑡𝑖)  ≤ 0

𝑝𝑆(𝑡𝑖)  ≤ 0

  (3.1-16) 

The PVCS interface allows EV users to make choices regarding their charging mode and other 
preferences. The constraints given in (3.1-17) – (3.1-34) reflect the interaction between EV 
users and the supervisory control system. 
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3.1.3.4.1 V2G Mode 

The following constraints given below in (3.1-17) – (3.1-23) are included in the optimization 
problem for the EV users who accept providing V2G services. 

 

𝑑𝑖𝑠𝑐ℎ𝑚𝑖𝑛 ×
60

∆𝑡
≤ ∑ 𝑉2𝐺𝑏𝑖𝑛𝑣

(𝑡𝑖) ≤ 𝑑𝑖𝑠𝑐ℎ𝑚𝑎𝑥 ×
60

∆𝑡
     ∀𝑡𝑖 ∈ [𝑡𝑎𝑟𝑟𝑣

, 𝑡𝑑𝑒𝑝𝑣
]  (3.1-17)   

𝑉2𝐺𝑆𝑊𝑣
(𝑡𝑖) ≥ 𝑉2𝐺𝑏𝑖𝑛𝑣

(𝑡𝑖)  −  𝑉2𝐺𝑏𝑖𝑛𝑣
(𝑡𝑖−1)     ∀𝑡𝑖 ∈ [𝑡𝑎𝑟𝑟𝑣

, 𝑡𝑑𝑒𝑝𝑣
]  (3.1-18) 

𝐺2𝑉𝑆𝑊𝑣
(𝑡𝑖) ≥ 𝐺2𝑉𝑏𝑖𝑛𝑣

(𝑡𝑖)  −  𝐺2𝑉𝑏𝑖𝑛𝑣
(𝑡𝑖−1)  ∀𝑡𝑖 ∈ [𝑡𝑎𝑟𝑟𝑣

, 𝑡𝑑𝑒𝑝𝑣
]  (3.1-19) 

𝐺2𝑉𝑏𝑖𝑛𝑣
(𝑡𝑖)   +  𝑉2𝐺𝑏𝑖𝑛𝑣

(𝑡𝑖)  ≤ 1  ∀𝑡𝑖 ∈ [𝑡𝑎𝑟𝑟𝑣
, 𝑡𝑑𝑒𝑝𝑣

]  (3.1-20) 

−𝑃𝐸𝑉−𝑓𝑎𝑠𝑡−𝑚𝑎𝑥 × 𝑉2𝐺𝑏𝑖𝑛𝑣
(𝑡𝑖) ≤ 𝑝𝐸𝑉𝑣 (𝑡𝑖)   ∀𝑡𝑖 ∈ [𝑡𝑎𝑟𝑟𝑣

, 𝑡𝑑𝑒𝑝𝑣
]  (3.1-21) 

𝑝𝐸𝑉𝑣 (𝑡𝑖)  ≤  𝑃𝐸𝑉−𝑓𝑎𝑠𝑡−𝑚𝑎𝑥 ×  𝐺2𝑉𝑏𝑖𝑛𝑣
(𝑡𝑖)   ∀𝑡𝑖 ∈ [𝑡𝑎𝑟𝑟𝑣

, 𝑡𝑑𝑒𝑝𝑣
]  (3.1-22) 

𝑝𝐸𝑉𝑣 (𝑡𝑖)  − 𝑝𝐸𝑉𝑣 (𝑡𝑖−1)  ≤  𝐿𝑖𝑚𝑖𝑡 ×  
∆𝑡

60
× 𝐺2𝑉𝑏𝑖𝑛𝑣

(𝑡𝑖)  ∀𝑡𝑖 ∈ [𝑡𝑎𝑟𝑟𝑣
, 𝑡𝑑𝑒𝑝𝑣

]  (3.1-23) 

 

where 𝑑𝑖𝑠𝑐ℎ𝑚𝑖𝑛(5min) and 𝑑𝑖𝑠𝑐ℎ𝑚𝑎𝑥 (15min) are the minimum and maximum duration for the 
EV’s discharge, while 𝑡𝑎𝑟𝑟𝑣

 and 𝑡𝑑𝑒𝑝𝑣
 are the time of arrival and departure of vehicle 𝑣, 

respectively. 𝐺2𝑉𝑏𝑖𝑛𝑣
 and 𝑉2𝐺𝑏𝑖𝑛𝑣

are binary decision variables for charging/discharging times; 

𝐺2𝑉𝑆𝑊𝑣
 and 𝑉2𝐺𝑆𝑊𝑣

 are binary decision variables for the switching times between charging/stop 

and discharging/stop; 𝑝𝐸𝑉𝑣  is the EV charging power of vehicle 𝑣; 𝑃𝐸𝑉−𝑓𝑎𝑠𝑡−𝑚𝑎𝑥 is the fast 

charging power at maximum; and 𝐿𝑖𝑚𝑖𝑡 is the ramp-up charging power (15 kW/min). Constraint 
(3.1-17) determines the discharging period of the EV, while Constraints (3.1-18) and (3.1-19) 
determine that the discharging and charging times of the EV, respectively, should be 
successive. Constraint (3.1-20) specifies that the EV can either charge, discharge, or be idle 
at any given time. Constraints (3.1-21) and (3.1-22) refer to the discharging and charging 
power of the EV, respectively. Lastly, Constraint  (3.1-23) helps to reduce the charging 
fluctuations of the EV. 

3.1.3.4.2 EV Charging Mode 

If the EV user does not want to participate in the V2G service, Constraints (3.1-24) – (3.1-27) 
are used for charging the EV battery, where the charging power is determined by the charging 
mode selected by the EV user as follows: 

𝑖𝑓 𝑀𝑣 = 1 𝑡ℎ𝑒𝑛 0 ≤ 𝑝𝐸𝑉𝑣 (𝑡𝑖) ≤ 𝑃𝐸𝑉−𝑓𝑎𝑠𝑡−𝑚𝑎𝑥   ∀𝑡𝑖 ∈ [𝑡𝑎𝑟𝑟𝑣
, 𝑡𝑑𝑒𝑝𝑣

]  

𝑊𝑖𝑡ℎ 𝑣 = 1,2, ⋯ , 𝑁𝑣  

(3.1-24)   

𝑖𝑓 𝑀𝑣 = 2 𝑡ℎ𝑒𝑛 0 ≤ 𝑝𝐸𝑉𝑣 (𝑡𝑖) ≤ 𝑃𝐸𝑉−𝑎𝑣𝑒𝑟−𝑚𝑎𝑥   ∀𝑡𝑖 ∈ [𝑡𝑎𝑟𝑟𝑣
, 𝑡𝑑𝑒𝑝𝑣

]  (3.1-25) 

𝑖𝑓 𝑀𝑣 = 3 𝑡ℎ𝑒𝑛 0 ≤ 𝑝𝐸𝑉𝑣 (𝑡𝑖) ≤ 𝑃𝐸𝑉−𝑠𝑙𝑜𝑤−𝑚𝑎𝑥   ∀𝑡𝑖 ∈ [𝑡𝑎𝑟𝑟𝑣
, 𝑡𝑑𝑒𝑝𝑣

]  (3.1-26) 

𝑝𝐸𝑉𝑣 (𝑡𝑖)  =  0  ∀𝑡𝑖 ∉ [𝑡𝑎𝑟𝑟𝑣
, 𝑡𝑑𝑒𝑝𝑣

]  (3.1-27) 

 

where 𝑁𝑣 is the total number of EVs, 𝑃𝐸𝑉−𝑎𝑣𝑒𝑟−𝑚𝑎𝑥  is the average charging power at maximum, 

and 𝑃𝐸𝑉−𝑠𝑙𝑜𝑤−𝑚𝑎𝑥 is the slow charging power at maximum. The total EV charging power in 
(3.1-28) and the 𝑆𝑂𝐶 calculation with its constraints in (3.1-29) – (3.1-34) are given: 

𝑝𝑃𝑉𝐶𝑆 (𝑡𝑖)  = ∑ 𝑝𝐸𝑉𝑣 (𝑡𝑖) 
𝑁𝑣
𝑣   ∀𝑡𝑖 ∈ [𝑡𝑎𝑟𝑟𝑣

, 𝑡𝑑𝑒𝑝𝑣
]   (3.1-28)   

𝑆𝑂𝐶𝐸𝑉−𝑚𝑖𝑛 ≤ 𝑠𝑜𝑐𝐸𝑉𝑣
(𝑡𝑖) ≤ 𝑆𝑂𝐶𝐸𝑉−𝑚𝑎𝑥   ∀𝑡𝑖 ∈ [𝑡𝑎𝑟𝑟𝑣

, 𝑡𝑑𝑒𝑝𝑣
]  (3.1-29) 



Task 17 PV and Transport  – PV-Powered Charging  Stations: Sizing, Optimization and Control 

84 

𝑠𝑜𝑐𝐸𝑉𝑣
(𝑡𝑖)  =  0   ∀𝑡𝑖 ∉ [𝑡𝑎𝑟𝑟𝑣

, 𝑡𝑑𝑒𝑝𝑣
]  (3.1-30) 

𝑠𝑜𝑐𝐸𝑉𝑣
(𝑡𝑖) = 𝑆𝑂𝐶𝐸𝑉𝑎𝑟𝑟𝑣

   ∀𝑡𝑖 = 𝑡𝑎𝑟𝑟𝑣
   (3.1-31) 

𝑆𝑂𝐶𝐸𝑉𝑎𝑟𝑟𝑣
(𝑡𝑖) ≥  𝑆𝑂𝐶𝐸𝑉−𝑚𝑖𝑛    ∀𝑡𝑖 = 𝑡𝑎𝑟𝑟𝑣

    (3.1-32) 

𝑠𝑜𝑐𝐸𝑉𝑣
(𝑡𝑖) = 𝑆𝑂𝐶𝐸𝑉𝑎𝑟𝑟𝑣

(𝑡𝑖)  + 
1

3 600×𝐸
 ∫ 𝑝𝐸𝑉𝑣 (𝑡𝑖) 𝑑𝑡

𝑡𝑑𝑒𝑝𝑣

𝑡𝑎𝑟𝑟𝑣
   (3.1-33) 

𝑠𝑜𝑐𝐸𝑉𝑣
(𝑡𝑖) = 𝑆𝑂𝐶𝐸𝑉𝑑𝑒𝑠𝑣

  ∀𝑡𝑖 = 𝑡𝑑𝑒𝑝𝑣
   (3.1-34) 

where 𝑠𝑜𝑐𝐸𝑉𝑣
 is the 𝑆𝑂𝐶 of vehicle 𝑣, and 𝑆𝑂𝐶𝐸𝑉−𝑚𝑖𝑛 and 𝑆𝑂𝐶𝐸𝑉−𝑚𝑎𝑥 are the minimum and 

maximum battery 𝑆𝑂𝐶 of vehicle 𝑣, respectively. The dynamic 𝑆𝑂𝐶 evolution 𝑠𝑜𝑐𝐸𝑉𝑣
is given by 

(3.1-33). Similar to the stationary storage, Constraint (3.1-29) determines the 𝑆𝑂𝐶 limit. 
Additionally, Constraint (3.1-30) refers to the absence of an EV, while Constraint (3.1-31) 
assigns the 𝑆𝑂𝐶 of an EV at its arrival time, requiring it to be greater than the limit specified in 

Constraint (3.1-32). Finally, Constraint (3.1-34) refers to the 𝑆𝑂𝐶 of an EV at its departure time, 
which should be lower than or equal to the desired 𝑆𝑂𝐶 of the EV at departure. 

3.1.3.5 Power Balancing 

All the production and consumption should be equal on the DC bus; therefore, an equation for 
power balancing should be included in the formulation. The power balancing equation [47], 
where all power signs are assigned positives, is be given by (3.1-35): 

𝑝𝑃𝑉(𝑡𝑖) + 𝑝𝑆−𝐷(𝑡𝑖) + 𝑝𝐺−𝑆(𝑡𝑖) = 𝑝𝑃𝑉𝐶𝑆(𝑡𝑖) + 𝑝𝑆−𝐶(𝑡𝑖) + 𝑝𝐺−𝐼(𝑡𝑖)  (3.1-35) 

3.1.3.6 Objective Function 

The total energy cost  𝐶𝑡𝑜𝑡𝑎𝑙 takes into consideration the cost of the power supplied from the 
public grid, the profit from the power injected into the public grid, the cost of the stationary 
storage, the penalty cost in case the EV has not reached the desired 𝑆𝑂𝐶 at departure, and 
the cost associated with shedding power from the PV sources. To prevent excessive switching 
during charging or discharging, a switching penalty 𝐶𝑆𝑊 is introduced to ensure that the action 
is completed in the fewest cycles possible. Therefore, the objective function minimizes 𝐶𝑡𝑜𝑡𝑎𝑙, 
as given by Equations  (3.1-36) – (3.1-41): 

𝑚𝑖𝑛 𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝐺 + 𝐶𝑆 + 𝐶𝑃𝑉𝑆 + 𝐶𝐸𝑉−𝑝𝑒𝑛𝑎𝑙𝑡𝑦 + 𝐶𝑆𝑊  (3.1-36) 

𝐶𝐺 = ∑ [𝑐𝐺(𝑡𝑖) × ∆𝑡 × (−𝑝𝐺−𝐼(𝑡𝑖)  +  𝑝𝐺−𝑆(𝑡𝑖))]
𝑡𝐹
𝑡𝑖=𝑡0

  

𝑐𝐺 = {
𝑐𝐺𝑁𝐻

𝑓𝑜𝑟 𝑡 ∈  𝑛𝑜𝑟𝑚𝑎𝑙 ℎ𝑜𝑢𝑟𝑠

𝑐𝐺𝑁𝐻
𝑓𝑜𝑟 𝑡  ∈  𝑝𝑒𝑎𝑘 ℎ𝑜𝑢𝑟𝑠 

   

(3.1-37) 

𝐶𝑆 = ∑ [𝑐𝑆(𝑡𝑖) × ∆𝑡 × (𝑝𝑆−𝐶(𝑡𝑖)  + 𝑝𝑆−𝐷(𝑡𝑖))]
𝑡𝐹
𝑡𝑖=𝑡0

  (3.1-38) 

𝐶𝑃𝑉𝑆 = ∑ [𝑐𝑃𝑉𝑆(𝑡𝑖) × ∆𝑡 × 𝑝𝑃𝑉𝑆(𝑡𝑖)]𝑡𝐹
𝑡𝑖=𝑡0

  (3.1-39) 

𝐶𝐸𝑉−𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = ∑ [𝑐𝐸𝑉𝑝
× (𝑆𝑂𝐶𝐸𝑉−𝑑𝑒𝑠𝑣 − 𝑆𝑂𝐶𝐸𝑉−𝑑𝑒𝑝𝑣

) × 𝐸]
𝑁𝑣
𝑣   (3.1-40) 

𝐶𝑆𝑊 = ∑ ∑ [𝑐𝑆𝑊(𝑡𝑖) × (𝑉2𝐺𝑆𝑊𝑣
(𝑡𝑖) + 𝐺2𝑉𝑆𝑊𝑣

(𝑡𝑖))]
𝑁𝑣
𝑣

𝑡𝐹
𝑡𝑖=𝑡0

  (3.1-41) 

where 𝐶𝐺, 𝐶𝑆, 𝐶𝑃𝑉𝑆, 𝐶𝐸𝑉−𝑝𝑒𝑛𝑎𝑙𝑡𝑦 , and 𝐶𝑆𝑊 are the public grid, stationary storage, PV shedding, 

EV penalty, and switching penalty costs, respectively; and 𝑐𝐺, 𝑐𝑆, 𝐶𝑐𝑃𝑉𝑆, 𝑐𝐸𝑉𝑝
, and 𝑐𝑆𝑊 are the 

public grid, stationary storage, PV shedding, EV penalty, and switching penalty tariffs, 
respectively. The energy cost optimization problem is formulated to minimize the objective 
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function in (3.1-36) with respect to Constraints (3.1-8) – (3.1-35) , determining the decision 
variables: 𝑝𝐺 , 𝑝𝑆 , 𝑝𝑃𝑉−𝑆, 𝑝𝐸𝑉𝑣

, 𝑉2𝐺𝑏𝑖𝑛𝑣
, 𝐺2𝑉𝑏𝑖𝑛𝑣

, 𝑉2𝐺𝑆𝑊𝑣
and 𝐺2𝑉𝑆𝑊𝑣

. 

3.1.4 Simulation Results for PVCS with V2G Service 

Several simulation cases are presented to demonstrate the effectiveness of the energy cost 

optimization method. Finally, the cases with optimization, denoted as “Sim w/ opti”, are 

compared with the cases without optimization, denoted as “Sim w/o opti”. The “Sim w/o opti” 

is operated under a simple control scheme based on a storage priority, where 𝑘𝐷 is set to one 

in this operation mode [52]. The optimization problem is solved by CPLEX [53], where CPLEX 

is a high-performance mathematical programming solver for linear programming, mixed-

integer programming, quadratic programming, and convex optimization, developed by IBM. 

The optimization is performed with 1min intervals, while the simulation is performed with 1s 

intervals. The data for the irradiance and ambient temperature were recorded at 10s intervals 

using proper instruments of measurement, and through interpolation, the data are reduced to 

1s intervals. 

In this section, two case studies are presented for a PVCS that includes five chargers, with 

EVs equipped with 50 kWh Li-Ion batteries. The PVCS has 84 PV panels with 28.9 kWp, and 

the stationary storage has a capacity of 130 Ah, with 288 V providing 37.44 kWh. However, 

there is no defined power injection limit for the public grid. Table 3.1-1 lists the parameters that 

are used in the following simulation cases for the PVCS with V2G service. 

Table 3.1-1 Parameter values used in the simulations for the V2G service. 

 

Table 3.1-2 presents the EV users’ data and preferences. 𝑆𝑂𝐶𝐸𝑉−𝑎𝑟𝑟𝑣 , 𝑡𝑎𝑟𝑟𝑣
, 𝑀𝑣, and V2G 

participation are generated randomly. 𝑆𝑂𝐶𝐸𝑉−𝑎𝑟𝑟𝑣 and 𝑆𝑂𝐶𝐸𝑉−𝑑𝑒𝑠𝑣 are generated in the intervals 

[20%,50%] and [70%,100%], respectively. It is assumed that EV battery capacity is capable of 
handling fast charging. 

 

Table 3.1-2 Data and preferences of EV users [43]. 

 

Additionally, two scenarios in each study case are taken into consideration: 
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• Scenario a: during peak periods, EVs discharge at a constant power and then 

recharge with the same constant charging power as set by the user until departure 

time; 

• Scenario b: during peak periods, EVs discharge at a maximum power of 50 kW and 

then recharge again with a variable charging power, irrespective of the charging 

mode selected by the user, to achieve the desired 𝑆𝑂𝐶 at departure after V2G 

service. 

3.1.4.1 Case 1: Sunny Day 

For case 1, a day with high irradiance was considered, specifically, 29 June 2019 in 

Compiegne. The real and predicted PV power are shown in Figure 3.1-4, where it can be 

observed that the predicted PV power is slightly higher than the real PV power and follows the 

same trend. As a result, this uncertainty has an impact on the optimization results, which will 

potentially lead to supplying energy from the public grid instead of discharging energy from the 

stationary storage. In this case, two scenarios are conducted, which involve constant and 

variable charging/discharging powers. 

 

Figure 3.1-4 Real PV power 𝒑𝑷𝑽−𝑴𝑷𝑷𝑻 and predicted PV power 𝒑𝑷𝑽−𝑴𝑷𝑷𝑻−𝒑𝒓𝒆𝒅  – 29 June 

2019. 

3.1.4.1.1 Scenario a: Constant Power 

Figure 3.1-5 and Figure 3.1-6 show the power and 𝑆𝑂𝐶 of the EVs with V2G service at constant 

power with the “Sim w/o opti” and “Sim w/ opti” algorithms, respectively. 

 

Figure 3.1-5 Power (a) and 𝑺𝑶𝑪 of the EVs (b) – scenario a in “Sim w/o opti”. 
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Figure 3.1-6 Power (a) and 𝑺𝑶𝑪 of the EVs (b) – scenario a in “Sim w/ opti”. 

Figure 3.1-5 (a) shows that EV1 as well EV3 are discharged at peak hours with 7 kW each for 

15 min; they are then charged after providing V2G service directly until their departure time 

with the same constant power. As a result, EV1 and EV3 failed to achieve their desired 𝑆𝑂𝐶 

values at departure. Specifically, EV1 only reached 71% instead of the desired 85%, and EV3 

reached 68.33% instead of 80%, as shown in Figure 3.1-5 (b). The dashed points represent 

the 𝑆𝑂𝐶s of the EVs that should be reached with respect to user preferences. On the other 

hand, Figure 3.1-6 (a) shows that all the EVs are charging according to user preferences, and 

the desired 𝑆𝑂𝐶 at departure is reached even when EV users opt to participate in V2G service, 

as shown in Figure 3.1-6 (b). However, discharging the EVs is not possible because it would 

prevent the desired 𝑆𝑂𝐶 from being achieved, and hence meeting the requirements of EV 

users is given priority over discharging energy via V2G into the grid. 

3.1.4.1.2 Scenario b: Variable Power 

The power flow of the PVCS with V2G service at variable power with the “Sim w/o opti” and 

“Sim w/ opti” algorithms is presented in Figure 3.1-7, where the predicted PV power is used 

only to run the optimization, and the real PV power is used in both simulation scenarios. 
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Figure 3.1-7 Power flow with V2G service – scenario b (a) in “Sim w/o opti” and (b) in 

“Sim w/ opti”. 

Figure 3.1-7 shows that EV1 as well EV3 are discharged at peak periods for 15 min at 50 kW 

each, and then they are recharged with the appropriate charging power after V2G service to 

meet the needs of the users while considering the duration of the remaining parking time. The 

PVCS operates in storage-priority mode, meaning that any excess PV power is initially used 

to charge the stationary storage. Once the stationary storage is either full or its maximum 

charging power is reached, which occurs around 11:00 A.M till 11:30 A.M and from 03:00 P.M 

until 06:00 P.M, any additional PV power is then injected into the public grid. Furthermore, the 

public grid provides power when EV2 charges in fast mode and during peak periods when EV1 

and EV3 recharge after V2G. Thus, charging EVs during peak periods will increase the energy 

cost. Sharp variations in power levels might lead to stability issues. To prevent this, Constraint 

(3.1-23) limits steep power variations, which can be seen in Figure 3.1-7 (a)’s zoom-in during 

the peak hour of 12:00 P.M to 01:00 P.M. On the other hand, in Figure 3.1-7 (b), EV1 and EV3 

are discharged simultaneously during peak periods (serving a total of 100 kW power to the 

grid), and then each EV recharges after V2G with the optimized power to meet user 

preferences.  EV1 and EV3 are primarily charged by PV power. However, due to uncertainty 

in the PV power prediction, the public grid may supply power to the EVs between 10:25 A.M 

and 12:00 P.M, although it is not very significant. The injection of power into the public grid is 

determined by the optimization result to maximize profits in the event of excess PV power, 

which occurs before 10:00 A.M during V2G service and from 03:00 P.M until 06:00 P.M. The 

power and 𝑆𝑂𝐶 of the EVs in “Sim w/o opti” and “Sim w/ opti” are shown in Figure 3.1-8 and 

Figure 3.1-9, respectively. 
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Figure 3.1-8 Power (a) and 𝑺𝑶𝑪 of the EVs (b) – scenario b in “Sim w/o opti”. 

 

Figure 3.1-9  Power (a) and 𝑺𝑶𝑪 of the EVs (b) – scenario b in “Sim w/ opti”. 

Figure 3.1-8 (a) shows that EV1 begins discharging 50 kW and then recharges with 50 kW to 

reach the desired 𝑆𝑂𝐶 at the time of departure. The EVs have enough remaining charging time 

after V2G to recharge with 22 kW. In Figure 3.1-9 (b), the optimized charging/discharging 

profiles of EV1 and EV3 allow them to participate in V2G service, reach the desired 𝑆𝑂𝐶 at 

departure, and satisfy the users with minimization of the cost. When EV2 arrives, the 

optimization is actualized again, and as a result, EV1’s charging power is dropped to reduce 

the total power demand because EV2 charges in fast mode. After EV2 leaves, EV1 starts 

recharging again, which helps to discharge power during peak periods. After providing V2G 

service, EV1 resumes charging its battery to achieve the desired 𝑆𝑂𝐶 at the time of departure. 

In the same way, the optimization is actualized every time a new EV comes to the PVCS, and 

thus the optimization procedure is realized five times during the day in this case. The power 

provided to recharge EV1 and EV3 is synchronized with PV power, even during peak periods. 

Consequently, all EVs have achieved their desired 𝑆𝑂𝐶 values at the time of departure, as 

shown in Figure 3.1-8 (b) and Figure 3.1-9 (b). 

Scenario a, where the charging/discharging power is constant, is proved to be impractical 

because EVs will never achieve their desired 𝑆𝑂𝐶 at the time of departure. On the other hand, 

scenario b proves its feasibility by allowing EVs to recharge with variable power after 

participating in V2G service, irrespective of their initially selected charging mode, in order to 

satisfy the EV user. Therefore, only the variable charging/discharging scenario is considered 

in the following case studies, and the “Sim w/ opti” is compared to the “Sim w/o opti”. 

3.1.4.2 Case 2: Cloudy Day 

For case 2, a cloudy day with high irradiation was considered, specifically, 10 May 2019 in 

Compiegne. The real and predicted PV powers are shown in Figure 3.1-10, where it can be 

observed that the predicted PV power is slightly higher than the real PV power, and the 
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fluctuations are hard to predict due to hourly provision of forecasts and their inconsistent 

trends. As a result, these uncertainties have an impact on the optimization results that 

potentially lead to supplying power from the public grid instead of discharging energy from the 

stationary storage. In this case, the power flow of the PVCS with V2G service in “Sim w/o opti” 

and “Sim w/ opti” is shown in Figure 3.1-11, where the predicted PV power is used only to run 

the optimization, and the real PV power is used in both simulation scenarios. 

 

Figure 3.1-10 Real PV power 𝒑𝑷𝑽−𝑴𝑷𝑷𝑻 and predicted PV power 𝒑𝑷𝑽−𝑴𝑷𝑷𝑻−𝒑𝒓𝒆𝒅  – 10 May 

2019. 

 

Figure 3.1-11 Power flow with V2G service – case 2 (a) in “Sim w/o opti” and (b) in 

“Sim w/ opti”. 

Figure 3.1-11 (a) shows that EV1 and EV3 are discharged at peak periods for 15 min with 50 

kW each, and they are then recharged after V2G with the appropriate charging power to meet 

the needs of the users. As the PV power is not very significant and is fluctuating, the stationary 

storage is discharged to support the charging of EVs. The PVCS operates in storage-priority 

mode, meaning any excess PV power is initially used to charge the stationary storage. Once 

the stationary storage is either full or its maximum charging power is reached, which occurs at 

around 11:30 A.M, any additional PV power is injected into the public grid. However, once the 

storage is empty, which occurs around 05:00 P.M, the public grid supplies power to continue 

charging the EVs. Furthermore, the public grid supplies power when EV2 charges in fast mode 

and during peak periods, when EV1 and EV3 recharge after V2G. Therefore, charging EVs 

during peak periods will increase the energy cost. On the other hand, in Figure 3.1-11 (b), EV1 

and EV3 are discharged simultaneously during peak periods (serving total 100 kW power to 

the grid), and they are then recharged after V2G with optimized power to meet the needs of 

the users. The power injected into the public grid is defined by the optimization result to 

maximize profits in the event of excess PV power, which occurs before 09:30 A.M, around 

11:30 A.M during V2G service, and from 01:15 P.M until 01:45 P.M. Figure 3.1-12 and Figure 
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3.1-13 show the power and 𝑆𝑂𝐶 of the EVs for the “Sim w/o opti” and “Sim w/ opti” algorithms, 

respectively. 

 

Figure 3.1-12 Power (a) and 𝑺𝑶𝑪 of the EVs (b) – case 2 in “Sim w/o opti”. 

 

Figure 3.1-13 Power (a) and 𝑺𝑶𝑪 of the EVs (b) – case 2 in “Sim w/ opti”. 

In Figure 3.1-12 (a), similarly to case 1 scenario b under “sim w/o opti”, EV1 and EV3 are 

discharged at peak periods for 15 min at 50 kW each, and then they continue charging until 

their departure times to meet the needs of the EV users at 50 kW and 22 kW, respectively. 

However, in Figure 3.1-13 (a), the charging and discharging profiles of EV1 and EV3 are the 

optimized profiles that allow them to participate in V2G service, reach the desired 𝑆𝑂𝐶 at the 

time of departure, and satisfy the users with the lowest cost. PV power is not very significant; 

therefore, EV1 keeps charging even when EV2 comes to charge in fast mode. During peak 

periods, the charging power of EV1 and EV3 is provided by PV sources. Consequently, all EVs 

have achieved their desired 𝑆𝑂𝐶 at the time of departure, as shown in Figure 3.1-12 (b) and 

Figure 3.1-13 (b). Figure 3.1-14 compares the dynamic 𝑆𝑂𝐶 of the stationary storage for case 

1, scenario b, and case 2. 

 

Figure 3.1-14 𝑺𝑶𝑪 of the stationary storage in (a) case 1, scenario b and (b) – case 2. 
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For Figure 3.1-14 (a), the dynamic 𝑆𝑂𝐶 of the stationary storage is shown for case 1, where 

the real PV power is high. In “sim w/o opti”, where the storage priority is applied, the storage 

is always used for either charging or discharging. The storage becomes full around 11:30 A.M 

and 04:30 P.M, when the charging demand of EVs is not significant. In contrast, in sim w/ opti”, 

the storage is used only at the moments decided by the optimization algorithm – for example, 

during peak hours (02:30 P.M – 03:00 P.M) and when the charging demand of EVs is high, 

such as the case where EV2 charges in fast mode simultaneously with EV1. 

On the other hand, Figure 3.1-14 (b) shows the dynamic 𝑆𝑂𝐶 of the stationary storage for case 

2 where the real PV is highly fluctuating. In “sim w/o opti”, the storage is always used for either 

charging or discharging, but it is never at full capacity and becomes empty around 04:00 P.M. 

In contrast, in “sim w/ opti”, the behaviour of the storage is similar to case 1 in “sim w/ opti” and 

becomes empty at 03:00 P.M. 

3.1.5 Energy Cost Analyses for PV-Powered Charging Station with V2G Service 

Table 3.1-3 demonstrates the energy injected into the grid for the two case studies. The energy 

is injected into the grid during V2G, where the EVs’ contribution is significantly greater in the 

variable charging/discharging power scenario than the constant charging/discharging power 

scenario. The contribution of EVs is higher than 65% in the variable charging/discharging 

power scenario. Even in “Sim w/ opti”, the energy share from EVs is similar to that in “Sim w/o 

opti” and considered significant. 

Table 3.1-3 Energy injected into the public grid for the different cases. 

 

Furthermore, “Sim w/o opti” and “Sim w/ opti” are compared with an ideal case, which is 
considered as a reference: “Opti for real conditions”. In this reference case, it is assumed that 
the real PV MPPT power production and the arrival times of all EVs are known, and hence 
there will be no uncertainty issues related to forecasting errors. Therefore, the optimization is 
executed only one time because the arrival times of EVs are considered known in “Opti for real 
conditions”. The total energy costs of “Sim w/ opti” are closer to the ideal case than “Sim w/o 
opti” in the two cases, which indicates the effectiveness of the proposed optimization algorithm 
during different meteorological conditions. 

Table 3.1-4 presents the energy costs for the case studies. Only in case 1 “Sim w/o opti”, with 

constant charging/discharging power, is the obtained dissatisfaction cost for EV users positive 

due to not having the desired 𝑆𝑂𝐶 at the departure time. In the variable charging/discharging 

power scenario, the total energy cost is negative, which refers to selling energy to the public 

grid. Moreover, in “Sim w/ opti” the total energy cost is better due to power injection into the 

public grid, bringing more profits. In case 1 “Sim w/ opti”, with constant charging/discharging 

power, the total cost is negative, as there is no penalization due to injecting power to the public 

grid. However, there is no V2G participation even though the users accept participating to meet 

the user requirement (minimum 𝑆𝑂𝐶 of EV) at departure time. 
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Table 3.1-4 Energy costs for the different cases. 

 

Table 3.1-3 and Table 3.1-4 prove the unfeasibility of the constant charging/discharging 

scenario, as the energy injected into the public grid from EVs is not significant because they 

charge/discharge with constant power. The total final cost for this scenario is calculated without 

including the EV penalty cost, which is only included to optimization for modeling the 

dissatisfaction of the EV users. A high EV penalty indicates that EV users will be dissatisfied 

due to having low battery energy at departure time, which can cause risks of rejection of 

enabling V2G services by EV users or even losing clients in the future. The distribution of 

energy for EVs in “sim w/o opti” and “sim w/ opti” is also assessed in Figure 3.1-15 and Figure 

3.1-16 for case 1b and 2 respectively. 

 

Figure 3.1-15 Distribution of energy for EVs in “sim w/o opti” and “sim w/ opti” for 

case 1b. 

 

Figure 3.1-16 Distribution of energy for EVs in “sim w/o opti” and “sim w/ opti” for 

case 2. 

In Figure 3.1-15 and Figure 3.1-16, PV sources mainly charge EV1 and EV3. Moreover, in the 

“sim w/ opti” scenario, the amount of PV energy used for charging EV1 is significantly higher 

than in the “sim w/o opti” scenario, as shown in case 1. Given that EV2 is charging in fast 
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mode, the primary source of its charging power is the public grid. On the other hand, because 

EV4 is charged in average mode, it depends on PV and stationary storage energy. Similarly, 

because EV5 is charged in slow mode, it is mainly charged by PV sources. However, in case 

2, EVs require frequent charging from the public grid due to the fluctuation of PV power. 

V2G service can improve the energy efficiency of EVs by allowing the EV batteries to be used 

as a source of energy for the grid during times of high grid demand (and/or high-tariff, low-

renewable production) and then recharge from the grid during times of low grid demand (and/or 

low-tariff, high-renewable production). By providing energy back to the grid, EVs can help 

balance the electrical load, which can improve the overall efficiency and reliability of the 

distribution grid. As for the EV users, V2G can provide a way to earn revenue by selling energy 

stored in their EV batteries back to the grid during peak times. Additionally, the EV batteries 

can be charged with clean and low-cost renewable resources (e.g., photovoltaics) and can be 

discharged later to the grid at high-grid-consumption moments via V2G; thus, the electricity 

grid can use local renewable production more efficiently. 

3.1.6 Conclusions 

In conclusion, a PVCS with energy cost optimization and V2G service can provide a 

sustainable and cost-effective solution for EV charging/discharging, which can help grid 

operators by discharging EV batteries via with V2G services, leading to a more efficient 

system. The focus of the study is to minimize energy costs, prevent EV penalization and PV 

shedding, and consider prediction errors in real-time simulations. Additionally, the research 

analyses energy distribution for the system and each EV to gain a better understanding of the 

system’s functionality. However, there are still some challenges to be addressed in order to 

optimize the energy cost of the charging station. One of the main challenges is the optimal 

scheduling of the charging and discharging of the EV batteries to minimize the energy cost and 

to maximize the charging of EVs with PV power. Furthermore, the cost of implementing and 

maintaining a PVCS and V2G system can be high, and there is a need to establish 

standardization and protocols for integration with the existing public grid and communication 

networks. In addition, the type of an EV can affect the energy cost in the case of V2G because 

each type of EV has a different battery size, charging and discharging power characteristics, 

and energy efficiency. Battery EVs have larger batteries with higher power ratings than plug-

in EVs and hybrid EVs, which means they can provide more flexibility for charging/discharging 

operations, and eventually they provide more energy to support the electricity grid. Although 

V2G operation is possible for FCEVs, the consumption/production of hydrogen can be 

inefficient compared to battery-based vehicles due to the low efficiency of fuel cells and 

electrolyzers. 

The simulation results show that variable charging and discharging power have major 

advantages over constant charging/discharging, as no penalization was imposed, and the EV 

users were satisfied. In addition, optimizing the charging/discharging power is cost-effective 

because EVs are charged during off-peak hours and discharged during on-peak hours into the 

public grid, resulting in greater profitability. Furthermore, the energy that EVs inject into the 

public grid during V2G service is significant, accounting for over 75% of the total energy 

injected into the public grid during V2G service. The optimization problem is applicable to both 

private (domestic, work) charging stations and public ones, regardless of their size. By 

participating in V2Gservices, EV owners and/or charging station operators can generate 

revenue and reduce the total energy cost of EV charging, while also providing grid services to 

improve the reliability and efficiency of the public grid. The HMI allows for the operation of both 

a single EV and multiple EVs, and the number of EVs that can be operated is only limited by 

the number of charging terminals. However, the size of the charging station can affect the 
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applicability of optimization problems for V2G services. For example, a small charging station 

(e.g., one EV in a residential building) can participate in V2G service to support the electricity 

grid and earn revenue in return for its services; however, it will have limited power support 

capacity, and hence it may not be able to provide significant aid individually. In contrast, a large 

charging station (e.g., 100 EVs in a university parking lot) will have more power capacity, which 

can enable more significant V2G services for the electricity grid based on its requirements. 

For future research, the degradation impact on EV batteries will be studied, as well as the 

environmental impact. Moreover, more case studies will be conducted to validate the 

optimization method and demonstrate its feasibility in real-time experimental tests under the 

concept of power hardware in the loop. Furthermore, annual simulation will be considered 

where optimization and real-time simulation consider annual irradiation profiles, temperatures, 

and EV profiles. 
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3.2 Solar charging swappable EV batteries 

The integration of PV with swappable battery systems offers a promising solution to align solar 

energy integration into EV charging needs. This approach enhances grid flexibility, reduces 

overall system costs, and supports wider PV adoption11. 

3.2.1 Introduction 

The use of photovoltaics (PV) to charge electric vehicle (EV) batteries plays a crucial role in 

the cost-competitive mitigation of greenhouse gas emissions linked to transportation. However, 

the temporal mismatch between solar generation peaks and charging needs may hinder some 

of its benefits. The use of swappable batteries, by decoupling battery charging from vehicle 

use, overcomes this mismatch [1],[2]. Furthermore, it also facilitates a more extensive 

integration of photovoltaics within both the realm of electric mobility and the broader electricity 

demand of consumers. This integration, in turn, leads to a substantial reduction in the overall 

costs associated with the combined power and transport systems. 

The concept of swappable batteries has recently remerged with the increasing adoption of 

electric vehicles and the challenges of synchronizing the development of plug-in charging 

infrastructure and EV sales. Recent literature reviews have presented the battery swapping 

concept, highlighting its impact on the decrease in energy refuelling duration as well as its 

potential for regulating grid load and extending battery life [4]-[6]. Techno-economic 

assessments have repeatedly shown that the swappable batteries approach is cost-

competitive for a range of assumptions and geographies [7]-[10] pointing out some of the 

challenges to overcome such as the need for battery standardization [4]-[6]. For an in-depth 

discussion of the potential benefits and challenges to the adoption of the swappable battery 

approach [2]. 

3.2.2 Assumptions 

In this model, vehicles swap their low-charge batteries for charged ones at battery swapping 

stations (BSS), mostly an evolution of the traditional fuel service stations. The batteries 

received are inserted into rack-mounted chargers and remain grid-connected for long periods 

(typically 24 hours). They are charged at a relatively low rate (0.25 kW/kWh, or 4 hours) at 

times of solar excess generation and lowest energy prices. Thus, EV battery charging is 

decoupled from vehicle use, and its load to the electric system is flexible (within their residence 

time). This flexibility is a powerful tool for PV integration: most of the electricity for battery 

charging will concentrate on solar peak hours [1].  

A typical battery swapping station swaps about 0.4 million batteries per year [2]. Assuming that 

their useful life for e-mobility corresponds to about 2 000 full charge cycles, then some 200 

batteries/year will be declared unfit for loading into EVs. Perhaps half will be classified as 

healthy and fit for second-life use; the other 100 are further diagnosed, and with some 

 

 

11 This work is based on the participation of A.M Vallera and M.C Brito from Faculdade de Ciências da Universidade de Lisboa, 

Portugal  in Task17 activities and was funded by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) I.P./MCTES 

through national funds (PIDDAC) – UIDB/50019/2020 https://doi.org/10.54499/UIDB/50019/2020, UIDP/50019/2020 

https://doi.org/10.54499/UIDP/50019/2020  and LA/P/0068/2020 (https://doi.org/10.54499/LA/P/0068/2020).  

https://doi.org/10.54499/UIDB/50019/2020
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intervention/repair, many will still be fit for second-life, the others are sent for recycling. This 

means that every battery swapping station has a continuous pipeline of second-life batteries, 

and will naturally use them in rack-mounted bidirectional inverter modules, on the premises, 

for increased PV integration and grid service. These resident second-life batteries may further 

substitute grid energy with cheaper and cleaner locally produced PV also away from the solar 

hours, extending their usefulness even to fast, high power, battery-to-grid services such as 

reserve power, increasing grid resilience and balance.   

To illustrate the impact of swappable batteries on PV penetration, the approach was applied 

to an idealized small region of 200 000 inhabitants, served by the national electric grid and 

relying solely on PV as the viable renewable resource [3]. The fraction of energy required to 

meet both transport and general electricity demand (with general demand excluding mobility) 

that could be economically supplied by local PV generation was studied.  

Two key research questions are addressed here. First, the optimal fraction of PV generation 

that can be effectively utilized for EV battery charging is determined. Additionally, the feasibility 

of using excess generation to satisfy general demand, thereby reducing imported grid energy, 

is investigated. Second, these results are compared with alternative models, as summarized 

in Table 3.2-1. 

Table 3.2-1 Description of models under study. 

 

The optimum PV capacity that should be installed is determined by the minimum of the global 

cost function which includes estimates of all costs (or cost differences between models), as 

summarized in Table 3.2-2. For details on the modelling methodology and assumptions check 

[3]. 

Table 3.2-2 Summary of costs considered for the analysis within the small region 

under study. 
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3.2.3 Results 

Results are presented in Figure 3.2-1 showing that, compared with the business-as-usual 

model of internal combustion engine vehicles, the plug-in model reduces the overall cost of 

energy and transport, whilst allowing for higher integration of PV generation, from 40% to 60% 

(rigid demand, no storage) or 80% (10% flexibility and storage) of the general demand. The 

decrease in overall cost is essentially due to the higher efficiency of electric when compared 

to ICE motors (substitution of fuels for electric energy, similarly priced but with a large efficiency 

gain). 

The battery-swapping model, however, can achieve even lower cost and higher PV integration. 

In fact, higher PV integration, substituting grid energy for lower cost, cleaner, solar energy, 

essentially explains the further cost reduction below Plug-in: with battery swapping, the 

flexibility of battery charging demand concentrates it mostly under the solar peaks. Notice that 

the demand for transport is 42% of the general demand for models 2 to 6, and therefore the 

total electric energy consumption is 142% of the general demand. As expected, the higher the 

installed storage capacity, the larger the optimal integration of PV in the system. The precise 

values of course depend on the detailed model assumptions, but the qualitative trends would 

be reproduced by most other reasonable models.  

 

Figure 3.2-1 Total costs of the electricity and transport sectors for the region under 

study. Notice that the vertical axis does not start at the origin to enhance readability. 

Considering the optimal installed PV capacity, one-year hourly demand and PV-generation 

time series allow determining annual energy curtailment, import and use for the general and 

transport demand, as shown in Figure 3.2-1. The results show that the need to import grid 

energy falls dramatically with the battery-swapping models, from 1.42 (business as usual with 

no PV) down to 0.63 (44% of total demand) in the pure flexibility model, and to 0.44 and 0.26 

(31 and 18%) in the case of the battery swapping models including second-life batteries with 

bidirectional coupling to the grid. As a consequence, emissions are also reduced by an 

estimated 1.3 tCO2eq/capita for the central battery-swapping model. 

Integration of PV reaches very high values in the battery-swapping models, and this causes 

total export and curtailment of PV generation to be in the range of 15% to 16% of the total 

energy consumption. On the other hand, PV generation satisfies 56%, 69% and 82% of the 

total, transport and general, demand for each of the battery-swapping models considered.  



Task 17 PV and Transport  – PV-Powered Charging  Stations: Sizing, Optimization and Control 

102 

 

Figure 3.2-2 The annual energy (grey) imported from the national grid and (green) 

locally generated by PV 

Overall, the battery-swapping approach has a significant impact on the overall cost of electricity 

(for general and mobility demand) and on GHG emissions, as shown in Figure 3.2-3. 

 

Figure 3.2-3 The decrease in electricity cost (blue) and GHG emissions (orange), 

compared to the business-as-usual model with optimum PV capacity. 

3.2.4 Conclusion 

This case study has shown that battery-swapping models in most systems are expected to 

lead to the highest levels of PV integration with the lowest costs for electric energy, both for 

EV battery charge and for general consumers, while providing a stable and resilient electric 

system with a large fraction of flexible load and high power, fast response reserve capacity. 
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4 ELECTRIC BUS CHARGING STATIONS  

The electrification of public transportation plays a pivotal role in the global transition toward 

sustainable, low-emission mobility systems. Among the various solutions, electric buses (e-

buses) have emerged as a key component in reducing urban air pollution, lowering greenhouse 

gas emissions, and improving the energy efficiency of transport networks. 

Unlike private EVs, e-buses operate on fixed routes with high daily mileage, making their 

integration into energy and transport infrastructures both impactful and technically demanding. 

The deployment of electric bus fleets presents unique challenges and opportunities in terms 

of charging strategies, battery management, grid interaction, and operational planning. 

This chapter presents a preliminary study on the integration of e-buses in urban areas, with a 

focus on their energy modeling, consumption patterns, and the various charging methods 

proposed in the literature. The study also highlights the potential role of PV systems in 

supporting e-bus charging infrastructure.  
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4.1 Modelling of Electric Bus Operation and Charging Process: 
Potential Contribution of Local Photovoltaic Production  

This study assesses the transition from diesel to electric buses, focusing on charging 

strategies' impacts on service quality and the utility grid. Through comprehensive modeling of 

an urban bus network in Compiègne, France, it evaluates various charging infrastructure 

configurations. Additionally, it explores the potential benefits of local photovoltaic (PV) energy 

production to reduce grid strain12,13. 

4.1.1 Introduction 

Urban public transport is essential for carrying millions of people for their daily trips; however, 

it has a significant impact on greenhouse gas (GHG) emissions. Therefore, the electrification 

of urban buses is an efficient way to reduce emissions, as long as the supplied electricity is 

provided by low carbon energy sources. Additionally, electric buses (e-buses) provide 

supplementary benefits compared to conventional buses such as a reduction of air pollution 

(fine particle matter), noise, and on-board vibrations [1]. Their maintenance is also easier and 

cheaper; however, the integration of e-buses is a challenging procedure due to the increased 

power demand which adds additional stress to the electricity network. 

The location of charging infrastructures and charging periods can induce negative impacts on 

the utility grid. The three main locations for static-charging infrastructures are bus depots, line 

terminals, and bus stops. Most of the time, e-buses are charged at the bus depot during the 

night [2]. Therefore, buses require sufficient battery capacity to perform their daily service of 

around 200–300 km [3]. The consumption of an e-bus varies between 0.76 and 2.79 kWh/km 

for a standard bus with an average of 1.65 kWh/km [4]. Therefore, at least 150 kWh battery 

capacity is required to complete the daily service. Such an on-board battery pack weights 

approximately one ton considering the energy density around 150 Wh/kg for lithium-ion 

batteries. Ji et al. have shown that an increase of the on-board battery capacity from 50 kWh 

to 400 kWh induces a raise in the bus’ energy consumption by 25% [5]. A larger battery 

capacity will thus increase the available energy to perform a long trip without frequently 

charging the battery. However, it will also lead to an increased energy consumption due to 

higher bus weight. Battery capacity has also an impact on the capacity of passengers, as a 

higher battery capacity requires more space in the bus [6]. The TOSA project has shown that 

decreasing the battery capacity leads to a reduction on the battery weight by 5 – 7 tons, an 

increase of the passengers’ capacity of 15 – 30% and a reduction in the energy consumption 

of 10% [7].  

 

Charging at the bus depot is usually performed once per daily service during several hours in 

the night at a power of 24 – 180 kW [1]. Currently, the majority of e-bus fleets is very small, 

around 15 e-buses per bus fleet in Europe [2] and 6 in the United States [8]. However, in the 

future, the penetration of a higher number of e-bus fleets is expected, hence a higher amount 

 

 

12 This study is based on the following publication: N. Dougier, B. Celik, S.-K. Chabi-Sika, M. Sechilariu, F. Locment, and J. 

Emery, “Modelling of Electric Bus Operation and Charging Process: Potential Contribution of Local Photovoltaic Production,” 

Applied Sciences, vol. 13, 2023, https://doi.org/10.3390/app13074372. 

13 This research was funded by ADEME France, project T-IPV, grant number #2308D0002. 

https://doi.org/10.3390/app13074372
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of power consumption will most likely be observed during the night period. Although it is not a 

peak power consumption period for the utility grid, charging during the night might prevent 

transformers from cooling down and accelerating the degradation of these units. 

Alternatively, e-bus batteries can also be charged on-route at line terminals or bus stops (also 

called opportunity charging). Charging at terminals can occur around 20 times per daily service 

for a few minutes at a power of 150 – 600 kW [1]. On the other hand, charging at bus stops 

can occur around 200 times per daily service for a few seconds at a power up to 600 kW. From 

this perspective, the on-board battery capacity can be reduced with on-route charging, and it 

will lead to lower bus energy consumption. However, the short charging times imposed by 

passengers’ transportation require high power to supply enough energy to the bus battery in a 

few seconds/minutes. A significant number of e-buses in the fleets could impact the stability of 

the utility grid and create a risk of increasing the peak power consumption in the local area. A 

large number of e-buses could also cause an overloading of utility grid transformers and induce 

the use of carbon-based fuel supplies, which release high GHG emissions.  

One solution to reduce the impacts on the utility grid is to produce electricity locally with 

photovoltaic (PV) panels. If the e-buses charge during the daylight, the PV production can 

reduce the bus consumption peak. On the other hand, if they charge during the night, an 

additional stationary battery could help to reduce grid impact by storing surplus PV production 

during the day to use it at night. The charging scenario must be adapted in order to maximize 

PV self-consumption ratio, i.e., to increase the percentage of the bus load covered by the PV 

production. However, charging during the daylight at a low power to maximize PV self-

consumption ratio might induce additional charging time, which can cause delays in the 

service. All of these factors show that the location and the size of charging infrastructures, as 

well as the charging strategy, can have a significant impact on both the utility grid and the 

transport network, which need to be carefully analysed with a detailed model of the bus 

transportation network. 

The aim of this study is to focus on the influence of sizing and placement of charging 

infrastructures on both the utility grid and transportation network. This preliminary study 

simulates a bus fleet operation with several scenarios, which differ according to the location of 

chargers (depot, terminals, or stops) and their rated power. First, the bus network is modelled 

and the operation of buses is simulated. After that, charging stations are placed on the 

transportation network – at depot, terminals, or stops – and charging rules are applied. 

Performance indicators are defined to compare studied configurations. The main contributions 

of this work are listed as follows:  

• A bus consumption model that considers the influence of the battery capacity on 

the bus gross weight and thus on the bus consumption;  

• Modelling of a bus network is presented based on General Transit Feed 

Specification (GTFS) data; 

• A sequential simulation of the e-bus operation is performed in order to analyse the 

influence of the charging scenarios on the quality of transportation services (delay 

indicator);  

• A comparison between bus energy demand and PV production in order to assess 

the potential of PV energy to reduce impacts of e-bus charging on the utility grid. 

The rest of the study is structured as follows. Section 4.1.2 analyses the scientific literature to 

underline the research gaps. Section 4.1.3 presents the modelling and simulation approach 

for the buses’ operation and charging. The case study is introduced in Section 4.1.4. Section 
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4.1.5 displays the simulation results, and Section 4.1.6 analyses them. Finally, Section 4.1.7 

contains a conclusion and perspectives for future works. 

4.1.2 State of the Art of Scientific Literature  

This section analyses the scientific literature to underline trends and gaps. The literature survey 

focuses on public transport planning, sizing of charging infrastructures, and PV supply of 

charging stations 

4.1.2.1 Research Positioning  

The planning of public transportation can be divided into three main phases: strategic (horizon 

of years), tactical (one year to days), and operational (real time). As described by Perumal et 

al.[9], the planning process starts by determining the infrastructure, the lines, the frequencies, 

and the bus fleet investment. The tactical planning phase consists of the definition of the 

timetables, the vehicle scheduling (assignation of buses to the timetabled trips), the crew 

scheduling, and eventually the crew rostering. Recovery plans and real-time control strategies 

are also often implemented to reduce the impact of disruptions. From a transportation point of 

view, the present study concerns the strategic planning (sizing and placement of charging 

infrastructures) and its impact on the operational planning (e.g., bus delay). According to 

Manzolli et al. [10], e-bus studies can be divided into five categories: vehicle technology, 

battery technology, energy management, fleet operation, and sustainability. The present 

research concerns both the vehicle technology, in particular the charging power, and the fleet 

operation. 

4.1.2.2 Sizing of Charging Infrastructures  

Scientific publications about e-bus charging either focus on the infrastructures’ sizing [11] 

and/or the scheduling of the battery charging power [12][13]. A charging strategy can be 

defined as the choices of charging frequency, power, start time, and duration [6]. Few studies 

tackle both the sizing and management problems. Gao et al. [14] compared the impact of 

normal charging at 90 kW and ultra-fast charging at 480 kW on the on-board battery capacity 

for improving the autonomy of the bus. Fast charging has been shown to reduce the battery 

capacity and increase the autonomy. Leone et al. [15] have demonstrated that two 150 kW 

charging stations and an opportunity charger of 350 kW are needed at the terminals in order 

to reduce the cost and environmental impact compared to current diesel buses. Hasan et al. 

[16] have focused on the energy management of the bus and the charging strategy. The 

developed “ECO-charging” strategy, using pulsed charging to lessen the battery cooling 

needs, reduces the average grid load by more than 10% and shifts the charging to off-peak 

periods. On the other hand, a two-phase optimization framework is proposed to size the 

charging infrastructure and schedule the charging of e-buses with the objective to minimize 

the total system cost in [6]. The developed rolling-horizon-based charging strategy, which 

adjusts charging scheduling in real-time based on e-bus consumption and travel time, reduces 

the total charging cost by 68.3% compared to uncontrolled charging. In several studies, the 

sizing of a battery storage is combined with the determination of charging schedules [17]-[19]. 

Most studies only consider the sizing of the charger’s rated power and the capacity of 

stationary storage. They usually consider that the size of the on-board battery of the bus is 

known. However, [6] investigated the charger deployment, the on-board battery capacity, the 

charging schedules, and charging costs, and the study shows the importance of considering 

the on-board battery.  
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Many studies about e-bus charging consider the influence on transportation or on the utility 

grid, but not both at the same time [20]. For example, in order to improve the traffic, Bie et al. 

have analysed passenger loading to optimize the vehicle scheduling plan, locations of starting, 

and terminal stations for short-turning lines and charging strategies [21]. The proposed 

strategy led to reduce the total passenger travel time (dwell times at stops and inter-stop travel 

times) of 15%. On the other hand, Akaber et al. have considered mainly grid constraints to 

optimize the objectives of bus operators such as load balancing via peak shaving and cost 

minimization with load shifting. The presented methodology is achieved to reduce the peak 

consumption and total charging cost by 50% and 27%, respectively. Lin et al. optimized the 

bus planning process considering jointly the transportation system and utility grid [23], and 

Tomizawa et al. studied the feasibility of simultaneously minimizing the power and the energy 

of surplus PV production [24]. Both studies showed that joint optimization reduces the charging 

cost, prevents later conflicts between transportation objectives and electricity network 

constraints, and increases the rate at which e-buses charge using local renewable energy. 

4.1.2.3 Photovoltaic Integration for Bus Charging  

Charging infrastructures of e-buses are often supplied only by the utility grid [25]; however, Arif 

et al. also included local PV production and/or electricity storage in order to improve the energy 

management [26]. Regarding a PV-storage-based charging station at the depot, the authors 

showed that limiting the supplied power from the grid to 5 kW can maximize the bus depot 

operator profit while minimizing the charging power causing transformer overloading. Rafique 

et al. also presented an optimal energy management system using a weighted multi-objective 

stochastic optimization to minimize the cost of electricity while aiming to reduce battery 

degradation [27]. Zhuang et al. studied the stochastic energy management of bus charging 

stations for reducing charging costs with PV production and battery storage considering bus-

to-grid energy flows [28]. Szczesniak et al. adopted another point of view, attempting to find 

an optimal bus charging schedule at line terminals or depots in order to locally smooth the PV 

production fluctuations [29]. The proposed method was compared to uncontrolled charging 

and a cost minimization strategy. Results showed that operating costs increased marginally 

compared to the cost minimization strategy, but that utility grid power fluctuations were 

significantly reduced.  

Concerning the design of PV power plants related to battery charging of e-buses, Santos et al. 

focused on the suitable locations of PV implantation at bus shelters [30]. Based on the solar 

irradiation, the potential of each bus shelter in Lisbon to supply electronic devices with PV 

panels was analysed. Almost 54% of bus shelters were found to be able to receive small 

devices such as lighting or remote small-scale sensors, but only 4% could provide at least 100 

W and 2.4 kWh per day in order to supply a refrigerated vending machine. Dalala et al. 

performed an economic and environmental feasibility study about the installation of PV panels 

near a bus route [25]. With the right placement of PV panels, supplying e-buses with PV panels 

was found economically and environmentally interesting. However, the investment cost can be 

huge, as shown by Islam et al. who designed an off-grid PV system to balance the consumption 

of a bus depot in Malaysia [31]. Sizing results showed that 7 350 PV modules (6.5MWp in 

total), a battery capacity of 118 200 Ah, and 23 200 m2 area were needed to offset a peak 

demand of 466.5 kW. Ren et al. [32] determined the optimal size and location of rooftop PV 

panels and capacity of storage near the line terminals of neighbouring communities. A case 

study in Hong Kong showed that the infrastructure (PV and stationary battery) deployment 

achieved the shortest payback period of 3.98 years and addressed the design issues such as 

battery oversizing with PV and battery misallocation. In [33], Ren et al. focused on the 

optimization of the charging strategy in the same community-based bus network to increase 
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the on-site consumption of PV production. All of these studies have showed the importance of 

both infrastructure location and charging strategy to lower the cost. 

4.1.2.4 Discussion on the State of the Art  

The literature review shows that the sizing of charging infrastructures and the management of 

the charging process have a significant influence on the economic and the environmental 

performances of the bus charging. Many studies tackle the sizing or the management 

problems, but rarely both at the same time. Similarly, impacts of e-bus charging on the utility 

grid and the transport network are not simultaneously considered, although the deployed 

charging strategies have significant impacts on both networks. Joint consideration of these two 

aspects could show benefits for the integration of renewable energy. 

Several researchers analysed the integration of PV panels and stationary energy storage 

system to charge e-buses with reduced GHG emissions. Where PV production on bus shelters 

seems insufficient to supply bus energy consumption, large power plants at the depot show 

opportunity for balancing the energy consumption or reducing the peak demand. The designed 

infrastructures present a reduced energy cost but a higher investment cost compared to a 

diesel bus network. The sizing and the placement of charging infrastructures and PV 

production have an influence on both electricity and transport networks. Therefore, it is 

important to model the e-buses’ network and operation precisely in order to identify the various 

impacts. 

4.1.3 Modelling of the Bus Transportation Network 

In this section, the modelling approach of the transportation network is presented to determine 

the charging powers and time delays of e-buses. First, the technical terms used to characterize 

the bus network are defined, then the utilized input data are presented with the deployed 

models and the simulation approach. The modelling steps are presented in Figure 4.1-1 . The 

inputs represent the bus network, the bus fleet operation, the solar irradiation, and the 

assumptions made on the bus technology and the charging infrastructures. General Transit 

Feed Specification (GTFS) data are used for modelling the bus network accurately. Models of 

bus consumption, charging process, and PV production are then integrated into a simulation 

process to analyse the operation of a bus fleet.  

 

Figure 4.1-1 Flow chart of the modelling approach with the inputs and the computation 

steps. 
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4.1.3.1 Definitions  

Several specific terms which are used for the modelling of bus transportation network are 

introduced to ease the comprehensibility of the presented method (see Figure 4.1-2). The first 

components of a bus network are bus stops where the bus will stop during the day to board or 

alight passengers. The travel of a bus from one stop to another is named as a segment. A 

succession of segments is a route defined by its ordered sequence of stops. A route can belong 

to various bus lines that are official paths with intermediate stops between one or several 

terminals at the end of a line.  

Public transport along a line is characterized by a timetable which indicates the times when a 

bus will stop at each bus stop. Based on the timetable, bus operators define the different bus 

trips that are combinations of routes and time sequences. This means that a bus can run 

through the same route several times during the day; however, each time will represent a 

different bus trip. Eventually, the succession of trips represents the daily service. Services can 

vary according to the period of the year (e.g., weekdays, weekends, or bank holidays). A 

service is composed of commercial trips and deadheading ones such as travelling from a bus 

depot to the beginning of a line without carrying passengers. These terms are illustrated on 

Table 4.1-1, which is the timetable of the bus line “ARC Express” in Compiègne, France [34]. 

The first column shows the stop sequence for bus line ARC Express, from the “Gare” terminal 

to the “Aramont” terminal. Then each column is a bus trip, starting at a different time. It can be 

noticed that bus trips 1,2,3,6,10 and 11 correspond to the same stops sequence, as well as 

trips 4,5, and 7. Therefore, 11 trips are represented on the table with only 4 routes. These trips 

are assigned to the services of two buses, represented on the first row. It is worth noticing that 

studies may use a different vocabulary to present the bus transportation network from a 

passenger point of view. 

 

Figure 4.1-2 Scheme of a bus line with three terminals (in red), intermediate bus stops 

(in green), two routes (in blue and purple), and the time schedule of one trip on the 

purple route. 
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Table 4.1-1 Timetable of bus line “ARC Express” in Compiègne, France [34]. 

 

4.1.3.2 Bus Consumption Modelling  

E-bus energy consumption varies according to several parameters: bus speed, weight, traffic, 
number of passengers, road slope, etc. Bus consumption also depends on heating, ventilation, 
and air-conditioning (HVAC), and other auxiliaries, as well as on the implementation of a 
deceleration and braking energy recovery system. Therefore, a bus consumption model is 
needed to assess the energy demand of each e-bus in the fleet. Physical (also called white-
box) models rely on the analysis of physical and chemical processes in the energy 
transmission and storage components of the vehicle [35]. Data-driven (also called black-box) 
models deduce the bus consumption based on large amounts of experimental or real-world 
operation data [35]. Eventually, intermediate grey-box models combine experimental data with 
mechanical insight [36]. 

4.1.3.2.1 Consumption Model  

Data-driven models require gathering a high amount of data, which can be collected through 

sensors. High-resolution data can be used [37][38], but they are often hard to collect and 

replicate for other locations. Low-resolution data [39] can also be used; however, they 

decrease the accuracy of the consumption model. Comparatively, physical models apply 

Newton’s second law of motion in order to model the electricity consumption of e-bus. In this 

category, longitudinal dynamic models consider only the traction of the bus and require driving 

profiles of e-buses as input (i.e., a time series of velocity and elevation) [40]. Jefferies and 

Göhlich [41] have indicated that driving profiles may come from real-world operation [14] or 

standard dynamometer driving cycles [42][43]. Moreover, HVAC and other auxiliaries’ 

consumption (lighting and other support systems) can be also considered for more detailed 

modelling of an electricity consumption profile [44]-[47]. This study implements an existing 

physical model [35]. The model needs to be fast enough to compute, to require accessible 

data, and to consider both the traction and the auxiliaries’ consumption, considering the 

influence of the latter on the bus’ consumption. It should be noted that the presented method 

does not consider the regenerative braking, the curves of the road, the number of crossroads, 

the meteorological conditions, or the driver’s behaviour. The total consumed power by the bus 

𝑃𝑡𝑜𝑡(𝑡)   is defined by Equation (4.1-1) (as the sum of the power needed for vehicle motion 

𝑃𝑙𝑑𝑚(𝑡) and for auxiliary systems 𝑃𝑎𝑢𝑥(𝑡)  at each time step 𝑡. 

𝑃𝑡𝑜𝑡(𝑡) = 𝑃𝑙𝑑𝑚(𝑡) + 𝑃𝑎𝑢𝑥(𝑡)  (4.1-1)   
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𝑃𝑙𝑑𝑚(𝑡) = 𝑣(𝑡) × (𝑚(𝑡) × 𝑔 × 𝑠𝑖𝑛(𝛼) + 𝑚(𝑡) × 𝑔 × 𝐶𝑟 × 𝑐𝑜𝑠(𝛼) + 
1

2
× 𝜌 ×

𝑣2(𝑡) × 𝐴𝑓𝑟𝑜𝑛𝑡 × 𝐶𝑑 + 𝑚(𝑡) × 𝑎(𝑡))  

(4.1-2)   

𝑃𝑎𝑢𝑥(𝑡) = 𝑃𝐻𝑉𝐴𝐶(𝑡) + 𝑃𝑜𝑡ℎ𝑒𝑟(𝑡) = 𝑃𝐻𝐶(𝑡) + 𝑃𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛(𝑡) + 𝑃𝑜𝑡ℎ𝑒𝑟(𝑡)  (4.1-3)   

where 𝑣(𝑡) is the bus speed, 𝑚(𝑡) is the mass of the bus, 𝑔 = 9.81 𝑚/𝑠2 is the standard 

acceleration of gravity, α is the slope, 𝐶𝑟 is the coefficient of rolling resistance, 𝜌 = 1.2 𝑘𝑔/𝑚3 

is the air density,𝐴𝑓𝑟𝑜𝑛𝑡 is the frontal area of the bus, and 𝐶𝑑 is the drag coefficient. The auxiliary 

consumption is modelled as the sum of the consumption of HVAC (the sum of 𝑃𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛 and  

𝑃𝐻𝐶 [35]) and the other auxiliaries 𝑃𝑜𝑡ℎ𝑒𝑟  . It should be noted that the total bus weight 𝑚(𝑡) 

consists of the bus curb (𝑚𝑏𝑢𝑠), battery pack (𝑚𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ), and the total number of passengers 

(𝑚𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠) inside the bus 𝑚 = 𝑚𝑏𝑢𝑠 + 𝑚𝑏𝑎𝑡𝑡𝑒𝑟𝑦 + 𝑚𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 at time 𝑡 . 

4.1.3.2.2 Speed Profile  

The speed of the bus must be determined based on the distances and travel times between 

bus stops taken from the GTFS data in order to calculate the power consumption. Inspired by 

SORT standard driving cycles [48]-[50], the present study considers a speed profile with a 

trapezoid shape between two consecutive bus stops, as seen on Figure 4.1-3. 

 

Figure 4.1-3 Bus speed profile in trapeze representing the travel between two bus 

stops. 

The trapezoid is defined by the maximal speed 𝑣𝑚𝑎𝑥 and the acceleration 𝑎. Travel time and 

the distance between two bus stops  𝑡𝑏𝑠  and  𝑑𝑏𝑠  are determined using GTFS data. The 

spatial and temporal constraints of the bus travel can be determined from the speed profile. 

The distance between the consecutive stops is therefore determined as follows: 

𝑑𝑏𝑠 = 2 × 𝑑𝑣𝑎𝑟 + 𝑑𝑐𝑠𝑡  (4.1-4)   

𝑑𝑣𝑎𝑟 = ∫ 𝑣(𝑡) × 𝑑𝑡
𝑇𝑣𝑎𝑟

0
= ∫ 𝑎 × 𝑡 × 𝑑𝑡 

𝑇𝑣𝑎𝑟

0
=  

𝑎

2
× 𝑇𝑣𝑎𝑟

2   (4.1-5)   

𝑑𝑐𝑠𝑡 = ∫ 𝑣(𝑡) × 𝑑𝑡
𝑇𝑣𝑎𝑟+𝑇𝑐𝑠𝑡

𝑇𝑣𝑎𝑟
= 𝑣𝑚𝑎𝑥 × 𝑇𝑐𝑠𝑡    (4.1-6)   

where 𝑑𝑣𝑎𝑟 and 𝑑𝑐𝑠𝑡  are the distances travelled during the acceleration/deceleration and 

constant speed phases, respectively. 𝑇𝑣𝑎𝑟 is the acceleration/deceleration time, 𝑇𝑐𝑠𝑡  is the time 

at constant speed, and 𝑣(𝑡) is the bus speed. The time to travel between the two stops is 

described below:  

𝑡𝑏𝑠 = 2 × 𝑇𝑣𝑎𝑟 + 𝑇𝑐𝑠𝑡  (4.1-7)   

𝑇𝑣𝑎𝑟 =
𝑣𝑚𝑎𝑥

𝑎
  (4.1-8)   
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Therefore, using Equations (4.1-7) and (4.1-8) with the value of discriminant of the quadratic 

equation ∆= 𝑡𝑏𝑠
2 − 4𝑎 × 𝑑𝑏𝑠 , the maximal speed  𝑣𝑚𝑎𝑥 is determined by: 

𝑣𝑚𝑎𝑥
2

𝑎
− 𝑡𝑏𝑠 × 𝑣𝑚𝑎𝑥 + 𝑑𝑏𝑠 = 0    

𝑣𝑚𝑎𝑥 =  {

𝑡𝑏𝑠− √𝑡𝑏𝑠
2 −

4

𝑎
×𝑑𝑏𝑠 

2
× 𝑎

𝑡𝑏𝑠

2
× 𝑎 

   
𝑖𝑓 ∆> 0    

(4.1-9)   

𝑖𝑓 ∆< 0    

If a delay is anticipated for arriving to the next stop on the route, the e-bus is assumed to 

increase its speed and acceleration up to limits. If the maximal speed – computed based on 

the real departure time of the bus from one stop and the theoretical arrival time to another – is 

above the speed limit, the speed is capped to a maximal value 𝑣𝑙𝑖𝑚 and a new acceleration is 

computed. If the new acceleration is also above its limit, then it is capped to 𝑎𝑙𝑖𝑚 and the bus 

is considered to be late arriving to the next stop.  

4.1.3.3 Modelling of Charging Process  

The state of charge (𝑆𝑜𝐶) of the bus battery 𝑠𝑜𝑐𝑏𝑢𝑠(𝑡) at each time 𝑡 depends on the bus 

consumption and the charged energy. The evolution of 𝑠𝑜𝑐𝑏𝑢𝑠(𝑡) is determined by: 

𝑠𝑜𝑐𝑏𝑢𝑠(𝑡) =  𝑠𝑜𝑐𝑏𝑢𝑠(𝑡 − ∆𝑡) + 
(𝑃𝑐𝑜𝑛𝑠𝑜(𝑡)+𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑑(𝑡))×∆𝑡

𝐸𝑏𝑎𝑡𝑡
  

(4.1-10)   

𝑠𝑜𝑐𝑚𝑖𝑛 < 𝑠𝑜𝑐𝑏𝑢𝑠(𝑡) < 𝑠𝑜𝑐𝑚𝑎𝑥  (4.1-11)   

Where 𝑃𝑐𝑜𝑛𝑠𝑜(𝑡)  is the power consumed by the bus (negative), 𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑑(𝑡) is the power used 

for battery charging (positive), 𝐸𝑏𝑎𝑡𝑡  is the e-bus battery capacity, 𝑠𝑜𝑐𝑚𝑖𝑛 and 𝑠𝑜𝑐𝑚𝑎𝑥 ,  are, 

respectively, the minimal and maximal 𝑆𝑜𝐶 limits of the e-bus battery. 

4.1.3.4 PV Production  

PV power is considered to be utilized for a local and clean energy source for charging the e-

bus’ battery. The PV power is determined according to [51] as below: 

𝑝𝑃𝑉(𝑡) =  𝜂𝑠𝑦𝑠𝑡 × 𝑃𝑆𝑇𝐶 × 𝑁𝑃𝑉 ×
𝑔(𝑡)

𝑔𝑆𝑇𝐶
× [1 + 𝛾 × 𝑇𝑃𝑉(𝑡) − 25]  (4.1-12)   

𝑇𝑃𝑉(𝑡) = 𝑇𝑎𝑚𝑏(𝑡) + 𝑔(𝑡) ×
𝑁𝑂𝐶𝑇−𝑇𝑎𝑖𝑟−𝑡𝑒𝑠𝑡

𝐺𝑇𝑒𝑠𝑡
  (4.1-13)   

where 𝜂𝑠𝑦𝑠𝑡  is a yield considered to represent the system losses in the cables and converters,   

𝑃𝑆𝑇𝐶 is the PV power at standard test conditions (STC), 𝑁𝑃𝑉  is the number of PV panels, 𝑔(𝑡) 

is the solar irradiation, 𝑔𝑆𝑇𝐶 is the standard solar irradiation value at STC, 𝛾 is the power 

temperature coefficient of PV module, 𝑇𝑃𝑉(𝑡) is the PV cell temperature, 𝑇𝑎𝑚𝑏(𝑡)  is the ambient 

temperature,  𝑁𝑂𝐶𝑇 is the nominal operating cell temperature of PV module, 𝑇𝑎𝑖𝑟−𝑡𝑒𝑠𝑡  is the 

fixed air temperature at  𝑁𝑂𝐶𝑇 condition, and 𝐺𝑇𝑒𝑠𝑡  is the fixed solar irradiation at 𝑁𝑂𝐶𝑇 

condition. 
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4.1.3.5 Bus Network Modelling  

This subsection deals with the modelling of the network, which consists of the bus stops, 

routes, trips, services, and lines. The GTFS data format is used in order to analyse the 

operation of the bus fleet on a transportation network. 

4.1.3.5.1 GTFS Data  

The GTFS format was initially developed by Google and has since become a de facto standard. 

Open data in GTFS format are generated by urban transport organizing authorities. They are 

composed of several tables gathering information about bus schedules and line topography 

[52] via various text files. The major advantages of GTFS files are that they are open access 

and the data are provided in the same format for the transportation network of different cities. 

However, they must be combined with a description of bus services to simulate the operation 

of buses. The location information (i.e., latitude and longitude) of bus stops can be found in 

GTFS data but the distances and slopes between stops must be computed with the post-

treatment as in the following section.  

4.1.3.5.2 Post-Treatment of GTFS Data  

The GTFS data are used to determine the list of all routes and trips. As GTFS data only 

consider trips to model buses’ operations and do not use the concept of routes defined in 

Section 4.1.3.1, all trips must be analysed to identify their corresponding route. After that, the 

distance between consecutive stops of each route is determined using Open Street Map, which 

is a free editable geographic database of the world [53]. The elevation of each stop is retrieved 

from Open Elevation Software. GTFS data also allows analysing the time spent between two 

consecutive bus stops. This duration can vary during a day mainly due to the hourly/daily traffic 

conditions. 

Firstly, the distance between stops are determined. Based on the latitude and longitude 

information, a path between two bus stops is generated on Open Street Map using a “bus” 

transportation mode. To generate the path, Open Street Map creates a sequence of 

intermediate points on the road between the two stops with a higher density in curved portions 

(see Figure 4.1-4), and defines the total distance as the sum of distances between each 

intermediate point. This matches quite accurately the real path of the bus; however, it requires 

manual verification that the path proposed by Open Street Map fits the one on the bus network 

map. 
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Figure 4.1-4 Path between two bus stops generated using Open Street Map with 

intermediate points. 

Secondly, determination of the altitude is performed. The bus consumption also depends on 

the slope of the road. Therefore, the Open Elevation software has been used to compute the 

altitude of all stops based of their latitude and longitude [54]. However, only the mean slope 

between consecutive stops is accessible in this way. The limit is the resolution of topographic 

map, around 200 m  for open-source maps. This means that all points in a square of 200 m 

per side will have the same altitude, and that slope variations in this area might be hidden. 

4.1.3.5.3 Simulation of the Operation of Buses  

The operation of bus trips is defined by timetables, which are provided by urban transport 

organizing authorities to bus operators. Bus operators determine which bus will perform which 

trip to complete their daily service. This step is called the “vehicle scheduling problem” and e-

bus services which are gathered as the output of scheduling problem are used as the inputs 

of the presented simulations in this study.  

Simulation inputs are the transport network modelling (GTFS data) and the bus fleet operation 

(bus services). The distance that a bus has to travel from each stop to the next charging station 

can be calculated for each bus service. The energy needed to reach the next charging station 

can be calculated based on this distance. Therefore, it is possible to ensure that a bus does 

not leave a charging station until it has enough energy to complete its service. The procedure 

of calculation of bus power consumption on a transportation network is presented in the flow 

chart in Figure 4.1-5. Inputs are first initialized such as bus services, trips, and routes. Then, 

for each time step of the simulated period, the status of each bus is determined successively: 

its position, speed, acceleration, service, trip, route, energy consumption, charged energy (if 

the bus is at a charging station), remaining dwell time (if the bus is at a stop), and battery 𝑆𝑜𝐶. 
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Figure 4.1-5 Flow chart of the simulation of the bus fleet operation. 

The process to compute the new status of a specific bus depends on the inputs. If the bus was 

previously being charged or stopped, it continues this way until its dwell time reaches zero. 

However, if the bus has to run at this time step (it was running previously or its dwell time at a 

bus stop is over), then its position and speed need to be assessed. When the bus starts running 

between two stops, its maximal speed and acceleration on the current segment are computed 

and its trapezoid-shaped speed profile is deduced. Then, the bus energy consumption is 

assessed for all the time steps. If the bus arrives at a stop at the next time step, its dwell time 

must be computed considering the required energy needed to reach the next charging station. 

The dwell time is computed in two different ways depending on whether the bus is charging or 

not. The passengers boarding/alighting time 𝑡𝑝𝑎𝑠𝑠𝑒𝑔𝑒𝑟𝑠  is defined as the time taken by the 

passengers to board or alight from the bus. The minimal dwell time 𝑡𝑚𝑖𝑛 is defined as a 

necessary idle time for transportation reasons (e.g., to change driver). The theoretical dwell 

time 𝑡𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 is the difference between the time when the bus arrives at a stop and the 

theoretical time at when it is supposed to leave according to the timetable. In the case when 

the bus is not charging, dwell time is the maximal value among 𝑡𝑝𝑎𝑠𝑠𝑒𝑔𝑒𝑟𝑠 , 𝑡𝑚𝑖𝑛, and 𝑡𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 . 

In the case when the bus is charging, the dwell time additionally depends on the time 

necessary to charge the battery to a sufficient level to travel to the next charging station 
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𝑡𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦𝑐ℎ𝑎𝑟𝑔𝑒
. This case requires computing the distance to the next charging station and 

assuming an average consumption for the following trip. 

Bus delay can be computed in two manners: charging delay and scheduling delay. The 
charging delay 𝑑𝑒𝑙𝑎𝑦𝑐ℎ𝑎𝑟𝑔𝑒 is the additional dwell time of a bus due to charging the bus battery, 

and the scheduling delay 𝑑𝑒𝑙𝑎𝑦𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 occurs because of other reasons which cause the bus 
to leave a bus stop late.  

𝑑𝑒𝑙𝑎𝑦𝑐ℎ𝑎𝑟𝑔𝑒(𝑡) = 𝑡𝑑𝑤𝑒𝑙𝑙 − 𝑚𝑎𝑥(𝑡𝑚𝑖𝑛, 𝑡𝑝𝑎𝑠𝑠𝑒𝑔𝑒𝑟𝑠, 𝑡𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)   

𝑑𝑒𝑙𝑎𝑦𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 = 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑟𝑒𝑎𝑙
− 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑡ℎ𝑒𝑟𝑜𝑦

    

Where 𝑡𝑑𝑤𝑒𝑙𝑙  is the computed dwell time, 𝑡𝑚𝑖𝑛 is the minimal dwell time at a stop, 𝑡𝑝𝑎𝑠𝑠𝑒𝑔𝑒𝑟𝑠 is 

the necessary dwell time for passengers’ boarding/alighting, 𝑡𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 is the theoretical dwell 

time before the next trip, 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑟𝑒𝑎𝑙
 is the time at which the bus arrives at the next stop, and 

𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑡ℎ𝑒𝑟𝑜𝑦
 is the theoretical arrival time at the next stop (according to the timetable). 

4.1.4 Case Study  

In this study, the GTFS data are gathered for the city of Compiègne in France. The bus line 
“ARC EXPRESS”, which is 20 km long and composed of 12 bus stops, is chosen as the case 
study (see Figure 4.1-6). According to GTFS data, there are 11 routes and 36 trips used for 
providing transportation services over a day. The services of two buses were defined manually, 
so they matched the timetable. In order to realize all the trips defined on the timetable, the first 
bus “bus n°1” begins its service at 06:30 A.M and ends it at 07:15 P.M. It performs 11 trips, 
including 2 between the bus depot and the line terminals. The second bus “bus n°2” operates 
from 06:10 A.M to 06:50 P.M and performs 15 trips. Both buses have long idle period in the 
middle of the day. The cumulative distance travelled by bus n°1 and bus n°2 are 149 km and 
219 km, respectively. Concerning the speed profile between two bus stops, the acceleration is 

assumed to be constant at 𝑎 = 1 𝑚/𝑠2 [55]. Speed and acceleration limits are assumed as  

𝑣𝑙𝑖𝑚 = 40 𝑘𝑚/ℎ and 𝑎𝑙𝑖𝑚 = 1.5 𝑚/𝑠2 , considering the need of passenger comfort [56]. 

 

Figure 4.1-6 Bus line ARC EXPRESS in Compiègne [57]. 

The 12 m bus model from BYD has been chosen for this case study [58], and its characteristics 

are given in Table 4.1-2. This e-bus is equipped with a 422-kWh battery adding 2.8 tons 

(assuming 150 Wh/kg for lithium iron phosphate battery [1]) to the normal bus weight of 16.7 
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tons (total weight 19.5 tons). Average power values are assumed for the ventilation 𝑃𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛   

and the other auxiliaries 𝑃𝑜𝑡ℎ𝑒𝑟 [35]. The initial 𝑆𝑜𝐶 of the e-bus battery is arbitrarily set to 90%. 

Available charging powers are taken from the ABB’s chargers. Buses can be charged at the 

depot using a Combined Charging System plug with a power of 100 kW or 150 kW [59]. They 

can also be charged overnight at the depot with a pantograph at 50 kW [60]. Eventually, on-

route charging at bus stops and terminals can be performed via ABB’s HVC-Opportunity 

charger at the power ratings of 150 kW, 300 kW, 450 kW, or 600 kW [60]. Scenarios described 

hereafter consider a power of 50 kW at the depot and 150 kW, 300 kW, 450 kW, and 600 kW 

for opportunity charging.  

Table 4.1-2 Characteristics of the BYD-12m bus and the PV panels. (LFP: Lithium Iron 

Phosphate) 

 

The number of boarding/alighting passengers is chosen arbitrarily, and the passenger flow is 

fixed for all routes of the same length. The number of passengers boarding/alighting is 

summarized in Table 4.1-3 for different lengths of bus sequence and one example for a bus 

route composed of 10 stops is displayed in Figure 4.1-7 . The passage rate is assumed to be 

one passenger every four seconds [35]. An average passenger weight of 68 kg is considered. 

When computing the necessary energy to reach the next charging station, an arbitrary 

consumption of 1.3 kWh/km is chosen in order to keep a safety margin for considering the 

uncertainty on the future bus consumption. 

Table 4.1-3 Number of passengers boarding (B) and alighting (A) from the bus at each 

stop according to the length of the bus sequence. 
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Figure 4.1-7 Number of passengers boarding, alighting, and on the bus at each stop of 

route n°1. 

Local PV production has been considered and compared to the energy needs of the buses. 

Irradiation and ambient temperature data have been gathered on the STELLA experimental 

platform of the Université de Technologie de Compiègne with a time step of 10 s. The PV 

power plant is assumed to operate without stationary storage. The electricity produced is 

primarily supplied to the bus charging stations and the surplus is injected into the utility grid. 

However, buses charge automatically when they reach an available charging station without a 

charging strategy. The objective is to determine the temporal adequacy between the PV 

production and the bus consumption according to the charging scenario. The data from two 

days, one in January and one in July, have been used. A 100-kWp PV installation, 

corresponding to a realistic surface of a bus depot, is considered in this example. The 

parameters of the PV panel are presented in Table 4.1-2. It is assumed in this study that all 

charging stations and PV panels are connected to the same substation of the electric 

distribution network.  

Simulations are performed and presented for three main scenarios with three additional sub-

scenarios that differ only by their charging power. Charging scenarios are identified as follows: 

• Scenario 1: two chargers at the depot;  

• Scenarios 2 and 2bis: two chargers at the depot and a charger at “Gare” and 

“Aramont” line terminals; 

• Scenarios 3, 3bis, and 3ter: chargers at the terminals “Gare” and “Aramont”, and 

bus stops “Denielou” and “Matra Lecuru”. 

The number and location of charging stations are chosen arbitrarily. Charging powers at each 

location are presented in Table 4.1-4. The on-board battery capacity varies according to the 

scenarios from 70 kWh to 422 kWh. The simulations are performed over a day horizon with a 

two-second time step. 

Table 4.1-4 Location and power of charging stations in the different scenarios. 
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4.1.5 Results 

4.1.5.1 Scenario 1 – Charge at the Bus Depot  

In this scenario, 2 buses with 422 kWh batteries realize their services over 1 day. A charging 
station is located at the bus depot with two 50 kW chargers. Figure 4.1-8 shows the cumulative 
distance travelled by each bus and the 𝑆𝑜𝐶 of the bus’s battery. Horizontal portions represent 
dwell times at bus stops and line terminals. The dwell times at bus stops can be seen more 
easily on the zoomed-in Figure 4.1-8 (a) as they are very short (around twenty seconds). 𝑆𝑜𝐶 
decreases over time as there are no charging points on the road. It can be noticed that, even 
with a 422-kWh battery, the battery SoC of bus n°2 with the highest daily consumption goes 
below 38%. As expected, buses are fully recharged at the depot during the night after 
completing daily service. The total energy consumption is 373 kWh—respectively, 155 kWh 
and 218 kWh for buses n°1 and 2—which represents an average consumption per travelled 
distance of 1.01 kWh/km. 

 

Figure 4.1-8 Travelled distance and battery 𝑺𝒐𝑪 of buses n°1 (a) and n°2 (b) – scenario 

1. 

Figure 4.1-9 shows the total charging power at each time step, i.e., the sum of the charging 

power of all charging stations with the PV production on the 15 January and the 17 July. The 

charging starts at 06:50 P.M when bus n°2 arrives to the depot. The charging power increases 

from 50 kW to 100 kW at 07:15 P.M when both buses are at the depot for the night. The daily 

PV production is 108 kWh in January and 500 kWh in July, which makes it possible to balance 

the buses’ consumption only in July. PV energy could be stored in an additional stationary 

storage during the day and then used to charge the e-buses’ batteries at night. 

 

Figure 4.1-9 Total charging power and PV production over time – scenario 1. 
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4.1.5.2 Scenario 2 – Charge at the Line Terminals 

In the second scenario, two additional 150 kW chargers are located at the line terminals Gare 

and Aramont (see Figure 4.1-6). The batteries’ 𝑆𝑜𝐶𝑠 of the buses are given in Figure 4.1-10. 

Buses recharge during their dwell time between consecutive trips without a delay. According 

to the number of times they pass through a charging station, bus n°1 charges approximately 

ten times and bus n°2 twelve times (cf. Section 4.1.4). The minimal values of the batteries’ 

𝑆𝑜𝐶𝑠 are obtained at 79% for bus n°1 and 73% for bus n°2. This means that the on-board 

battery capacity can be reduced if charging stations are located at the line terminals. The total 

energy consumption is 373 kWh, which represents an average consumption per travelled 

distance of 1.01 kWh/km. 

 

Figure 4.1-10 Travelled distance and battery 𝑺𝒐𝑪 of buses n°1 (a) and n°2 (b) – 

scenario 2. 

It can be seen in Figure 4.1-11 that the two buses recharge during a short period at line 

terminals, usually not at the same time. However, the total charging power reaches 300 kW 

for 4 min at 06:36 P.M when both buses are charging at bus terminals and 200 kW for 3 min 

at 07:02 P.M when bus n°2 arrives at the terminal and bus n°1 is at the depot. The charging 

process occurs mainly during the day, when electricity is produced by PV panels. As for PV 

energy, 81 kWh are used directly to charge buses during the day, but additional stationary 

storage would increase the PV share during the day and allow the use of PV energy during the 

night. 

 

Figure 4.1-11 Total charging power and PV production over time – scenario 2. 

4.1.5.3 Scenario 3 – Charge at Several Bus Stops 

In scenario 3, the battery capacity of the bus is reduced to 70 kWh. Charging stations are 

located at line terminals Gare and Aramont, and at bus stops Denielou and Matra Lecuru. The 

charging power is limited to 150 kW. Therefore, there is a delay of 84 s in the dwell time due 
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to the charging process at 09:49 A.M and 10:08 A.M. Figure 4.1-12 shows the cumulative 

distance travelled by bus n°2 in scenario 1 and scenario 3. The black dotted line is shifted 

twice compared to the orange one. The reason why this delay does not spread is because the 

simulation authorizes the bus to accelerate (up to a limit) to reach the next bus stop on time, 

as explained in Section 4.1.3.2. Case studies with more frequent buses would probably show 

a more significant impact on the transport due to the waiting time of buses when they need to 

charge at a bus stop but the charging station is occupied. The delay could be avoided by 

increasing the on-board battery capacity, increasing the charging power, and/or adding new 

charging points on the road to reduce the required energy between two charges.  

 

Figure 4.1-12 Comparison between the distance travelled by bus n°2 in scenario 1 and 

scenario 3. 

Figure 4.1-13 shows that the 𝑆𝑜𝐶 of the 70-kWh battery of bus n°2 reaches 22.2% in scenario 
3. This means that there is almost no security margin to ensure that the 𝑆𝑜𝐶 will not fall below 

𝑠𝑜𝑐𝑚𝑖𝑛 in case of a higher consumption. The total energy consumption is 337 kWh—
respectively, 140 kWh and 197 kWh for buses n°1 and 2—which represents an average 
consumption per travelled distance of 0.91 kWh/km. 

 

Figure 4.1-13 Travelled distance and battery 𝑺𝒐𝑪 of buses n°1 (a) and n°2 (b) – 

scenario 3. 

Concerning the charging power, Figure 4.1-14 shows that most charges occur at different times 

with a power of 150 kW (the rated power of one charger). Rarely, 2 buses are charging at the 

same time, with a cumulative power of 300 kW when both buses are at bus stops (but not 

necessarily the same stop). The assumption here is that all chargers are connected to the 

same substation on the utility grid. Otherwise, the technical constraints would differ for each 

portion of the network where the chargers are located. Regarding PV energy, charging during 

the daylight at terminals and stops increases the PV self-consumption compared to scenarios 

1 and 2. Additional storage would increase the PV benefits. Considering the reasonable 

amount of energy needed as the next charging station is close and the high charging power 
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required due to the short duration of charges at bus stops, supercapacitors with a high-power 

density could be used to store the solar energy but with an increased cost. 

 

Figure 4.1-14 Total charging power and PV production over time – scenario 3. 

4.1.6 Discussion 

In this section, performances of all the scenarios are summarized in Table 4.1-5 and the results 

are discussed focusing on the impacts on the utility grid in terms of energy and power 

with/without considering the presence of PV panels. First of all, the charging of e-buses shows 

that the determined average bus consumption in terms of kWh/km is consistent with the 

literature data [4] which validates the presented model. However, it should be noted that there 

is a potential for further improvement of the presented model, through an analysis of the GTFS 

and Open Street Map data, by defining classes of roads according to the number of curves, 

intersections, and traffic lights. Additionally, the obtained energy consumption is 36 kWh 

(9.4%) less in scenario 3 (where a 70 kWh battery weighs 467 kg) compared to scenarios 1 

and 2 (where a 422 kWh battery weighs 2.8 tons). Therefore, the total energy consumption of 

the two buses during their daily operation decreases based on the capacity of on-board battery. 

Secondly, analysing the minimal 𝑆𝑜𝐶 of the on-board battery allows assessing the adequacy 

between the capacity of the batteries and the charging scenario. For instance, in scenario 2, 

the minimal battery 𝑆𝑜𝐶 of bus n°2 is determined at 73.3% which indicates that the battery is 

oversized or that it can be charged less frequently and/or at a lower power. On the other hand, 

in scenario 3 in which buses operate with a lower battery capacity, the 𝑆𝑜𝐶 of bus n°2 

decreases until it reaches 22.2%, which might increase charging time of the battery for next 

trip and cause delays in case of higher consumption. Lastly, the maximal charging power of 

the bus fleet is analysed for each scenario. The highest total power is determined at 1 200 kW 

in scenario 3ter where the two buses charge their battery simultaneously on route. Although 

the peak power only lasts a few seconds/minutes, it can jeopardize the reliability of the utility 

grid due to severe changes in grid consumption in the case of a massive deployment of e-

buses. Utilization of PV energy can be considered low, which occurs because it is not able to 

charge the e-buses’ batteries on the road. Therefore, the utilization of the hybrid energy system 

which is formed by PV panels and stationary storage is essential for increasing clean energy 

utilization for e-buses. On the other hand, the PV panels might be integrated into the roof of 

the e-buses in order to use produced PV power directly while moving on the road. However, 

in that case, the surrounding buildings around the road which e-buses use to perform their 

services are required to be modelled in detail to consider the impact of the buildings’ shadows 

over the PV panels of the e-bus. 

Concerning the utilization of local PV energy, simulation results show that only a small fraction 

of PV energy is directly supplied to e-buses and the rest of the energy is injected back into the 
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grid. The obtained self-consumption of the PV energy varies according to the scenarios as 

seen in Table 4.1-5. The highest utilization of the PV energy is obtained in scenario 2 (charging 

at terminals/depot) with 81 kWh, while the minimum is determined in scenario 1 (charging at 

depot) due to charging only at night. Moreover, it can be seen that the total energy production 

on January the 15th is lower than the buses’ energy consumption. On the other hand, the 

produced PV energy in July is sufficient to supply all buses’ consumption during the day if an 

additional stationary storage system is deployed. 

Overall, this study presents a methodology for modelling and analysing the consumption power 

of the e-bus fleet for various scenarios. The potential impacts of the e-buses charging on the 

utility grid are discussed considering a local PV production without trying to minimize them via 

an optimization. However, results show that optimal planning and management are required 

for minimizing the grid impacts while maximizing the potential benefits. The main indicators 

that could be used as decision criteria for the implementation of a scenario are the e-buses’ 

maximal charging power, grid supplied energy/power, and charging times. Based on the 

criteria, an optimal sizing of PV-storage-based charging infrastructure with an intelligent energy 

management algorithm can be developed for efficient public bus services that aims to increase 

renewable energy utilization by storing surplus production during the day and/or summer 

seasons and using it during low PV production times. 

4.1.7 Conclusions 

This study analyses the performance of various charging infrastructure placements. The 

proposed method considers a modelling of the bus network based on GTFS data and a 

sequential simulation of the bus operation. The method is applied to the operation of two buses 

on one bus line in Compiègne, France. Scenarios with charging stations at the depot, line 

terminals, and bus stops are compared. Results show the relevance of the method to estimate 

the impacts on both the transport delay and the power supplied from the grid. Charging at the 

depot implies having a larger on-board battery pack whereas on-route charging at bus stops 

and terminals helps reduce the battery capacity by 83%, and thus the bus consumption by 

9.4% due to a reduction in the bus weight. However, on-route charging with a high power can 

have an impact on the utility grid, especially during the peaks of charging power. On the other 

hand, a lower charging power can generate some transport delay due to the slow charging 

process. The potential of a local PV production to reduce the impacts on the grid is shown. 

Nevertheless, the PV self-consumption remains very low during winter and PV energy cannot 

balance the buses consumption. During summer additional energy storage would increase PV 

benefits. 

Table 4.1-5 Performance indicators per scenarios. 
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Future work will simulate the charging process with stationary storage and smarter charging 
strategies. Furthermore, charging stations and PV power plants will be positioned on the utility 
grid to model more realistically the impacts on each portion of the network. The operation of 
larger fleets will be simulated to underline different impacts. An annual time horizon will allow 
analysing the evolution of the solar irradiation, external temperature, passenger flow, and bus 
services according to the period of the year and thus to simulate more realistically the operation 
of buses. Eventually, several performance indicators will be implemented in an optimization 
algorithm for the sizing and management of PV-storage-based charging infrastructures of an 
e-bus network. 
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CONCLUSIONS AND FUTURE WORKS  

This report has explored various aspects of EV charging infrastructure and energy 

management systems, with emphasis on optimization approaches and their practical 

implications.  

As the number of EVs and the complexity of charging scenarios grow, scalability becomes a 

critical concern. Addressing this, a series of modifications to the MILP formulation were 

proposed to reduce computational burden. By employing linear cuts and reformulating the 

problem as a linear program under simplified assumptions, substantial reductions in solving 

time were achieved without sacrificing solution quality. Additionally, a distributed computation 

scheme was introduced, further enhancing scalability for large-scale implementations. These 

adjustments demonstrated that it is possible to efficiently manage thousands of vehicles while 

maintaining near-optimal performance, making real-time or near real-time operation 

increasingly viable. 

Beyond individual vehicle charging, the optimization of microgrids that incorporate renewable 

energy sources and storage systems was also examined. When sizing components and 

managing energy flows within DC microgrids, it was observed that operation in islanded mode 

led to larger capacity requirements compared to grid-connected scenarios. This is primarily 

due to the need to maintain supply reliability under variable generation conditions. Economic 

analysis revealed trade-offs between lower levelized cost of electricity (LCOE) and higher 

investment or replacement costs, with battery energy storage systems (BESS) playing a pivotal 

role in both cost and emissions profiles. Environmentally, the systems contributed significantly 

to local energy production, but grid reliance remained essential, particularly in the context of 

the French energy mix. 

The location of deployment also plays a key role, as shown in a comparative study across 

multiple cities using different solar irradiation levels. The results highlighted that optimal system 

configurations vary significantly with local resource availability. Cities with higher solar 

irradiation achieved better economic and environmental performance, although temporal 

fluctuations in solar availability affected outcomes. These findings reinforce the need for site-

specific designs and emphasize the value of tailoring renewable resource integration based 

on local conditions. Technologies such as locally produced PV panels and BESS were shown 

to have a dominant influence on the life-cycle emissions of the systems. 

Energy cost optimization and vehicle-to-grid (V2G) services offer additional avenues to 

improve system efficiency and sustainability. Incorporating real-time simulations that account 

for prediction errors, it was demonstrated that dynamic scheduling of charging and discharging 

could minimize costs and enhance grid support. V2G-enabled systems were especially 

effective in reducing peak grid demand and increasing profitability, with EVs providing the 

greatest flexibility. However, challenges remain in standardizing communication protocols, 

addressing battery degradation, and managing integration costs. Future research aims to 

deepen these analyses through annual-scale simulations and hardware-in-the-loop testing to 

better understand long-term impacts and system behaviour under realistic conditions. 

Finally, the charging infrastructure for electric buses was assessed, considering the 

implications of different charging station placements on transport efficiency and grid impact. 

While depot charging required larger battery capacities and incurred higher energy 

consumption due to increased vehicle weight, on-route charging offered significant benefits by 

reducing battery size and overall energy usage. Nevertheless, such strategies introduced new 
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challenges, such as potential grid stress during high-power charging events and increased 

transport delays with slower charging rates. The potential of local PV generation was also 

explored, though seasonal variability limited its contribution during certain periods. Future 

developments will involve integrating stationary storage, refining charging strategies, and 

modeling broader grid interactions to inform the optimal design and management of e-bus 

charging networks. 

Taken together, the studies in this report highlight the multifaceted nature of EV charging 

systems and energy management, showing that advances in optimization, infrastructure 

sizing, and system integration are key to achieving both economic and environmental goals. 

Moving forward, continued interdisciplinary research and real-world validation will be essential 

to unlock the full potential of sustainable electric mobility. 
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